JP2024139109A - Magnetic Encoder - Google Patents
Magnetic Encoder Download PDFInfo
- Publication number
- JP2024139109A JP2024139109A JP2023049909A JP2023049909A JP2024139109A JP 2024139109 A JP2024139109 A JP 2024139109A JP 2023049909 A JP2023049909 A JP 2023049909A JP 2023049909 A JP2023049909 A JP 2023049909A JP 2024139109 A JP2024139109 A JP 2024139109A
- Authority
- JP
- Japan
- Prior art keywords
- magnetic
- magnet powder
- magnetic encoder
- rare earth
- less
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000843 powder Substances 0.000 claims abstract description 83
- 229920005989 resin Polymers 0.000 claims abstract description 65
- 239000011347 resin Substances 0.000 claims abstract description 65
- 229910052761 rare earth metal Inorganic materials 0.000 claims abstract description 55
- 150000002910 rare earth metals Chemical class 0.000 claims abstract description 54
- 239000002245 particle Substances 0.000 claims abstract description 34
- 229910001172 neodymium magnet Inorganic materials 0.000 claims abstract description 27
- 229920001187 thermosetting polymer Polymers 0.000 claims abstract description 16
- 230000005415 magnetization Effects 0.000 claims description 17
- 239000002994 raw material Substances 0.000 description 26
- 238000011156 evaluation Methods 0.000 description 19
- 239000006247 magnetic powder Substances 0.000 description 15
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 9
- 150000001875 compounds Chemical class 0.000 description 9
- 230000004907 flux Effects 0.000 description 9
- 238000000034 method Methods 0.000 description 9
- 238000002156 mixing Methods 0.000 description 8
- 239000011230 binding agent Substances 0.000 description 6
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 5
- 238000001816 cooling Methods 0.000 description 4
- 238000001514 detection method Methods 0.000 description 4
- 239000003822 epoxy resin Substances 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 229910052742 iron Inorganic materials 0.000 description 4
- 229920000647 polyepoxide Polymers 0.000 description 4
- 238000001723 curing Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 239000000696 magnetic material Substances 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000004070 electrodeposition Methods 0.000 description 2
- 239000000314 lubricant Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 229910000859 α-Fe Inorganic materials 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910052779 Neodymium Inorganic materials 0.000 description 1
- 239000012300 argon atmosphere Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- CJZGTCYPCWQAJB-UHFFFAOYSA-L calcium stearate Chemical compound [Ca+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O CJZGTCYPCWQAJB-UHFFFAOYSA-L 0.000 description 1
- 239000008116 calcium stearate Substances 0.000 description 1
- 235000013539 calcium stearate Nutrition 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000005347 demagnetization Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 238000013007 heat curing Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000005405 multipole Effects 0.000 description 1
- QEFYFXOXNSNQGX-UHFFFAOYSA-N neodymium atom Chemical compound [Nd] QEFYFXOXNSNQGX-UHFFFAOYSA-N 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000009738 saturating Methods 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 238000001029 thermal curing Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D5/00—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
- G01D5/12—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
- G01D5/244—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
- G01D5/245—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains using a variable number of pulses in a train
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/032—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
- H01F1/04—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
- H01F1/047—Alloys characterised by their composition
- H01F1/053—Alloys characterised by their composition containing rare earth metals
- H01F1/055—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
- H01F1/057—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Transmission And Conversion Of Sensor Element Output (AREA)
- Hard Magnetic Materials (AREA)
Abstract
【課題】角度精度が高精度な磁気エンコーダを提供すること。【解決手段】磁気エンコーダは、希土類磁石粉末と熱硬化性樹脂の樹脂硬化物とを含み、表面の周方向に複数の磁極が所定のピッチで着磁されて形成された磁気トラックを有するリング状の磁気エンコーダであって、前記希土類磁石粉末は、粒径が45μm以上75μm未満の等方性Nd-Fe-B系磁石粉末であり、前記樹脂硬化物が5重量%以上6.5重量%以下の量で含まれ、前記リング状の磁気エンコーダの厚さは、0.2mm以上1mm以下である。【選択図】なし[Problem] To provide a magnetic encoder with high angular accuracy. [Solution] The magnetic encoder is a ring-shaped magnetic encoder containing rare earth magnet powder and a cured resin of a thermosetting resin, and having a magnetic track formed by magnetizing a plurality of magnetic poles at a predetermined pitch in the circumferential direction of the surface, the rare earth magnet powder is an isotropic Nd-Fe-B magnet powder with a particle size of 45 μm or more and less than 75 μm, the cured resin is contained in an amount of 5% by weight or more and 6.5% by weight or less, and the thickness of the ring-shaped magnetic encoder is 0.2 mm or more and 1 mm or less. [Selected Figure] None
Description
本発明は、磁気エンコーダに関し、特に希土類ボンド磁石による磁気エンコーダに関する。 The present invention relates to a magnetic encoder, and in particular to a magnetic encoder using rare earth bonded magnets.
従来、機器の回転位置検出として、磁気エンコーダが知られている。この磁気エンコーダとして、同心のリング状に設けられ、互いに磁極数が異なる2つの磁気エンコーダと、これら各磁気エンコーダの磁界をそれぞれ検出する磁気センサとを備え、磁気センサの検出した磁界信号の位相差に基づいて磁気エンコーダの絶対角度を算出するようにした構成の回転検出装置が提案されている(例えば、特許文献1参照)。 Conventionally, magnetic encoders are known as a method for detecting the rotational position of equipment. A rotation detection device has been proposed that includes two magnetic encoders arranged in concentric rings and each having a different number of magnetic poles, and a magnetic sensor that detects the magnetic fields of each of these magnetic encoders, and calculates the absolute angle of the magnetic encoders based on the phase difference between the magnetic field signals detected by the magnetic sensors (see, for example, Patent Document 1).
特許文献1の回転検出装置における磁気エンコーダは、例えば磁性体製の芯金に、磁性体粉が混入された弾性部材を加硫接着し、この弾性部材を、円周方向に交互に磁極を形成して磁気トラックを形成したゴム磁石として構成される。また、磁気エンコーダの他の構成例として、磁性体製の芯金に、磁性体粉が混入された樹脂を成形した樹脂成形体を設け、この樹脂成形体を、円周方向に交互に磁極を形成して磁気トラックを形成した樹脂磁石としても良いことが記載されている。このようなゴム磁石や樹脂磁石では、通常、磁性体粉として、フェライト系磁石粉末を用いている。 The magnetic encoder in the rotation detection device of Patent Document 1 is configured as a rubber magnet in which, for example, an elastic member containing magnetic powder is vulcanized and bonded to a core metal made of a magnetic material, and this elastic member is formed with magnetic poles alternately in the circumferential direction to form a magnetic track. In addition, as another configuration example of a magnetic encoder, it is described that a resin molded body made of a resin containing magnetic powder is provided on a core metal made of a magnetic material, and this resin molded body can be used as a resin magnet in which magnetic poles are formed alternately in the circumferential direction to form a magnetic track. In such rubber magnets and resin magnets, ferrite magnet powder is usually used as the magnetic powder.
磁気エンコーダの磁気特性の向上を考えれば、磁気エンコーダに含まれる磁性体の配合量は多い方が好ましく、また、磁石粉末の磁気特性が高い方が好ましい。このため、フェライト系磁性粉末よりも希土類磁石粉末を用いた方が、磁気特性が向上する。故に、被着磁物である磁気エンコーダを希土類ボンド磁石で構成することが考えられる。 When considering improving the magnetic properties of a magnetic encoder, it is preferable for the magnetic encoder to contain a larger amount of magnetic material, and it is also preferable for the magnetic powder to have higher magnetic properties. For this reason, the magnetic properties are improved when rare earth magnetic powder is used rather than ferrite magnetic powder. Therefore, it is conceivable to construct the magnetic encoder, which is the object to be magnetized, from a rare earth bonded magnet.
磁気エンコーダの磁気トラックとなる複数の磁極(N極、S極)を着磁する場合、一般にコイル通電方式による着磁装置(いわゆる、パルス着磁方式)が用いられている。このコイル通電方式の着磁装置は、例えば、着磁ヨークに巻回されたコイルを有する界磁部にパルス電流を流し、それによって発生する磁界により、被着磁物に対して着磁を行っているが、例えば、特許文献2に記載されているように、磁気エンコーダの磁気トラックを検出する磁気センサの磁極幅が1.28mmに制限されている場合、被着磁物である磁気エンコーダが希土類ボンド磁石による構成に対して、上記のパルス着磁方式では、1.28mmのような狭い磁極ピッチで飽和着磁して複数の磁極を形成することは難しい。 When magnetizing the multiple magnetic poles (N pole, S pole) that become the magnetic track of a magnetic encoder, a magnetization device that uses a coil current method (so-called pulse magnetization method) is generally used. This coil current method magnetization device, for example, passes a pulse current through a field magnet part having a coil wound around a magnetization yoke, and magnetizes the object to be magnetized by the magnetic field generated by this. However, as described in Patent Document 2, for example, if the magnetic pole width of the magnetic sensor that detects the magnetic track of the magnetic encoder is limited to 1.28 mm, it is difficult to form multiple magnetic poles by saturating magnetization with a narrow magnetic pole pitch such as 1.28 mm for the magnetic encoder that is the object to be magnetized and is composed of rare earth bond magnets using the above pulse magnetization method.
このため、被着磁物における磁石のキュリー点以上に加熱し、キュリー点未満まで冷却する間、界磁源である永久磁石を用いて被着磁物に着磁磁界を継続的に印加することによって、多極着磁しても好適に着磁できる手段が提案されている(例えば、特許文献3参照)。 For this reason, a method has been proposed that allows for optimal magnetization even in multi-pole magnetization by heating the object to be magnetized to above the Curie point of the magnet, and then continuously applying a magnetizing magnetic field to the object to be magnetized using a permanent magnet that serves as a field source while cooling it to below the Curie point (see, for example, Patent Document 3).
特許文献3の着磁装置には、等方性磁石粉末とエポキシ樹脂とを混合し、圧縮して、所定温度で硬化させた等方性希土類鉄系ボンド磁石が記載され、1.28mmのような狭い磁極ピッチで多極着磁しても好適に着磁できる。 The magnetization device in Patent Document 3 describes an isotropic rare earth iron-based bonded magnet that is made by mixing isotropic magnet powder with epoxy resin, compressing it, and curing it at a specified temperature, and can be effectively magnetized even when multiple poles are magnetized with a narrow magnetic pole pitch such as 1.28 mm.
近年の希土類磁石粉末の価格高騰の観点から、磁石粉末を所定温度で焼結した等方性希土類鉄系バルク磁石に比べて磁気特性は低下するが、希土類磁石粉末が少ない等方性希土類ボンド磁石を磁気エンコーダに用いることが好適であり、希土類ボンド磁石を用いた場合、特許文献3の着磁装置によれば、狭い磁極ピッチで多極着磁しても好適に着磁できると共に、コスト低減を期待できる。 In light of the recent rise in the price of rare earth magnet powder, it is preferable to use isotropic rare earth bonded magnets, which contain less rare earth magnet powder, in magnetic encoders, although their magnetic properties are inferior to those of isotropic rare earth iron-based bulk magnets made by sintering magnet powder at a specified temperature. When using rare earth bonded magnets, the magnetizing device of Patent Document 3 can be used to magnetize multiple poles with a narrow magnetic pole pitch, and costs can be reduced.
希土類ボンド磁石は、希土類磁石粉末と熱硬化性樹脂とを混合し、圧縮してグリーン体を作製した後、グリーン体に含まれる樹脂を熱硬化してキュア体(熱硬化体)を作製し、キュア体に所定の磁極ピッチで着磁することで磁気エンコーダが得られる。 Rare earth bonded magnets are made by mixing rare earth magnet powder with thermosetting resin and compressing it to create a green body, then heat-curing the resin contained in the green body to create a cured body (thermosetting body), which is then magnetized with a specified magnetic pole pitch to produce a magnetic encoder.
希土類ボンド磁石は、希土類磁石粉末と、バインダーである熱硬化性樹脂と、ボイドと、から構成され、それぞれの体積比率は概ね、磁石粉末が約80%、樹脂が約10%、ボイド(空孔)が約10%程度の数値となる。磁石粉末は、様々な粒径を有する磁石粉末が混在していることにより、グリーン体を薄型化した際の成形性や、グリーン体の密度のばらつきによって熱硬化後の変形が生じ易くなる。また、磁気エンコーダの磁力特性に貢献するのは磁石粉末のみであり、磁石粉末が偏りなく分布し、磁気特性のばらつきを小さくすることが、磁気エンコーダの高精度化のために重要となる。 Rare earth bonded magnets are composed of rare earth magnet powder, a thermosetting resin binder, and voids, with the volume ratios of each being approximately 80% magnet powder, 10% resin, and 10% voids (air holes). As magnet powder is a mixture of magnet powders with various particle sizes, it is prone to deformation after thermal curing due to moldability issues when the green body is thinned and variations in density of the green body. Furthermore, since it is only the magnet powder that contributes to the magnetic properties of the magnetic encoder, it is important for the magnet powder to be distributed evenly and for the variation in magnetic properties to be small in order to increase the precision of the magnetic encoder.
特許文献3には、等方性希土類鉄系ボンド磁石に対して、狭い磁極ピッチで多極着磁しても好適に着磁できることは記載されている。しかしながら、磁気エンコーダの角度精度の点で、さらなる検討の余地がある。 Patent document 3 describes that isotropic rare earth iron-based bonded magnets can be magnetized favorably even when multiple poles are magnetized with a narrow magnetic pole pitch. However, there is room for further consideration in terms of the angular accuracy of the magnetic encoder.
このため、本発明の目的は、希土類ボンド磁石による磁気エンコーダにおいて、磁気特性のばらつきを小さくして、角度精度が高精度な磁気エンコーダを提供することにある。 Therefore, the object of the present invention is to provide a magnetic encoder using rare earth bonded magnets that reduces the variation in magnetic characteristics and has high angular accuracy.
上述した課題を解決し、目的を達成するために、本発明の一態様に係る磁気エンコーダは、希土類磁石粉末と熱硬化性樹脂の樹脂硬化物とを含み、表面の周方向に複数の磁極が所定のピッチで着磁されて形成された磁気トラックを有するリング状の磁気エンコーダであって、上記希土類磁石粉末は、粒径が45μm以上75μm未満の等方性Nd-Fe-B系磁石粉末であり、上記樹脂硬化物が5重量%以上6.5重量%以下の量で含まれ、上記リング状の磁気エンコーダの厚さは、0.2mm以上1mm以下である。 In order to solve the above-mentioned problems and achieve the object, the magnetic encoder according to one aspect of the present invention is a ring-shaped magnetic encoder that contains rare earth magnet powder and a resin cured product of a thermosetting resin, and has a magnetic track formed by magnetizing multiple magnetic poles at a predetermined pitch in the circumferential direction of the surface, the rare earth magnet powder is an isotropic Nd-Fe-B magnet powder with a particle size of 45 μm or more and less than 75 μm, the resin cured product is contained in an amount of 5% by weight or more and 6.5% by weight or less, and the thickness of the ring-shaped magnetic encoder is 0.2 mm or more and 1 mm or less.
本発明の一態様によれば、角度精度が高精度な磁気エンコーダが得られる。 According to one aspect of the present invention, a magnetic encoder with high angular accuracy is obtained.
以下に、本発明に係る実施形態を図面に基づいて詳細に説明する。なお、この実施形態によりこの発明が限定されるものではない。また、下記実施形態における構成要素には、当業者が置換可能かつ容易なもの、あるいは実質的に同一のものが含まれる。 Below, an embodiment of the present invention will be described in detail with reference to the drawings. Note that the present invention is not limited to this embodiment. Furthermore, the components in the following embodiment include those that are easily replaceable by a person skilled in the art, or those that are substantially the same.
<実施形態1>
実施形態1の磁気エンコーダは、希土類磁石粉末と熱硬化性樹脂の樹脂硬化物とを含み、表面の周方向に複数の磁極が所定のピッチで着磁されて形成された磁気トラックを有するリング状の磁気エンコーダであって、上記希土類磁石粉末は、粒径が45μm以上75μm未満の等方性Nd-Fe-B系磁石粉末であり、上記樹脂硬化物が5重量%以上6.5重量%以下の量で含まれ、上記リング状の磁気エンコーダの厚さは、0.2mm以上1mm以下である。
<Embodiment 1>
The magnetic encoder of embodiment 1 is a ring-shaped magnetic encoder that contains rare earth magnet powder and a cured resin of a thermosetting resin, and has a magnetic track formed by magnetizing a plurality of magnetic poles at a predetermined pitch in the circumferential direction of the surface, the rare earth magnet powder being an isotropic Nd-Fe-B based magnet powder having a particle size of 45 μm or more and less than 75 μm, the cured resin being contained in an amount of 5 wt % or more and 6.5 wt % or less, and the thickness of the ring-shaped magnetic encoder is 0.2 mm or more and 1 mm or less.
Nd-Fe-B系の磁石粉末を用いた等方性希土類ボンド磁石を磁気エンコーダに用いる場合、使用する希土類磁石粉末の中に様々な粒径の磁石粉末が混在していると、作製した磁気エンコーダは、磁極ごとに検出する表面磁束にばらつきが生じる。この結果、磁気エンコーダの磁極からの磁束を検知する磁気センサの出力にばらつきが生じ、磁気エンコーダの角度精度を上げることが難しくなる。このため、磁気エンコーダ全体において、場所毎(磁極毎)で表面磁束のばらつきを小さくして均質な状態を達成するためには、希土類磁石粉末の粒径を小さめにしつつ、その粒度分布を狭く限定することが有効であることを知見した。なお、一般に、磁石粉末の粒径が小さくなるほど磁石粉末が有する静磁気特性(残留磁束密度)が低下する傾向にあるが、実施形態1の磁気エンコーダでは、静磁気特性のばらつきを抑制し、均質な状態を得ることを優先している。 When an isotropic rare earth bonded magnet using Nd-Fe-B magnet powder is used in a magnetic encoder, if the rare earth magnet powder used contains magnet powders of various particle sizes, the surface magnetic flux detected by each magnetic pole of the manufactured magnetic encoder will vary. As a result, the output of the magnetic sensor that detects the magnetic flux from the magnetic poles of the magnetic encoder will vary, making it difficult to improve the angular accuracy of the magnetic encoder. For this reason, in order to reduce the variation in surface magnetic flux at each location (each magnetic pole) throughout the magnetic encoder and achieve a homogeneous state, it has been found that it is effective to reduce the particle size of the rare earth magnet powder while narrowing its particle size distribution. In general, the static magnetic properties (residual magnetic flux density) of the magnet powder tend to decrease as the particle size of the magnet powder decreases, but in the magnetic encoder of embodiment 1, priority is given to suppressing the variation in static magnetic properties and achieving a homogeneous state.
図1は、実施形態1の磁気エンコーダを説明するための図である。磁気エンコーダ1は、軸方向一方端面に同心状で2つの磁気トラック(主トラック11及び副トラック12)が形成されたバーニヤ方式を構成している。具体的には、アキシャル方向で、外周側に主トラック11を所定の磁極ピッチで周方向に磁化し、内周側に副トラック12として所定の磁極ピッチで周方向に磁化する。主トラック11にn極対で磁化した場合、副トラック12は(n-1)極対で磁化する。磁極ピッチは、磁気エンコーダの磁気トラックを検出する磁気センサの磁極幅が制限されている場合、磁気エンコーダに形成する磁気トラックの磁極ピッチは磁気センサの磁極幅と同じ幅に形成される。例えば、上記所定のピッチとは、0.4mm以上2.4mm以下であり、より具体的には、1.28mmである。また、磁気エンコーダ1は、上記端面において、主トラック11及び副トラック12の間と、副トラック12よりも内周側とに、無着磁領域13を有する。
Figure 1 is a diagram for explaining a magnetic encoder of embodiment 1. The magnetic encoder 1 is configured as a vernier type in which two magnetic tracks (
実施形態1の磁気エンコーダに含まれる希土類磁石粉末は、等方性Nd(ネオジム)-Fe(鉄)-B(ホウ素)系磁石粉末である。等方性Nd-Fe-B系磁石粉末としては、マグネクエンチ社製のMQP-14-12(商品名)、MQP-8-5(商品名)、MQP-10-8.5HD(商品名)、MQP-11-8(商品名)、MQP12-8HD(商品名)等が挙げられる。 The rare earth magnet powder contained in the magnetic encoder of the first embodiment is an isotropic Nd (neodymium)-Fe (iron)-B (boron) magnet powder. Examples of isotropic Nd-Fe-B magnet powder include MQP-14-12 (product name), MQP-8-5 (product name), MQP-10-8.5HD (product name), MQP-11-8 (product name), and MQP12-8HD (product name) manufactured by Magnequench.
これに代えて、例えば、超急冷法により製造したNd-Fe-B系磁石粉末であってもよい。具体的には、Nd-Fe-B系合金を、減圧下またはアルゴン雰囲気中で、高周波誘導加熱して溶解させる。次に、溶解させた合金の溶湯を銅製の回転ロール上に噴射して超急冷(高速冷却)し、リボン状の薄帯片を作製する。次に、この薄帯片を、例えば数mm~数十mm程度に破断した後、粉砕機などで粉砕して粉末を得る。この粉砕した粉末を所定のメッシュを有するふるいを用いて分級した後、これに熱処理を行い、希土類磁石粉末を作製できる。この希土類磁石粉末は、各結晶粒の磁化容易軸の方向が一方向に揃っていないため、磁気的に等方性である。 Alternatively, for example, Nd-Fe-B magnet powder produced by a rapid cooling method may be used. Specifically, an Nd-Fe-B alloy is melted by high-frequency induction heating under reduced pressure or in an argon atmosphere. The molten alloy is then sprayed onto a rotating copper roll and rapidly cooled (cooled at high speed) to produce ribbon-shaped strips. The strips are then broken into pieces of, for example, several mm to several tens of mm, and crushed with a crusher or the like to obtain powder. The crushed powder is classified using a sieve with a specified mesh, and then heat-treated to produce rare earth magnet powder. This rare earth magnet powder is magnetically isotropic because the magnetization easy axis of each crystal grain is not aligned in one direction.
また、上記希土類磁石粉末は、粒径が45μm以上75μm未満である。このような粒径範囲の調整は、所定のメッシュを有するふるいを用いた分級により行える。 The rare earth magnet powder has a particle size of 45 μm or more and less than 75 μm. This particle size range can be adjusted by classification using a sieve with a specified mesh.
実施形態1の磁気エンコーダに含まれる熱硬化性樹脂の樹脂硬化物は、具体的にはエポキシ樹脂の樹脂硬化物である。 The cured thermosetting resin contained in the magnetic encoder of embodiment 1 is specifically a cured epoxy resin.
実施形態1の磁気エンコーダ100重量%中、上記樹脂硬化物は、5重量%以上6.5重量%以下の量で含まれる。また、上記希土類磁石粉末は、93.5重量%以上95重量%以下の量で含まれる。なお、実施形態1の磁気エンコーダ中では、希土類磁石粉末と熱硬化性樹脂の樹脂硬化物とは均一に混合された状態であることが好ましい。 In the magnetic encoder of embodiment 1 (100% by weight), the cured resin is contained in an amount of 5% by weight to 6.5% by weight. The rare earth magnet powder is contained in an amount of 93.5% by weight to 95% by weight. In the magnetic encoder of embodiment 1, it is preferable that the rare earth magnet powder and the cured thermosetting resin are uniformly mixed.
このように、実施形態1の磁気エンコーダは、上記厚さを有し、上記粒径範囲にある希土類磁石粉末と樹脂硬化物とを上記割合で含むため、角度精度と共に、圧巻強度にも優れる。 In this way, the magnetic encoder of embodiment 1 has the above thickness and contains rare earth magnet powder in the above particle size range and hardened resin in the above ratio, so it has excellent angular accuracy and rolling strength.
さらに、圧巻強度の観点からは、実施形態1の磁気エンコーダ100重量%中、上記樹脂硬化物は、6重量%以上6.5重量%以下の量で含まれ、上記希土類磁石粉末は、93.5重量%以上94重量%以下の量で含まれることが好ましい。 Furthermore, from the viewpoint of compression strength, it is preferable that, in the magnetic encoder of embodiment 1 (100% by weight), the cured resin is contained in an amount of 6% by weight or more and 6.5% by weight or less, and the rare earth magnet powder is contained in an amount of 93.5% by weight or more and 94% by weight or less.
実施形態1の磁気エンコーダは、例えば以下のようにして作製できる。まず、上記希土類磁石粉末と、上記磁気エンコーダ中で上記樹脂硬化物を構成する成分(上記樹脂硬化物の原料成分)とを所定の配合比率で混合してコンパウンドを作製する。なお、上記希土類磁石粉末と、上記樹脂硬化物の原料成分との配合割合は、作製後の磁気エンコーダにおける上記希土類磁石粉末と上記樹脂硬化物との割合と同じであると考えられる。上記樹脂硬化物の原料となる成分としては、バインダーである熱硬化性樹脂(例えばエポキシ樹脂)の他、硬化剤が挙げられる。さらに、コンパウンドの作成の際には、滑剤(例えばステアリン酸カルシウム)を少量添加してもよい。具体的には、滑剤は、上記希土類磁石粉末及び上記樹脂硬化物の原料成分の合計100重量%に対して、0.02重量%以上0.5重量%未満の量で配合してもよい。 The magnetic encoder of the first embodiment can be produced, for example, as follows. First, the rare earth magnet powder and the components constituting the cured resin in the magnetic encoder (the raw material components of the cured resin) are mixed in a predetermined mixing ratio to produce a compound. The mixing ratio of the rare earth magnet powder to the raw material components of the cured resin is considered to be the same as the ratio of the rare earth magnet powder to the cured resin in the magnetic encoder after production. The raw material components of the cured resin include a thermosetting resin (e.g., epoxy resin) as a binder, and a curing agent. Furthermore, when producing the compound, a small amount of a lubricant (e.g., calcium stearate) may be added. Specifically, the lubricant may be mixed in an amount of 0.02% by weight or more and less than 0.5% by weight with respect to the total 100% by weight of the rare earth magnet powder and the raw material components of the cured resin.
次に、コンパウンドを金型のキャビティに充填し、所定の圧力を加えて圧縮してドーナツ状のグリーン体を作製する。次いで、金型から取り出したグリーン体をオーブンにセットし、所定温度で所定時間、熱硬化させて、上記希土類磁石粉末及び上記樹脂硬化物を含むキュア体(熱硬化体)を作製する。また、キュア体表面に酸化防止のための防錆手段を施すことが好ましい。防錆手段としては、電着塗装、スプレー塗装等の公知の手段を施すことができる。 Next, the compound is filled into the cavity of the mold and compressed with a specified pressure to produce a doughnut-shaped green body. The green body is then removed from the mold and placed in an oven, where it is thermally cured at a specified temperature for a specified time to produce a cured body (thermosetting body) containing the rare earth magnet powder and the cured resin. It is also preferable to apply a rust-preventing means to the surface of the cured body to prevent oxidation. As a rust-preventing means, known means such as electrocoating and spray coating can be used.
次に、図1に示すように、キュア体の軸方向一方端面に同心状で2つの磁気トラックを形成したバーニヤ方式を構成する。なお、このような構成は、特許文献1の図にも示されている。具体的には、アキシャル方向で、外周側に主トラックを所定の磁極ピッチで周方向に磁化し、内周側に副トラックとして所定の磁極ピッチで周方向に磁化する。主トラックにn極対で磁化した場合、副トラックは(n-1)極対で磁化する。磁極ピッチは、磁気エンコーダの磁気トラックを検出する磁気センサの磁極幅が制限されている場合、磁気エンコーダに形成する磁気トラックの磁極ピッチは磁気センサの磁極幅と同じ幅に形成される。磁化は、いわゆる着磁であり、着磁手段は、例えば、特許文献3に開示されているような、被着磁物をその磁石粉末のキュリー点以上に加熱し、キュリー点未満まで冷却する間、界磁源である永久磁石によって被着磁物に着磁磁界を継続的に印加する手段で行うことができる。なお、副トラックは、主トラックよりも内周に位置するため、磁気センサの副トラックの検出部の内径位置に対応した磁極ピッチで設定される。このようにして、実施形態1の磁気エンコーダが得られる。 Next, as shown in FIG. 1, a vernier method is constructed in which two magnetic tracks are formed concentrically on one axial end surface of the cured body. This type of configuration is also shown in the figure of Patent Document 1. Specifically, in the axial direction, the main track is magnetized in the circumferential direction at a predetermined magnetic pole pitch on the outer circumferential side, and the sub-track is magnetized in the circumferential direction at a predetermined magnetic pole pitch on the inner circumferential side. When the main track is magnetized with n pole pairs, the sub-track is magnetized with (n-1) pole pairs. When the magnetic pole pitch of the magnetic sensor that detects the magnetic track of the magnetic encoder is limited, the magnetic pole pitch of the magnetic track formed on the magnetic encoder is formed to the same width as the magnetic pole width of the magnetic sensor. Magnetization is so-called magnetization, and the magnetization means can be, for example, as disclosed in Patent Document 3, a means for continuously applying a magnetizing magnetic field to the magnetized object by a permanent magnet, which is a field source, while heating the magnetized object to a temperature above the Curie point of the magnet powder and cooling it to a temperature below the Curie point. In addition, since the sub-track is located on the inner circumference than the main track, the magnetic pole pitch is set to correspond to the inner diameter position of the detection part of the magnetic sensor for the sub-track. In this way, the magnetic encoder of embodiment 1 is obtained.
<実施形態2>
実施形態2の磁気エンコーダは、希土類磁石粉末と熱硬化性樹脂の樹脂硬化物とを含み、表面の周方向に複数の磁極が所定のピッチで着磁されて形成された磁気トラックを有するリング状の磁気エンコーダであって、上記希土類磁石粉末は、粒径が45μm以上175μm未満の等方性Nd-Fe-B系磁石粉末であり、上記樹脂硬化物が5重量%以上6.5重量%以下の量で含まれ、上記リング状の磁気エンコーダの厚さは、0.2mm以上0.4mm以下である。上記リング状の磁気エンコーダの厚さ以外について、実施形態2の磁気エンコーダにおける構成要素の構成及び機能は、実施形態1の磁気エンコーダにおける構成要素の構成及び機能と同一である。このため、ここでは詳細な説明は省略する。
<Embodiment 2>
The magnetic encoder of the second embodiment is a ring-shaped magnetic encoder including a rare earth magnet powder and a resin cured product of a thermosetting resin, and having a magnetic track formed by magnetizing a plurality of magnetic poles at a predetermined pitch in the circumferential direction of the surface, the rare earth magnet powder being an isotropic Nd-Fe-B magnet powder having a particle size of 45 μm or more and less than 175 μm, the resin cured product being included in an amount of 5% by weight or more and 6.5% by weight or less, and the thickness of the ring-shaped magnetic encoder being 0.2 mm or more and 0.4 mm or less. Except for the thickness of the ring-shaped magnetic encoder, the configuration and function of the components in the magnetic encoder of the second embodiment are the same as the configuration and function of the components in the magnetic encoder of the first embodiment. Therefore, detailed description will be omitted here.
実施形態2の磁気エンコーダも、上記厚さを有し、上記粒径範囲にある希土類磁石粉末と樹脂硬化物とを上記割合で含むため、角度精度と共に、圧巻強度にも優れる。 The magnetic encoder of embodiment 2 also has the above thickness and contains rare earth magnet powder in the above particle size range and cured resin in the above ratio, so it has excellent angular accuracy and rolling strength.
<その他の実施形態>
本実施形態1は、図1に示すようにドーナツ状(リング状)の磁気エンコーダに2つの磁気トラックを形成したバーニヤ方式を有するアキシャル形の磁気エンコーダであるが、中空円筒状の磁気エンコーダで、円筒状の側面に2つの磁気トラックを形成したバーニヤ方式を有するラジアル形の磁気エンコーダであってもよい。
<Other embodiments>
The first embodiment is an axial type magnetic encoder having a vernier system in which two magnetic tracks are formed on a donut-shaped (ring-shaped) magnetic encoder as shown in FIG. 1, but it may also be a radial type magnetic encoder having a vernier system in which two magnetic tracks are formed on the cylindrical side surface of a hollow cylindrical magnetic encoder.
以下、実施例に基づいて本発明をさらに具体的に説明するが、本発明はこれらの実施例に限定されるものではない。 The present invention will be described in more detail below with reference to examples, but the present invention is not limited to these examples.
[実施例]
<磁気エンコーダの作製>
希土類磁石粉末として、等方性Nd-Fe-B系磁石粉末を用いた。等方性Nd-Fe-B系磁石粉末として、マグネクエンチ社製のMQP-14-12(商品名)を用意した。MQP-14-12の粒径は、75μm以上150μm未満、45μm以上75μm未満、32μm以上45μm未満の3つのグループに分級して用意した。この際、所定のメッシュを有するふるいを用いて分級した。
次に、上記3つのグループそれぞれについて、等方性Nd-Fe-B系磁石粉末と、バインダーであるエポキシ樹脂および硬化剤を含む樹脂硬化物の原料成分(ペルノック社製、型番XW2310)とを、所定の配合比率で混合してコンパウンドを作製した。ここで、希土類磁石粉末と樹脂硬化物の原料成分との配合比率について、全体重量を100重量%として、樹脂硬化物の原料成分を2.5重量%、希土類磁石粉末を97.5重量%とした。さらに、樹脂硬化物の原料成分を5重量%、希土類磁石粉末を95重量%とした場合、樹脂硬化物の原料成分を5.5重量%、希土類磁石粉末を94.5重量%とした場合、樹脂硬化物の原料成分を6重量%、希土類磁石粉末を94重量%とした場合、樹脂硬化物の原料成分を6.5重量%、希土類磁石粉末を93.5重量%とした場合、樹脂硬化物の原料成分を7.5重量%、希土類磁石粉末を92.5重量%とした場合についても、コンパウンドを作製した。なお、コンパウンドは、溶剤に溶解した樹脂硬化物の原料成分と、希土類磁石粉末とを混合し、溶剤を蒸発させた後、解砕し、分級して作製した。コンパウンドは、全て同じ粒径で作製し、金型のキャビティへの充填における流動性の条件を同一とした。
次に、コンパウンドを金型のキャビティに充填し、所定の圧力を加えて圧縮してドーナツ状のグリーン体を作製した。グリーン体は、外径Φ56mm、内径Φ41mm、厚さ1mmであった。さらに、厚さを0.4mm、0.2mmに変更したグリーン体も作製した。
次に、金型から取り出したグリーン体をオーブンにセットし、所定温度(150℃)で所定時間、熱硬化させてキュア体(熱硬化体)を作製した。キュア体は、外径Φ56mm、内径Φ41mm、厚さ1mmであった。さらに、厚さを0.4mm、0.2mmに変更したキュア体も作製した。このように、グリーン体とキュア体とでは、大きさの変化は見られなかった。
次に、キュア体表面に酸化防止のための防錆手段(具体的には電着塗装)を施した後、図1に記載されているように、熱硬化体の軸方向一方端面に同心状で2つの磁気トラックを形成したバーニヤ方式を構成した。具体的には、アキシャル方向で、外周側に主トラックを所定の磁極ピッチで周方向に磁化し、内周側に副トラックとして所定の磁極ピッチで周方向に磁化した。主トラックに32極対で磁化し、副トラックは31極対で磁化した。本実施例では、磁極幅が1.28mmに制限されている磁気センサを用いるため、磁気エンコーダの主トラックを1.28mmに磁化した。磁化は、いわゆる着磁であり、着磁手段は、例えば、特許文献3に開示されているような、被着磁物をその磁石粉末のキュリー点以上に加熱し、キュリー点未満まで冷却する間、界磁源である永久磁石によって被着磁物に着磁磁界を継続的に印加する手段で行った。なお、副トラックは、主トラックよりも内周に位置するため、磁気センサの副トラックの検出部の内径位置に対応した磁極ピッチで設定した。
このようにして、希土類磁石粉末と熱硬化性樹脂の樹脂硬化物とを含み、表面の周方向に複数の磁極が所定のピッチで着磁されて形成された磁気トラックを有するリング状の磁気エンコーダ(試料1~54)を作製した。
[Example]
<Magnetic Encoder Fabrication>
Isotropic Nd-Fe-B magnet powder was used as the rare earth magnet powder. MQP-14-12 (product name) manufactured by Magnequench was prepared as the isotropic Nd-Fe-B magnet powder. The particle size of MQP-14-12 was classified into three groups: 75 μm or more and less than 150 μm, 45 μm or more and less than 75 μm, and 32 μm or more and less than 45 μm. In this case, the classification was performed using a sieve with a predetermined mesh.
Next, for each of the three groups, a compound was prepared by mixing isotropic Nd-Fe-B magnet powder with raw material components for a cured resin, including an epoxy resin binder and a curing agent (manufactured by Pernock, model number XW2310), in a predetermined mixing ratio. Here, the mixing ratio of the rare earth magnet powder and the raw material components for the cured resin was 2.5% by weight, and 97.5% by weight of the raw material components for the cured resin, with the total weight being 100% by weight. Furthermore, compounds were also prepared in the following cases: when the raw material components of the resin cured product were 5% by weight and the rare earth magnet powder was 95% by weight; when the raw material components of the resin cured product were 5.5% by weight and the rare earth magnet powder was 94.5% by weight; when the raw material components of the resin cured product were 6% by weight and the rare earth magnet powder was 94% by weight; when the raw material components of the resin cured product were 6.5% by weight and the rare earth magnet powder was 93.5% by weight; when the raw material components of the resin cured product were 7.5% by weight and the rare earth magnet powder was 92.5% by weight. The compounds were prepared by mixing the raw material components of the resin cured product dissolved in a solvent with the rare earth magnet powder, evaporating the solvent, and then crushing and classifying the mixture. All the compounds were prepared with the same particle size, and the fluidity conditions for filling the cavity of the mold were the same.
Next, the compound was filled into the cavity of the mold and compressed by applying a predetermined pressure to produce a doughnut-shaped green body. The green body had an outer diameter of Φ56 mm, an inner diameter of Φ41 mm, and a thickness of 1 mm. Furthermore, green bodies with thicknesses of 0.4 mm and 0.2 mm were also produced.
Next, the green body removed from the mold was placed in an oven and thermally cured at a specified temperature (150°C) for a specified time to produce a cured body (thermosetting body). The cured body had an outer diameter of Φ56 mm, an inner diameter of Φ41 mm, and a thickness of 1 mm. Cured bodies with thicknesses of 0.4 mm and 0.2 mm were also produced. Thus, no difference in size was observed between the green body and the cured body.
Next, after applying a rust prevention means (specifically, electrocoating) to prevent oxidation to the surface of the cured body, a vernier system was formed in which two magnetic tracks were formed concentrically on one axial end surface of the thermoset body, as shown in FIG. 1. Specifically, in the axial direction, the main track was magnetized in the circumferential direction at a predetermined magnetic pole pitch on the outer circumferential side, and the sub-track was magnetized in the circumferential direction at a predetermined magnetic pole pitch on the inner circumferential side. The main track was magnetized with 32 pole pairs, and the sub-track was magnetized with 31 pole pairs. In this embodiment, since a magnetic sensor with a magnetic pole width limited to 1.28 mm was used, the main track of the magnetic encoder was magnetized to 1.28 mm. The magnetization is so-called magnetization, and the magnetization means was, for example, as disclosed in Patent Document 3, a means for continuously applying a magnetizing magnetic field to the magnetized object by a permanent magnet as a field source while heating the magnetized object to a temperature above the Curie point of the magnet powder and cooling it to a temperature below the Curie point. Since the sub-track is located on the inner periphery than the main track, the magnetic pole pitch is set to correspond to the inner diameter position of the detection portion of the magnetic sensor for the sub-track.
In this way, a ring-shaped magnetic encoder (samples 1 to 54) was produced, which contained rare earth magnet powder and a cured resin of a thermosetting resin, and had a magnetic track formed by magnetizing multiple magnetic poles at a predetermined pitch around the circumference of the surface.
<評価方法>
(成形性)
コンパウンドを金型のキャビティに充填して圧縮成形したドーナツ状のグリーン体を、金型から取り出す際の取り扱い性について評価した。具体的には、金型に備えたエジェクタピンにて金型からグリーン体を取り出す際、グリーン体に生じる割れや欠けの状態を目視で観察し、成形性として評価した。評価基準は、以下のとおりである。
○:割れ欠け無し
×:割れ欠け有り
<Evaluation method>
(Moldability)
The compound was filled into the cavity of a mold and compression molded into a doughnut-shaped green body, and the handleability when removing it from the mold was evaluated. Specifically, when the green body was removed from the mold with an ejector pin attached to the mold, the state of cracks and chips that occurred in the green body was visually observed and evaluated as moldability. The evaluation criteria are as follows.
○: No cracks or chips ×: Cracks or chips
(厚み精度)
オーブンから取り出したキュア体をマイクロメーターにて、対角線の位置で8箇所の厚みを測定して厚さのバラツキ(最大値-最小値)を評価した。評価基準は、以下のとおりである。
○:バラツキの値が0.06mm未満の試料は良とする。
△:バラツキの値が0.06mm以上0.08mm以下の間の値を有する試料は並とする。
×:バラツキの値が0.08mmより大きい試料は不可とする。
(Thickness precision)
The cured body was taken out of the oven and the thickness was measured at eight diagonal positions with a micrometer to evaluate the variation in thickness (maximum value-minimum value). The evaluation criteria were as follows:
◯: Samples with a variation of less than 0.06 mm are considered to be good.
Δ: Samples having a variation value between 0.06 mm or more and 0.08 mm or less are rated as fair.
×: Samples with a variation value of more than 0.08 mm are unacceptable.
(圧環強度)
JIS Z2507に基づいて圧環強度を測定した。評価基準は、以下のとおりである。
◎:圧環強度が100MPa以上である。
○:圧環強度が60MPa以上100MPa未満である。
△:圧環強度が50MPa以上60MPa未満である。
×:圧環強度が50MPa未満である。
(Ring crushing strength)
The radial crushing strength was measured based on JIS Z 2507. The evaluation criteria were as follows.
⊚: Radial crushing strength is 100 MPa or more.
◯: The radial crushing strength is 60 MPa or more and less than 100 MPa.
Δ: The radial crushing strength is 50 MPa or more and less than 60 MPa.
×: The radial crushing strength is less than 50 MPa.
(角度精度)
上述の手段で着磁した磁気エンコーダの角度精度を測定した。評価基準は、以下のとおりである。角度精度評価方法としては、光学式エンコーダ(角度精度±10秒以下、分解能20bit以上)搭載の基準サーボモータシャフトに本磁石とIC基盤とを取り付け、基準モータを1degごと(360deg CW CCWの二回)駆動させ、ICから吐き出される角度と基準角度との差を計測した。最大-最小の幅を角度誤差とした。
◎:磁束のばらつきが0.05deg.以下である。
○:磁束のばらつきが0.05deg.より大きく0.07deg.以下である。
△:磁束のばらつきが0.07deg.より大きく0.1deg.未満である。
×:磁束のばらつきが0.1deg.以上である。
(Angle accuracy)
The angular accuracy of the magnetic encoder magnetized by the above-mentioned method was measured. The evaluation criteria were as follows. The angular accuracy was evaluated by attaching the magnet and IC board to a reference servo motor shaft equipped with an optical encoder (angle accuracy of ±10 seconds or less, resolution of 20 bits or more), driving the reference motor 1 degree at a time (360 degrees CW and CCW twice), and measuring the difference between the angle output from the IC and the reference angle. The maximum-minimum width was taken as the angular error.
⊚: The variation in magnetic flux is 0.05 deg. or less.
◯: The variation in magnetic flux is greater than 0.05 deg. and equal to or less than 0.07 deg.
Δ: The variation in magnetic flux is greater than 0.07 deg. and less than 0.1 deg.
×: The variation in magnetic flux is 0.1 deg. or more.
(総合評価)
試料1~54において、総合評価を行った。評価基準は、以下のとおりである。
○:各評価項目の評価結果が〇または◎のみである。
×:各評価項目の評価結果に△または×がある。
試料1~54の評価結果を下記表1~表3に示す。なお、表1において、磁粉粒径(μm)の「75-150」は、等方性Nd-Fe-B系磁石粉末の粒径が75μm以上150μm未満の範囲にあることを示す。また、表2において、磁粉粒径(μm)の「45-75」は、等方性Nd-Fe-B系磁石粉末の粒径が45μm以上75μm未満の範囲にあることを示す。また、表3において、磁粉粒径(μm)の「32-45」は、等方性Nd-Fe-B系磁石粉末の粒径が32μm以上45μm未満の範囲にあることを示す。
(comprehensive evaluation)
A comprehensive evaluation was performed on Samples 1 to 54. The evaluation criteria were as follows.
○: The evaluation results for each evaluation item are only ○ or ◎.
×: The evaluation result for each evaluation item is △ or ×.
The evaluation results of Samples 1 to 54 are shown in Tables 1 to 3 below. In Table 1, the magnetic powder particle size (μm) "75-150" indicates that the particle size of the isotropic Nd-Fe-B system magnet powder is in the range of 75 μm or more and less than 150 μm. In Table 2, the magnetic powder particle size (μm) "45-75" indicates that the particle size of the isotropic Nd-Fe-B system magnet powder is in the range of 45 μm or more and less than 75 μm. In Table 3, the magnetic powder particle size (μm) "32-45" indicates that the particle size of the isotropic Nd-Fe-B system magnet powder is in the range of 32 μm or more and less than 45 μm.
表1は、試料1~18の磁気エンコーダの評価を示している。試料1~18では、等方性Nd-Fe-B系磁石粉末の粒径は、75μm以上150μm未満の範囲にある。樹脂硬化物の原料成分量が2.5重量%の試料1~3では圧環強度が△であった。これは樹脂硬化物の原料成分量が少ないことに因る。金型からエジェクタピンで試料(グリーン体)を排出する際、外周縁に欠けや割れが生じた。このような欠けや割れの発生は、後工程で、試料を磁化してトラックを形成する際、トラック形成領域まで欠けが及ぶ場合、トラックが形成できないという問題が生じる。また、希土類磁石粉末として、Nd-Fe-B系磁石粉末を用いているため錆び易い。このため、酸化防止を目的として試料表面に防錆膜を被覆する必要があるが、欠けや割れが生じた箇所は、均一な防錆膜とならず、この箇所から錆が生じる虞がある。
樹脂硬化物の原料成分量が7.5重量%の試料16~18では、バインダーの一部がキャビティから漏れ出していた。このため、角度精度は評価しなかった。これは樹脂硬化物の原料成分量が多すぎることに因る。
後述する試料22~33における角度精度の評価は全て◎となっている。これは、等方性Nd-Fe-B系磁石粉末の粒径が45μm以上75μm未満の範囲にあることに因る。表1に示す試料1~18におけるNd-Fe-B系磁石粉末の粒径の範囲に比べて小さい範囲にあるため、所定の面積(または体積)における磁石粉末の分布のバラツキが小さくなり、総じて磁極毎の磁気特性のバラツキも小さくなることに因ると思われる。
試料の厚さが1mmにおける角度精度の評価が×と低い評価になっている。これは、Nd-Fe-B系磁石粉末の粒径が75μm以上150μm未満の範囲にあることに因る。Nd-Fe-B系磁石粉末の粒径が大きいため、所定の面積における厚さ方向での磁石粉末が占める領域のバラツキが大きくなる結果、磁極毎の磁気特性のバラツキも大きくなることに因ると思われる。
Table 1 shows the evaluation of the magnetic encoder of samples 1 to 18. In samples 1 to 18, the particle size of the isotropic Nd-Fe-B magnet powder is in the range of 75 μm or more and less than 150 μm. In samples 1 to 3, in which the amount of raw material components of the resin cured product is 2.5% by weight, the radial crushing strength was △. This is due to the small amount of raw material components of the resin cured product. When the sample (green body) was ejected from the mold with an ejector pin, chips and cracks occurred on the outer periphery. If the chips and cracks extend to the track formation area when the sample is magnetized to form a track in a later process, the track cannot be formed. In addition, since Nd-Fe-B magnet powder is used as the rare earth magnet powder, it is prone to rust. For this reason, it is necessary to coat the surface of the sample with an anti-rust film in order to prevent oxidation, but the area where the chips and cracks occur does not have a uniform anti-rust film, and there is a risk of rust occurring from this area.
In samples 16 to 18, in which the amount of the raw material component of the cured resin was 7.5% by weight, some of the binder leaked out of the cavity. Therefore, the angle accuracy was not evaluated. This is because the amount of the raw material component of the cured resin was too high.
The angular precision of samples 22 to 33, which will be described later, was all rated as excellent. This is because the particle size of the isotropic Nd-Fe-B magnet powder was in the range of 45 μm or more and less than 75 μm. This is in a smaller range than the particle size range of the Nd-Fe-B magnet powder in samples 1 to 18 shown in Table 1, so there was less variation in the distribution of the magnet powder in a given area (or volume), and generally, there was less variation in the magnetic properties for each magnetic pole.
The angular accuracy was rated as x when the sample thickness was 1 mm, which is a low rating. This is because the particle size of the Nd-Fe-B magnetic powder is in the range of 75 μm or more and less than 150 μm. Since the particle size of the Nd-Fe-B magnetic powder is large, the area occupied by the magnetic powder in the thickness direction in a given area varies greatly, which results in large variation in the magnetic properties for each magnetic pole.
表2は、試料19~36の磁気エンコーダの評価を示している。試料19~36では、等方性Nd-Fe-B系磁石粉末の粒径は、45μm以上75μm未満の範囲にある。樹脂硬化物の原料成分量が2.5重量%の試料19~21では圧環強度が△であった。これは樹脂硬化物の原料成分量が少ないことに因る。また、樹脂硬化物の原料成分量が7.5重量%の試料34~36では、バインダーの一部がキャビティから漏れ出していた。このため、角度精度は評価しなかった。これは樹脂硬化物の原料成分量が多すぎることに因る。
上記の樹脂硬化物の原料成分量が2.5重量%の試料以外の試料22~33における評価は、いずれの項目も◎、または〇となっている。このため、表2に示す試料22~33の総合評価は、〇の評価となっている。
試料22~33における角度精度の評価は、◎となっている。これは、等方性Nd-Fe-B系磁石粉末の粒径が45μm以上75μm未満の範囲にあることに因る。表1に示す試料1~18におけるNd-Fe-B系磁石粉末の粒径の範囲に比べて小さい範囲にあるため、所定の面積における厚さ方向での磁石粉末が占める領域のバラツキが小さくなる結果、磁極毎の磁気特性のバラツキも小さくなることに因ると思われる。
Table 2 shows the evaluation of the magnetic encoders of samples 19 to 36. In samples 19 to 36, the particle size of the isotropic Nd-Fe-B magnet powder was in the range of 45 μm or more and less than 75 μm. Samples 19 to 21, in which the amount of raw material components of the cured resin was 2.5% by weight, had a radial crushing strength of △. This is because the amount of raw material components of the cured resin was too small. Also, in samples 34 to 36, in which the amount of raw material components of the cured resin was 7.5% by weight, some of the binder leaked out from the cavity. For this reason, the angular accuracy was not evaluated. This is because the amount of raw material components of the cured resin was too large.
The evaluations of Samples 22 to 33 other than the sample in which the amount of the raw material component of the cured resin material was 2.5% by weight were all rated as ⊚ or ◯ in all items. Therefore, the overall evaluation of Samples 22 to 33 shown in Table 2 was rated as ◯.
The angular precision of samples 22 to 33 was evaluated as excellent. This is because the particle size of the isotropic Nd—Fe—B magnetic powder was in the range of 45 μm or more and less than 75 μm. This is in a smaller range than the particle size range of the Nd—Fe—B magnetic powder in samples 1 to 18 shown in Table 1, so there is less variation in the area occupied by the magnetic powder in the thickness direction in a given area, and as a result, there is less variation in the magnetic properties for each magnetic pole.
表3は、試料37~54の磁気エンコーダの評価を示している。試料37~54では、等方性Nd-Fe-B系磁石粉末の粒径は、32μm以上45μm未満の範囲にある。
樹脂硬化物の原料成分量が2.5重量%の試料37~39では圧環強度が△であった。これは樹脂硬化物の原料成分量が少ないことに因る。また、樹脂硬化物の原料成分量が7.5重量%の試料52~54では、バインダーの一部がキャビティから漏れ出していた。このため、角度精度は評価しなかった。これは樹脂硬化物の原料成分量が多すぎることに因る。
上記の試料以外の試料における角度精度の評価は全て△となっている。これは、Nd-Fe-B系磁石粉末の粒径が32μm以上45μm未満と小さいことによると思われる。磁石粉末の粒径が小さいほど、磁石粉末自体の減磁曲線の角形性が悪く、また熱劣化、酸化劣化などによる磁気特性の低下も生じ易くなるため、磁気エンコーダからの表面磁束が低下したことに因ると考えられる。
このため、表3に示す試料37~54の総合評価は、いずれも×の評価となっている。
Table 3 shows the evaluation of the magnetic encoders of Samples 37 to 54. In Samples 37 to 54, the particle size of the isotropic Nd—Fe—B magnet powder is in the range of 32 μm or more and less than 45 μm.
Samples 37 to 39, in which the amount of raw material components of the cured resin was 2.5% by weight, had a radial crushing strength of 4.4%. This is because the amount of raw material components of the cured resin was too small. Samples 52 to 54, in which the amount of raw material components of the cured resin was 7.5% by weight, had some of the binder leaking out of the cavity. For this reason, the angle accuracy was not evaluated. This is because the amount of raw material components of the cured resin was too large.
The angular accuracy of all samples other than the above samples was evaluated as △. This is thought to be due to the fact that the particle size of the Nd-Fe-B magnet powder is small, at 32 μm or more and less than 45 μm. The smaller the particle size of the magnet powder, the worse the squareness of the demagnetization curve of the magnet powder itself becomes, and the more likely it is that the magnetic properties will deteriorate due to thermal deterioration, oxidative deterioration, etc., which is thought to be due to the decrease in the surface magnetic flux from the magnetic encoder.
For this reason, the overall evaluation of samples 37 to 54 shown in Table 3 was all rated as x.
1 磁気エンコーダ、11 主トラック、12 副トラック、13 無着磁領域 1 Magnetic encoder, 11 Main track, 12 Sub-track, 13 Non-magnetized area
Claims (3)
前記希土類磁石粉末は、粒径が45μm以上75μm未満の等方性Nd-Fe-B系磁石粉末であり、
前記樹脂硬化物が5重量%以上6.5重量%以下の量で含まれ、
前記リング状の磁気エンコーダの厚さは、0.2mm以上1mm以下である、
磁気エンコーダ。 A ring-shaped magnetic encoder including rare earth magnet powder and a cured resin of a thermosetting resin, the magnetic encoder having a magnetic track formed by magnetizing a plurality of magnetic poles at a predetermined pitch in the circumferential direction of a surface thereof,
the rare earth magnet powder is an isotropic Nd—Fe—B magnet powder having a particle size of 45 μm or more and less than 75 μm,
The cured resin is contained in an amount of 5% by weight or more and 6.5% by weight or less,
The thickness of the ring-shaped magnetic encoder is 0.2 mm or more and 1 mm or less.
Magnetic encoder.
前記希土類磁石粉末は、粒径が45μm以上175μm未満の等方性Nd-Fe-B系磁石粉末であり、
前記樹脂硬化物が5重量%以上6.5重量%以下の量で含まれ、
前記リング状の磁気エンコーダの厚さは、0.2mm以上0.4mm以下である、
磁気エンコーダ。 A ring-shaped magnetic encoder including rare earth magnet powder and a cured resin of a thermosetting resin, the magnetic encoder having a magnetic track formed by magnetizing a plurality of magnetic poles at a predetermined pitch in the circumferential direction of a surface thereof,
the rare earth magnet powder is an isotropic Nd—Fe—B magnet powder having a particle size of 45 μm or more and less than 175 μm,
The cured resin is contained in an amount of 5% by weight or more and 6.5% by weight or less,
The thickness of the ring-shaped magnetic encoder is 0.2 mm or more and 0.4 mm or less.
Magnetic encoder.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023049909A JP2024139109A (en) | 2023-03-27 | 2023-03-27 | Magnetic Encoder |
PCT/JP2024/011181 WO2024203792A1 (en) | 2023-03-27 | 2024-03-22 | Magnetic encoder |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023049909A JP2024139109A (en) | 2023-03-27 | 2023-03-27 | Magnetic Encoder |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2024139109A true JP2024139109A (en) | 2024-10-09 |
Family
ID=92906207
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2023049909A Pending JP2024139109A (en) | 2023-03-27 | 2023-03-27 | Magnetic Encoder |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2024139109A (en) |
WO (1) | WO2024203792A1 (en) |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000060080A (en) * | 1998-06-01 | 2000-02-25 | Sumitomo Metal Mining Co Ltd | Permanent-magnet motor and other device applied thereon |
JP4556238B2 (en) * | 2005-03-28 | 2010-10-06 | Tdk株式会社 | Manufacturing method of resin bonded permanent magnet |
JP6021096B2 (en) * | 2012-01-31 | 2016-11-02 | ミネベア株式会社 | Method to increase demagnetization amount of bonded magnet |
CN105408725B (en) * | 2013-07-16 | 2017-11-10 | Ntn株式会社 | Magnetic encoder apparatus and rotation detection device |
JP2019102583A (en) * | 2017-11-30 | 2019-06-24 | ミネベアミツミ株式会社 | Rare earth magnet powder, rare earth bonded magnet, and method of manufacturing rare earth bonded magnet |
JP7555232B2 (en) * | 2019-11-29 | 2024-09-24 | ミネベアミツミ株式会社 | Magnetizing device |
-
2023
- 2023-03-27 JP JP2023049909A patent/JP2024139109A/en active Pending
-
2024
- 2024-03-22 WO PCT/JP2024/011181 patent/WO2024203792A1/en unknown
Also Published As
Publication number | Publication date |
---|---|
WO2024203792A1 (en) | 2024-10-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8937419B2 (en) | Radially anisotropic ring R-TM-B magnet, its production method, die for producing it, and rotor for brushless motor | |
CN105702444B (en) | The complex sintered magnet of anisotropy comprising MnBi, its preparation method and the product containing it | |
US7626300B2 (en) | Radial anisotropic cylindrical sintered magnet and permanent magnet motor | |
US20070151629A1 (en) | Methods of producing radial anisotropic cylinder sintered magnet and permanent magnet motor-use cyclinder multi-pole magnet | |
US7531050B2 (en) | Method for manufacturing bonded magnet and method for manufacturing magnetic device having bonded magnet | |
WO2024203792A1 (en) | Magnetic encoder | |
JP2000060080A (en) | Permanent-magnet motor and other device applied thereon | |
WO2024058040A1 (en) | Magnetic encoder | |
JP2021055151A (en) | Bonded magnet powder and bonded magnet | |
JP2023030293A (en) | Peripheral oriented arc-shaped profile sheet magnet or radial oriented arc-shaped profile sheet magnet or convergence oriented rectangular profile sheet magnet and manufacturing method thereof | |
US7232495B2 (en) | Method of magnetizing rare-earth magnet and rare-earth magnet | |
JP3680648B2 (en) | Permanent magnet type motor and other permanent magnet application equipment | |
JP4645806B2 (en) | Magnetic field forming method, radial anisotropic segment magnet manufacturing method, and magnetic field forming apparatus | |
JP4315340B2 (en) | Magnetic field forming method, radial anisotropic ring magnet manufacturing method, magnetic field forming apparatus and radial anisotropic ring magnet | |
WO2024203793A1 (en) | Rare earth bonded magnet | |
JP2006013055A (en) | Method for manufacturing anisotropic bond magnet | |
JP2006019386A (en) | Compacting method in magnetic field, method for manufacturing radial anisotropic ring magnet, and compacting apparatus in magnetic field | |
JP2005148499A (en) | Magnet roller | |
KR101123169B1 (en) | Radial anisotropic cylindrical sintered magnet and permanent magnet motor | |
JPH01107646A (en) | Voice coil type linear motor | |
JPH0777178B2 (en) | Method for manufacturing R-TM-B type radial anisotropic magnet | |
JP2003163112A (en) | Magnet roller | |
JPS63147302A (en) | Composite material for permanent magnet and its manufacture | |
JPH04284602A (en) | Manufacture of rare earth-iron-boron-based bonded magnet excellent in dimensional accuracy | |
JPH06338408A (en) | Permanent magnet and its manufacture |