JP2553327B2 - Solar power generator - Google Patents

Solar power generator

Info

Publication number
JP2553327B2
JP2553327B2 JP60293961A JP29396185A JP2553327B2 JP 2553327 B2 JP2553327 B2 JP 2553327B2 JP 60293961 A JP60293961 A JP 60293961A JP 29396185 A JP29396185 A JP 29396185A JP 2553327 B2 JP2553327 B2 JP 2553327B2
Authority
JP
Japan
Prior art keywords
output
voltage
storage battery
converter
solar cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP60293961A
Other languages
Japanese (ja)
Other versions
JPS62154121A (en
Inventor
泰彦 梅澤
真治 福羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP60293961A priority Critical patent/JP2553327B2/en
Publication of JPS62154121A publication Critical patent/JPS62154121A/en
Application granted granted Critical
Publication of JP2553327B2 publication Critical patent/JP2553327B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Control Of Electrical Variables (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、太陽電池を用いる太陽光発電装置における
蓄電池の充電制御方式に関し、特に太陽電池からの直流
をDC/DCコンバータを介して蓄電池に充電するように構
成された太陽光発電装置における充電制御方式に関する
ものである。
Description: TECHNICAL FIELD The present invention relates to a charging control method for a storage battery in a solar power generation device that uses a solar cell, and particularly direct current from the solar cell to the storage battery via a DC / DC converter. The present invention relates to a charging control method in a photovoltaic power generation device configured to charge.

〔従来技術〕[Prior art]

第5図は、太陽光発電装置の概要を示すブロック図で
ある。太陽光発電装置は太陽電池1と、該太陽電池1で
発電された直流を充電する蓄電池3及び太陽電池1から
の電流をON・OFFするスイッチ2とを具備する。また、
蓄電池3は負荷4に接続される。
FIG. 5 is a block diagram showing an outline of the solar power generation device. The solar power generation device includes a solar cell 1, a storage battery 3 that charges the direct current generated by the solar cell 1, and a switch 2 that turns on and off the current from the solar cell 1. Also,
The storage battery 3 is connected to the load 4.

上記のように構成された太陽光発電装置において、従
来の蓄電池3の充電方法は、蓄電池3の端子電圧が低い
時はスイッチ2をONとし、太陽電池1で発電する直流を
蓄電池3に充電し、蓄電池3が満充電に達すると、蓄電
池3の過充電を防止するためスイッチ2をOFFして蓄電
池3への充電を停止している。
In the solar power generation device configured as described above, the conventional method of charging the storage battery 3 is to turn on the switch 2 when the terminal voltage of the storage battery 3 is low and charge the storage battery 3 with direct current generated by the solar battery 1. When the storage battery 3 reaches full charge, the switch 2 is turned off to prevent the storage battery 3 from being overcharged, and charging of the storage battery 3 is stopped.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

しかしながら上記の如く従来の充電方法では、蓄電池
3が満充電でスイッチ2が開放されたとき、太陽電池1
で折角発電される電力は一切利用されないという問題点
がある。また、スイッチ2のON・OFFのみでは、蓄電池
3の端子電圧が負荷4に流れる電流の大きさにより変動
する等、電圧変動が大きいという問題点もあった。
However, as described above, according to the conventional charging method, when the storage battery 3 is fully charged and the switch 2 is opened, the solar cell 1
There is a problem that the electric power generated in the above is not used at all. In addition, there is a problem in that the voltage fluctuation is large, for example, the terminal voltage of the storage battery 3 fluctuates depending on the magnitude of the current flowing through the load 4 only when the switch 2 is turned on and off.

本発明は上述の点に鑑みてなされたもので、上記問題
点を除去し、太陽電池で発電された電力を有効に利用で
き、且つ電圧の安定した太陽光発電装置における充電制
御方式を提供することにある。
The present invention has been made in view of the above points, and eliminates the above problems and provides a charging control method in a solar power generation device that can effectively use the electric power generated by a solar cell and has a stable voltage. Especially.

〔問題点を解決するための手段〕[Means for solving problems]

上記問題点を解決するため本発明は、太陽電池と蓄電
池とを、該太陽電池の出力電圧を所定電圧に制御するDC
/DCコンバータを介して接続して成り、太陽電池の最大
電力点の電圧でDC/DCコンバータに出力させるべく信号
出力する最大電力点追尾手段と、蓄電池の端子電圧を検
出し、かつ最大電力点追尾手段からDC/DCコンバータへ
の信号出力を制御する切換制御手段とを備えて成り、切
換制御手段が満充電状態より低い電圧を検出した場合に
は、最大出力点追尾手段からDC/DCコンバータへ信号出
力させ、切換制御手段が満充電状態の電圧を検出した場
合には、最大出力点追尾手段からDC/DCコンバータへの
信号出力を遮断するようにしたことを特徴とする。
In order to solve the above problems, the present invention provides a solar cell and a storage battery, a DC that controls the output voltage of the solar cell to a predetermined voltage.
Connected via a DC / DC converter, the maximum power point tracking means that outputs a signal to output to the DC / DC converter at the voltage of the maximum power point of the solar cell, the terminal voltage of the storage battery, and the maximum power point And a switching control means for controlling the signal output from the tracking means to the DC / DC converter. When the switching control means detects a voltage lower than the full charge state, the maximum output point tracking means changes the DC / DC converter. When the switching control means detects a fully charged voltage, the maximum output point tracking means cuts off the signal output to the DC / DC converter.

〔作用〕[Action]

上記の如く構成することにより、蓄電池の端子電圧が
充分低い間は前記最大電力点追尾装置でDC/DCコンバー
タを制御して蓄電池を充電するから太陽電池は最大の出
力電力点で運転されることになり、前記蓄電池が満充電
状態に近づいたら電流制御装置による制御に切り換える
から蓄電池が過充電になるのを防止できると共に、蓄電
池が過充電とならない範囲で太陽電池で発電した電力を
有効に利用できる。
With the above configuration, while the terminal voltage of the storage battery is sufficiently low, the solar battery operates at the maximum output power point because the maximum power point tracking device controls the DC / DC converter to charge the storage battery. When the storage battery approaches the fully charged state, the current control device is switched to the control so that the storage battery can be prevented from being overcharged and the electric power generated by the solar cell can be effectively used within the range where the storage battery does not become overcharged. it can.

〔実施例〕〔Example〕

以下、本発明の一実施例を図面に基づいて説明する。 An embodiment of the present invention will be described below with reference to the drawings.

第1図は本発明に係る充電制御方式を用いる太陽光発
電装置のシステム構成を示すブロック図である。同図に
おいて、第2図と同一符号を付した部分は同一又は相当
部分を示す。5は太陽電池1で発電した直流電圧を昇圧
或いは降圧させて蓄電池3及び負荷4に供給するDC/DC
コンバータ、6は後に詳述するように太陽電池1の出力
が最大になるように出力電圧、出力電流を制御する最大
電力点追尾手段(以下、最大電力点追尾制御装置)、K
はこの最大電力点追尾制御装置6の作動をスイッチング
する切換制御手段であって、これにより蓄電池3の端子
電圧が満充電状態の基準電圧より低い場合には最大出力
点追尾制御装置6が検出した最大電力点の電圧でDC/DC
コンバータ5を出力させるようにし、蓄電池3の端子電
圧が満充電状態の電圧に達した場合には最大出力点追尾
制御装置6からDC/DCコンバータ5への信号出力を遮断
するとともに、DC/DCコンバータ5からの出力を蓄電池
3に供給するようする。ここで、切換制御手段Kを構成
する7は前記蓄電池3の端子電圧を検出し蓄電池3が過
充電にならないようにDC/DCコンバータ5の出力電圧を
調整して充電電流を制御する電流制御装置、8は前記DC
/DCコンバータ5の制御を最大電力点追尾制御装置6か
ら電流制御装置7へ或いは電流制御装置7から最大電力
点追尾制御装置6へ切り換える切換スイッチ、9は前記
蓄電池3の端子電圧からその充電状態を検出し、切換ス
イッチ8を最大電力点追尾制御装置6側或いは電流制御
装置7側に切り換える切換制御回路である。
FIG. 1 is a block diagram showing a system configuration of a photovoltaic power generation device using a charging control system according to the present invention. In the same figure, the parts given the same reference numerals as in FIG. 2 indicate the same or corresponding parts. DC / DC 5 is a DC voltage generated by the solar cell 1 which is stepped up or down and supplied to the storage battery 3 and the load 4.
The converter 6 is a maximum power point tracking means (hereinafter, maximum power point tracking control device) for controlling the output voltage and the output current so that the output of the solar cell 1 is maximized, as will be described later in detail, K
Is a switching control means for switching the operation of the maximum power point tracking control device 6, whereby the maximum output point tracking control device 6 detects when the terminal voltage of the storage battery 3 is lower than the reference voltage in the fully charged state. DC / DC at maximum power point voltage
When the terminal voltage of the storage battery 3 reaches the voltage in the fully charged state, the converter 5 is made to output, and the signal output from the maximum output point tracking control device 6 to the DC / DC converter 5 is cut off, and at the same time, the DC / DC The output from the converter 5 is supplied to the storage battery 3. Here, 7 which constitutes the switching control means K detects the terminal voltage of the storage battery 3 and adjusts the output voltage of the DC / DC converter 5 so that the storage battery 3 is not overcharged and controls the charging current. , 8 is the DC
The changeover switch for switching the control of the / DC converter 5 from the maximum power point tracking control device 6 to the current control device 7 or from the current control device 7 to the maximum power point tracking control device 6, 9 is the charging state from the terminal voltage of the storage battery 3 Is detected and the changeover switch 8 is changed over to the maximum power point tracking control device 6 side or the current control device 7 side.

ところで、太陽電池1の出力電圧−電流特性は第2図
に示すようになっている。同図に示すように光量LQ1,〜
LQ4により出力電圧Vと出力電流Iが変化する太陽電池
1で発電された電力を最大限有効に利用するには、その
出力電圧Vと出力電流Iとを最大電力点P1〜P4に維持す
る必要がある。第1図の最大電力点追尾制御装置6は、
太陽電池1の出力を最大電力点P1〜P4に維持する装置で
ある。即ち、電流センサ10で検出する出力電流Iと出力
電圧Vとから、太陽電池1の出力電圧V及び出力電流I
が常に第3図の点線A上にあるようにDC/DCコンバータ
5の出力を制御する。
By the way, the output voltage-current characteristic of the solar cell 1 is as shown in FIG. As shown in the figure, the light quantity LQ 1 , ~
In order to make the most effective use of the electric power generated by the solar cell 1 in which the output voltage V and the output current I are changed by the LQ 4 , the output voltage V and the output current I are set to the maximum power points P 1 to P 4 . Need to maintain. The maximum power point tracking control device 6 in FIG.
This is a device that maintains the output of the solar cell 1 at the maximum power points P 1 to P 4 . That is, from the output current I and the output voltage V detected by the current sensor 10, the output voltage V and the output current I of the solar cell 1 are calculated.
The output of the DC / DC converter 5 is controlled so that is always on the dotted line A in FIG.

第1図に示す如く構成された太陽光発電装置におい
て、蓄電池3の端子電圧VBが満充電のときの端子電圧よ
り小さい時は、切換制御回路9は切換スイッチ8を最大
電力点追尾制御装置6側に倒す。これにより最大電力点
追尾制御装置6は、DC/DCコンバータ5を制御し、蓄電
池3の充電状態には関係なく太陽電池1が最大電力点
(第2図のP1〜P4参照)で運転されるようにその出力電
圧及び出力電流を制御する。蓄電池3の端子電圧VBが上
昇し、満充電状態に近づくと切換制御回路9は切換スイ
ッチ8を電流制御装置7側に倒す。これにより電流制御
装置7は、蓄電池3の端子電圧VBに応じて太陽電池1の
出力が最大電力点に有るか否かに関係なく、蓄電池3が
過充電状態にならないようにDC/DCコンバータ5の出力
を調整して充電電流を制御する。負荷4へ供給される負
荷電流が増加する等して蓄電池3が満充電状態でなくな
ると、切過制御回路9は再び切換スイッチ8を最大電力
点追尾制御装置6側に倒し、最大電力点追尾制御装置6
で太陽電池1の出力が最大電力点に維持されるようにDC
/DCコンバータ5を制御する。
In the photovoltaic power generation device configured as shown in FIG. 1, when the terminal voltage V B of the storage battery 3 is smaller than the terminal voltage when fully charged, the changeover control circuit 9 causes the changeover switch 8 to switch the maximum power point tracking control device. Defeat to side 6. Thereby, the maximum power point tracking control device 6 controls the DC / DC converter 5, and the solar cell 1 operates at the maximum power point (see P 1 to P 4 in FIG. 2) regardless of the state of charge of the storage battery 3. The output voltage and output current are controlled as described above. When the terminal voltage V B of the storage battery 3 rises and approaches a fully charged state, the changeover control circuit 9 turns the changeover switch 8 to the current control device 7 side. As a result, the current control device 7 prevents the storage battery 3 from being overcharged regardless of whether or not the output of the solar cell 1 is at the maximum power point according to the terminal voltage V B of the storage battery 3. The output of 5 is adjusted to control the charging current. When the storage battery 3 is no longer fully charged due to an increase in the load current supplied to the load 4, the cutover control circuit 9 again turns the changeover switch 8 to the maximum power point tracking control device 6 side, and the maximum power point tracking is performed. Control device 6
In order to maintain the output of solar cell 1 at the maximum power point, DC
/ DC converter 5 is controlled.

上記最大電力点追尾制御装置6としては種々のものが
考えられるが、例えば特開昭58−69469号公報に開示さ
れた技術を用いるとよい。第3図は上記文献に開示する
技術を、第1図の太陽光発電装置に用いた例を示すブロ
ック図である。
Although various types of maximum power point tracking control device 6 are conceivable, for example, the technique disclosed in Japanese Patent Application Laid-Open No. 58-69469 may be used. FIG. 3 is a block diagram showing an example in which the technique disclosed in the above document is used in the solar power generation system of FIG.

太陽電池1の出力電流に対する電力の関係を図示すれ
ば第4図のようになる。即ち出力電流Iの増加と共に電
力Pも増加し、最大電力点Pmaxをすぎると減少する。従
って最大電力点追尾制御装置6は太陽電池1の出力をこ
の最大電力点に維持すればよい。
The relationship between the output current of the solar cell 1 and the electric power is shown in FIG. That is, the power P increases as the output current I increases, and decreases when the maximum power point Pmax is exceeded. Therefore, the maximum power point tracking control device 6 may maintain the output of the solar cell 1 at this maximum power point.

第3図において、乗算器61は太陽電池1の出力電圧V
と出力電流Iとを入力信号とし、その積から太陽電池1
の出力電力P=V×Iを求め出力する。微分回路62は電
力Pを時間微分してdP/dtを演算する。コンパレータ63
は微分出力dP/dtが正であるか負であるかを判別しdP/dt
>0の時H(高)レベルを出力し、dP/dt<0の時L
(低)レベルを出力する。ランプ関数回路64はA点の電
位が正のとき出力が傾斜的に上昇し、A線の電位が負の
とき出力が傾斜的に減少する。このランプ関数回路64の
出力端子間に接続されている両方向ツエナーダイオード
65は上下をクランプするためのものである。反転回路66
はランプ関数回路64の出力が増大しつつあるときDC/DC
コンバータ5の出力電圧を減少させ、それと反対にラン
プ関数回路64の出力が減少しつつある時はDC/DCコンバ
ータ5の出力電圧を増大させる。排他的論理和回路68は
2入力B,Cが共に負のとき正の電圧を出力し、2入力B,C
のうち一方が正で他方が負のとき負の電圧を出力する。
バイステーブルマルチ回路67は入力Aの電圧を記憶し、
制御端子DがHレベルのとき入力Aを出力Bに伝送す
る。論理和回路69はコンパレータ63の出力C又はクロッ
クパルスCPの出力のいずれかがHレベルのときHレベル
を出力する。クロックパルス発生器70は例えば1秒に1
発の周期でクロックパルスCPを出力する。
In FIG. 3, the multiplier 61 indicates the output voltage V of the solar cell 1.
And the output current I as input signals, and the product
Output power P = V × I is calculated and output. The differentiating circuit 62 time-differentiates the electric power P to calculate dP / dt. Comparator 63
Determines whether the differential output dP / dt is positive or negative, and dP / dt
Outputs H (high) level when> 0, L when dP / dt <0
Outputs (low) level. In the ramp function circuit 64, the output ramps up when the potential at point A is positive, and the ramp ramps down when the potential at line A is negative. Bidirectional Zener diode connected between the output terminals of this ramp function circuit 64
65 is for clamping the top and bottom. Inversion circuit 66
DC / DC when the output of the ramp function circuit 64 is increasing
The output voltage of the converter 5 is decreased, and conversely, when the output of the ramp function circuit 64 is decreasing, the output voltage of the DC / DC converter 5 is increased. The exclusive OR circuit 68 outputs a positive voltage when the two inputs B and C are both negative and outputs the two inputs B and C.
When one of them is positive and the other is negative, it outputs a negative voltage.
The bistable multi-circuit 67 stores the voltage of the input A,
When the control terminal D is at H level, the input A is transmitted to the output B. The OR circuit 69 outputs the H level when either the output C of the comparator 63 or the output of the clock pulse CP is the H level. The clock pulse generator 70 has, for example, 1 second per second.
The clock pulse CP is output at the output cycle.

第3図に示す太陽光発電装置において、第4図に示
すように太陽電池1の動作点が最大出力点Pmax以下にあ
ってDC/DCコンバータ5の出力電圧が増大しつつあると
きは、即ちA点がLレベル、C点がHレベルのとき、及
び第4図のように太陽電池1の動作点が最大出力点pm
ax以上であってDC/DCコンバータ5の出力電圧が減少し
つつあるとき、即ちA点がLレベル、C点がHレベルの
ときは、いずれもその侭の状態を継続すれば太陽電池1
の動作点が最大出力点Pmaxに近づく。また、第4図に
示すように太陽電池1の動作点が最大出力点Pmax以下で
あってDC/DCコンバータ5の出力電圧が減少しつつある
とき、即ちA点がLレベル、C点がLレベルのとき及び
第4図に示すように太陽電池1の動作点が最大出力点
Pmax以上であってDC/DCコンバータ5の出力電圧が増大
しつつあるとき、即ちA点がHレベル、C点がLレベル
のときは、いずれも太陽電池1の動作点から遠去かって
いるが排他的論理和回路68の出力の反転によって動作点
が最大出力点Pmaxに近づく向きに変わる。上記のように
最大電力点追尾制御装置6は蓄電池3の充電状態に関係
なく太陽電池1の最大出力点Pmaxで運転される。
In the solar power generation device shown in FIG. 3, when the operating point of the solar cell 1 is below the maximum output point Pmax and the output voltage of the DC / DC converter 5 is increasing as shown in FIG. When the A point is at the L level and the C point is at the H level, and the operating point of the solar cell 1 is the maximum output point pm as shown in FIG.
When the output voltage of the DC / DC converter 5 is not less than ax and the output voltage of the DC / DC converter 5 is decreasing, that is, when the point A is at the L level and the point C is at the H level, the solar cell 1 will continue if the state of the shade is continued.
The operating point of approaches the maximum output point Pmax. Further, as shown in FIG. 4, when the operating point of the solar cell 1 is less than or equal to the maximum output point Pmax and the output voltage of the DC / DC converter 5 is decreasing, that is, the A point is at the L level and the C point is at the L level. At the level and as shown in FIG. 4, the operating point of the solar cell 1 is the maximum output point.
When the output voltage of the DC / DC converter 5 is higher than Pmax and the output voltage of the DC / DC converter 5 is increasing, that is, when the point A is at the H level and the point C is at the L level, both are far from the operating point of the solar cell 1. By inverting the output of the exclusive OR circuit 68, the operating point changes so as to approach the maximum output point Pmax. As described above, the maximum power point tracking control device 6 is operated at the maximum output point Pmax of the solar cell 1 regardless of the state of charge of the storage battery 3.

なお、上記最大電力点追尾制御装置6の動作の詳細は
前記特開昭58−69469号公報に開示されいるから省略す
る。
The details of the operation of the maximum power point tracking control device 6 are disclosed in JP-A-58-69469, and will not be described.

太陽電池1が上記の如く最大出力点Pmaxで運転され蓄
電池3が満充電に近づくと、前記のように切換制御回路
9は切換スイッチ8を電流制御装置7側に倒し、該電流
制御装置7でDC/DCコンバータ5の出力電圧を調整し蓄
電池3が過充電にならないように充電電流を抑制する。
When the solar cell 1 is operated at the maximum output point Pmax as described above and the storage battery 3 approaches full charge, the changeover control circuit 9 tilts the changeover switch 8 to the current control device 7 side as described above, and the current control device 7 The output voltage of the DC / DC converter 5 is adjusted to suppress the charging current so that the storage battery 3 is not overcharged.

なお、上記実施例において、最大電力点追尾制御装置
6は、上記以外に例えば特開昭56−132174号公報に記載
された技術であってもよいことは当然である。
It should be noted that in the above embodiment, the maximum power point tracking control device 6 may of course be a technique described in, for example, Japanese Patent Application Laid-Open No. 56-132174, in addition to the above.

〔発明の効果〕〔The invention's effect〕

以上説明したように本発明によれば、蓄電池の端子電
圧が基準電圧より低い場合には、最大出力点追尾手段に
より制御された電圧を蓄電池に供給するようにしたの
で、太陽電池で発電された電力を有効に利用できる。ま
た、蓄電池が基準電圧(満充電状態)に達した場合に
は、DC/DCコンバータによる所定電圧を蓄電池に供給す
るようにしたので、蓄電池が過充電状態になるのを防止
するだけでなく、蓄電池の電圧変動も従来より小さくで
きるため蓄電池寿命を長くさせ、負荷への安全性も確保
されるといった優れ効果を期待することができる。
As described above, according to the present invention, when the terminal voltage of the storage battery is lower than the reference voltage, the voltage controlled by the maximum output point tracking means is supplied to the storage battery. Power can be used effectively. Further, when the storage battery reaches the reference voltage (fully charged state), the DC / DC converter supplies a predetermined voltage to the storage battery, so that the storage battery is not only prevented from becoming overcharged, Since the voltage fluctuation of the storage battery can be made smaller than before, it is possible to expect an excellent effect that the life of the storage battery is extended and the safety against load is secured.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明に係る充電制御方式を用いる太陽光発電
装置のシステム構成を示すブロック図、第2図は太陽電
池の出力電圧−電流特性を示す図、第3図は特開昭58−
69469号公報に開示された技術を第1図の太陽光発電装
置に用いた例を示すブロック図で、第4図は太陽電池の
出力電流に対する電力変化を示す図、第5図は太陽光発
電装置の概要を示すブロック図である。 図中、1……太陽電池、3……蓄電池、4……負荷、5
……DC/DCコンバータ、6……最大電力点追尾制御装
置、7……電流制御装置、8……切換スイッチ、9……
切換制御回路、10……電流センサ。
FIG. 1 is a block diagram showing a system configuration of a solar power generation device using a charge control system according to the present invention, FIG. 2 is a diagram showing output voltage-current characteristics of a solar cell, and FIG. 3 is JP-A-58-.
FIG. 4 is a block diagram showing an example in which the technology disclosed in Japanese Patent Publication No. 69469 is used in the photovoltaic power generation device of FIG. 1, FIG. 4 is a diagram showing power change with respect to output current of a solar cell, and FIG. It is a block diagram which shows the outline | summary of an apparatus. In the figure, 1 ... solar battery, 3 ... storage battery, 4 ... load, 5
...... DC / DC converter, 6 ... Maximum power point tracking control device, 7 ... Current control device, 8 ... Changeover switch, 9 ...
Switching control circuit, 10 ... Current sensor.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】太陽電池と蓄電池とを、該太陽電池の出力
電圧を所定電圧に制御するDC/DCコンバータを介して接
続して成り、前記太陽電池の最大電力点の電圧で前記DC
/DCコンバータに出力させるべく信号出力する最大電力
点追尾手段と、前記蓄電池の端子電圧を検出し、かつ前
記最大電力点追尾手段から前記DC/DCコンバータへの信
号出力を制御する切換制御手段とを備えて成り、前記切
換制御手段が満充電状態より低い電圧を検出した場合に
は、前記最大出力点追尾手段から前記DC/DCコンバータ
へ信号出力させ、前記切換制御手段が満充電状態の電圧
を検出した場合には、前記最大出力点追尾手段から前記
DC/DCコンバータへの信号出力を遮断するようにしたこ
とを特徴とする太陽光発電装置。
1. A solar cell and a storage battery are connected via a DC / DC converter that controls the output voltage of the solar cell to a predetermined voltage, and the DC voltage is the maximum power point of the solar cell.
/ A maximum power point tracking means for outputting a signal to be output to the DC converter, and a switching control means for detecting the terminal voltage of the storage battery and controlling the signal output from the maximum power point tracking means to the DC / DC converter. When the switching control means detects a voltage lower than a full charge state, the maximum output point tracking means outputs a signal to the DC / DC converter, and the switching control means outputs a voltage in a full charge state. Is detected from the maximum output point tracking means,
A solar power generation device characterized in that the signal output to the DC / DC converter is cut off.
JP60293961A 1985-12-27 1985-12-27 Solar power generator Expired - Fee Related JP2553327B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60293961A JP2553327B2 (en) 1985-12-27 1985-12-27 Solar power generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60293961A JP2553327B2 (en) 1985-12-27 1985-12-27 Solar power generator

Publications (2)

Publication Number Publication Date
JPS62154121A JPS62154121A (en) 1987-07-09
JP2553327B2 true JP2553327B2 (en) 1996-11-13

Family

ID=17801427

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60293961A Expired - Fee Related JP2553327B2 (en) 1985-12-27 1985-12-27 Solar power generator

Country Status (1)

Country Link
JP (1) JP2553327B2 (en)

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4152413B2 (en) * 2003-11-19 2008-09-17 新電元工業株式会社 Charger and DC-DC converter provided with the charger
WO2006120741A1 (en) 2005-05-12 2006-11-16 Shindengen Electric Manufacturing Co., Ltd. Dc/dc converter
US10693415B2 (en) 2007-12-05 2020-06-23 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US11881814B2 (en) 2005-12-05 2024-01-23 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US8473250B2 (en) 2006-12-06 2013-06-25 Solaredge, Ltd. Monitoring of distributed power harvesting systems using DC power sources
US8319471B2 (en) 2006-12-06 2012-11-27 Solaredge, Ltd. Battery power delivery module
US9088178B2 (en) 2006-12-06 2015-07-21 Solaredge Technologies Ltd Distributed power harvesting systems using DC power sources
US8618692B2 (en) 2007-12-04 2013-12-31 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US8531055B2 (en) 2006-12-06 2013-09-10 Solaredge Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US11569659B2 (en) 2006-12-06 2023-01-31 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US8319483B2 (en) 2007-08-06 2012-11-27 Solaredge Technologies Ltd. Digital average input current control in power converter
US11735910B2 (en) 2006-12-06 2023-08-22 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US11728768B2 (en) 2006-12-06 2023-08-15 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US8816535B2 (en) 2007-10-10 2014-08-26 Solaredge Technologies, Ltd. System and method for protection during inverter shutdown in distributed power installations
US11687112B2 (en) 2006-12-06 2023-06-27 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US8384243B2 (en) 2007-12-04 2013-02-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11309832B2 (en) 2006-12-06 2022-04-19 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US8013472B2 (en) 2006-12-06 2011-09-06 Solaredge, Ltd. Method for distributed power harvesting using DC power sources
US8947194B2 (en) 2009-05-26 2015-02-03 Solaredge Technologies Ltd. Theft detection and prevention in a power generation system
US11855231B2 (en) 2006-12-06 2023-12-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11888387B2 (en) 2006-12-06 2024-01-30 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US8963369B2 (en) 2007-12-04 2015-02-24 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US8049523B2 (en) 2007-12-05 2011-11-01 Solaredge Technologies Ltd. Current sensing on a MOSFET
US11264947B2 (en) 2007-12-05 2022-03-01 Solaredge Technologies Ltd. Testing of a photovoltaic panel
EP3719949B1 (en) 2008-05-05 2024-08-21 Solaredge Technologies Ltd. Direct current power combiner
US9466737B2 (en) 2009-10-19 2016-10-11 Ampt, Llc Solar panel string converter topology
US10673229B2 (en) 2010-11-09 2020-06-02 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
GB2485527B (en) 2010-11-09 2012-12-19 Solaredge Technologies Ltd Arc detection and prevention in a power generation system
US10230310B2 (en) 2016-04-05 2019-03-12 Solaredge Technologies Ltd Safety switch for photovoltaic systems
US10673222B2 (en) 2010-11-09 2020-06-02 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
GB2483317B (en) 2011-01-12 2012-08-22 Solaredge Technologies Ltd Serially connected inverters
US8570005B2 (en) 2011-09-12 2013-10-29 Solaredge Technologies Ltd. Direct current link circuit
GB2498365A (en) 2012-01-11 2013-07-17 Solaredge Technologies Ltd Photovoltaic module
US9853565B2 (en) 2012-01-30 2017-12-26 Solaredge Technologies Ltd. Maximized power in a photovoltaic distributed power system
GB2498790A (en) 2012-01-30 2013-07-31 Solaredge Technologies Ltd Maximising power in a photovoltaic distributed power system
GB2498791A (en) 2012-01-30 2013-07-31 Solaredge Technologies Ltd Photovoltaic panel circuitry
JP5744307B2 (en) * 2012-02-13 2015-07-08 三菱電機株式会社 Power converter
GB2499991A (en) 2012-03-05 2013-09-11 Solaredge Technologies Ltd DC link circuit for photovoltaic array
US9548619B2 (en) 2013-03-14 2017-01-17 Solaredge Technologies Ltd. Method and apparatus for storing and depleting energy
US11018623B2 (en) 2016-04-05 2021-05-25 Solaredge Technologies Ltd. Safety switch for photovoltaic systems
US11177663B2 (en) 2016-04-05 2021-11-16 Solaredge Technologies Ltd. Chain of power devices
US12057807B2 (en) 2016-04-05 2024-08-06 Solaredge Technologies Ltd. Chain of power devices

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57119633A (en) * 1981-01-16 1982-07-26 Tokyo Shibaura Electric Co Battery power converter control system
JPS60134733A (en) * 1983-12-21 1985-07-18 富士電機株式会社 Solar light generator apparatus

Also Published As

Publication number Publication date
JPS62154121A (en) 1987-07-09

Similar Documents

Publication Publication Date Title
JP2553327B2 (en) Solar power generator
JP3305257B2 (en) Charge / discharge control circuit, rechargeable power supply device and control method therefor
EP0201243A3 (en) Control system for an engine driven ac generator
MY118357A (en) Constant current and constant voltage battery charger
JPH0963652A (en) Battery pack
JPH0461580B2 (en)
JPH0956080A (en) Battery charger
CA2083813A1 (en) Battery charging
JPH07322529A (en) Solar cell power supply
JPH0965582A (en) Power supply system utilizing solar cell
JP3278487B2 (en) Rechargeable power supply
JP3517708B2 (en) Power supply using solar cells
JP3424707B2 (en) Charge / discharge control circuit
JPH07177751A (en) Power supply unit for motor
CN216252238U (en) Charging starting circuit for BMS battery management system and electric vehicle
JPH06153421A (en) Device for charging storage battery by solar battery
JPH02254935A (en) Charging apparatus
JPS6398712A (en) Controller for power generating system of fuel cell
JPH0884442A (en) Charger
JPH08180907A (en) Charger
JPH04281340A (en) Battery charge controller
JPH03251053A (en) Quick charger and quick charging method
KR200210039Y1 (en) Overcharge protection split system during battery charging
JPS63140631A (en) Charger with overcharging-proof function
JPH03203529A (en) Charge control system for solar generating unit

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees