JP2575840B2 - 水素吸蔵合金電極の乾式製造方法 - Google Patents
水素吸蔵合金電極の乾式製造方法Info
- Publication number
- JP2575840B2 JP2575840B2 JP63229393A JP22939388A JP2575840B2 JP 2575840 B2 JP2575840 B2 JP 2575840B2 JP 63229393 A JP63229393 A JP 63229393A JP 22939388 A JP22939388 A JP 22939388A JP 2575840 B2 JP2575840 B2 JP 2575840B2
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- hydrogen storage
- storage alloy
- powder
- hydrogen
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/621—Binders
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/24—Electrodes for alkaline accumulators
- H01M4/242—Hydrogen storage electrodes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49002—Electrical device making
- Y10T29/49108—Electric battery cell making
- Y10T29/49115—Electric battery cell making including coating or impregnating
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Battery Electrode And Active Subsutance (AREA)
Description
【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明はニッケル酸化物・水素二次電池に係わり、特
に、水素吸蔵合金を主成分とする水素吸蔵電極の製造方
法に関する。
に、水素吸蔵合金を主成分とする水素吸蔵電極の製造方
法に関する。
(従来の技術) 水素を可逆的に吸蔵、放出しうる合金、いわゆる水素
吸蔵合金は気体水素ばかりでなく、プロトン、ヒドロニ
ウムイオン等のイオン状の水素にも作用し、電気化学的
に水素成分を吸蔵できることが知られている。この水素
吸蔵合金を用いた二次電池用負極は有害な金属を含ま
ず、ニッケル・カドミウム二次電池の負極であるカドミ
ウムや鉛蓄電池の鉛と比較して軽量であるため、単位重
量当りのエネルギー密度が大きい等の利点がある。従っ
て、この負極をNi(OH)2とNiOOHからなるニッケル酸
化物電極等の適当な正極と組合わせれば、高エネルギー
密度の二次電池を作ることができる。
吸蔵合金は気体水素ばかりでなく、プロトン、ヒドロニ
ウムイオン等のイオン状の水素にも作用し、電気化学的
に水素成分を吸蔵できることが知られている。この水素
吸蔵合金を用いた二次電池用負極は有害な金属を含ま
ず、ニッケル・カドミウム二次電池の負極であるカドミ
ウムや鉛蓄電池の鉛と比較して軽量であるため、単位重
量当りのエネルギー密度が大きい等の利点がある。従っ
て、この負極をNi(OH)2とNiOOHからなるニッケル酸
化物電極等の適当な正極と組合わせれば、高エネルギー
密度の二次電池を作ることができる。
この様にニッケル酸化物電極を正極とし、水素吸蔵合
金を主成分とする電極を負極とするニッケル酸化物・水
素二次電池では、負極において充放電時に(1)式の反
応が起り、一方、正極において充放電時に(2)式の反
応が起こる。
金を主成分とする電極を負極とするニッケル酸化物・水
素二次電池では、負極において充放電時に(1)式の反
応が起り、一方、正極において充放電時に(2)式の反
応が起こる。
(1)式において、Mは水素吸蔵合金である。
ところで、この水素吸蔵合金を用いた二次電池用負極
は、水素吸蔵合金の粉末を適当な結着剤(バインダー)
を用いて結着させた後に成形する方法、水素吸蔵合金の
粉末を不活性ガス雰囲気、水素ガス雰囲気、または真空
中で焼結する方法、水素吸蔵合金をアモルファス化する
方法により、製造されている。このなかで、焼結する方
法やアモルファス化する方法は各々複雑な技術を必要と
する他に、成形性が悪いために、実際上電池に組込んで
使用するには困難な点が多い。
は、水素吸蔵合金の粉末を適当な結着剤(バインダー)
を用いて結着させた後に成形する方法、水素吸蔵合金の
粉末を不活性ガス雰囲気、水素ガス雰囲気、または真空
中で焼結する方法、水素吸蔵合金をアモルファス化する
方法により、製造されている。このなかで、焼結する方
法やアモルファス化する方法は各々複雑な技術を必要と
する他に、成形性が悪いために、実際上電池に組込んで
使用するには困難な点が多い。
この様な理由から、この電極を製造する方法としては
水素吸蔵合金の粉末を結着させて製造する方法が最も一
般的に用いられており、特に、結着剤としては、結着力
や作業性の観点から弗素樹脂系結着剤が広く用いられて
いる。
水素吸蔵合金の粉末を結着させて製造する方法が最も一
般的に用いられており、特に、結着剤としては、結着力
や作業性の観点から弗素樹脂系結着剤が広く用いられて
いる。
しかしながら、この様に、弗素樹脂系結着剤を用いた
場合でも、水素吸蔵合金の粉末と結着剤および、例え
ば、カルボキシメチルセルロース(CMC)やPVA等の増粘
剤に水を加えて均一に混練した後圧延して電極を形成す
る方法(例えば、特公昭61−66372号公報や特公昭61−1
24054号公報参照)は、混合時における水や乾燥工程に
おける加熱のために水素吸蔵合金が酸化してしまい、電
極容量の低下や電極の水素ガスの吸収が悪くなるととも
に、その吸収が遅くなり、電極のガス吸収能の低下をき
たすなどの問題点がある。また、水素吸蔵合金の粉末と
結着剤とを均一に粉末のままで混合した後プレスによっ
て電極を成形する方法は、電極表面を結着剤を覆うため
に電極容量が低下する問題点がある。
場合でも、水素吸蔵合金の粉末と結着剤および、例え
ば、カルボキシメチルセルロース(CMC)やPVA等の増粘
剤に水を加えて均一に混練した後圧延して電極を形成す
る方法(例えば、特公昭61−66372号公報や特公昭61−1
24054号公報参照)は、混合時における水や乾燥工程に
おける加熱のために水素吸蔵合金が酸化してしまい、電
極容量の低下や電極の水素ガスの吸収が悪くなるととも
に、その吸収が遅くなり、電極のガス吸収能の低下をき
たすなどの問題点がある。また、水素吸蔵合金の粉末と
結着剤とを均一に粉末のままで混合した後プレスによっ
て電極を成形する方法は、電極表面を結着剤を覆うため
に電極容量が低下する問題点がある。
(発明が解決しようとする課題) 前述した様に、これまでの水素吸蔵合金電極の製造方
法は、水素ガスの吸収能が低いか、もしくは電極容量の
小さな電極しか製造できなかった。
法は、水素ガスの吸収能が低いか、もしくは電極容量の
小さな電極しか製造できなかった。
本発明の目的は、水素ガスの吸収能が高く、電極容量
の大きな電極が得られる水素吸蔵電極の製造方法を提供
することにある。
の大きな電極が得られる水素吸蔵電極の製造方法を提供
することにある。
[発明の構成] (課題を解決するための手段および作用) 本発明は、電極重量に対して0.5〜5.0%の弗素樹脂の
粉末と水素吸蔵合金の粉末とを剪断力をかけながら混合
して綿状混合体とし、この綿状混合体を導電性基体であ
る集電体上に載置した後成形することを特徴とする水素
吸蔵合金電極の乾式製造方法である。
粉末と水素吸蔵合金の粉末とを剪断力をかけながら混合
して綿状混合体とし、この綿状混合体を導電性基体であ
る集電体上に載置した後成形することを特徴とする水素
吸蔵合金電極の乾式製造方法である。
本発明の製造方法では、水素吸蔵合金の粉末と所定量
の弗素樹脂の粉末とをカッターミル等の混合機により剪
断力をかけながら混合すると、弗素樹脂の粉末は細長い
単繊維が絡み合った綿状の単繊維の集合体となる。ま
た、水素吸蔵合金の粉末は、この集合体内の空間部分に
保持されている。この集合体は、合金粉末が脱落しない
程度に、細長い繊維が相互に絡み合って綿状となってい
る。従って、水素吸蔵合金の粉末と弗素樹脂の粉末とを
剪断力を加えながら混合することにより、繊維状の弗素
樹脂から成る集合体と、この内部に保持された合金粉末
とから成る綿状混合体が得られる。この混合体を導電性
基体である集電体上に載置して、成形することにより、
電極が得られる。
の弗素樹脂の粉末とをカッターミル等の混合機により剪
断力をかけながら混合すると、弗素樹脂の粉末は細長い
単繊維が絡み合った綿状の単繊維の集合体となる。ま
た、水素吸蔵合金の粉末は、この集合体内の空間部分に
保持されている。この集合体は、合金粉末が脱落しない
程度に、細長い繊維が相互に絡み合って綿状となってい
る。従って、水素吸蔵合金の粉末と弗素樹脂の粉末とを
剪断力を加えながら混合することにより、繊維状の弗素
樹脂から成る集合体と、この内部に保持された合金粉末
とから成る綿状混合体が得られる。この混合体を導電性
基体である集電体上に載置して、成形することにより、
電極が得られる。
この様に、本発明の製造方法では、剪断力を加えて粉
末を混合するために、弗素樹脂の繊維化が進み成形され
た電極中の水素吸蔵合金の粉末は繊維化した結着剤によ
り、強固に保持されて微粉化および脱落が抑制され、ま
た、電極表面が撥水性の弗素樹脂に覆われることがない
ために、高容量の電極の製造することができる。
末を混合するために、弗素樹脂の繊維化が進み成形され
た電極中の水素吸蔵合金の粉末は繊維化した結着剤によ
り、強固に保持されて微粉化および脱落が抑制され、ま
た、電極表面が撥水性の弗素樹脂に覆われることがない
ために、高容量の電極の製造することができる。
また、本発明の水素吸蔵合金電極の製造方法は、水素
吸蔵合金の粉末と所定量の弗素樹脂系結着剤の粉末とを
水を加えない乾式法で混合するために、水を加える湿式
法の様に水素吸蔵合金の酸化がなく、水素ガスの吸収の
速い電極を製造することができると共に、電極の乾燥工
程を省略することができ、製造コストが低減できる。
吸蔵合金の粉末と所定量の弗素樹脂系結着剤の粉末とを
水を加えない乾式法で混合するために、水を加える湿式
法の様に水素吸蔵合金の酸化がなく、水素ガスの吸収の
速い電極を製造することができると共に、電極の乾燥工
程を省略することができ、製造コストが低減できる。
さらに、本発明の製造方法では、水素吸蔵合金の粉末
と繊維化した結着剤の集合体とからなる混合体を集電体
上に載置して成形するので、一度のプレスまたは圧延で
所定の厚さを有する電極が成形できる。
と繊維化した結着剤の集合体とからなる混合体を集電体
上に載置して成形するので、一度のプレスまたは圧延で
所定の厚さを有する電極が成形できる。
本発明で結着剤として用いられる弗素樹脂とは、有機
高分子化合物の水素原子の一部もしくは全部が弗素原子
に置換された化合物およびこれら化合物の混合物を意味
する。例えば、ポリテトラフロロエチレン(PTFE)、テ
トラフロロエチレン−ヘキサフロロプロピレン共重合体
(FEP)、エチレン−テトラフロロエチレン共重合体、
ポリトリフロロエチレンおよびこれらの混合物が挙げら
れる。また、この弗素樹脂の粉末の添加量を電極重量の
0.5〜5.0%の範囲とした理由は、0.5%を下回ると水素
吸蔵合金の粉末が十分に結着されず成形が困難となり、
一方、5.0%を超えると、合金粉末の表面における結着
剤で覆われる部分が多くなり、容量が低下すると共に、
大電流による充放電ができなくなるためである。ここ
で、電極重量とは、製造された電極における電極活物質
である水素吸蔵合金の粉末と結着剤である弗素樹脂との
重量の総和を意味する。
高分子化合物の水素原子の一部もしくは全部が弗素原子
に置換された化合物およびこれら化合物の混合物を意味
する。例えば、ポリテトラフロロエチレン(PTFE)、テ
トラフロロエチレン−ヘキサフロロプロピレン共重合体
(FEP)、エチレン−テトラフロロエチレン共重合体、
ポリトリフロロエチレンおよびこれらの混合物が挙げら
れる。また、この弗素樹脂の粉末の添加量を電極重量の
0.5〜5.0%の範囲とした理由は、0.5%を下回ると水素
吸蔵合金の粉末が十分に結着されず成形が困難となり、
一方、5.0%を超えると、合金粉末の表面における結着
剤で覆われる部分が多くなり、容量が低下すると共に、
大電流による充放電ができなくなるためである。ここ
で、電極重量とは、製造された電極における電極活物質
である水素吸蔵合金の粉末と結着剤である弗素樹脂との
重量の総和を意味する。
また、本発明に用いられる水素吸蔵合金としては、La
Ni5、MmNi5(Mmはミッシュメタル)、LmNi5(Lmはラン
タン富化ミッシュメタル)およびこれらのNiの一部を他
の金属元素、例えば、Al、Mn、Fe、Co、Ti、Cu、Zn、Z
r、Cr等で置換した合金、または、Mg2Ni系、TiNi系、Ti
Fe系の合金を用いることができる。さらに、これら以外
にも、電解液中で充電時に電気化学的に発生させた水素
を容易に吸蔵し、かつ放電時に容易に放出できるもので
あれば、用いることができる。
Ni5、MmNi5(Mmはミッシュメタル)、LmNi5(Lmはラン
タン富化ミッシュメタル)およびこれらのNiの一部を他
の金属元素、例えば、Al、Mn、Fe、Co、Ti、Cu、Zn、Z
r、Cr等で置換した合金、または、Mg2Ni系、TiNi系、Ti
Fe系の合金を用いることができる。さらに、これら以外
にも、電解液中で充電時に電気化学的に発生させた水素
を容易に吸蔵し、かつ放電時に容易に放出できるもので
あれば、用いることができる。
(実施例) 以下、本発明の実施例について図面を参照して説明す
る。
る。
まず、水素吸蔵合金粉末として、水素ガスにより微細
化した200メッシュ以下の大きさのNmNi4.2Mn0.3Al0.3Co
0.2粉末およびAg2O粉末と、平均粒径20〜30μmのコン
ダクティブファーネスブラック0.5wt%と、ポリテトラ
フルオロエチレン粉末4wt%をカッターミルを用いて強
い剪断力をかけながら混合して混合体を得た。第1図に
示す様に、この綿状混合体(1)は剪断力を加えた混合
により生じた弗素樹脂の繊維が三次元的に絡み合って綿
状の集合体(2)と、この集合体(2)の内部に保持さ
れた水素吸蔵合金の粉末(3)とからなる。この綿状混
合体をニッケル網状体の集電体の上に載置し、ローラー
により圧延して電極とした。
化した200メッシュ以下の大きさのNmNi4.2Mn0.3Al0.3Co
0.2粉末およびAg2O粉末と、平均粒径20〜30μmのコン
ダクティブファーネスブラック0.5wt%と、ポリテトラ
フルオロエチレン粉末4wt%をカッターミルを用いて強
い剪断力をかけながら混合して混合体を得た。第1図に
示す様に、この綿状混合体(1)は剪断力を加えた混合
により生じた弗素樹脂の繊維が三次元的に絡み合って綿
状の集合体(2)と、この集合体(2)の内部に保持さ
れた水素吸蔵合金の粉末(3)とからなる。この綿状混
合体をニッケル網状体の集電体の上に載置し、ローラー
により圧延して電極とした。
この電極を負極として、第2図に断面図を示した単三
サイズのモデルセットを作製した。即ち、この負極
(4)およびニッケル酸化物からなる正極(5)をその
間にポリアミド製の不織布よりなるセパレータ(6)を
介して密着させて巻回した後、これをアクリル製の円筒
形の容器(7)内に挿入した。次に、この容器(7)内
に8N−KOH水溶液の電解液を注入し、圧力センサー
(8)を付けた蓋(9)をパッキン(10)を介して固定
して、電池のモデルセルを組立てた。
サイズのモデルセットを作製した。即ち、この負極
(4)およびニッケル酸化物からなる正極(5)をその
間にポリアミド製の不織布よりなるセパレータ(6)を
介して密着させて巻回した後、これをアクリル製の円筒
形の容器(7)内に挿入した。次に、この容器(7)内
に8N−KOH水溶液の電解液を注入し、圧力センサー
(8)を付けた蓋(9)をパッキン(10)を介して固定
して、電池のモデルセルを組立てた。
この電池を使用して、1/3Cの電流で3.5時間の充電
と、1/3Cで電池電圧が0.9Vになるまでの放電を行い、充
放電時の内圧と電池電圧の変化を測定し、その結果を第
3図に実線で示した。比較例として、水素吸蔵合金の粉
末と結着剤および増粘剤としてCMCを混合する際に水を
加えた湿式法で作製した以外は実施例と同様な構造を有
するモデルセルを作製し、実施例と同様の条件で、充放
電時の内圧と電池電圧の変化とを測定した。この結果を
第3図に破線で示した。第3図から分る様に、粉末の混
合時に水を加えずにカッターミル等で剪断力を加えなが
ら混合した後成形して製造した電極を負極として用いる
ことにより、内圧の上昇が抑えられ、電池の寿命が延び
ることが分る。
と、1/3Cで電池電圧が0.9Vになるまでの放電を行い、充
放電時の内圧と電池電圧の変化を測定し、その結果を第
3図に実線で示した。比較例として、水素吸蔵合金の粉
末と結着剤および増粘剤としてCMCを混合する際に水を
加えた湿式法で作製した以外は実施例と同様な構造を有
するモデルセルを作製し、実施例と同様の条件で、充放
電時の内圧と電池電圧の変化とを測定した。この結果を
第3図に破線で示した。第3図から分る様に、粉末の混
合時に水を加えずにカッターミル等で剪断力を加えなが
ら混合した後成形して製造した電極を負極として用いる
ことにより、内圧の上昇が抑えられ、電池の寿命が延び
ることが分る。
[発明の効果] 以上の様に、本発明によれば、水素ガスの吸収能が高
く、電極容量の大きな電極が得られる水素吸蔵電極の乾
式製造方法を提供することができる。
く、電極容量の大きな電極が得られる水素吸蔵電極の乾
式製造方法を提供することができる。
第1図は本発明の実施例に基づいて水素吸蔵合金の粉末
と弗素樹脂の粉末とを剪断力を加えながら混合して得ら
れた綿状混合体を示す模式図、第2図は本発明の実施例
に基づく電極を用いたモデルセルを示す断面図、第3図
はモデルセルの充放電時における内圧と電池電圧の変化
の測定結果を示すグラフである。 1……綿状混合体 2……集合体 3……水素吸蔵合金の粉末 4……負極 5……正極 6……セパレータ
と弗素樹脂の粉末とを剪断力を加えながら混合して得ら
れた綿状混合体を示す模式図、第2図は本発明の実施例
に基づく電極を用いたモデルセルを示す断面図、第3図
はモデルセルの充放電時における内圧と電池電圧の変化
の測定結果を示すグラフである。 1……綿状混合体 2……集合体 3……水素吸蔵合金の粉末 4……負極 5……正極 6……セパレータ
Claims (1)
- 【請求項1】電極重量に対して0.5〜5.0%の弗素樹脂の
粉末と水素吸蔵合金の粉末とを剪断力をかけながら混合
して綿状混合体とし、この綿状混合体を導電性基体であ
る集電体上に載置した後成形することを特徴とする水素
吸蔵合金電極の乾式製造方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63229393A JP2575840B2 (ja) | 1988-09-13 | 1988-09-13 | 水素吸蔵合金電極の乾式製造方法 |
DE68912474T DE68912474T2 (de) | 1988-09-13 | 1989-09-13 | Trockenes Verfahren zur Herstellung einer Wasserstoffabsorptionslegierungselektrode. |
EP89309314A EP0359557B1 (en) | 1988-09-13 | 1989-09-13 | Dry method for manufacturing hydrogen absorption alloy electrode |
US07/662,506 US5100747A (en) | 1988-09-13 | 1991-02-28 | Dry method for manufacturing hydrogen absorption alloy electrode |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63229393A JP2575840B2 (ja) | 1988-09-13 | 1988-09-13 | 水素吸蔵合金電極の乾式製造方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0278155A JPH0278155A (ja) | 1990-03-19 |
JP2575840B2 true JP2575840B2 (ja) | 1997-01-29 |
Family
ID=16891498
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63229393A Expired - Fee Related JP2575840B2 (ja) | 1988-09-13 | 1988-09-13 | 水素吸蔵合金電極の乾式製造方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US5100747A (ja) |
EP (1) | EP0359557B1 (ja) |
JP (1) | JP2575840B2 (ja) |
DE (1) | DE68912474T2 (ja) |
Families Citing this family (47)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2097637A1 (en) * | 1992-06-12 | 1993-12-13 | Takashi Mizuno | Hydrogen-occlusion electrode and a method of manufacturing thereof |
US5395403A (en) * | 1992-06-30 | 1995-03-07 | Sanyo Electric Co., Ltd. | Hydrogen-absorbing alloy electrode and manufacturing method therefor |
CN1034039C (zh) * | 1992-10-19 | 1997-02-12 | 南开大学森力高技术实业公司 | 大容量电动车用镍-氢化物蓄电池 |
US5385587A (en) * | 1993-08-11 | 1995-01-31 | Gnb Battery Technologies Inc. | Methods and apparatus for pasting battery current collectors |
US5393617A (en) * | 1993-10-08 | 1995-02-28 | Electro Energy, Inc. | Bipolar electrochmeical battery of stacked wafer cells |
JPH0963589A (ja) * | 1995-08-16 | 1997-03-07 | Toyota Autom Loom Works Ltd | 密閉型水素電池用電極及びその製造方法 |
ES2130996B1 (es) * | 1997-05-19 | 2000-03-01 | Tudor Acumulador | Procedimiento para la fabricacion de electrodos negativos para acumuladores electricos alcalinos y electrodo obtenido. |
US6703164B2 (en) | 1997-11-28 | 2004-03-09 | Kabushiki Kaisha Toshiba | Hydrogen-absorbing alloy, secondary battery, hybrid car and electromobile |
US6337156B1 (en) * | 1997-12-23 | 2002-01-08 | Sri International | Ion battery using high aspect ratio electrodes |
US7662265B2 (en) * | 2000-10-20 | 2010-02-16 | Massachusetts Institute Of Technology | Electrophoretic assembly of electrochemical devices |
US7387851B2 (en) | 2001-07-27 | 2008-06-17 | A123 Systems, Inc. | Self-organizing battery structure with electrode particles that exert a repelling force on the opposite electrode |
KR100912754B1 (ko) * | 2000-10-20 | 2009-08-18 | 매사츄세츠 인스티튜트 오브 테크놀러지 | 2극 장치 |
US6503658B1 (en) | 2001-07-11 | 2003-01-07 | Electro Energy, Inc. | Bipolar electrochemical battery of stacked wafer cells |
EP1433217A2 (en) | 2001-07-27 | 2004-06-30 | Massachusetts Institute Of Technology | Battery structures, self-organizing structures and related methods |
US7087348B2 (en) * | 2002-07-26 | 2006-08-08 | A123 Systems, Inc. | Coated electrode particles for composite electrodes and electrochemical cells |
US7763382B2 (en) * | 2002-07-26 | 2010-07-27 | A123 Systems, Inc. | Bipolar articles and related methods |
US7318982B2 (en) * | 2003-06-23 | 2008-01-15 | A123 Systems, Inc. | Polymer composition for encapsulation of electrode particles |
US7295423B1 (en) * | 2003-07-09 | 2007-11-13 | Maxwell Technologies, Inc. | Dry particle based adhesive electrode and methods of making same |
US20050266298A1 (en) * | 2003-07-09 | 2005-12-01 | Maxwell Technologies, Inc. | Dry particle based electro-chemical device and methods of making same |
US20050250011A1 (en) * | 2004-04-02 | 2005-11-10 | Maxwell Technologies, Inc. | Particle packaging systems and methods |
US7342770B2 (en) * | 2003-07-09 | 2008-03-11 | Maxwell Technologies, Inc. | Recyclable dry particle based adhesive electrode and methods of making same |
US20070122698A1 (en) | 2004-04-02 | 2007-05-31 | Maxwell Technologies, Inc. | Dry-particle based adhesive and dry film and methods of making same |
US7352558B2 (en) | 2003-07-09 | 2008-04-01 | Maxwell Technologies, Inc. | Dry particle based capacitor and methods of making same |
US7508651B2 (en) * | 2003-07-09 | 2009-03-24 | Maxwell Technologies, Inc. | Dry particle based adhesive and dry film and methods of making same |
US7791860B2 (en) | 2003-07-09 | 2010-09-07 | Maxwell Technologies, Inc. | Particle based electrodes and methods of making same |
US20100014215A1 (en) * | 2004-04-02 | 2010-01-21 | Maxwell Technologies, Inc. | Recyclable dry particle based electrode and methods of making same |
US20060147712A1 (en) * | 2003-07-09 | 2006-07-06 | Maxwell Technologies, Inc. | Dry particle based adhesive electrode and methods of making same |
US7920371B2 (en) * | 2003-09-12 | 2011-04-05 | Maxwell Technologies, Inc. | Electrical energy storage devices with separator between electrodes and methods for fabricating the devices |
JP2005116762A (ja) | 2003-10-07 | 2005-04-28 | Fujitsu Ltd | 半導体装置の保護方法及び半導体装置用カバー及び半導体装置ユニット及び半導体装置の梱包構造 |
US7495349B2 (en) | 2003-10-20 | 2009-02-24 | Maxwell Technologies, Inc. | Self aligning electrode |
US7384433B2 (en) | 2004-02-19 | 2008-06-10 | Maxwell Technologies, Inc. | Densification of compressible layers during electrode lamination |
US7090946B2 (en) * | 2004-02-19 | 2006-08-15 | Maxwell Technologies, Inc. | Composite electrode and method for fabricating same |
US7492571B2 (en) * | 2004-04-02 | 2009-02-17 | Linda Zhong | Particles based electrodes and methods of making same |
US7227737B2 (en) * | 2004-04-02 | 2007-06-05 | Maxwell Technologies, Inc. | Electrode design |
US20060246343A1 (en) * | 2004-04-02 | 2006-11-02 | Maxwell Technologies, Inc. | Dry particle packaging systems and methods of making same |
US20060137158A1 (en) * | 2004-04-02 | 2006-06-29 | Maxwell Technologies, Inc. | Dry-particle packaging systems and methods of making same |
US7245478B2 (en) | 2004-08-16 | 2007-07-17 | Maxwell Technologies, Inc. | Enhanced breakdown voltage electrode |
US7440258B2 (en) | 2005-03-14 | 2008-10-21 | Maxwell Technologies, Inc. | Thermal interconnects for coupling energy storage devices |
US7492574B2 (en) | 2005-03-14 | 2009-02-17 | Maxwell Technologies, Inc. | Coupling of cell to housing |
US7647210B2 (en) * | 2006-02-20 | 2010-01-12 | Ford Global Technologies, Llc | Parametric modeling method and system for conceptual vehicle design |
US8518573B2 (en) * | 2006-09-29 | 2013-08-27 | Maxwell Technologies, Inc. | Low-inductive impedance, thermally decoupled, radii-modulated electrode core |
US20080201925A1 (en) | 2007-02-28 | 2008-08-28 | Maxwell Technologies, Inc. | Ultracapacitor electrode with controlled sulfur content |
US20090202903A1 (en) | 2007-05-25 | 2009-08-13 | Massachusetts Institute Of Technology | Batteries and electrodes for use thereof |
US9065093B2 (en) | 2011-04-07 | 2015-06-23 | Massachusetts Institute Of Technology | Controlled porosity in electrodes |
US10569480B2 (en) | 2014-10-03 | 2020-02-25 | Massachusetts Institute Of Technology | Pore orientation using magnetic fields |
US10675819B2 (en) | 2014-10-03 | 2020-06-09 | Massachusetts Institute Of Technology | Magnetic field alignment of emulsions to produce porous articles |
JP7032968B2 (ja) * | 2018-03-27 | 2022-03-09 | Fdk株式会社 | ニッケル水素二次電池用の負極及びニッケル水素二次電池 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS50128137A (ja) * | 1974-03-18 | 1975-10-08 |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS53118737A (en) * | 1977-03-25 | 1978-10-17 | Tokyo Shibaura Electric Co | Alkaline battery |
JPS5413938A (en) * | 1977-07-04 | 1979-02-01 | Matsushita Electric Ind Co Ltd | Method of making hydrogen occlusion electrode |
US4235748A (en) * | 1979-02-28 | 1980-11-25 | Yardney Electric Corporation | Method of making improved hydrogenation catalyst |
NL8003949A (nl) * | 1980-07-09 | 1982-02-01 | Electrochem Energieconversie | Werkwijze voor de vervaardiging van een laag van een elektrode voor een cel, in het bijzonder voor een brandstofcel. |
US4337140A (en) * | 1980-10-31 | 1982-06-29 | Diamond Shamrock Corporation | Strengthening of carbon black-teflon-containing electrodes |
US4396693A (en) * | 1981-01-19 | 1983-08-02 | Mpd Technology Corporation | Production of a cell electrode system |
DE3342969A1 (de) * | 1983-11-28 | 1985-06-05 | Varta Batterie Ag, 3000 Hannover | Poroese gaselektrode |
JPS6119063A (ja) * | 1984-07-05 | 1986-01-27 | Sanyo Electric Co Ltd | 水素吸蔵電極 |
FR2569059B1 (fr) * | 1984-08-10 | 1992-08-07 | Sanyo Electric Co | Accumulateur alcalin metal/hydrogene |
JPS6166372A (ja) * | 1984-09-06 | 1986-04-05 | Sanyo Electric Co Ltd | 水素吸蔵電極 |
JPS61124054A (ja) * | 1984-11-20 | 1986-06-11 | Sanyo Electric Co Ltd | 水素吸蔵電極の製造方法 |
EP0266162B1 (en) * | 1986-10-27 | 1991-07-10 | Kabushiki Kaisha Toshiba | Hydrogen absorption alloy electrode and hydrogen cell |
DE3702138C2 (de) * | 1987-01-24 | 1994-10-13 | Varta Batterie | Elektrode mit Speichervermögen für Wasserstoff zur Durchführung von elektrochemischen und chemischen Reaktionen |
US4849312A (en) * | 1987-03-25 | 1989-07-18 | Kabushiki Kaisha Toshiba | Hydrogen storage alloy electrode and method for preparing the same |
-
1988
- 1988-09-13 JP JP63229393A patent/JP2575840B2/ja not_active Expired - Fee Related
-
1989
- 1989-09-13 EP EP89309314A patent/EP0359557B1/en not_active Expired - Lifetime
- 1989-09-13 DE DE68912474T patent/DE68912474T2/de not_active Expired - Fee Related
-
1991
- 1991-02-28 US US07/662,506 patent/US5100747A/en not_active Expired - Lifetime
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS50128137A (ja) * | 1974-03-18 | 1975-10-08 |
Also Published As
Publication number | Publication date |
---|---|
EP0359557B1 (en) | 1994-01-19 |
EP0359557A2 (en) | 1990-03-21 |
JPH0278155A (ja) | 1990-03-19 |
DE68912474D1 (de) | 1994-03-03 |
EP0359557A3 (en) | 1990-07-04 |
US5100747A (en) | 1992-03-31 |
DE68912474T2 (de) | 1994-06-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2575840B2 (ja) | 水素吸蔵合金電極の乾式製造方法 | |
US5034289A (en) | Alkaline storage battery and method of producing negative electrode thereof | |
US6528209B2 (en) | Active material for positive electrode for alkaline secondary cell and method for producing the same, and alkaline secondary cell using the active material for positive electrode and method for producing the same | |
JP4458725B2 (ja) | アルカリ蓄電池 | |
US5131920A (en) | Method of manufacturing sealed rechargeable batteries | |
JP3079303B2 (ja) | アルカリ二次電池の活性化方法 | |
JP4458713B2 (ja) | アルカリ蓄電池 | |
JP3114402B2 (ja) | アルカリ蓄電池の製造方法 | |
JPH11162468A (ja) | アルカリ二次電池 | |
JPS6166366A (ja) | 水素吸蔵電極 | |
JP2989877B2 (ja) | ニッケル水素二次電池 | |
JP3639494B2 (ja) | ニッケル−水素蓄電池 | |
JP3182790B2 (ja) | 水素吸蔵合金電極およびその製造法 | |
JP3248762B2 (ja) | 水素吸蔵合金電極及びその製造方法 | |
JP3377576B2 (ja) | アルカリ二次電池の製造方法 | |
JPH0935718A (ja) | アルカリ二次電池 | |
JP3454780B2 (ja) | アルカリ蓄電池 | |
JPH073365A (ja) | 水素吸蔵合金および水素吸蔵合金電極 | |
JP3151379B2 (ja) | アルカリ二次電池の製造方法 | |
JP3369148B2 (ja) | アルカリ蓄電池 | |
JP3330088B2 (ja) | 二次電池用負極 | |
JP3374994B2 (ja) | ペースト式ニッケル電極 | |
JP3101622B2 (ja) | ニッケル・水素アルカリ蓄電池 | |
JPH1040950A (ja) | アルカリ二次電池 | |
JPH11191412A (ja) | アルカリ蓄電池 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |