JP2506616B2 - Exposure apparatus and circuit manufacturing method using the same - Google Patents

Exposure apparatus and circuit manufacturing method using the same

Info

Publication number
JP2506616B2
JP2506616B2 JP61155827A JP15582786A JP2506616B2 JP 2506616 B2 JP2506616 B2 JP 2506616B2 JP 61155827 A JP61155827 A JP 61155827A JP 15582786 A JP15582786 A JP 15582786A JP 2506616 B2 JP2506616 B2 JP 2506616B2
Authority
JP
Japan
Prior art keywords
substrate
scanning
axis direction
optical axis
optical system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61155827A
Other languages
Japanese (ja)
Other versions
JPS6312134A (en
Inventor
章義 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP61155827A priority Critical patent/JP2506616B2/en
Publication of JPS6312134A publication Critical patent/JPS6312134A/en
Application granted granted Critical
Publication of JP2506616B2 publication Critical patent/JP2506616B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は露光装置及びそれを用いた回路の製造方法に
関し、特にIC,LSI等の集積回路の製作においてマスク若
しくはレチクル(以下、「レチクル」と称す。)面上の
パターンを投影光学系により基板であるウエハ面上に投
影露光する際に好適な露光装置及びそれを用いた回路の
製造方法に関するものである。
Description: TECHNICAL FIELD The present invention relates to an exposure apparatus and a method of manufacturing a circuit using the same, and more particularly to a mask or reticle (hereinafter, “reticle”) in the manufacture of integrated circuits such as IC and LSI. The present invention relates to an exposure apparatus suitable for projecting a pattern on a surface onto a wafer surface, which is a substrate, by a projection optical system, and a circuit manufacturing method using the exposure apparatus.

(従来の技術) 従来より集積回路の製作においてレチクル面上のパタ
ーンをウエハ面上に露光し転写する方式としては大別し
て2方式が用いられている。
(Prior Art) Conventionally, in the manufacture of integrated circuits, there are roughly two types of methods for exposing and transferring the pattern on the reticle surface onto the wafer surface.

一つはステップ・アンド・リピート方式と呼ばれるも
のでありウエハ面を複数に分割し、分割したウエハ面に
順次レチクル面上のパターンを投影し露光していく方式
である。この方式は1ショット露光が終了したらウエハ
を所定量移動させて再度投影露光を行うという動作を繰
り返すことによりウエハ全面の露光を行うもので所謂静
的な露光とウエハ載置用のステージの動的な駆動とを組
み合わせた方式である。
One is called a step-and-repeat method, which is a method in which a wafer surface is divided into a plurality of pieces and a pattern on a reticle surface is sequentially projected and exposed on the divided wafer surface. In this method, the exposure of the entire surface of the wafer is performed by repeating the operation of moving the wafer by a predetermined amount and performing the projection exposure again after the completion of the one-shot exposure, which is so-called static exposure and dynamic movement of the stage for mounting the wafer. This is a method that combines various driving methods.

他の1つは特開昭52−5544号公報等で提案されている
スキャン方式と呼ばれるものである。この方式は投影光
学系の収差が特に良好に補正された特定領域(リング状
となる。)のみを用いて被写体面と結像面に各々対応す
るマスクとウエハを各々同時に走査して投影露光する方
式である。
The other one is called a scan method proposed in Japanese Patent Laid-Open No. 52-5544. In this method, only a specific area (which has a ring shape) in which the aberration of the projection optical system has been corrected particularly well is used, and the mask and the wafer respectively corresponding to the object plane and the image plane are simultaneously scanned and projected for exposure. It is a method.

(発明が解決しようとする問題点) 一般にウエハは薄く、しかも半導体製造においては処
理工程を複数回経るので部分的に反りが生じることが多
い。投影型の露光装置においては、このウエハの反りが
投影光学系の焦点深度を外れてくると、レチクル面上の
パターンをウエハ面上に露光転写する際のパターン解像
力を大きく低下させる。
(Problems to be Solved by the Invention) In general, a wafer is thin, and a plurality of processing steps are performed in semiconductor manufacturing, so that a partial warpage often occurs. In the projection type exposure apparatus, when the warp of the wafer deviates from the depth of focus of the projection optical system, the pattern resolution at the time of transferring the pattern on the reticle surface onto the wafer surface by exposure is greatly reduced.

本発明はウエハの反り等によってウエハ面が全体とし
て平坦でなくなってもレチクル面上のパターンをウエハ
面上にパターン解像力を大きく低下させることなく露光
転写させることができる露光装置及びそれを用いた回路
の製造方法の提供を目的とする。
The present invention relates to an exposure apparatus capable of exposing and transferring a pattern on a reticle surface onto a wafer surface without significantly deteriorating the pattern resolution even if the wafer surface is not flat as a whole due to a warp of the wafer and a circuit using the same. An object of the present invention is to provide a manufacturing method of.

(問題点を解決する為の手段) 本発明の露光装置は、 (1−1)レチクルのパターンを基板上に投影する投影
光学系と、前記パターンの各部分を前記基板上の対応す
る領域に順次投影する走査手段とを有する走査型の露光
装置であって、前記投影光学系の像面と前記基板の光軸
方向に関する位置関係を変える変更手段と、前記パター
ンの各部分を投影する前に前記基板の対応する領域の光
軸方向に関する位置情報を検出する検出手段と、前記検
出手段の検出結果に基づいて、走査中に、前記変更手段
を用いて前記基板上の各領域毎に前記位置関係を調整す
る調整手段とを有することを特徴としている。
(Means for Solving Problems) The exposure apparatus of the present invention is (1-1) a projection optical system for projecting a pattern of a reticle onto a substrate, and each portion of the pattern on a corresponding region on the substrate. A scanning type exposure apparatus having scanning means for sequentially projecting, comprising: changing means for changing a positional relationship between the image plane of the projection optical system and the optical axis direction of the substrate; and before projecting each part of the pattern. Based on the detection means for detecting the position information regarding the optical axis direction of the corresponding area of the substrate, and based on the detection result of the detection means, during scanning, the changing means is used for each of the areas on the substrate by the changing means. It is characterized by having an adjusting means for adjusting the relationship.

特に、 (1−1−1)前記変更手段は前記レチクルを前記光軸
方向に移動させる手段を有すること、 (1−1−2)前記変更手段は前記基板を前記光軸方向
に移動させる手段を有すること、 (1−1−3)前記走査手段は前記レチクルをスリット
状の光束で照明する手段を有すること、 (1−1−4)前記調整手段は、前記スリット状の露光
域内における前記ウエハの表面位置の平均値に応じて前
記変更手段を制御すること、 (1−1−5)前記調整手段は、前記検出手段の検出結
果と前記投影光学系の像面湾曲特性とに基づいて前記位
置関係を調整すること、 (1−1−6)前記検出手段は、走査中に、前記基板上
の各領域の位置情報を順次検出すること、 (1−1−7)前記検出手段は、走査開始前に、前記基
板上の各領域の全ての位置情報を検出すること等を特徴
としている。
In particular, (1-1-1) the changing means has a means for moving the reticle in the optical axis direction, (1-1-2) the changing means for moving the substrate in the optical axis direction. (1-1-3) the scanning means has means for illuminating the reticle with a slit-shaped light beam, and (1-1-4) the adjusting means has the slit-shaped exposure area within the exposure area. Controlling the changing means according to an average value of the surface position of the wafer, (1-1-5) the adjusting means based on the detection result of the detecting means and the field curvature characteristic of the projection optical system. Adjusting the positional relationship, (1-1-6) the detecting means sequentially detecting positional information of each region on the substrate during scanning, (1-1-7) the detecting means , Before starting the scanning, It is characterized by detecting position information.

本発明の回路の製造方法は、 (2−1)投影光学系によりレチクルの回路パターンの
各部分を基板上の対応する領域に順次投影する段階を有
する回路の製造方法であって、前記基板上の対応する領
域の光軸方向に関する位置情報を検出する検出段階と、
走査中に、前記検出段階の検出結果に基づいて前記基板
上の各領域毎に前記投影光学系の像面と前記基板の光軸
方向に関する位置関係を調整する段階とを有することを
特徴としている。
A method of manufacturing a circuit of the present invention is (2-1) a method of manufacturing a circuit, which comprises a step of sequentially projecting each part of a circuit pattern of a reticle onto a corresponding region on a substrate by a projection optical system, A detection step of detecting position information regarding the optical axis direction of the corresponding region of
During scanning, adjusting the positional relationship between the image plane of the projection optical system and the substrate in the optical axis direction for each area on the substrate based on the detection result of the detecting step. .

特に、 (2−1−1)前記調整段階は前記回路パターンを前記
光軸方向に移動させる段階を有すること、 (2−1−2)前記調整段階は前記基板を前記光軸方向
に移動させる段階を有すること、 (2−1−3)前記回路パターンをスリット状の光束で
照明する段階を有すること、 (2−1−4)スリット状の露光域内における前記ウエ
ハの表面位置の平均値に応じて、前記投影光学系の像面
と前記基板の光軸方向に関する位置関係を調整するこ
と、 (2−1−5)前記調整段階は、前記検出段階の検出結
果と前記投影光学系の像面湾曲特性とに基づいて前記投
影光学系の像面と前記基板の光軸方向に関する位置関係
を調整すること、 (2−1−6)前記検出段階は、走査中に行なわれるこ
と、 (2−1−7)前記検出手段は、走査開始前に行なわれ
ること等を特徴としている。
In particular, (2-1-1) the adjusting step includes a step of moving the circuit pattern in the optical axis direction, and (2-1-2) the adjusting step moves the substrate in the optical axis direction. (2-1-3) having a step of illuminating the circuit pattern with a slit-shaped light beam, and (2-1-4) obtaining an average value of the surface position of the wafer in the slit-shaped exposure area. Accordingly, the positional relationship between the image plane of the projection optical system and the optical axis direction of the substrate is adjusted, (2-1-5) the adjusting step includes the detection result of the detecting step and the image of the projection optical system. Adjusting the positional relationship of the image plane of the projection optical system with respect to the optical axis direction of the substrate based on surface curvature characteristics; (2-1-6) the detecting step is performed during scanning; -1-7) The detection means is before the start of scanning It is characterized by being performed in.

(実施例) 第1図は本発明の一実施例の概略図である。(Example) FIG. 1 is a schematic view of an example of the present invention.

図中、1は楕円鏡、2は楕円鏡1の第1焦点近傍に配
置されている水銀灯等の光源である。光源2からの光束
は楕円鏡1により集光されて第1照明系3に導光され、
本実施例に従う露光の基本単位となる走査用の開口4を
所定の角度分布を有しつつ照明している。尚、本実施例
においてはレーザからの光束を第1照明系3に導光する
ようにしても良い。
In the figure, 1 is an elliptical mirror, and 2 is a light source such as a mercury lamp arranged near the first focal point of the elliptic mirror 1. The light flux from the light source 2 is condensed by the elliptical mirror 1 and guided to the first illumination system 3,
The scanning aperture 4 which is the basic unit of exposure according to the present embodiment is illuminated while having a predetermined angular distribution. In this embodiment, the light flux from the laser may be guided to the first illumination system 3.

開口4を通過した光束は反射鏡20で反射し、走査用の
2つの振動鏡5,6で各々反射した後、第2照明系7′に
よりレチクル8面上を照明する。本実施例では2つの振
動鏡のフレの影響を同一にする為、振動鏡5と6の間に
レンズ系7が配置されている。尚、走査用の開口4は第
2照明系7′により略レチクル8面上に結像され、該開
口像によりレチクル8面が均一な照度で照明される。図
1における各要素1〜7,7′は走査手段の一要素を構成
している。振動鏡5,6で反射した開口4を通過した光束
は振動鏡5,6の振動に合わせてレチクル8面上を走査し
ながら照明する。
The light flux passing through the aperture 4 is reflected by the reflecting mirror 20, is reflected by the two vibrating mirrors 5 and 6 for scanning, and is then illuminated on the surface of the reticle 8 by the second illumination system 7 '. In this embodiment, a lens system 7 is arranged between the vibrating mirrors 5 and 6 in order to make the effects of the shake of the two vibrating mirrors the same. The scanning aperture 4 is imaged substantially on the reticle 8 surface by the second illumination system 7 ', and the reticle 8 surface is illuminated with a uniform illuminance by the aperture image. Each of the elements 1 to 7, 7'in FIG. 1 constitutes one element of the scanning means. The light flux passing through the aperture 4 reflected by the vibrating mirrors 5 and 6 illuminates while scanning the surface of the reticle 8 in accordance with the vibration of the vibrating mirrors 5 and 6.

第2図はこのときのレチクル8面上の走査の様子を示
す一実施例の説明図である。同図において、4′は第2
照明系7′によるレチクル8面上に形成された開口4の
像(開口像)である。この開口像4′は同図に示す矢印
の如くレチクル8面上を螺旋状に走査することによりレ
チクル8全面の照明を行っている。
FIG. 2 is an explanatory diagram of an embodiment showing the state of scanning on the surface of the reticle 8 at this time. In the figure, 4'is the second
It is an image (aperture image) of the aperture 4 formed on the surface of the reticle 8 by the illumination system 7 '. This aperture image 4'illuminates the entire surface of the reticle 8 by spirally scanning the surface of the reticle 8 as shown by the arrow in the figure.

再び第1図において、9は投影光学系でレチクル8面
上の回路パターンをウエハ10面上に投影している。本実
施例において投影光学系9の投影倍率は縮小若しくは等
倍で構成されている。10はウエハで、ステージ11上に載
置されている。ステージ11はX,Y,Z方向の駆動装置12,1
3,14によりX,Y,Z方向及び不図示の駆動装置によりθ方
向に駆動可能となっている。Z方向の駆動装置14は投影
光学系9の像面とウエハ10の光軸方向に関する位置関係
を変えている。ここで、ステージ11と駆動装置14は投影
光学系9の像面とウエハ(基板)10の光軸方向に関する
位置関係を変える変更手段の一要素を構成している。
Referring again to FIG. 1, a projection optical system 9 projects a circuit pattern on the surface of the reticle 8 onto the surface of the wafer 10. In the present embodiment, the projection magnification of the projection optical system 9 is reduced or is equal. A wafer 10 is mounted on the stage 11. The stage 11 is a driving device 12, 1 in X, Y, Z directions.
It is possible to drive in the X, Y, and Z directions by 3, 14 and in the θ direction by a driving device (not shown). The Z-direction driving device 14 changes the positional relationship between the image plane of the projection optical system 9 and the wafer 10 in the optical axis direction. Here, the stage 11 and the driving device 14 constitute one element of changing means for changing the positional relationship between the image plane of the projection optical system 9 and the wafer (substrate) 10 in the optical axis direction.

16は投影光学系9のアフアクシスの位置に設けたオー
トフォーカス検出系であり、投影光学系9のピント位置
に対するウエハ10の表面状態、即ちウエハ10上の各領域
の光軸方向に関する位置(平面度)を測定している。
Reference numeral 16 denotes an auto-focus detection system provided at the position of the af-axis of the projection optical system 9. The surface state of the wafer 10 with respect to the focus position of the projection optical system 9, that is, the position (flatness) of each region on the wafer 10 in the optical axis direction. ) Is being measured.

ここでオートフォーカス検出系16はレチクル8上のパ
ターンの各部分を投影する前にウエハの対応する領域の
光軸方向に関する位置情報を検出する検出手段の一要素
を構成している。
Here, the autofocus detection system 16 constitutes one element of detection means for detecting the position information in the optical axis direction of the corresponding region of the wafer before projecting each part of the pattern on the reticle 8.

15は駆動制御装置(調整手段)であり、振動鏡5,6の
振動に同期させて、即ち走査中にオートフォーカス検出
系16からの出力信号であるところの位置情報を用いてZ
方向の駆動装置14を駆動させて、投影光学系9の像面に
対してウエハ10を上下動させている。
Reference numeral 15 denotes a drive control device (adjusting means), which is synchronized with the vibration of the vibrating mirrors 5 and 6, that is, by using position information which is an output signal from the autofocus detection system 16 during scanning,
The directional driving device 14 is driven to move the wafer 10 up and down with respect to the image plane of the projection optical system 9.

オートフォーカス検出系16は1個又は複数個設けてい
る。オートフォーカス検出系が1つの場合は走査開始前
に予めステージ11をXY方向へ駆動してウエハ10上の各領
域の全ての位置情報を計測をしてウエハ10面上の平面度
を測定しておき、駆動制御装置15にその測定結果を入力
し記憶させておく形態もある。
One or more autofocus detection systems 16 are provided. If there is only one autofocus detection system, the stage 11 is driven in the XY direction in advance before scanning, and all position information of each area on the wafer 10 is measured to measure the flatness on the wafer 10 surface. Alternatively, the measurement result may be input to and stored in the drive control device 15.

本実施例の特徴はレチクル8全面を一度ではなく開口
像4′で走査照明してウエハ10を走査露光することにあ
る。
The feature of this embodiment resides in that the entire surface of the reticle 8 is scanned and illuminated with the aperture image 4'rather than once, and the wafer 10 is scanned and exposed.

又本実施例の特徴は1回の露光において開口像4′の
レチクル8面上の走査位置に対応させて、即ち走査中に
Z方向駆動装置14によりステージ11をZ軸方向(上下方
向)である投影光学系9の光軸S方向へ駆動させて投影
光学系9の像面とウエハ10の光軸方向の位置関係を調整
していることである。このときのZ軸方向の基本駆動量
は予め求めておいた投影光学系9の光学特性、例えば像
面弯曲特性と合致させ、更にオートフォーカス検出系に
より予め求めたウエハ10の平面度若しくは同検出系によ
り開口像4′のレチクル8面上の走査と同期して走査中
に検出されるウエハ10上の各領域の位置情報では基本駆
動量を補正するように駆動制御装置15により振動鏡5,6
の振動による走査と同期させてZ方向の駆動装置14を制
御している。
The feature of this embodiment is that the stage 11 is moved in the Z-axis direction (vertical direction) by the Z-direction driving device 14 in correspondence with the scanning position of the aperture image 4'on the surface of the reticle 8 in one exposure. This is to drive the projection optical system 9 in the optical axis S direction to adjust the positional relationship between the image plane of the projection optical system 9 and the wafer 10 in the optical axis direction. The basic drive amount in the Z-axis direction at this time is made to match the optical characteristic of the projection optical system 9 obtained in advance, for example, the image plane curvature characteristic, and the flatness or the same detection of the wafer 10 obtained in advance by the autofocus detection system. The drive controller 15 corrects the basic drive amount in the position information of each region on the wafer 10 detected during the scanning in synchronization with the scanning of the aperture image 4'on the surface of the reticle 8 by the system. 6
The drive device 14 in the Z direction is controlled in synchronism with the scanning by the vibration.

例えばウエハ10面が理想的な平面状態であったとす
る。このときは投影光学系9の像面弯曲のみを考慮し、
その像面弯曲が第3図に示す如きものであり開口像4′
がウエハ面10面上、光軸Sから距離a離れた位置A1に投
影されているとする。このとき本実施例ではステージ11
を、光軸S中心を露光したときの位置(Z方向)に比べ
距離bだけ投影光学系9側の位置へ駆動して露光する。
For example, assume that the wafer 10 surface is in an ideal flat state. At this time, considering only the field curvature of the projection optical system 9,
The image plane curvature is as shown in FIG. 3, and the aperture image 4 '
Is projected on the wafer surface 10 at a position A1 which is a distance a from the optical axis S. At this time, in this embodiment, stage 11
Is driven to a position on the projection optical system 9 side by a distance b as compared with the position (Z direction) when the center of the optical axis S is exposed for exposure.

又ウエハ10に部分的に反りがあれば、その量に応じて
距離bの値を補正した値だけ駆動して露光するようにし
ている。
If the wafer 10 is partially warped, the exposure is performed by driving the value of the distance b corrected by the amount thereof.

これにより大画面を一括露光するとき問題となるウエ
ハの反りや傾き等を良好に補正している。
As a result, the warp, tilt, etc. of the wafer, which is a problem when collectively exposing a large screen, is well corrected.

以上のように本実施例では投影光学系9の像面弯曲等
の焦点深度に依存する光学特性に関する情報を予め求め
駆動制御装置15に入力しておき、この情報とオートフォ
ーカス検出系により得られるウエハの平面度に関する信
号から駆動装置によるウエハの光軸方向の移動量を演算
し、この演算結果に基づいてウエハを移動させてオート
フォーカスを行なっている。
As described above, in the present embodiment, the information about the optical characteristics such as the curvature of field of the projection optical system 9 which depends on the depth of focus is obtained in advance and input to the drive control device 15, and this information and the autofocus detection system can be obtained. The amount of movement of the wafer in the optical axis direction by the driving device is calculated from the signal relating to the flatness of the wafer, and the wafer is moved based on the calculation result to perform autofocus.

従って本実施例によれば従来では光学性能上使用する
ことのできない領域、即ち光軸からの距離aの領域でも
光軸Sの位置と略同様に高解像力のパターン像を得るこ
とが可能となり実質的に画面寸法の拡大を図った投影光
学系を達成することができる。
Therefore, according to the present embodiment, it is possible to obtain a pattern image having a high resolving power substantially in the same manner as the position of the optical axis S even in a region that cannot be used conventionally in terms of optical performance, that is, a region of a distance a from the optical axis. It is possible to achieve a projection optical system in which the screen size is enlarged.

尚本実施例においてオートフォーカス検出系は投影光
学系9の一部若しくは全部を介するように設けても良
く、又全く独立に設けても良い。
In this embodiment, the autofocus detection system may be provided so as to pass through a part or all of the projection optical system 9 or may be provided completely independently.

本実施例において駆動装置14によりウエハ10の載置用
のステージ11を走査と同期させて光軸S方向に駆動させ
る代わりに駆動装置14によりレチクル8を走査と同期さ
せて光軸S方向に駆動させて投影光学系9の像面をZ方
向に動かすようにしても良い。
In the present embodiment, instead of driving the stage 11 for mounting the wafer 10 by the driving device 14 in the optical axis S direction in synchronization with the scanning, the driving device 14 drives the reticle 8 in the optical axis S direction in synchronization with the scanning. Alternatively, the image plane of the projection optical system 9 may be moved in the Z direction.

本実施例において走査は連続的に行っても又不連続的
に行っても良い。
In this embodiment, the scanning may be performed continuously or discontinuously.

本実施例では開口像4′をレチクル8面上で螺旋形と
なるように走査した場合を示したが走査方式はどのよう
な方式を用いても良い。
In this embodiment, the case where the aperture image 4'is scanned so as to form a spiral shape on the surface of the reticle 8 has been described, but any scanning method may be used.

第4図は本実施例に適用可能な走査手段による走査方
式の一実施例の説明図である。同図(A)はラスター走
査方式、同図(B)は往復走査方式、同図(C)は正方
形型走査方式である。いずれの走査方式でも走査用の開
口像4′のレチクル面若しくはウエハ面上の位置と投影
光学系の相対関係さえわかれば、レチクル若しくはウエ
ハの駆動量を予め求めることが出来るので、容易に露光
時の位置の制御を行なうことができる。
FIG. 4 is an explanatory diagram of an example of the scanning system by the scanning means applicable to this embodiment. 1A shows a raster scanning system, FIG. 2B shows a reciprocal scanning system, and FIG. 1C shows a square scanning system. In any of the scanning methods, the driving amount of the reticle or wafer can be determined in advance if the relative relationship between the position of the scanning aperture image 4'on the reticle surface or the wafer surface and the projection optical system is known. The position of can be controlled.

又開口4の形状は円形に限らず正方形、長方形等で構
成しても良い。又本発明は同図(D)の様にスリット状
の露光に対しても同様に適用することができる。この場
合のステージ11のZ方向への駆動量はスリット内のウエ
ハ10の表面位置の平均値により決定される。即ち、駆動
制御装置15はウエハ10の表面位置の平均値に応じて駆動
装置14を制御するようにしている。
Further, the shape of the opening 4 is not limited to a circular shape, but may be a square shape, a rectangular shape or the like. Further, the present invention can be similarly applied to the slit-shaped exposure as shown in FIG. The amount of drive of the stage 11 in the Z direction in this case is determined by the average value of the surface position of the wafer 10 in the slit. That is, the drive control device 15 controls the drive device 14 according to the average value of the surface position of the wafer 10.

(本発明の効果) 本発明によればウエハの反り等によってウエハ面が全
体として平坦でなくなってもレチクル面上のパターンを
ウエハ面上にパターン解像力を大きく低下させることな
く露光転写させることができる露光装置及びそれを用い
た回路の製造方法を達成することができる。
(Effects of the Present Invention) According to the present invention, even if the wafer surface is not flat as a whole due to the warp of the wafer or the like, the pattern on the reticle surface can be transferred onto the wafer surface by exposure without significantly reducing the pattern resolution. An exposure apparatus and a circuit manufacturing method using the same can be achieved.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例の概略図、第2図,第4図は
各々本発明に係る走査方式の説明図、第3図は本発明に
係る投影光学系の像面弯曲の説明図である。 図中1は楕円鏡、2は光源、3は第1照明系、4は走査
用の開口、5,6は各々振動鏡、7′は第2照明系、8は
レチクル、9は投影光学系、10はウエハ、11はステー
ジ、12,13,14は各々駆動装置、15は駆動制御装置、16は
オートフォーカス検出系である。
FIG. 1 is a schematic diagram of an embodiment of the present invention, FIGS. 2 and 4 are explanatory diagrams of a scanning method according to the present invention, and FIG. 3 is an explanation of image plane curvature of a projection optical system according to the present invention. It is a figure. In the figure, 1 is an elliptical mirror, 2 is a light source, 3 is a first illumination system, 4 is a scanning aperture, 5 and 6 are vibrating mirrors, 7'is a second illumination system, 8 is a reticle, and 9 is a projection optical system. , 10 is a wafer, 11 is a stage, 12, 13, 14 are drive devices, 15 is a drive control device, and 16 is an autofocus detection system.

Claims (16)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】レチクルのパターンを基板上に投影する投
影光学系と、前記パターンの各部分を前記基板上の対応
する領域に順次投影する走査手段とを有する走査型の露
光装置であって、前記投影光学系の像面と前記基板の光
軸方向に関する位置関係を変える変更手段と、前記パタ
ーンの各部分を投影する前に前記基板の対応する領域の
光軸方向に関する位置情報を検出する検出手段と、前記
検出手段の検出結果に基づいて、走査中に、前記変更手
段を用いて前記基板上の各領域毎に前記位置関係を調整
する調整手段とを有することを特徴とする露光装置。
1. A scanning type exposure apparatus having a projection optical system for projecting a pattern of a reticle onto a substrate, and a scanning means for sequentially projecting each part of the pattern onto a corresponding region on the substrate, Changing means for changing the positional relationship between the image plane of the projection optical system and the substrate in the optical axis direction, and detection for detecting positional information in the optical axis direction of a corresponding region of the substrate before projecting each part of the pattern. And an adjusting unit that adjusts the positional relationship for each area on the substrate by using the changing unit during scanning based on the detection result of the detecting unit.
【請求項2】前記変更手段は前記レチクルを前記光軸方
向に移動させる手段を有することを特徴とする特許請求
の範囲第1項記載の露光装置。
2. The exposure apparatus according to claim 1, wherein the changing means has means for moving the reticle in the optical axis direction.
【請求項3】前記変更手段は前記基板を前記光軸方向に
移動させる手段を有することを特徴とする特許請求の範
囲第1項記載の露光装置。
3. The exposure apparatus according to claim 1, wherein the changing means has means for moving the substrate in the optical axis direction.
【請求項4】前記走査手段は前記レチクルをスリット状
の光束で照明する手段を有することを特徴とする特許請
求の範囲第1項記載の露光装置。
4. The exposure apparatus according to claim 1, wherein said scanning means has means for illuminating said reticle with a slit-shaped light beam.
【請求項5】前記調整手段は、前記スリット状の露光域
内における前記ウエハの表面位置の平均値に応じて前記
変更手段を制御することを特徴とする特許請求の範囲第
4項記載の露光装置。
5. The exposure apparatus according to claim 4, wherein the adjusting means controls the changing means in accordance with an average value of the surface position of the wafer in the slit-shaped exposure area. .
【請求項6】前記調整手段は、前記検出手段の検出結果
と前記投影光学系の像面湾曲特性とに基づいて前記位置
関係を調整することを特徴とする特許請求の範囲第1項
記載の露光装置。
6. The adjusting device according to claim 1, wherein the adjusting device adjusts the positional relationship based on a detection result of the detecting device and a field curvature characteristic of the projection optical system. Exposure equipment.
【請求項7】前記検出手段は、走査中に、前記基板上の
各領域の位置情報を順次検出することを特徴とする特許
請求の範囲第1項記載の露光装置。
7. The exposure apparatus according to claim 1, wherein the detection means sequentially detects position information of each area on the substrate during scanning.
【請求項8】前記検出手段は、走査開始前に、前記基板
上の各領域の全ての位置情報を検出することを特徴とす
る特許請求の範囲第1項記載の露光装置。
8. The exposure apparatus according to claim 1, wherein the detection means detects all position information of each area on the substrate before starting scanning.
【請求項9】投影光学系によりレチクルの回路パターン
の各部分を基板上の対応する領域に順次投影する段階を
有する回路の製造方法であって、前記基板上の対応する
領域の光軸方向に関する位置情報を検出する検出段階
と、走査中に、前記検出段階の検出結果に基づいて前記
基板上の各領域毎に前記投影光学系の像面と前記基板の
光軸方向に関する位置関係を調整する段階とを有するこ
とを特徴とする回路の製造方法。
9. A method of manufacturing a circuit, comprising a step of sequentially projecting each portion of a circuit pattern of a reticle onto a corresponding area on a substrate by a projection optical system, the method relating to the optical axis direction of the corresponding area on the substrate. During the detection step of detecting the position information and during the scanning, the positional relationship between the image plane of the projection optical system and the optical axis direction of the substrate is adjusted for each area on the substrate based on the detection result of the detection step. And a step of manufacturing a circuit.
【請求項10】前記調整段階は前記回路パターンを前記
光軸方向に移動させる段階を有することを特徴とする特
許請求の範囲第9項記載の回路の製造方法。
10. The method for manufacturing a circuit according to claim 9, wherein the adjusting step includes a step of moving the circuit pattern in the optical axis direction.
【請求項11】前記調整段階は前記基板を前記光軸方向
に移動させる段階を有することを特徴とする特許請求の
範囲第9項記載の回路の製造方法。
11. The method of manufacturing a circuit according to claim 9, wherein the adjusting step includes a step of moving the substrate in the optical axis direction.
【請求項12】前記回路パターンをスリット状の光束で
照明する段階を有することを特徴とする特許請求の範囲
第9項記載の回路の製造方法。
12. The method for manufacturing a circuit according to claim 9, further comprising the step of illuminating the circuit pattern with a slit-shaped light beam.
【請求項13】スリット状の露光域内における前記ウエ
ハの表面位置の平均値に応じて、前記投影光学系の像面
と前記基板の光軸方向に関する位置関係を調整すること
を特徴とする特許請求の範囲第12項記載の回路の製造方
法。
13. The positional relationship between the image plane of the projection optical system and the substrate in the optical axis direction is adjusted according to the average value of the surface position of the wafer in the slit-shaped exposure area. 13. A method of manufacturing a circuit according to claim 12 of the above.
【請求項14】前記調整段階は、前記検出段階の検出結
果と前記投影光学系の像面湾曲特性とに基づいて前記投
影光学系の像面と前記基板の光軸方向に関する位置関係
を調整することを特徴とする特許請求の範囲第9項記載
の回路の製造方法。
14. The adjusting step adjusts the positional relationship between the image plane of the projection optical system and the substrate in the optical axis direction based on the detection result of the detecting step and the field curvature characteristic of the projection optical system. 10. The method for manufacturing a circuit according to claim 9, wherein:
【請求項15】前記検出段階は、走査中に行なわれるこ
とを特徴とする特許請求の範囲第9項記載の回路の製造
方法。
15. The method of manufacturing a circuit according to claim 9, wherein said detecting step is performed during scanning.
【請求項16】前記検出手段は、走査開始前に行なわれ
ることを特徴とする特許請求の範囲第9項記載の回路の
製造方法。
16. The method for manufacturing a circuit according to claim 9, wherein said detecting means is performed before the start of scanning.
JP61155827A 1986-07-02 1986-07-02 Exposure apparatus and circuit manufacturing method using the same Expired - Lifetime JP2506616B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61155827A JP2506616B2 (en) 1986-07-02 1986-07-02 Exposure apparatus and circuit manufacturing method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61155827A JP2506616B2 (en) 1986-07-02 1986-07-02 Exposure apparatus and circuit manufacturing method using the same

Publications (2)

Publication Number Publication Date
JPS6312134A JPS6312134A (en) 1988-01-19
JP2506616B2 true JP2506616B2 (en) 1996-06-12

Family

ID=15614358

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61155827A Expired - Lifetime JP2506616B2 (en) 1986-07-02 1986-07-02 Exposure apparatus and circuit manufacturing method using the same

Country Status (1)

Country Link
JP (1) JP2506616B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04215417A (en) * 1990-12-14 1992-08-06 Fujitsu Ltd Exposing method
JP2830492B2 (en) 1991-03-06 1998-12-02 株式会社ニコン Projection exposure apparatus and projection exposure method
JPH06101235A (en) * 1991-04-02 1994-04-12 Katsumura Kensetsu Kk Side-slope reinforcing method with projection type pressure-bearing anchor
KR100300618B1 (en) 1992-12-25 2001-11-22 오노 시게오 EXPOSURE METHOD, EXPOSURE DEVICE, AND DEVICE MANUFACTURING METHOD USING THE DEVICE
JP2800731B2 (en) * 1995-08-29 1998-09-21 株式会社ニコン Scanning exposure method and circuit element manufacturing method by scanning exposure
KR20170018113A (en) 2003-04-09 2017-02-15 가부시키가이샤 니콘 Exposure method and apparatus, and device manufacturing method
TWI573175B (en) 2003-10-28 2017-03-01 尼康股份有限公司 Optical illumination device, exposure device, exposure method and device manufacturing method
TW201809801A (en) 2003-11-20 2018-03-16 日商尼康股份有限公司 Optical illuminating apparatus, exposure device, exposure method, and device manufacturing method
TWI494972B (en) 2004-02-06 2015-08-01 尼康股份有限公司 Polarization changing device, optical illumination apparatus, light-exposure apparatus and light-exposure method
EP1881521B1 (en) 2005-05-12 2014-07-23 Nikon Corporation Projection optical system, exposure apparatus and exposure method
JP5267029B2 (en) 2007-10-12 2013-08-21 株式会社ニコン Illumination optical apparatus, exposure apparatus, and device manufacturing method
US8379187B2 (en) 2007-10-24 2013-02-19 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9116346B2 (en) 2007-11-06 2015-08-25 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50134768A (en) * 1974-04-05 1975-10-25
JPS58122542A (en) * 1981-11-16 1983-07-21 ナザン・ゴ−ルド Matching of spectrum of photoresist
JPS6153615A (en) * 1984-08-24 1986-03-17 Canon Inc Focus detecting device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50134768A (en) * 1974-04-05 1975-10-25
JPS58122542A (en) * 1981-11-16 1983-07-21 ナザン・ゴ−ルド Matching of spectrum of photoresist
JPS6153615A (en) * 1984-08-24 1986-03-17 Canon Inc Focus detecting device

Also Published As

Publication number Publication date
JPS6312134A (en) 1988-01-19

Similar Documents

Publication Publication Date Title
JP3572430B2 (en) Exposure method and apparatus
US6608681B2 (en) Exposure method and apparatus
US8625072B2 (en) Exposure apparatus, exposure method, and method of manufacturing device
US6081614A (en) Surface position detecting method and scanning exposure method using the same
JP2506616B2 (en) Exposure apparatus and circuit manufacturing method using the same
KR100485314B1 (en) Projection exposure apparatus and device manufacturing method using the same
JP3880155B2 (en) Positioning method and positioning device
JP6806509B2 (en) Method of manufacturing exposure equipment and articles
JPH08153661A (en) Projection exposure method
JP5692949B2 (en) Exposure equipment
JPH01187817A (en) Aligning method
JP3408118B2 (en) Projection exposure method and apparatus
KR100481756B1 (en) Scanning exposure method and scanning exposure apparatus
JP2000294480A (en) Method for controlling exposure, exposure system, and manufacture of device
JP3428825B2 (en) Surface position detection method and surface position detection device
US6750950B1 (en) Scanning exposure method, scanning exposure apparatus and making method for producing the same, and device and method for manufacturing the same
JP4840958B2 (en) Scanning exposure apparatus and device manufacturing method
JP4598902B2 (en) Scanning exposure apparatus and device manufacturing method
JP2000077301A (en) Aligner
JP3376219B2 (en) Surface position detecting device and method
JPH10106942A (en) Scanning type exposing device and manufacture of semiconductor device using the device
JPH1092727A (en) Projection aligner
JPH09283434A (en) Projection aligner and method for manufacturing device using it
JP6053316B2 (en) Lithographic apparatus and article manufacturing method
JP3077663B2 (en) Scan type exposure apparatus, scan exposure method, and recording medium