JP2578114B2 - Method for producing high thermal conductive aluminum nitride sintered body - Google Patents
Method for producing high thermal conductive aluminum nitride sintered bodyInfo
- Publication number
- JP2578114B2 JP2578114B2 JP62110814A JP11081487A JP2578114B2 JP 2578114 B2 JP2578114 B2 JP 2578114B2 JP 62110814 A JP62110814 A JP 62110814A JP 11081487 A JP11081487 A JP 11081487A JP 2578114 B2 JP2578114 B2 JP 2578114B2
- Authority
- JP
- Japan
- Prior art keywords
- sintered body
- aluminum nitride
- aln
- thermal conductivity
- firing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Ceramic Products (AREA)
Description
【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、窒化アルミニウム焼結体およびその製造方
法に関し、さらに詳しくは、緻密で高熱伝導性を有する
窒化アルミニウム単相からなる窒化アルミニウム焼結体
およびその製造方法に関する。DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Field of Industrial Application) The present invention relates to an aluminum nitride sintered body and a method for producing the same, and more particularly, to a method for producing a dense aluminum nitride single phase having high thermal conductivity. And a method for producing the same.
(従来技術) 窒化アルミニウム(AlN)は高温まで強度低下が少な
く、化学的耐性にも優れているため、耐熱材料として用
いられる一方、その高温伝導性、高電気絶縁性を利用し
て半導体装置の放熱板材料、回路基板用絶縁体材料とし
ても有望視されている。こうした窒化アルミニウムは常
圧下では融点を持たず、2500℃以上の高温で分解するた
め、薄膜などの用途を除いては焼結体として用いられ
る。(Prior art) Aluminum nitride (AlN) is used as a heat-resistant material because of its low strength reduction and high chemical resistance up to high temperatures, while utilizing its high-temperature conductivity and high electrical insulation to improve the performance of semiconductor devices. Promising as a heat sink material and an insulator material for circuit boards. Such aluminum nitride does not have a melting point under normal pressure and decomposes at a high temperature of 2500 ° C. or more, so it is used as a sintered body except for applications such as thin films.
かかる窒化アルミニウム焼結体は通常、窒化アルミニ
ウム、粉末を成形、焼結して得られる。超微粉(0.3μ
m以下程度)のAlN粉末を用いた場合には単独でも緻密
な焼結体が得られるが、原料粉末表面の酸化層中の酸素
が焼結時にAlN格子中に固溶したり、Al−O−N化合物
を生成し、その結果無添加焼結体の熱伝導率はたかだか
100w/mk程度である。また粒径0.5μm以上のAlN粉末を
用いた場合は焼結性が良好でないために、ホットプレス
法による以外には無添加では緻密な焼結体を得ることは
困難である。そこで常圧で焼結体を得ようとする場合、
焼結体の高密度化およびAlN原料粉末の不純物酸素のAlN
粒内への固溶を防止するために、焼結助剤とて希土類酸
化物、アルカリ土類金属酸化物等を添加することが一般
に行なわれている(特開昭60−127267号、特開昭61−10
071号、特開昭60−71575号等)。これらの焼結助剤はAl
N原料粉末の不純物酸素と反応し液相を生成し焼結体の
緻密化を達成すると共に、この不純物酸素を粒界相とし
て固定(酸素トラップ)し、高熱伝導率化を達成すると
考えられている。Such an aluminum nitride sintered body is usually obtained by molding and sintering aluminum nitride and powder. Ultra fine powder (0.3μ
m or less), a dense sintered body can be obtained by itself, but oxygen in the oxide layer on the surface of the raw material powder is dissolved in the AlN lattice during sintering, or Al-O -N compound is produced, and as a result, the thermal conductivity of the sintered body without additive is at most
It is about 100w / mk. When AlN powder having a particle size of 0.5 μm or more is used, the sinterability is not good. Therefore, it is difficult to obtain a dense sintered body without any addition except by a hot press method. Therefore, when trying to obtain a sintered body at normal pressure,
Densification of sintered body and AlN of impurity oxygen in AlN raw material powder
In order to prevent solid solution in the grains, it is common to add a rare earth oxide, an alkaline earth metal oxide, or the like as a sintering aid (JP-A-60-127267, JP-A-60-127267). 1986-10
No. 071, JP-A-60-71575, etc.). These sintering aids are Al
It is thought that it reacts with the impurity oxygen of the N raw material powder to generate a liquid phase to achieve densification of the sintered body, and to fix this impurity oxygen as a grain boundary phase (oxygen trap) to achieve high thermal conductivity. I have.
このように焼結助剤を添加することにより確かに焼結
体は緻密化、高熱伝導率化するが、他方で、結果的に残
存する粒界相(主相であるAlN相に対し副相)の存在、
完全にトラップしきれなかった酸素等の存在により、窒
化アルミニウム焼結体のそれは高々190w/mK程度と、AlN
の理論熱伝導率320w/mKに対しかなり低いものであっ
た。By adding a sintering aid in this way, the sintered body surely becomes denser and has higher thermal conductivity, but on the other hand, as a result, the remaining grain boundary phase (sub-phase with respect to the main phase AlN phase) )The presence of,
Due to the presence of oxygen and the like that could not be completely trapped, that of aluminum nitride sintered body was about 190 w / mK
It was considerably lower than the theoretical thermal conductivity of 320 w / mK.
そのため、窒化アルミニウム焼結体の熱伝導率の向上
を目的として種々の試みがなされているが、未だ十分満
足すべきものは得られていない。Therefore, various attempts have been made for the purpose of improving the thermal conductivity of the aluminum nitride sintered body, but none of them have been sufficiently satisfactory.
(発明が解決しようとする問題点) 現在半導体搭載用の回路基板、放熱基板等ではより高
い熱伝導率を有する材料が望まれている。しかしながら
酸素その他の不純物特に、助剤添加の結果として粒界に
生成する粒界相の存在により、窒化アルミニウム焼結体
の高熱伝導度化には限界があった。(Problems to be Solved by the Invention) At present, a material having a higher thermal conductivity is desired for a circuit board for mounting a semiconductor, a heat dissipation board, and the like. However, due to the presence of oxygen and other impurities, in particular, the grain boundary phase generated at the grain boundary as a result of the addition of the auxiliary agent, there has been a limit in increasing the thermal conductivity of the aluminum nitride sintered body.
本発明は、以上の点を考慮してなされたもので、熱伝
導性に優れた窒化アルミニウム焼結体を提供することを
目的とする。The present invention has been made in consideration of the above points, and has as its object to provide an aluminum nitride sintered body having excellent thermal conductivity.
(問題点を解決するための手段及び作用) 本発明者等は上記目的を達成すべく窒化アルミニウム
粉末に添加する焼結助剤や焼結条件、焼結体組成、焼結
体微細構造等と熱伝導率の関係について実験・検討を進
めた結果、以下に示す新規事項を発見し、本発明を完成
するに至った。(Means and Actions for Solving the Problems) To achieve the above object, the present inventors have studied the sintering aids added to aluminum nitride powder, sintering conditions, sintered body composition, sintered body microstructure, etc. As a result of conducting experiments and studies on the relationship between thermal conductivities, the following new matter was discovered, and the present invention was completed.
すなわち、添加物としてアルカリ土類金属化合物およ
び希土類化合物をAlN粉末に添加し、窒素を含む還元雰
囲気中で長時間焼成したところ、粒界相(例えばY−Al
−O化合物、Ca−Al−O化合物など)の存在量が従来の
窒化アルミニウム焼結体に比べて減少するということが
わかった。そして十分長時間焼結すると実質的に副相が
なくAlN単相からなり、多結晶体として非常に高い熱伝
導率を有する窒化アルミニウム焼結体が得られるという
事実をみいだした。That is, when an alkaline earth metal compound and a rare earth compound are added to an AlN powder as additives, and baked for a long time in a reducing atmosphere containing nitrogen, a grain boundary phase (for example, Y-Al
-O compound, Ca-Al-O compound, etc.) were found to be reduced as compared with the conventional aluminum nitride sintered body. Then, it was found that when sintered for a sufficiently long time, an aluminum nitride sintered body having substantially no subphase and consisting of an AlN single phase and having a very high thermal conductivity as a polycrystal was obtained.
この事実に基づいて高熱伝導率化を達成する最適条件
を種々検討した結果が本発明であり、 a)窒化アルミニウムを主成分とし、これにアルカリ土
類金属化合物および希土類化合物からなる添加物を、各
々の元素重量換算で0.05〜25%添加した成形体もしくは
この成形体を、1550〜2050℃、4時間未満で焼成し、Al
N以外の構成相を含む焼結体を、(b)カーボンガスを
生成する焼成容器及び/又は焼成時にカーボンガスを生
成する物質を焼成容器内に含むことで還元雰囲気を具体
化する窒素ガスを含む還元雰囲気中で、(c)焼成容器
の内容積と、前記成形体または焼結体との体積比が1×
100〜1×107であって、1550〜2050℃で12時間以上焼成
し、AlN以外の構成相を実質的に含まず、密度が3.120〜
3.285g/cm3、25℃における熱伝導率が230W/m・kを超え
るものであることを特徴とした高熱伝導性窒化アルミニ
ウム焼結体の製造方法である。この様な方法で得られた
窒化アルミニウム焼結体は、X線回折及び電子顕微鏡を
用いて構成相を観察してもAlN結晶粒のみ認められ、他
の相は観察されない。また成分分析を行なったところAl
Nが主成分で、希土類元素そしてアルカリ土類元素の合
計量10〜3000ppm、不純物酸素2000ppmを含有し、その他
の不純物陽イオン元素は1000ppm以下という新規な窒化
アルミニウム焼結体であった。Based on this fact, the present invention is based on the results of various studies on the optimum conditions for achieving high thermal conductivity. A) Aluminum nitride as a main component, and an additive comprising an alkaline earth metal compound and a rare earth compound, The molded body or the molded body added with 0.05 to 25% in terms of the weight of each element is fired at 1550 to 2050 ° C for less than 4 hours,
A sintered body containing a constituent phase other than N is converted into a (b) nitrogen gas that embodies a reducing atmosphere by including a baking vessel that produces carbon gas and / or a substance that produces carbon gas during baking in the baking vessel. (C) the volume ratio of the internal volume of the firing vessel to the compact or sintered body is 1 ×
10 0 to 1 × 10 7 , baked at 1550 to 2050 ° C. for 12 hours or more, substantially free of constituent phases other than AlN, and having a density of 3.120 to
3. A method for producing a highly thermally conductive aluminum nitride sintered body, characterized in that the thermal conductivity at 25 ° C. exceeds 3.285 g / cm 3 and 230 W / m · k. In the aluminum nitride sintered body obtained by such a method, only the AlN crystal grains are observed when the constituent phases are observed using X-ray diffraction and an electron microscope, and other phases are not observed. When component analysis was performed, Al
It was a novel aluminum nitride sintered body in which N was the main component, the total amount of rare earth elements and alkaline earth elements was 10 to 3000 ppm, the content of impurity oxygen was 2000 ppm, and the content of other impurity cation elements was 1000 ppm or less.
本発明の高熱伝導性窒化アルミニウム焼結体の製造方
法は、窒化アルミニウム原料粉、添加物の種類とその添
加量、焼成雰囲気、そして焼成温度とその時間を骨子と
するものである。The manufacturing method of the high thermal conductive aluminum nitride sintered body of the present invention is based on the aluminum nitride raw material powder, the type and amount of the additive, the amount of the additive, the firing atmosphere, and the firing temperature and time.
主成分である窒化アルミニウム原料粉末としては、焼
結性、熱伝導性を考慮して酸素を7重量%以下、実用上
は0.01〜7重量%含有し、平均粒径が0.05〜5μmのも
のを使用する。Aluminum nitride raw material powder, which is a main component, contains 7% by weight or less of oxygen in consideration of sinterability and thermal conductivity, and practically contains 0.01 to 7% by weight and has an average particle diameter of 0.05 to 5 μm. use.
添加物としてはアルカリ土類金属化合物および希土類
化合物を用いる。これら元素の化合物としては、酸化
物、窒化物、フッ化物、酸フッ化物、酸窒化物、もしく
は焼成によりこれらの化合物となる物質が最適である。
焼成によって例えば酸化物となる物質としては、これら
元素の炭酸塩、硝酸塩、シュウ酸塩、水酸化物などをあ
げることができる。Alkaline earth metal compounds and rare earth compounds are used as additives. As a compound of these elements, an oxide, a nitride, a fluoride, an oxyfluoride, an oxynitride, or a substance which becomes these compounds by firing is most suitable.
Examples of the substance that becomes an oxide upon firing include carbonates, nitrates, oxalates, and hydroxides of these elements.
これら添加物の添加量は、アルカリ土類金属および希
土類元重の重量換算で0.05〜25%の範囲で添加する。添
加量が0.05重量%未満であると添加物の効果が十分に発
揮されず、焼結体が緻密化されなかったり、AlN結晶中
に酸素が固溶し高熱伝導性焼結体が得られない。また、
添加量が過度に多いと、粒界相が焼結体中に残存し、こ
の結果、熱伝導率上昇の効果が充分に望めない場合が生
ずる。These additives are added in an amount of 0.05 to 25% in terms of the weight of the alkaline earth metal and the rare earth element. If the addition amount is less than 0.05% by weight, the effect of the additive is not sufficiently exerted, and the sintered body is not densified, or oxygen is dissolved in the AlN crystal to obtain a high thermal conductive sintered body. . Also,
If the addition amount is excessively large, the grain boundary phase remains in the sintered body, and as a result, the effect of increasing the thermal conductivity may not be sufficiently expected.
本発明方法においては前述の様にAlN粉末と添加物の
混合された成形体を後述の条件で焼成しても良いし、
又、従来の方法(例えば特開昭61−117160等)で製造さ
れたAlN以外の構成相として(アルカリ土類金属元素)
−Al−O化合物、および(希土類元素)−Al−O化合物
などを含む焼結体を上述した成形体の代りに用いてもよ
い。焼成雰囲気に関しては、窒素ガスを含む還元性雰囲
気中で行なう。還元性雰囲気は、CO,H2ガスおよびカー
ボン(気相および又は固相)などを少なくとも1種以上
存在させることによって作ることができる。In the method of the present invention, the molded body obtained by mixing the AlN powder and the additive as described above may be fired under the conditions described below,
In addition, as a constituent phase other than AlN produced by a conventional method (for example, Japanese Patent Application Laid-Open No. 61-117160) (alkaline earth metal element)
A sintered body containing an -Al-O compound, a (rare earth element) -Al-O compound, or the like may be used instead of the above-described molded body. The firing is performed in a reducing atmosphere containing nitrogen gas. The reducing atmosphere can be created by the presence of at least one or more of CO, H 2 gas and carbon (gas phase and / or solid phase).
このうち、最も簡便なのは焼成容器としてカーボン製
容器を用いることである。焼成容器に関しては、単に焼
結体を得ることが目的であれば窒化アルミニウム、アル
ミナ、Mo製等でも十分である(特開昭61−146769号
等)。しかし、これらの容器を用いたものでは、焼結体
中に、(添加物元素)−Al−O化合物相などが存在した
ままの状態となり、高熱伝導率な焼結体は得られない。
本発明では、焼成中にカーボンガス雰囲気をつくり出す
容器を用いる。この様な焼成容器としては容器全体がカ
ーボン製の物、容器全体がカーボン製で試料を設置する
箇所にAlN板、BN板、W板等を敷いたもの、窒化アルミ
ニウム製の容器で上部蓋がカーボン製の物等を用いるこ
とができる。本発明でいうカーボンガス雰囲気とは、15
50〜2050℃の焼結温度範囲で蒸気圧が1×10-6〜5×10
-2Pa程度生成するガスをさす。このカーボンガスが、焼
成中のAlN焼結体を還元するという作用が得られ、さら
に具体的には(添加物元素)−Al−O三元系化合物等の
粒界相を焼結体中より除去する作用が働らき、窒化アル
ミニウム焼結体はAlN単相となり、高熱伝導性の焼結体
に変化していく。Of these, the simplest is to use a carbon container as the firing container. As for the firing vessel, aluminum nitride, alumina, Mo or the like is sufficient if the purpose is simply to obtain a sintered body (Japanese Patent Application Laid-Open No. 61-14769). However, in the case of using these containers, the (additive element) -Al-O compound phase or the like remains in the sintered body, and a sintered body with high thermal conductivity cannot be obtained.
In the present invention, a container that creates a carbon gas atmosphere during firing is used. Such a baking container is a container made of carbon as a whole, a container made of carbon as a whole and an AlN plate, a BN plate, a W plate or the like laid on a place where a sample is to be placed, or a container made of aluminum nitride and having an upper lid. An object made of carbon or the like can be used. The carbon gas atmosphere in the present invention is defined as 15
Vapor pressure of 1 × 10 -6 to 5 × 10 in the sintering temperature range of 50 to 2050 ° C
Refers to gas that generates about -2 Pa. This carbon gas has an effect of reducing the AlN sintered body during firing, and more specifically, a grain boundary phase such as an (additive element) -Al-O ternary compound is removed from the sintered body. The action of removing works, and the aluminum nitride sintered body becomes an AlN single phase and changes into a sintered body having high thermal conductivity.
この容器の内容積は、その内容積と窒化アルミニウム
成形体との体積の比(内容積/成形体の体積)が1×10
0〜1×107が良い。これ以上大きな容積を用いた場合、
試料近傍におけるカーボン蒸気圧が低く、カーボンによ
る粒界相除去効果が小さくなる。The inner volume of this container is 1 × 10 (the ratio of the inner volume to the volume of the aluminum nitride molded body (internal volume / volume of the molded body)).
0 to 1 × 10 7 is good. If a larger volume is used,
The carbon vapor pressure near the sample is low, and the effect of carbon to remove the grain boundary phase is reduced.
焼結時間については、従来種々の助剤を用い1〜3時
間の短時間で行なわれているが、この程度の時間では、
上記焼成容器中で焼成したとしても、窒化アルミニウム
焼結体の緻密化、そして原料粉末表面の酸素を粒界相に
固定することは可能であるが、AlN粒間の陵および三重
点に粒界相が存在し、AlN単相の焼結体は得られない。
また前述の如くのカーボンガス雰囲気が得られない焼成
容器を用いた場合は、長時間の焼成によっても粒界相の
除去の効果は現われない。実質的AlN単相にするために
は、焼結助剤にもよるが12時間以上あれば最も望まし
い。As for the sintering time, conventionally, sintering has been performed in a short time of 1 to 3 hours using various auxiliaries.
Even if it is fired in the above firing vessel, it is possible to densify the aluminum nitride sintered body and fix the oxygen on the surface of the raw material powder to the grain boundary phase, but the grain boundaries are formed between the AlN grains and at the triple point. There is a phase, and an AlN single phase sintered body cannot be obtained.
In addition, when a firing vessel that does not provide a carbon gas atmosphere as described above is used, the effect of removing the grain boundary phase does not appear even after firing for a long time. In order to make a substantially AlN single phase, it is most desirable that the time be 12 hours or more, depending on the sintering aid.
焼成温度については、1550〜2050℃が好ましい。1550
℃より低温で焼成すると、原料粉末の粒径、酸素量にも
よるが緻密な焼結体が得られない。また焼成容器からの
カーボンガスの発生が少なくなり、粒界相を残したまま
となる。また2050℃より高温で焼成すると、AlN自体の
蒸気圧が高くなり、緻密化が困難になると共に、焼結体
中に添加元素の窒化物と推定される副相が残存し、結果
として熱伝導率が低下する場合がある。The firing temperature is preferably from 1550 to 2050 ° C. 1550
When firing at a temperature lower than ℃, a dense sintered body cannot be obtained depending on the particle size of the raw material powder and the amount of oxygen. Further, the generation of carbon gas from the firing vessel is reduced, and the grain boundary phase remains. Also, when firing at a temperature higher than 2050 ° C, the vapor pressure of AlN itself increases, making it difficult to densify, and a sub-phase, which is presumed to be a nitride of an additional element, remains in the sintered body, resulting in heat conduction. The rate may decrease.
次いで本発明の窒化アルミニウム焼結体の製造方法の
一例を以下に述べる。Next, an example of the method for producing the aluminum nitride sintered body of the present invention will be described below.
まず、AlN粉末に添加物を所定量添加したのちボール
ミル等を用いて混合する。焼結には常圧焼結法を使用す
る。この場合、混合粉末にバインダーを加え、混練、造
粒、整粒を行なったのち成形する。成形法としては、金
型プレス、静水圧プレス或いはシート成形などが適用で
きる。続いて、成形体を非酸化性雰囲気中、例えば窒素
ガス気流中で加熱してバインダーを除去したのち常圧焼
結する。この時用いる焼成容器は、焼成中カーボンガス
雰囲気をつくり出す。例えばカーボン製容器で、容器内
容積と成形体体積の比が、1×100〜1×107のものを用
いる。焼結温度は1550〜2050℃に、焼結時間は4時間以
上に設定する。この様な方法により本発明焼結体を得る
ことができる。First, a predetermined amount of an additive is added to AlN powder, and then mixed using a ball mill or the like. A normal pressure sintering method is used for sintering. In this case, a binder is added to the mixed powder, kneading, granulation, and sizing are performed, followed by molding. As a molding method, a die press, an isostatic press, a sheet molding or the like can be applied. Subsequently, the molded body is heated in a non-oxidizing atmosphere, for example, in a nitrogen gas stream to remove the binder, and then sintered at normal pressure. The firing vessel used at this time creates a carbon gas atmosphere during firing. For example, a carbon container having a ratio of the volume of the container to the volume of the molded body of 1 × 10 1 to 1 × 10 7 is used. The sintering temperature is set to 1550-2050 ° C, and the sintering time is set to 4 hours or more. The sintered body of the present invention can be obtained by such a method.
次に本発明の窒化アルミニウム焼結体の熱伝導の向上
効果および(添加物元素)−Al−O系化合物相等の粒界
の除去による窒化アルミニウム焼結体の純化作用につい
て説明する。緻密なメカニズムは現在のところで完全に
解明されているわけではないが、本発明者らの研究によ
れば高熱伝導率化の要因として次のように推定される。Next, the effect of improving the thermal conductivity of the aluminum nitride sintered body of the present invention and the purifying action of the aluminum nitride sintered body by removing grain boundaries such as the (additive element) -Al-O-based compound phase will be described. The precise mechanism has not been completely elucidated at present, but according to the study of the present inventors, it is estimated as follows as a factor for increasing the thermal conductivity.
まず、添加物によるAlN原料粉末の不純物酸素のトラ
ップ効果である。すなわちアルカリ土類金属および希土
類元素化合物を添加することにより、不純物酸素を(添
加物元素)−Al−O化合物等の形でAlN流界の稜および
三重点に固定するため、AlN格子中への酸素の固溶が防
止され、Alの酸窒化物(AlON)、そしてAlNのポリタイ
プ(27R型)の生成を防止する。発明者らの研究結果に
よれば、AlONそして27Rが生成した焼結体は、いずれも
熱伝導率が低いことがわかっている。この様な低熱伝導
率化の原因を抑制することが高熱伝導度化の一因として
挙げられる。The first is the effect of trapping impurity oxygen in the AlN raw material powder by the additive. That is, by adding an alkaline earth metal and a rare earth element compound, impurity oxygen is fixed to the ridge and triple point of the AlN flow field in the form of an (additive element) -Al-O compound or the like. Oxygen solid solution is prevented, and the formation of Al oxynitride (AlON) and AlN polytype (27R type) is prevented. According to the research results of the inventors, it is known that the sintered bodies in which AlON and 27R are formed have low thermal conductivity. Suppressing the cause of such low thermal conductivity can be cited as one of the causes of high thermal conductivity.
例えば、添加元素としてYを選んだ場合は原料粉末の
不純物酸素が、3Y2O3・5Al2O3,Y2O3・Al2O3,2Y2O3・Al2
O3、Y2O3などの化合物としてトラップされる。この状態
は、焼結初期、すなわち、焼結時間の0〜3時間で起こ
り、熱伝導率が最高190w/mK程度に達する。For example, an impurity oxygen of the raw material powder if as an additive element chose Y is, 3Y 2 O 3 · 5Al 2 O 3, Y 2 O 3 · Al 2 O 3, 2Y 2 O 3 · Al 2
Trapped as compounds such as O 3 and Y 2 O 3 . This state occurs at the initial stage of sintering, that is, in the sintering time of 0 to 3 hours, and the thermal conductivity reaches a maximum of about 190 w / mK.
これ以降の焼結過程でカーボン雰囲気が粒界相を還元
し、さらに粒界相を除去し始める。次第に粒界相は窒化
アルミニウム焼結体中には存在しなくなり、焼結体の系
外へと移動する。そして最終的に焼結体は他の相を実質
的に含有しないAlN単相となり、熱伝導率は大巾に上昇
する。これは熱伝導率が小さく熱抵抗として働いていた
粒界相が除去されるためである。また長時間の焼成によ
り焼結体の粒子が成長する。AlN粒子が成長すると熱抵
抗となる粒界の数が結果的に少なくなることを意味し、
フォノンの散乱が小さな焼結体になる。In the subsequent sintering process, the carbon atmosphere reduces the grain boundary phase and starts to remove the grain boundary phase. Gradually, the grain boundary phase does not exist in the aluminum nitride sintered body and moves out of the sintered body. Finally, the sintered body becomes an AlN single phase substantially containing no other phases, and the thermal conductivity increases significantly. This is because the grain boundary phase having low thermal conductivity and acting as thermal resistance is removed. In addition, the particles of the sintered body grow by firing for a long time. When AlN particles grow, it means that the number of grain boundaries that become thermal resistance will eventually decrease,
A sintered body with small phonon scattering is obtained.
又、上述のような副相の除去、そして粒成長以外に、
還元雰囲気下で長時間焼成することにより、AlN結晶粒
の純化、例えば格子欠陥の減少による熱伝導率上昇効果
も考えられる。In addition to the above-mentioned removal of the subphase and grain growth,
By firing for a long time in a reducing atmosphere, it is also possible to purify AlN crystal grains, for example, to increase the thermal conductivity by reducing lattice defects.
次に、本発明の実施例を説明する。 Next, examples of the present invention will be described.
実施例1 不純物として酸素を0.86重量%含有し、平均粒径が1.
72μm(遠心沈降径、堀場製作所製CAPA−500使用、分
散媒n−ブチルアルコール)のAlN粉末に添加物として
平均粒径0.9μmのY2O3を5重量%(Y換算で39重量
%)そして平均粒径2.0μmのCaCO3を1重量%(Ca換算
で0.40重量%)添加し、ボールミルを用いて混合を行な
い原料を調整した。ついで、この原料に有機系バインダ
ーを4重量%添加して造粒したのち500kg/cm2の圧力で
プレス成形して38×38×10mmの圧粉体とした。この圧粉
体を窒素ガス雰囲気中で700℃まで加熱してバインダー
を除去した。更に、BN粉末を塗布したAlN板を底板とし
てひいたカーボン製容器(焼成用容器A)に脱脂体を収
容した。このとき容器Aのの形状および大きさは、12cm
φ×6.4cmで内容積が720cm2程度である。すなわちこの
容器Aの内容積とAlN成形体の体積の比が約5×101程度
となっている。この容器を用い窒素ガス雰囲気中(1気
圧)1900℃,96時間の条件で常圧焼結した。得られたAlN
焼結体の密度を測定した。また焼結体から、直径10mm,
厚さ3.3mmの円板を研削し、これを試験片としてレーザ
ーフラッシュ法により熱伝導率を測定した(真空理工製
TC−3000使用)。測定温度は25℃である。Example 1 0.86% by weight of oxygen was contained as an impurity, and the average particle size was 1.
72 .mu.m (centrifugal sedimentation diameter, Horiba CAPA-500 used, the dispersion medium n- butyl alcohol) average particle diameter Y 2 O 3 of 0.9 .mu.m 5 wt% (Y 39 wt% in terms of) the AlN powder additives Then, 1% by weight (0.40% by weight in terms of Ca) of CaCO 3 having an average particle size of 2.0 μm was added, and the mixture was mixed using a ball mill to prepare a raw material. Then, 4 wt% of an organic binder was added to the raw material, and the mixture was granulated, followed by press molding at a pressure of 500 kg / cm 2 to obtain a compact of 38 × 38 × 10 mm. This green compact was heated to 700 ° C. in a nitrogen gas atmosphere to remove the binder. Further, the degreased body was accommodated in a carbon container (firing container A) ground with an AlN plate coated with BN powder as a bottom plate. At this time, the shape and size of the container A is 12 cm
It is φ × 6.4cm and the inner volume is about 720cm 2 . That is, the ratio of the volume of the container A to the volume of the AlN compact is about 5 × 10 1 . Using this container, sintering was carried out at 1900 ° C. for 96 hours in a nitrogen gas atmosphere (1 atm). AlN obtained
The density of the sintered body was measured. Also, from the sintered body, 10mm in diameter,
A 3.3 mm thick disk was ground and used as a test piece to measure the thermal conductivity by the laser flash method (manufactured by Vacuum Riko).
TC-3000 used). The measurement temperature is 25 ° C.
上記焼結条件から得られた焼結体の特性を第1表に示
した。また、この焼結体のX線回折(理学電機製ロータ
フレックスRU−200、ゴニオメータCN2173D5,線源Cu50k
V,100mA使用)を行なった結果を第1図に、焼結体破面
のSEM写真を第2図に示した(日本電子製JSM−T20使
用)。Table 1 shows the characteristics of the sintered body obtained under the above sintering conditions. Also, X-ray diffraction of this sintered body (Rotorflex RU-200 manufactured by Rigaku Denki, goniometer CN2173D5, radiation source Cu50k
V, 100 mA) is shown in FIG. 1, and an SEM photograph of the fracture surface of the sintered body is shown in FIG. 2 (using JSM-T20 manufactured by JEOL Ltd.).
実施例2〜27 実施例−1で用いたAlN粉に各種の添加物を加えて、
又、焼成の温度時間を変化させて実施例−1と同様の方
法で各種の焼結体を得た。その評価結果を表−1に合わ
せて示した。Examples 2 to 27 By adding various additives to the AlN powder used in Example 1,
In addition, various sintered bodies were obtained in the same manner as in Example 1 by changing the firing time and temperature. The evaluation results are shown in Table 1.
実施例28〜37 焼成雰囲気の組成および圧力を変化させて実施例−1
と同様な方法で各種の焼結体を得た。その焼結体の評価
結果を表−1に合わせて示した。Examples 28 to 37 Example 1 by changing the composition and pressure of the firing atmosphere
Various sintered bodies were obtained in the same manner as described above. The evaluation results of the sintered body are shown in Table 1.
実施例38〜43 各種のAlN粉を用いて、焼成条件、添加物の組成とそ
の量を変えて、実施例−1と同様な方法により各種焼結
体を得た。その焼結体の評価結果を表−1に合わせて示
した。Examples 38 to 43 Various sinters were obtained in the same manner as in Example 1, using various AlN powders and changing the firing conditions, the composition of the additives, and the amounts thereof. The evaluation results of the sintered body are shown in Table 1.
実施例44〜50 実施例−1と同様な方法で得た成形体を容器と成形体
の容積比が異なる他は、実施例−1と同様な方法により
各種の焼結体を得た。その焼結体の評価結果を表−2に
示した。Examples 44 to 50 Various sintered compacts were obtained by the same method as in Example 1 except that the volume ratio between the container and the molded article was different from the molded article obtained in the same manner as in Example-1. Table 2 shows the evaluation results of the sintered body.
実施例48 BN板を底板としてひいたカーボン製容器(焼成容器
B)を用いたことを除いて、実施例1と同様にして、Al
N焼結体を製造した。同様の評価を行ない。結果を表−
2に示した。Example 48 An Al container was prepared in the same manner as in Example 1 except that a carbon container (fired container B) ground with a BN plate as a bottom plate was used.
An N sintered body was manufactured. The same evaluation is performed. Table-Results
2 is shown.
実施例49 内側の全体がカーボン製の容器(焼成容器C)を用い
たことを除いて、実施例1と同様にしてAlN焼結体を製
造した。同様の評価を行ない結果を表−2に示した。Example 49 An AlN sintered body was manufactured in the same manner as in Example 1 except that a container made entirely of carbon (sintering container C) was used. The same evaluation was performed and the results are shown in Table 2.
実施例50 実施例46で用いたカーボン製容器(43×44×15mm)内
に、平均粒径0.02μmのカーボン粉末をつめ、その中に
実施例−1と同様な成形体を入れ1900℃,96時間で焼成
した。得られた焼結体を実施例1と同様に評価し、結果
を表−2に示した。Example 50 In the carbon container (43 × 44 × 15 mm) used in Example 46, a carbon powder having an average particle size of 0.02 μm was packed, and the same compact as in Example 1 was placed therein at 1900 ° C. It was baked for 96 hours. The obtained sintered body was evaluated in the same manner as in Example 1, and the results are shown in Table 2.
比較例1〜3 AlN粉末そして添加物の種類および量が異なる他は実
施例1と同様な方法により得たAlN脱脂体を焼結用容器
A,BおよびCに種々セットし、1900℃、2hr,N2雰囲気中
で常圧焼結し、焼結体を得た。これらの焼結体の特性を
表−3に示した。さらに、比較例1の焼結体を用い、X
線回折を行なった結果を第3図に、焼結体の破面のSEM
写真を第4図に示した。これらの結果および同様の評価
の結果より、副相としてイットリウムを含む化合物が観
察され、AlN単相でないことがわかり、その結果として
熱伝導率も170w/mk以下の低い値である。Comparative Examples 1-3 AlN degreased bodies obtained by the same method as in Example 1 except that the types and amounts of the AlN powder and the additives were different were used for sintering containers.
A, variously set to B and C, 1900 ° C., 2 hr, then normal pressure sintering in a N 2 atmosphere to obtain a sintered body. Table 3 shows the properties of these sintered bodies. Further, using the sintered body of Comparative Example 1, X
Figure 3 shows the results of X-ray diffraction, and shows the SEM of the fracture surface of the sintered body.
The photograph is shown in FIG. From these results and the result of the same evaluation, a compound containing yttrium was observed as a subphase, and it was found that the compound was not an AlN single phase. As a result, the thermal conductivity was a low value of 170 w / mk or less.
このように焼結時間が4時間未満と短い場合、カーボ
ン製容器を用いることによる粒界相の除去が十分でない
ことがわかり、高熱伝導率を有するAlN焼結体を得るた
めには長時間(4時間以上)の焼結が必要であることが
わかる。When the sintering time is as short as less than 4 hours, it is understood that the removal of the grain boundary phase by using the carbon container is not sufficient, and it takes a long time to obtain an AlN sintered body having high thermal conductivity ( It can be seen that sintering for more than 4 hours is necessary.
比較例4〜6 実施例1と同様な方法により得たAlN脱脂体を、比較
例4では内側の全体がAlN製の容器(焼結容器D)、比
較例5では内側の全体がアルミナ製の容器(焼結容器
E)、比較例6では内側の全体がタングステン製の容器
(焼結容器F)を用い、1900℃,96hr,N2気流中で常圧焼
結し、焼結体を得た。これらの焼結体の特性を表−3に
示す。さらに、比較例4の焼結体を用い、X線回折を行
なった結果を第5図に示した。これらの結果および、評
価の結果より、副相としてイットリウムを含む化合物が
観察され、AlN単相でないことがわかった。その結果熱
伝導率も168w/mK以下の比較的低い値である。Comparative Examples 4 to 6 An AlN degreased body obtained by the same method as in Example 1 was used. In Comparative Example 4, the whole inner container was made of AlN (sintering container D). In Comparative Example 5, the entire inner member was made of alumina. In the container (sintering container E), in Comparative Example 6, the inside was entirely made of tungsten (sintering container F), and was sintered under normal pressure at 1900 ° C. for 96 hours in a stream of N 2 to obtain a sintered body. Was. Table 3 shows the properties of these sintered bodies. Further, the result of X-ray diffraction using the sintered body of Comparative Example 4 is shown in FIG. From these results and the results of the evaluation, a compound containing yttrium as a subphase was observed, and it was found that the compound was not an AlN single phase. As a result, the thermal conductivity is also a relatively low value of 168 w / mK or less.
この様に少なくとも内部の一部が、カーボンよりなる
焼結容器を用いない場合も高熱伝導率を有するAlN焼結
体が得られず、カーボン雰囲気の有効さがわかる。As described above, even when a sintering vessel made of carbon at least in part is not used, an AlN sintered body having high thermal conductivity cannot be obtained, and the effectiveness of the carbon atmosphere can be understood.
比較例7 実施例1で用いたAlN粉末を、500kg/cm3の圧力でプレ
ス成形して、30×30×10mmの圧粉体とし、この圧粉体を
カーボン型中に入れ窒素ガス雰囲気中、温度1900℃,400
kg/cm3の圧力下で1時間ホットプレス焼結し、焼結体を
得た。この焼結体の特性を表−3に示した。さらにX線
回折を行なった結果を第6図に示した。この結果より副
相としてAl−O−N系化合物が観察され、AlN単相では
ないことがわかった。結果として熱伝導率も80w/mKとい
う低い値であった。Comparative Example 7 The AlN powder used in Example 1 was press-molded at a pressure of 500 kg / cm 3 to obtain a green compact of 30 × 30 × 10 mm. The green compact was placed in a carbon mold and placed in a nitrogen gas atmosphere. , Temperature 1900 ℃, 400
Hot press sintering was performed under a pressure of kg / cm 3 for 1 hour to obtain a sintered body. Table 3 shows the characteristics of the sintered body. Further results of X-ray diffraction are shown in FIG. From this result, an Al-ON-based compound was observed as a subphase, and it was found that the compound was not an AlN single phase. As a result, the thermal conductivity was as low as 80 w / mK.
この様に希土類およびアルカリ土類金属元素化合物を
添加しないと、AlN原料粉末表面の不純物酸素とAlNが反
応し、熱伝導をさまたげるAl−O−N化合物が生成して
しまうことから、添加物の有効さがわかる。If the rare earth and alkaline earth metal element compounds are not added in this way, the impurity oxygen on the surface of the AlN raw material powder reacts with the AlN to form an Al-ON compound that impedes heat conduction. We understand effectiveness.
[発明の効果] 以上のべた如く、本発明の窒化アルミニウム焼結体
は、実質的にAlN単相からなるもので、高純度かつ、高
熱伝導率を示すなど、優れた性質を有するものであり、
その工業的価値は極めて大きいものである。[Effects of the Invention] As described above, the aluminum nitride sintered body of the present invention is substantially composed of an AlN single phase and has excellent properties such as high purity and high thermal conductivity. ,
Its industrial value is extremely large.
第1図、第3図、第5図および第6図は焼結体のX線回
折パターン図、第2図および第4図は焼結体破面の結晶
構造を(SEM写真により)表した図である。 1……AlNの回折ピーク 2……Y−Al−O化合物の回折ピーク 3……Al−O−N化合物のピーク 4……AlN粒 5……Y−Al−O化合物(粒界相)FIGS. 1, 3, 5 and 6 are X-ray diffraction pattern diagrams of the sintered body, and FIGS. 2 and 4 show the crystal structure of the fracture surface of the sintered body (by SEM photograph). FIG. 1 ... diffraction peak of AlN 2 ... diffraction peak of Y-Al-O compound 3 ... peak of Al-ON compound 4 ... AlN particles 5 ... Y-Al-O compound (grain boundary phase)
───────────────────────────────────────────────────── フロントページの続き (72)発明者 佐藤 佳子 川崎市幸区小向東芝町1 株式会社東芝 総合研究所内 (72)発明者 堀口 昭宏 川崎市幸区小向東芝町1 株式会社東芝 総合研究所内 (72)発明者 柘植 章彦 川崎市幸区小向東芝町1 株式会社東芝 総合研究所内 (56)参考文献 特開 昭62−132776(JP,A) ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Yoshiko Sato 1 Toshiba-cho, Komukai-shi, Kawasaki-shi Toshiba Research Institute, Inc. (72) Inventor Akihiro Horiguchi 1 Toshiba-cho, Komukai-shi, Kawasaki-shi Toshiba Research Institute In-house (72) Inventor Akihiko Tsuge 1 Komukai Toshiba-cho, Yuki-ku, Kawasaki-shi Toshiba Research Institute, Inc. (56) References JP-A-62-132776 (JP, A)
Claims (3)
れにアルカリ土類金属化合物及び希土類化合物をから成
る添加物を、各々の元素の重量換算で0.05〜25%添加し
た成形体、もしくはこの成形体を1550〜2050℃、4時間
未満で焼成し、AlN以外の構成相を含む焼結体を (b)カーボンガスを生成する焼成容器及び/又は焼成
時にカーボンガスを生成する物質を焼成容器内に含むこ
とで還元雰囲気を具体化する窒素ガスを含む還元雰囲気
中で、 (c)焼成容器の内容積と、前記成形体または焼結体と
の体積比が1×100〜1×107であって、1550〜2050℃で
12時間以上焼成し、AlN以外の構成相を実質的に含まな
い熱伝導率が230W/m・kを超える焼結体を得ることを特
徴とした高熱伝導性窒化アルミニウム焼結体の製造方
法。1. A molded article comprising (a) an aluminum nitride as a main component and an additive comprising an alkaline earth metal compound and a rare earth compound added thereto in an amount of 0.05 to 25% in terms of the weight of each element, or The molded body is fired at 1550 to 2050 ° C. for less than 4 hours, and a sintered body containing a constituent phase other than AlN is fired. (B) A firing vessel for generating a carbon gas and / or a firing vessel for generating a carbon gas during firing (C) the volume ratio of the internal volume of the firing vessel to the compact or sintered compact is 1 × 10 0 to 1 × 10 7 and at 1550-2050 ° C
A method for producing a highly thermally conductive aluminum nitride sintered body, characterized in that the sintered body is fired for 12 hours or more to obtain a sintered body having a thermal conductivity exceeding 230 W / mk which is substantially free of constituent phases other than AlN.
なくとも1種であり、希土類元素がY,Sc,Dy,Ce,のうち
少なくとも1種である特許請求の範囲第1項記載の高熱
伝導性窒化アルミニウム焼結体の製造方法。2. The method according to claim 1, wherein the alkaline earth metal element is at least one of Ca, Sr, and Ba, and the rare earth element is at least one of Y, Sc, Dy, and Ce. Of manufacturing a highly thermally conductive aluminum nitride sintered body of the present invention.
おける熱伝導率が230W/m・k以上であることを特徴とし
た特許請求の範囲第1項記載の高熱伝導性窒化アルミニ
ウム焼結体の製造方法。3. The high thermal conductivity according to claim 1, wherein the density of the sintered body is 3.120 to 3.285 g / cm 3 , and the thermal conductivity at 25 ° C. is 230 W / m · k or more. Of producing a sintered aluminum nitride sintered body.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62110814A JP2578114B2 (en) | 1987-05-08 | 1987-05-08 | Method for producing high thermal conductive aluminum nitride sintered body |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62110814A JP2578114B2 (en) | 1987-05-08 | 1987-05-08 | Method for producing high thermal conductive aluminum nitride sintered body |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63277570A JPS63277570A (en) | 1988-11-15 |
JP2578114B2 true JP2578114B2 (en) | 1997-02-05 |
Family
ID=14545333
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62110814A Expired - Lifetime JP2578114B2 (en) | 1987-05-08 | 1987-05-08 | Method for producing high thermal conductive aluminum nitride sintered body |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2578114B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4812144B2 (en) * | 1998-07-22 | 2011-11-09 | 住友電気工業株式会社 | Aluminum nitride sintered body and manufacturing method thereof |
EP1777204A4 (en) | 2004-06-21 | 2010-12-01 | Tokuyama Corp | Nitride sintered compact and method for production thereof |
US20080076658A1 (en) | 2006-09-26 | 2008-03-27 | Tokuyama Corporation | Aluminum nitride sintered body |
JP5909804B1 (en) * | 2014-12-17 | 2016-04-27 | 冨士ダイス株式会社 | Si3N4 ceramics with low heat dissipation, and cutting edge replaceable cutting tips, end mills or wear-resistant tools using the same |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62132776A (en) * | 1985-12-02 | 1987-06-16 | 株式会社トクヤマ | Aluminum nitride composition |
-
1987
- 1987-05-08 JP JP62110814A patent/JP2578114B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPS63277570A (en) | 1988-11-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH01203270A (en) | Sintered aluminum nitride body having high thermal conductivity and its production | |
JP2007019544A (en) | Heat sink for semiconductor device | |
JP2547767B2 (en) | High thermal conductivity aluminum nitride sintered body | |
JP3472585B2 (en) | Aluminum nitride sintered body | |
JP2578114B2 (en) | Method for producing high thermal conductive aluminum nitride sintered body | |
JPH0649613B2 (en) | Aluminum nitride sintered body and manufacturing method thereof | |
JPH0717453B2 (en) | Aluminum nitride sintered body and method for manufacturing the same | |
JPH06135771A (en) | High heat conductivity silicon nitride sintered compact and its production | |
JP2578113B2 (en) | Method for producing high thermal conductive aluminum nitride sintered body | |
JPH0825799B2 (en) | Method for manufacturing high thermal conductivity aluminum nitride sintered body | |
JP2666942B2 (en) | Aluminum nitride sintered body | |
EP0064264B1 (en) | Silicon carbide powder mixture and process for producing sintered bodies therefrom | |
JP2962466B2 (en) | Aluminum nitride sintered body | |
JP2511011B2 (en) | High thermal conductivity aluminum nitride sintered body | |
JPH07121830B2 (en) | Method for manufacturing high thermal conductivity aluminum nitride sintered body | |
JP2938153B2 (en) | Manufacturing method of aluminum nitride sintered body | |
JP2661113B2 (en) | Manufacturing method of aluminum nitride sintered body | |
JP2535139B2 (en) | Heat dissipation board | |
JP3141505B2 (en) | Aluminum nitride sintered body and method for producing the same | |
JP2524185B2 (en) | Aluminum nitride sintered body and manufacturing method thereof | |
JP2772580B2 (en) | Method for producing aluminum nitride sintered body | |
JPH07121829B2 (en) | High thermal conductivity aluminum nitride sintered body | |
JP2735227B2 (en) | Manufacturing method of aluminum nitride sintered body | |
JP2901135B2 (en) | Semiconductor device | |
JP2704194B2 (en) | Black aluminum nitride sintered body |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071107 Year of fee payment: 11 |