JP2024114773A - Polarizing film and method for producing the same - Google Patents

Polarizing film and method for producing the same Download PDF

Info

Publication number
JP2024114773A
JP2024114773A JP2024101013A JP2024101013A JP2024114773A JP 2024114773 A JP2024114773 A JP 2024114773A JP 2024101013 A JP2024101013 A JP 2024101013A JP 2024101013 A JP2024101013 A JP 2024101013A JP 2024114773 A JP2024114773 A JP 2024114773A
Authority
JP
Japan
Prior art keywords
layer
polarizing film
film
stretching
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2024101013A
Other languages
Japanese (ja)
Inventor
理 小島
拓弥 南原
周作 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP2024101013A priority Critical patent/JP2024114773A/en
Publication of JP2024114773A publication Critical patent/JP2024114773A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/003Light absorbing elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8793Arrangements for polarized light emission

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Polarising Elements (AREA)
  • Electroluminescent Light Sources (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Abstract

【課題】外観に優れ、画像表示装置の表示特性の向上に寄与し得る偏光膜を提供すること。【解決手段】本発明の実施形態による偏光膜は、ヨウ素を含む樹脂フィルムから構成され、厚みが7μm以下であり、表面の、吸収軸方向の波長680nmの光の反射率Rc680に対する吸収軸方向の波長400nmの光の反射率Rc400の比(Rc400/Rc680)は1を超える。【選択図】図1[Problem] To provide a polarizing film that has an excellent appearance and can contribute to improving the display characteristics of an image display device. [Solution] The polarizing film according to an embodiment of the present invention is made of a resin film containing iodine, has a thickness of 7 μm or less, and has a ratio (Rc400/Rc680) of the surface reflectance Rc400 of light with a wavelength of 400 nm in the absorption axis direction to the reflectance Rc680 of light with a wavelength of 680 nm in the absorption axis direction, which exceeds 1. [Selected Figure] Figure 1

Description

本発明は、偏光膜および偏光膜の製造方法に関する。 The present invention relates to a polarizing film and a method for manufacturing a polarizing film.

代表的な画像表示装置である液晶表示装置には、その画像形成方式に起因して、液晶セルの両側に偏光膜が配置されている。また、薄型ディスプレイの普及と共に、有機エレクトロルミネセンス(EL)パネルを搭載したディスプレイ(OLED)や、量子ドットなどの無機発光材料を用いた表示パネルを用いたディスプレイ(QLED)が提案されている。これらのパネルは反射性の高い金属層を有しており、外光反射や背景の映り込み等の問題を生じやすい。そこで、偏光膜とλ/4板とを有する円偏光板を視認側に設けることにより、これらの問題を防ぐことが知られている。偏光膜の製造方法としては、例えば、樹脂基材とポリビニルアルコール(PVA)系樹脂層とを有する積層体を延伸し、次に染色して、樹脂基材上に偏光膜を得る方法が提案されている(例えば、特許文献1)。このような方法によれば、厚みの薄い偏光膜が得られるため、近年の画像表示装置の薄型化に寄与し得るとして注目されている。しかし、厚みの薄い偏光膜は外観が劣り、画像表示装置に用いた場合に十分な表示特性が得られない場合がある。 In a liquid crystal display device, which is a representative image display device, a polarizing film is arranged on both sides of a liquid crystal cell due to its image formation method. In addition, with the spread of thin displays, displays equipped with an organic electroluminescence (EL) panel (OLED) and displays using a display panel using inorganic light-emitting materials such as quantum dots (QLED) have been proposed. These panels have a highly reflective metal layer, and are prone to problems such as external light reflection and background reflection. It is known that these problems can be prevented by providing a circular polarizing plate having a polarizing film and a λ/4 plate on the viewing side. As a method for manufacturing a polarizing film, for example, a method has been proposed in which a laminate having a resin substrate and a polyvinyl alcohol (PVA)-based resin layer is stretched and then dyed to obtain a polarizing film on the resin substrate (for example, Patent Document 1). According to such a method, a thin polarizing film can be obtained, and it has attracted attention as a method that can contribute to the thinning of image display devices in recent years. However, a thin polarizing film has a poor appearance, and when used in an image display device, sufficient display characteristics may not be obtained.

特開2001-343521号公報JP 2001-343521 A

本発明は上記課題を解決するためになされたものであり、その主たる目的は、外観に優れ、画像表示装置の表示特性の向上に寄与し得る偏光膜を提供することにある。 The present invention has been made to solve the above problems, and its main objective is to provide a polarizing film that has excellent appearance and can contribute to improving the display characteristics of image display devices.

本発明の実施形態によれば、偏光膜が提供される。この偏光膜は、ヨウ素を含む樹脂フィルムから構成され、厚みが7μm以下であり、表面の、吸収軸方向の波長680nmの光の反射率Rc680に対する吸収軸方向の波長400nmの光の反射率Rc400の比(Rc400/Rc680)は1を超える。
1つの実施形態においては、上記表面のRc680は5%以下である。
1つの実施形態においては、上記表面のRc400は4.8%以上である。
1つの実施形態においては、上記偏光膜は、上記表面側の端部に、表面から裏面に向かってヨウ素量が多くなる傾斜分布領域を有する。
1つの実施形態においては、上記偏光膜において、上記表面側のヨウ素量が裏面側のヨウ素量よりも少ない。
1つの実施形態においては、上記偏光膜は、単体透過率が42.0%以上であり、偏光度が99.98%以上である。
本発明の別の局面によれば、上記偏光膜の製造方法が提供される。この製造方法は、ヨウ素を含み、水分率が15重量%以下の樹脂膜の表面を水洗することを含む。
1つの実施形態においては、上記樹脂膜のヨウ素濃度は5重量%以上である。
1つの実施形態においては、上記樹脂膜は樹脂基材上に形成された樹脂層である。
1つの実施形態においては、上記製造方法は、上記樹脂層を67℃以下で水中延伸することを含む。
1つの実施形態においては、上記製造方法は、加熱ロールを用いて上記樹脂層を加熱することを含む。
本発明のさらに別の局面によれば、偏光板が提供される。この偏光板は、上記偏光膜と、上記偏光膜の少なくとも片側に配置される保護層または位相差層とを有する。
According to an embodiment of the present invention, there is provided a polarizing film, which is made of a resin film containing iodine, has a thickness of 7 μm or less, and has a ratio (Rc 400 /Rc 680 ) of a reflectance Rc 400 of a surface of the polarizing film at a wavelength of 400 nm in the absorption axis direction to a reflectance Rc 680 of a surface of the polarizing film at a wavelength of 680 nm in the absorption axis direction , which exceeds 1.
In one embodiment, the surface has an Rc 680 of 5% or less.
In one embodiment, the surface has an Rc 400 of 4.8% or greater.
In one embodiment, the polarizing film has a gradient distribution region at an end portion on the front surface side, in which the amount of iodine increases from the front surface toward the back surface.
In one embodiment of the present invention, the polarizing film has a smaller amount of iodine on the front surface side than on the back surface side.
In one embodiment, the polarizing film has a single transmittance of 42.0% or more and a polarization degree of 99.98% or more.
According to another aspect of the present invention, there is provided a method for producing the above polarizing film, which comprises washing with water a surface of a resin film containing iodine and having a moisture content of 15% by weight or less.
In one embodiment, the resin film has an iodine concentration of 5% by weight or more.
In one embodiment, the resin film is a resin layer formed on a resin substrate.
In one embodiment, the production method includes underwater stretching the resin layer at 67° C. or less.
In one embodiment, the manufacturing method includes heating the resin layer using a heating roll.
According to yet another aspect of the present invention, there is provided a polarizing plate comprising the above polarizing film and a protective layer or a retardation layer disposed on at least one side of the polarizing film.

本発明によれば、表面の反射特性が制御されていることにより、外観に優れた偏光膜を得ることができる。また、このような偏光膜によれば、画像表示装置の表示特性の向上に寄与し得る。 According to the present invention, a polarizing film with excellent appearance can be obtained by controlling the reflection characteristics of the surface. Furthermore, such a polarizing film can contribute to improving the display characteristics of image display devices.

本発明の1つの実施形態による偏光膜の模式的な断面図である。1 is a schematic cross-sectional view of a polarizing film according to one embodiment of the present invention. 加熱ロールを用いた乾燥の一例を示す概略図である。FIG. 2 is a schematic diagram showing an example of drying using a heating roll. 本発明の第一実施形態による偏光板の概略の構成を示す模式的な断面図である。1 is a schematic cross-sectional view illustrating a general configuration of a polarizing plate according to a first embodiment of the present invention. 本発明の第二実施形態による偏光板の概略の構成を示す模式的な断面図である。FIG. 4 is a schematic cross-sectional view showing an outline of a configuration of a polarizing plate according to a second embodiment of the present invention. 実施例1、比較例1および参考例2の偏光膜の厚み方向におけるヨウ素のイオン強度を示すグラフである。1 is a graph showing the iodine ion intensity in the thickness direction of the polarizing films of Example 1, Comparative Example 1, and Reference Example 2.

以下、本発明の実施形態について説明するが、本発明はこれらの実施形態には限定されない。 The following describes embodiments of the present invention, but the present invention is not limited to these embodiments.

(用語および記号の定義)
本明細書における用語および記号の定義は下記の通りである。
(1)屈折率(nx、ny、nz)
「nx」は面内の屈折率が最大になる方向(すなわち、遅相軸方向)の屈折率であり、「ny」は面内で遅相軸と直交する方向(すなわち、進相軸方向)の屈折率であり、「nz」は厚み方向の屈折率である。
(2)面内位相差(Re)
「Re(λ)」は、23℃における波長λnmの光で測定した面内位相差である。例えば、「Re(550)」は、23℃における波長550nmの光で測定した面内位相差である。Re(λ)は、層(フィルム)の厚みをd(nm)としたとき、式:Re(λ)=(nx-ny)×dによって求められる。
(3)厚み方向の位相差(Rth)
「Rth(λ)」は、23℃における波長λnmの光で測定した厚み方向の位相差である。例えば、「Rth(550)」は、23℃における波長550nmの光で測定した厚み方向の位相差である。Rth(λ)は、層(フィルム)の厚みをd(nm)としたとき、式:Rth(λ)=(nx-nz)×dによって求められる。
(4)Nz係数
Nz係数は、Nz=Rth/Reによって求められる。
(5)角度
本明細書において角度に言及するときは、当該角度は基準方向に対して時計回りおよび反時計回りの両方を包含する。したがって、例えば「45°」は±45°を意味する。
(Definition of terms and symbols)
The definitions of terms and symbols used in this specification are as follows.
(1) Refractive index (nx, ny, nz)
"nx" is the refractive index in the direction in which the in-plane refractive index is maximum (i.e., the slow axis direction), "ny" is the refractive index in the direction perpendicular to the slow axis in the plane (i.e., the fast axis direction), and "nz" is the refractive index in the thickness direction.
(2) In-plane phase difference (Re)
"Re(λ)" is the in-plane retardation measured with light having a wavelength of λ nm at 23° C. For example, "Re(550)" is the in-plane retardation measured with light having a wavelength of 550 nm at 23° C. Re(λ) is calculated by the formula: Re(λ)=(nx−ny)×d, where d (nm) is the thickness of the layer (film).
(3) Retardation in the thickness direction (Rth)
"Rth(λ)" is the retardation in the thickness direction measured with light having a wavelength of λ nm at 23° C. For example, "Rth(550)" is the retardation in the thickness direction measured with light having a wavelength of 550 nm at 23° C. Rth(λ) is calculated by the formula: Rth(λ)=(nx-nz)×d, where d (nm) is the thickness of the layer (film).
(4) Nz Coefficient The Nz coefficient is calculated by Nz=Rth/Re.
(5) Angle When referring to an angle in this specification, the angle includes both clockwise and counterclockwise angles with respect to a reference direction. Thus, for example, "45°" means ±45°.

A.偏光膜
図1は、本発明の1つの実施形態による偏光膜の模式的な断面図である。なお、図1では、図を見やすくするために偏光膜の断面は、ハッチングを省略している。偏光膜10は、第一主面(表面)10aおよび第二主面(裏面)10bを有する。偏光膜10は、表面10a側の端部に、表面10aから裏面10bに向かってヨウ素量が多くなる傾斜分布領域を有する。
A. Polarizing Film Fig. 1 is a schematic cross-sectional view of a polarizing film according to one embodiment of the present invention. In Fig. 1, hatching is omitted from the cross section of the polarizing film in order to make the drawing easier to see. The polarizing film 10 has a first main surface (front surface) 10a and a second main surface (back surface) 10b. The polarizing film 10 has a gradient distribution region at the end on the front surface 10a side, where the amount of iodine increases from the front surface 10a toward the back surface 10b.

偏光膜10は、ヨウ素を含む樹脂フィルムから構成される。樹脂フィルムとしては、例えば、ポリビニルアルコール(PVA)系フィルム、部分ホルマール化PVA系フィルム、エチレン・酢酸ビニル共重合体系部分ケン化フィルム等の親水性高分子フィルムが用いられる。 The polarizing film 10 is composed of a resin film containing iodine. Examples of the resin film that can be used include hydrophilic polymer films such as polyvinyl alcohol (PVA)-based films, partially formalized PVA-based films, and partially saponified ethylene-vinyl acetate copolymer-based films.

偏光膜10の厚みは、7μm以下であり、好ましくは6μm以下である。このような厚みの偏光膜は、ヨウ素濃度が高い傾向にある。一方、偏光膜の厚みは、好ましくは1μm以上であり、より好ましくは2μm以上である。 The thickness of the polarizing film 10 is 7 μm or less, and preferably 6 μm or less. A polarizing film of this thickness tends to have a high iodine concentration. On the other hand, the thickness of the polarizing film is preferably 1 μm or more, and more preferably 2 μm or more.

偏光膜10は、好ましくは、波長380nm~780nmのいずれかの波長で吸収二色性を示す。偏光膜10の単体透過率(Ts)は、好ましくは41.0%以上であり、より好ましくは42.0%以上であり、さらに好ましくは42.5%以上である。一方、偏光膜10の単体透過率は、例えば44.2%以下である。偏光膜10の偏光度(P)は、好ましくは99.95%以上、より好ましくは99.98%以上であり、さらに好ましくは99.99%以上である。一方、偏光膜10の偏光度は、例えば99.996%以下である。 The polarizing film 10 preferably exhibits absorption dichroism at any wavelength between 380 nm and 780 nm. The single transmittance (Ts) of the polarizing film 10 is preferably 41.0% or more, more preferably 42.0% or more, and even more preferably 42.5% or more. On the other hand, the single transmittance of the polarizing film 10 is, for example, 44.2% or less. The polarization degree (P) of the polarizing film 10 is preferably 99.95% or more, more preferably 99.98% or more, and even more preferably 99.99% or more. On the other hand, the polarization degree of the polarizing film 10 is, for example, 99.996% or less.

上記単体透過率は、代表的には、紫外可視分光光度計を用いて測定し、視感度補正を行なったY値である。上記偏光度は、代表的には、紫外可視分光光度計を用いて測定して視感度補正を行なった平行透過率Tpおよび直交透過率Tcに基づいて、下記式により求められる。
偏光度(%)={(Tp-Tc)/(Tp+Tc)}1/2×100
The single transmittance is typically a Y value measured using an ultraviolet-visible spectrophotometer and subjected to luminosity correction. The polarization degree is typically calculated by the following formula based on the parallel transmittance Tp and the crossed transmittance Tc measured using an ultraviolet-visible spectrophotometer and subjected to luminosity correction.
Degree of polarization (%) = {(Tp-Tc)/(Tp+Tc)} 1/2 ×100

偏光膜10の表面10aの、吸収軸方向の波長680nmの光の反射率Rc680に対する吸収軸方向の波長400nmの光の反射率Rc400の比(Rc400/Rc680)は、1を超え、好ましくは1.3以上であり、より好ましくは1.5以上である。このような関係を満たすことにより、反射色相が良好に制御されて外観に優れ得る。具体的には、赤味が抑制され、外観に優れ得る。その結果、例えば、視認性に優れた画像表示装置を提供し得る。ここで、偏光膜10を、その表面10aが画像表示装置の視認側となるように配置してもよいし視認側とは反対側となるように配置してもよく、いずれの配置においても外観に優れ得る。偏光膜10の表面10aが画像表示装置の視認側となるように配置することにより、外観および表示特性において極めて優れ得る。一方、偏光膜10の表面10aのRc400/Rc680は、例えば2以下である。 The ratio (Rc 400 /Rc 680 ) of the reflectance Rc 400 of light having a wavelength of 400 nm in the absorption axis direction to the reflectance Rc 680 of light having a wavelength of 680 nm in the absorption axis direction of the surface 10a of the polarizing film 10 exceeds 1, preferably is 1.3 or more, and more preferably is 1.5 or more. By satisfying such a relationship, the reflected hue can be well controlled and the appearance can be excellent. Specifically, redness can be suppressed and the appearance can be excellent. As a result, for example, an image display device having excellent visibility can be provided. Here, the polarizing film 10 may be arranged so that its surface 10a is the viewing side of the image display device or the opposite side to the viewing side, and either arrangement can provide excellent appearance. By arranging the surface 10a of the polarizing film 10 to be the viewing side of the image display device, the appearance and display characteristics can be extremely excellent. On the other hand, the Rc 400 /Rc 680 of the surface 10a of the polarizing film 10 is, for example, 2 or less.

偏光膜10の表面10aのRc400は、例えば4.8%以上であり、好ましくは4.9%以上であり、より好ましくは5%以上であり、さらに好ましくは5.3%以上である。一方、偏光膜10の表面10aのRc400は、例えば6%以下である。偏光膜10の表面10aのRc680は、例えば5%以下であり、好ましくは4.9%以下であり、より好ましくは4.5%以下であり、さらに好ましくは4%以下である。一方、偏光膜10の表面10aのRc680は、例えば3%以上である。 The Rc 400 of the surface 10a of the polarizing film 10 is, for example, 4.8% or more, preferably 4.9% or more, more preferably 5% or more, and even more preferably 5.3% or more. On the other hand, the Rc 400 of the surface 10a of the polarizing film 10 is, for example, 6% or less. The Rc 680 of the surface 10a of the polarizing film 10 is, for example, 5% or less, preferably 4.9% or less, more preferably 4.5% or less, and even more preferably 4% or less. On the other hand, the Rc 680 of the surface 10a of the polarizing film 10 is, for example, 3% or more.

偏光膜10の表面10aの透過軸方向の波長400nmの光の反射率Rp400は、例えば4.5%~5%である。偏光膜10の表面10aの透過軸方向の波長680nmの光の反射率Rp680は、例えば4.3%~4.8%である。 The reflectance Rp 400 of the surface 10a of the polarizing film 10 for light having a wavelength of 400 nm in the transmission axis direction is, for example, 4.5% to 5%. The reflectance Rp 680 of the surface 10a of the polarizing film 10 for light having a wavelength of 680 nm in the transmission axis direction is, for example, 4.3% to 4.8%.

上記RcおよびRpはそれぞれ、偏光膜(樹脂フィルム)の表面に所定の角度で光を入射させて吸収軸方向および透過軸方向の反射光を検出した場合の、入射光強度に対する反射光強度の比率である。 The above Rc and Rp are the ratios of the reflected light intensity to the incident light intensity when light is incident on the surface of the polarizing film (resin film) at a specified angle and the reflected light is detected in the absorption axis direction and the transmission axis direction, respectively.

例えば、偏光膜10は、表面10a側のヨウ素量が裏面10b側のヨウ素量よりも少ない。具体的には、偏光膜10は、表面側から、ヨウ素の分布状態が異なる第一領域11と第二領域12とをこの順に有する。第一領域11は、表面10aから裏面10bに向かってヨウ素量が多くなる傾斜分布領域である。第二領域12ではヨウ素は均一に分布している。ここで、均一とは、例えば、分析により検出されるヨウ素に由来する(例えば、ヨウ素イオンの)強度が平均値より-20%~+20%の範囲内であることをいう。第一領域11の厚みは、偏光膜10の厚みの2%以上50%以下であることが好ましく、より好ましくは10%以上40%以下である。第一領域11の厚みは、偏光膜10の厚みの20%以上であってもよい。具体的には、第一領域11の厚みは、100nm以上2.7μm以下であることが好ましく、より好ましくは500nm以上2μm以下である。第一領域11の厚みは、1μm以上であってもよい。このような範囲によれば、例えば、優れた光学特性(上記単体透過率および偏光度)と優れた外観とを達成し得る。 For example, the polarizing film 10 has a smaller amount of iodine on the front surface 10a side than on the back surface 10b side. Specifically, the polarizing film 10 has, in this order from the front surface side, a first region 11 and a second region 12 in which the distribution state of iodine is different. The first region 11 is a gradient distribution region in which the amount of iodine increases from the front surface 10a toward the back surface 10b. In the second region 12, iodine is uniformly distributed. Here, uniform means, for example, that the intensity derived from iodine (e.g., iodine ions) detected by analysis is within a range of -20% to +20% from the average value. The thickness of the first region 11 is preferably 2% to 50% of the thickness of the polarizing film 10, and more preferably 10% to 40%. The thickness of the first region 11 may be 20% or more of the thickness of the polarizing film 10. Specifically, the thickness of the first region 11 is preferably 100 nm or more and 2.7 μm or less, and more preferably 500 nm or more and 2 μm or less. The thickness of the first region 11 may be 1 μm or more. According to such a range, for example, excellent optical characteristics (single transmittance and polarization degree) and excellent appearance can be achieved.

図示しないが、例えば、偏光膜は、表面側から、ヨウ素の分布状態が異なる第一領域、第二領域および第三領域をこの順に有していてもよい。具体的には、偏光膜は、表面から裏面に向かってヨウ素量が多くなる第一領域、ヨウ素が均一に分布する第二領域、および、表面側から裏面に向かってヨウ素量が少なくなる第三領域を有していてもよい。 Although not shown, for example, the polarizing film may have, from the front surface side, a first region, a second region, and a third region in this order, which have different iodine distribution states. Specifically, the polarizing film may have a first region in which the amount of iodine increases from the front surface to the back surface, a second region in which iodine is uniformly distributed, and a third region in which the amount of iodine decreases from the front surface to the back surface.

B.製造方法
上記偏光膜は、ヨウ素を含み、所定の水分率を有する樹脂膜の表面を水洗することにより得られる。樹脂膜の水分率(水洗前)は、15重量%以下であり、好ましくは12重量%以下であり、より好ましくは9重量%以下であり、さらに好ましくは6重量%以下である。一方、樹脂膜の水分率は、例えば3重量%以上である。このような水分率を有する樹脂膜に対し水洗を行うことにより、上記偏光膜を良好に作製し得る。具体的には、優れた光学特性を保持させながら、表面の反射特性(例えば、反射率、色相)を良好に制御することができる。例えば、波長550nm以上の長波長領域の反射率を下げて赤味を抑え、目視にて青味を認識可能にし得る。
B. Manufacturing method The polarizing film is obtained by washing the surface of a resin film containing iodine and having a predetermined moisture content. The moisture content of the resin film (before washing) is 15% by weight or less, preferably 12% by weight or less, more preferably 9% by weight or less, and even more preferably 6% by weight or less. On the other hand, the moisture content of the resin film is, for example, 3% by weight or more. By washing the resin film having such a moisture content, the polarizing film can be well produced. Specifically, the reflection characteristics (e.g., reflectance, hue) of the surface can be well controlled while maintaining excellent optical properties. For example, the reflectance in the long wavelength region of 550 nm or more can be reduced to suppress redness and make it possible to visually recognize blueness.

上記樹脂膜のヨウ素濃度は、例えば5重量%以上であり、5.5重量%以上であってもよく、6重量%以上であってもよい。樹脂膜のヨウ素濃度は、例えば8重量%以下である。上記樹脂膜の厚みは、例えば7μm以下であり、6μm以下であってもよい。樹脂膜の厚みは、好ましくは1μm以上であり、より好ましくは2μm以上である。このようなヨウ素濃度、厚みにおいて優れた外観を達成し得ることが、本発明の特徴の一つである。 The iodine concentration of the resin film is, for example, 5% by weight or more, and may be 5.5% by weight or more, or may be 6% by weight or more. The iodine concentration of the resin film is, for example, 8% by weight or less. The thickness of the resin film is, for example, 7 μm or less, and may be 6 μm or less. The thickness of the resin film is preferably 1 μm or more, and more preferably 2 μm or more. One of the features of the present invention is that an excellent appearance can be achieved with such an iodine concentration and thickness.

B-1.樹脂膜
上記所定の水分率を有する樹脂膜は、例えば、樹脂基材上に樹脂層(代表的には、ポリビニルアルコール系樹脂層)を形成して積層体を作製し、この積層体(樹脂層)を延伸およびヨウ素で染色し、その後、積層体(樹脂層)を乾燥することにより得ることができる。
B-1. Resin film The resin film having the above-mentioned predetermined moisture content can be obtained, for example, by forming a resin layer (typically, a polyvinyl alcohol-based resin layer) on a resin substrate to produce a laminate, stretching this laminate (resin layer) and dyeing it with iodine, and then drying the laminate (resin layer).

B-1-1.積層体
1つの実施形態においては、熱可塑性樹脂基材(例えば、長尺状の)上に、ポリビニルアルコール(PVA)系樹脂とハロゲン化物とを含むPVA系樹脂層を形成して上記積層体を作製する。具体的には、熱可塑性樹脂基材上に、PVA系樹脂とハロゲン化物とを含む塗布液を塗布し、乾燥することにより、積層体を作製する。
B-1-1. Laminate In one embodiment, a polyvinyl alcohol (PVA)-based resin layer containing a PVA-based resin and a halide is formed on a thermoplastic resin substrate (e.g., a long substrate) to produce the laminate. Specifically, a coating liquid containing a PVA-based resin and a halide is applied onto the thermoplastic resin substrate, followed by drying to produce the laminate.

上記熱可塑性樹脂基材の厚みは、好ましくは20μm~300μmであり、より好ましくは50μm~200μmである。20μm未満であると、PVA系樹脂層の形成が困難になるおそれがある。300μmを超えると、例えば、後述の水中延伸において、熱可塑性樹脂基材が水を吸収するのに時間を要するとともに、延伸に過大な負荷を要するおそれがある。 The thickness of the thermoplastic resin substrate is preferably 20 μm to 300 μm, and more preferably 50 μm to 200 μm. If it is less than 20 μm, it may be difficult to form a PVA-based resin layer. If it exceeds 300 μm, for example, in the underwater stretching described below, it may take time for the thermoplastic resin substrate to absorb water, and an excessive load may be required for stretching.

熱可塑性樹脂基材の吸水率は、好ましくは0.2%以上であり、さらに好ましくは0.3%以上である。このような熱可塑性樹脂基材は、水を吸収し、水が可塑剤的な働きをして可塑化し得る。その結果、延伸応力を大幅に低下させ、高倍率に延伸し得る。一方、熱可塑性樹脂基材の吸水率は、好ましくは3.0%以下であり、より好ましくは1.0%以下である。このような吸水率によれば、製造時に熱可塑性樹脂基材の寸法安定性が著しく低下して、得られる偏光膜の品質が悪化するなどの不具合を防止することができる。また、水中延伸時に熱可塑性樹脂基材が破断したり、PVA系樹脂層が剥離したりするのを防止することができる。熱可塑性樹脂基材の吸水率は、例えば、構成材料に変性基を導入することにより調整することができる。なお、吸水率は、JIS K 7209に準じて求められる値である。 The water absorption rate of the thermoplastic resin substrate is preferably 0.2% or more, more preferably 0.3% or more. Such a thermoplastic resin substrate can absorb water, and the water can act as a plasticizer to plasticize the substrate. As a result, the stretching stress can be significantly reduced and the substrate can be stretched at a high ratio. On the other hand, the water absorption rate of the thermoplastic resin substrate is preferably 3.0% or less, more preferably 1.0% or less. With such a water absorption rate, it is possible to prevent problems such as a significant decrease in the dimensional stability of the thermoplastic resin substrate during production, which deteriorates the quality of the resulting polarizing film. In addition, it is possible to prevent the thermoplastic resin substrate from breaking and the PVA-based resin layer from peeling off during underwater stretching. The water absorption rate of the thermoplastic resin substrate can be adjusted, for example, by introducing a modifying group into the constituent material. The water absorption rate is a value determined in accordance with JIS K 7209.

熱可塑性樹脂基材のガラス転移温度(Tg)は、好ましくは120℃以下である。このような熱可塑性樹脂基材を用いることにより、PVA系樹脂層の結晶化を抑制しながら、積層体の延伸性を十分に確保することができる。さらに、水による熱可塑性樹脂基材の可塑化と、水中延伸を良好に行うことを考慮すると、Tgは、より好ましくは100℃以下であり、さらに好ましくは90℃以下である。一方、熱可塑性樹脂基材のTgは、好ましくは60℃以上である。このようなTgによれば、上記塗布液を塗布・乾燥する際に、熱可塑性樹脂基材が変形(例えば、凹凸やタルミ、シワ等の発生)するなどの不具合を防止して、良好に積層体を作製することができる。また、上記樹脂層の延伸を、好適な温度(例えば、60℃程度)にて良好に行うことができる。熱可塑性樹脂基材のTgは、例えば、構成材料に変性基を導入する、結晶化材料を用いて加熱することにより調整することができる。なお、ガラス転移温度(Tg)は、JIS K 7121に準じて求められる値である。 The glass transition temperature (Tg) of the thermoplastic resin substrate is preferably 120°C or less. By using such a thermoplastic resin substrate, the stretchability of the laminate can be sufficiently ensured while suppressing the crystallization of the PVA-based resin layer. Furthermore, in consideration of the plasticization of the thermoplastic resin substrate by water and the good underwater stretching, the Tg is more preferably 100°C or less, and even more preferably 90°C or less. On the other hand, the Tg of the thermoplastic resin substrate is preferably 60°C or more. With such a Tg, it is possible to prevent defects such as deformation of the thermoplastic resin substrate (e.g., generation of unevenness, sagging, wrinkles, etc.) when the coating liquid is applied and dried, and to produce a good laminate. In addition, the stretching of the resin layer can be performed well at a suitable temperature (e.g., about 60°C). The Tg of the thermoplastic resin substrate can be adjusted, for example, by introducing a modified group into the constituent material and heating it using a crystallization material. The glass transition temperature (Tg) is a value obtained in accordance with JIS K 7121.

熱可塑性樹脂基材の構成材料としては、任意の適切な熱可塑性樹脂が採用され得る。熱可塑性樹脂としては、例えば、ポリエチレンテレフタレート系樹脂等のエステル系樹脂、ノルボルネン系樹脂等のシクロオレフィン系樹脂、ポリプロピレン等のオレフィン系樹脂、ポリアミド系樹脂、ポリカーボネート系樹脂、これらの共重合体樹脂が挙げられる。これらの中でも、好ましくは、ノルボルネン系樹脂、非晶質のポリエチレンテレフタレート系樹脂である。 Any suitable thermoplastic resin may be used as the material for the thermoplastic resin substrate. Examples of thermoplastic resins include ester-based resins such as polyethylene terephthalate-based resins, cycloolefin-based resins such as norbornene-based resins, olefin-based resins such as polypropylene, polyamide-based resins, polycarbonate-based resins, and copolymer resins of these. Of these, norbornene-based resins and amorphous polyethylene terephthalate-based resins are preferred.

1つの実施形態においては、非晶質の(結晶化していない)ポリエチレンテレフタレート系樹脂が好ましく用いられる。中でも、非晶性の(結晶化しにくい)ポリエチレンテレフタレート系樹脂が特に好ましく用いられる。非晶性のポリエチレンテレフタレート系樹脂の具体例としては、ジカルボン酸としてイソフタル酸および/またはシクロヘキサンジカルボン酸をさらに含む共重合体や、グリコールとしてシクロヘキサンジメタノールやジエチレングリコールをさらに含む共重合体が挙げられる。 In one embodiment, amorphous (uncrystallized) polyethylene terephthalate resins are preferably used. Among them, amorphous (hardly crystallized) polyethylene terephthalate resins are particularly preferably used. Specific examples of amorphous polyethylene terephthalate resins include copolymers further containing isophthalic acid and/or cyclohexanedicarboxylic acid as dicarboxylic acids, and copolymers further containing cyclohexanedimethanol or diethylene glycol as glycols.

別の実施形態においては、イソフタル酸ユニットを有するポリエチレンテレフタレート系樹脂が好ましく用いられる。延伸性に極めて優れるとともに、延伸時の結晶化が抑制され得るからである。これは、イソフタル酸ユニットを導入することで、主鎖に大きな屈曲を与えることによるものと考えられる。ポリエチレンテレフタレート系樹脂は、テレフタル酸ユニットおよびエチレングリコールユニットを有する。イソフタル酸ユニットの含有割合は、全繰り返し単位の合計に対して、好ましくは0.1モル%以上であり、より好ましくは1.0モル%以上である。延伸性に極めて優れた熱可塑性樹脂基材が得られるからである。一方、イソフタル酸ユニットの含有割合は、全繰り返し単位の合計に対して、好ましくは20モル%以下であり、より好ましくは10モル%以下である。後述の乾燥において結晶化度を良好に増加させ得るからである。 In another embodiment, a polyethylene terephthalate resin having an isophthalic acid unit is preferably used. This is because it has excellent stretchability and crystallization during stretching can be suppressed. This is thought to be due to the introduction of an isophthalic acid unit, which imparts a large bend to the main chain. The polyethylene terephthalate resin has a terephthalic acid unit and an ethylene glycol unit. The content of the isophthalic acid unit is preferably 0.1 mol% or more, more preferably 1.0 mol% or more, based on the total of all repeating units. This is because a thermoplastic resin substrate with extremely excellent stretchability can be obtained. On the other hand, the content of the isophthalic acid unit is preferably 20 mol% or less, more preferably 10 mol% or less, based on the total of all repeating units. This is because the crystallinity can be favorably increased during drying, which will be described later.

熱可塑性樹脂基材は、予め(例えば、PVA系樹脂層を形成する前に)、延伸されていてもよい。1つの実施形態においては、長尺状の熱可塑性樹脂基材の横方向に延伸されている。横方向は、好ましくは、後述の積層体の延伸方向に直交する方向である。なお、本明細書において、「直交」とは、実質的に直交する場合も包含する。ここで、「実質的に直交」とは、90°±5.0°である場合を包含し、好ましくは90°±3.0°、さらに好ましくは90°±1.0°である。熱可塑性樹脂基材の延伸温度は、熱可塑性樹脂基材のガラス転移温度(Tg)に対し、好ましくはTg-10℃~Tg+50℃である。熱可塑性樹脂基材の延伸倍率は、好ましくは1.5倍~3.0倍である。熱可塑性樹脂基材の延伸方法としては、任意の適切な方法が採用され得る。具体的には、固定端延伸でもよいし、自由端延伸でもよい。延伸方式は、乾式でもよいし、湿式でもよい。延伸は、一段階で行ってもよいし、多段階で行ってもよい。多段階で行う場合、上記延伸倍率は、各段階の延伸倍率の積である。 The thermoplastic resin substrate may be stretched in advance (for example, before forming the PVA-based resin layer). In one embodiment, the long thermoplastic resin substrate is stretched in the transverse direction. The transverse direction is preferably a direction perpendicular to the stretching direction of the laminate described below. In this specification, "perpendicular" also includes the case where the direction is substantially perpendicular. Here, "substantially perpendicular" includes the case where the direction is 90°±5.0°, preferably 90°±3.0°, and more preferably 90°±1.0°. The stretching temperature of the thermoplastic resin substrate is preferably Tg-10°C to Tg+50°C relative to the glass transition temperature (Tg) of the thermoplastic resin substrate. The stretching ratio of the thermoplastic resin substrate is preferably 1.5 times to 3.0 times. Any appropriate method can be adopted as the stretching method of the thermoplastic resin substrate. Specifically, it may be fixed-end stretching or free-end stretching. The stretching method may be a dry method or a wet method. Stretching may be performed in one stage or multiple stages. When stretching in multiple stages, the stretch ratio is the product of the stretch ratios in each stage.

上記塗布液は、代表的には、PVA系樹脂とハロゲン化物とを溶媒に溶解させた溶液である。溶媒としては、例えば、水、ジメチルスルホキシド、ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン、各種グリコール類、トリメチロールプロパン等の多価アルコール類、エチレンジアミン、ジエチレントリアミン等のアミン類が挙げられる。これらは単独で、または、二種以上組み合わせて用いることができる。これらの中でも、好ましくは、水である。塗布液におけるPVA系樹脂の含有量は、溶媒100重量部に対して、好ましくは3重量部~20重量部である。このような範囲によれば、熱可塑性樹脂基材に密着した均一な塗布膜を形成することができる。塗布液におけるハロゲン化物の含有量は、PVA系樹脂100重量部に対して、好ましくは5重量部~20重量部である。 The coating liquid is typically a solution in which a PVA-based resin and a halide are dissolved in a solvent. Examples of the solvent include water, dimethyl sulfoxide, dimethylformamide, dimethylacetamide, N-methylpyrrolidone, various glycols, polyhydric alcohols such as trimethylolpropane, and amines such as ethylenediamine and diethylenetriamine. These can be used alone or in combination of two or more. Of these, water is preferred. The content of the PVA-based resin in the coating liquid is preferably 3 to 20 parts by weight per 100 parts by weight of the solvent. This range allows the formation of a uniform coating film that is in close contact with the thermoplastic resin substrate. The content of the halide in the coating liquid is preferably 5 to 20 parts by weight per 100 parts by weight of the PVA-based resin.

上記PVA系樹脂としては、例えば、ポリビニルアルコール、エチレン-ビニルアルコール共重合体が挙げられる。ポリビニルアルコールは、ポリ酢酸ビニルをケン化することにより得られる。エチレン-ビニルアルコール共重合体は、エチレン-酢酸ビニル共重合体をケン化することにより得られる。PVA系樹脂のケン化度は、通常85モル%~100モル%であり、好ましくは95.0モル%~99.95モル%であり、より好ましくは99.0モル%~99.93モル%である。このようなケン化度のPVA系樹脂を用いることによって、耐久性に優れた偏光膜が得られ得る。ケン化度が高すぎる場合には、ゲル化してしまうおそれがある。なお、ケン化度は、JIS K 6726-1994に準じて求めることができる。 Examples of the PVA-based resin include polyvinyl alcohol and ethylene-vinyl alcohol copolymer. Polyvinyl alcohol is obtained by saponifying polyvinyl acetate. Ethylene-vinyl alcohol copolymer is obtained by saponifying ethylene-vinyl acetate copolymer. The saponification degree of the PVA-based resin is usually 85 mol% to 100 mol%, preferably 95.0 mol% to 99.95 mol%, and more preferably 99.0 mol% to 99.93 mol%. By using a PVA-based resin with such a saponification degree, a polarizing film with excellent durability can be obtained. If the saponification degree is too high, there is a risk of gelation. The saponification degree can be determined in accordance with JIS K 6726-1994.

PVA系樹脂の平均重合度は、通常1000~10000であり、好ましくは1200~4500であり、より好ましくは1500~4300である。なお、平均重合度は、JIS K 6726-1994に準じて求めることができる。 The average degree of polymerization of the PVA-based resin is usually 1,000 to 10,000, preferably 1,200 to 4,500, and more preferably 1,500 to 4,300. The average degree of polymerization can be determined in accordance with JIS K 6726-1994.

上記ハロゲン化物としては、任意の適切なハロゲン化物が採用され得る。例えば、ヨウ化カリウム、ヨウ化ナトリウム、ヨウ化リチウム等のヨウ化物、塩化ナトリウム等の塩化物が挙げられる。これらの中でも、好ましくは、ヨウ化カリウムである。ハロゲン化物を用いることにより、優れた光学特性を有する偏光膜を得ることができる。具体的には、後述の空中補助延伸後のPVA系樹脂の結晶化が促進され、その後の湿式処理(例えば、後述の染色、水中延伸)において、ポリビニルアルコール分子の配向の乱れおよび配向性の低下が抑制され、優れた光学特性を有する偏光膜を得ることができる。 Any suitable halide may be used as the halide. Examples include iodides such as potassium iodide, sodium iodide, and lithium iodide, and chlorides such as sodium chloride. Of these, potassium iodide is preferred. By using a halide, a polarizing film having excellent optical properties can be obtained. Specifically, the crystallization of the PVA-based resin after the air-assisted stretching described below is promoted, and the disturbance of the orientation of the polyvinyl alcohol molecules and the decrease in the orientation are suppressed in the subsequent wet treatment (for example, the dyeing and underwater stretching described below), and a polarizing film having excellent optical properties can be obtained.

塗布液の調製において、PVA系樹脂100重量部に対して、ハロゲン化物を5重量部~20重量部配合することが好ましく、より好ましくは10重量部~15重量部である。具体的には、得られるPVA系樹脂層におけるハロゲン化物の含有量は、PVA系樹脂100重量部に対し、好ましくは5重量部~20重量部であり、より好ましくは10重量部~15重量部である。PVA系樹脂に対するハロゲン化物の量が多いと、例えば、ハロゲン化物がブリードアウトし、得られる偏光膜が白濁する場合がある。 In preparing the coating solution, it is preferable to mix 5 to 20 parts by weight of the halide with respect to 100 parts by weight of the PVA-based resin, and more preferably 10 to 15 parts by weight. Specifically, the content of the halide in the resulting PVA-based resin layer is preferably 5 to 20 parts by weight with respect to 100 parts by weight of the PVA-based resin, and more preferably 10 to 15 parts by weight. If the amount of the halide relative to the PVA-based resin is too high, for example, the halide may bleed out, causing the resulting polarizing film to become cloudy.

塗布液に、添加剤を配合してもよい。添加剤としては、例えば、可塑剤、界面活性剤が挙げられる。可塑剤としては、例えば、エチレングリコールやグリセリン等の多価アルコールが挙げられる。界面活性剤としては、例えば、非イオン界面活性剤が挙げられる。これらは、例えば、得られるPVA系樹脂層の均一性や染色性、延伸性を向上させる目的で使用される。 Additives may be added to the coating liquid. Examples of additives include plasticizers and surfactants. Examples of plasticizers include polyhydric alcohols such as ethylene glycol and glycerin. Examples of surfactants include nonionic surfactants. These are used, for example, to improve the uniformity, dyeability, and stretchability of the resulting PVA-based resin layer.

上記塗布液の塗布方法としては、例えば、ロールコート法、スピンコート法、ワイヤーバーコート法、ディップコート法、ダイコート法、カーテンコート法、スプレーコート法、ナイフコート法(コンマコート法等)が挙げられる。塗布液の塗布・乾燥温度は、好ましくは50℃以上である。 Examples of methods for applying the coating liquid include roll coating, spin coating, wire bar coating, dip coating, die coating, curtain coating, spray coating, and knife coating (comma coating, etc.). The application and drying temperature of the coating liquid is preferably 50°C or higher.

上記PVA系樹脂層の厚みは、好ましくは3μm~40μmであり、さらに好ましくは3μm~20μmである。 The thickness of the PVA-based resin layer is preferably 3 μm to 40 μm, and more preferably 3 μm to 20 μm.

PVA系樹脂層を形成する前に、熱可塑性樹脂基材に表面処理(例えば、コロナ処理等)を施してもよいし、熱可塑性樹脂基材上に易接着層を形成してもよい。このような処理を行うことにより、熱可塑性樹脂基材とPVA系樹脂層との密着性を向上させることができる。 Before forming the PVA-based resin layer, the thermoplastic resin substrate may be subjected to a surface treatment (e.g., corona treatment, etc.), or an easy-adhesion layer may be formed on the thermoplastic resin substrate. By carrying out such treatment, it is possible to improve the adhesion between the thermoplastic resin substrate and the PVA-based resin layer.

B-1-2.延伸
上記延伸は、上記積層体を、乾式延伸(空中補助延伸)した後に、水中延伸することにより行うことが好ましい。補助延伸により、上記熱可塑性樹脂基材の結晶化を抑制しながら延伸することができ、ホウ酸水中延伸において熱可塑性樹脂基材の過度の結晶化により延伸性が低下するという問題を解決し、積層体をより高倍率に延伸することができる。また、熱可塑性樹脂基材を用いる場合、上記塗布温度が低く設定され得ることから、PVA系樹脂の結晶化が相対的に低くなって十分な光学特性が得られないという問題が生じ得る。これに対して、補助延伸を導入することにより、熱可塑性樹脂を用いる場合でも、PVA系樹脂の結晶性を高め得る。また、PVA系樹脂の配向性を事前に高めることで、後の湿式処理時に、PVA系樹脂の配向性の低下や溶解などの問題を防止し得る。こうして、優れた光学特性を有する偏光膜が得られ得る。
B-1-2. Stretching The stretching is preferably performed by dry stretching (air-assisted stretching) of the laminate, followed by underwater stretching. The auxiliary stretching allows stretching while suppressing crystallization of the thermoplastic resin substrate, solving the problem of reduced stretchability due to excessive crystallization of the thermoplastic resin substrate during stretching in boric acid water, and allows the laminate to be stretched at a higher magnification. In addition, when a thermoplastic resin substrate is used, the coating temperature may be set low, which may cause a problem that the crystallization of the PVA-based resin is relatively low and sufficient optical properties cannot be obtained. In response to this, the introduction of auxiliary stretching can increase the crystallinity of the PVA-based resin even when a thermoplastic resin is used. In addition, by increasing the orientation of the PVA-based resin in advance, problems such as reduced orientation and dissolution of the PVA-based resin during subsequent wet processing can be prevented. In this way, a polarizing film having excellent optical properties can be obtained.

空中補助延伸の方法は、固定端延伸(例えば、テンター延伸機を用いて延伸する方法)でもよいし、自由端延伸(例えば、周速の異なるロール間に積層体を通して一軸延伸する方法)でもよい。好ましくは、自由端延伸が採用される。例えば、上記積層体をその長手方向に搬送しながら、加熱ロール間の周速差により延伸する加熱ロール延伸が採用される。1つの実施形態においては、空中補助延伸は、熱空間(ゾーン)におけるゾーン延伸工程と加熱ロール延伸工程とを含む。ゾーン延伸工程と加熱ロール延伸工程の順序は限定されないが、例えば、ゾーン延伸工程および加熱ロール延伸工程がこの順に行われる。別の実施形態においては、テンター延伸機において、フィルム端部を把持し、テンター間の距離を流れ方向に広げることで延伸される(テンター間の距離の広がりが延伸倍率となる)。この時、幅方向(流れ方向に対して垂直方向)のテンターの距離は、好ましくは、流れ方向の延伸倍率に対して、自由端延伸により近くなるように設定される。自由端延伸の場合、幅方向の収縮率は、式:幅方向の収縮率=(1/延伸倍率)1/2で計算される。 The method of the air-assisted stretching may be fixed-end stretching (e.g., a method of stretching using a tenter stretching machine) or free-end stretching (e.g., a method of uniaxially stretching a laminate between rolls with different peripheral speeds). Preferably, free-end stretching is adopted. For example, heated roll stretching is adopted in which the laminate is stretched by the difference in peripheral speed between heated rolls while being transported in its longitudinal direction. In one embodiment, the air-assisted stretching includes a zone stretching step in a heat space (zone) and a heated roll stretching step. The order of the zone stretching step and the heated roll stretching step is not limited, but for example, the zone stretching step and the heated roll stretching step are performed in this order. In another embodiment, the tenter stretching machine stretches the film by gripping the film end and widening the distance between the tenters in the flow direction (the widening of the distance between the tenters is the stretching ratio). At this time, the distance of the tenter in the width direction (perpendicular to the flow direction) is preferably set so as to be closer to the free-end stretching than the stretching ratio in the flow direction. In the case of free end stretching, the shrinkage in the transverse direction is calculated by the formula: shrinkage in the transverse direction=(1/stretch ratio) 1/2 .

空中補助延伸の延伸倍率は、好ましくは2.0倍~3.5倍である。空中補助延伸は、一段階で行ってもよいし、多段階で行ってもよい。多段階で行う場合、延伸倍率は、各段階の延伸倍率の積である。空中補助延伸における延伸方向は、好ましくは、後述の水中延伸の延伸方向と略同一である。 The stretching ratio of the auxiliary air stretching is preferably 2.0 to 3.5 times. The auxiliary air stretching may be performed in one stage or in multiple stages. When performed in multiple stages, the stretching ratio is the product of the stretching ratios in each stage. The stretching direction in the auxiliary air stretching is preferably approximately the same as the stretching direction in the underwater stretching described below.

空中補助延伸の延伸温度は、例えば、用いる熱可塑性樹脂基材、延伸方式等に応じて、任意の適切な値に設定される。延伸温度は、好ましくは熱可塑性樹脂基材のガラス転移温度(Tg)以上であり、より好ましくはTg+10℃以上であり、さらに好ましくはTg+15℃以上である。一方、延伸温度の上限は、好ましくは170℃である。このような温度で延伸することで、PVA系樹脂の結晶化が急速に進むのを抑制して、当該結晶化による不具合(例えば、延伸によるPVA系樹脂層の配向を妨げる)を抑制することができる。 The stretching temperature for the auxiliary air stretching is set to any appropriate value depending on, for example, the thermoplastic resin substrate and the stretching method used. The stretching temperature is preferably equal to or higher than the glass transition temperature (Tg) of the thermoplastic resin substrate, more preferably equal to or higher than Tg + 10°C, and even more preferably equal to or higher than Tg + 15°C. On the other hand, the upper limit of the stretching temperature is preferably 170°C. By stretching at such a temperature, the crystallization of the PVA-based resin can be prevented from progressing rapidly, and problems caused by the crystallization (for example, preventing the orientation of the PVA-based resin layer by stretching) can be prevented.

上記水中延伸は、代表的には、積層体を延伸浴に浸漬させて行う。水中延伸によれば、上記熱可塑性樹脂基材やPVA系樹脂層のガラス転移温度(代表的には、80℃程度)よりも低い温度で延伸し得、PVA系樹脂層を、その結晶化を抑えながら、高倍率に延伸することができる。その結果、優れた光学特性を有する偏光膜を得ることができる。 The underwater stretching is typically performed by immersing the laminate in a stretching bath. Underwater stretching allows stretching at a temperature lower than the glass transition temperature (typically about 80°C) of the thermoplastic resin substrate or the PVA-based resin layer, and the PVA-based resin layer can be stretched at a high magnification while suppressing crystallization. As a result, a polarizing film with excellent optical properties can be obtained.

水中延伸の方法は、固定端延伸でもよいし、自由端延伸(例えば、周速の異なるロール間に積層体を通して一軸延伸する方法)でもよい。好ましくは、自由端延伸が採用される。積層体の延伸は、一段階で行ってもよいし、多段階で行ってもよい。多段階で行う場合、後述の積層体の延伸倍率は、各段階の延伸倍率の積である。 The underwater stretching method may be fixed-end stretching or free-end stretching (for example, a method of uniaxially stretching the laminate by passing it between rolls with different peripheral speeds). Free-end stretching is preferably used. The laminate may be stretched in one stage or in multiple stages. When stretched in multiple stages, the stretch ratio of the laminate described below is the product of the stretch ratios in each stage.

水中延伸は、好ましくは、積層体をホウ酸水溶液中に浸漬させて行う(ホウ酸水中延伸)。延伸浴としてホウ酸水溶液を用いることで、PVA系樹脂層に、延伸時にかかる張力に耐える剛性と、水に溶解しない耐水性とを付与することができる。具体的には、ホウ酸は、水溶液中でテトラヒドロキシホウ酸アニオンを生成してPVA系樹脂と水素結合により架橋し得る。その結果、PVA系樹脂層に剛性と耐水性とを付与して、良好に延伸することができ、優れた光学特性を有する偏光膜を得ることができる。 The underwater stretching is preferably performed by immersing the laminate in an aqueous solution of boric acid (underwater stretching in boric acid). By using an aqueous solution of boric acid as the stretching bath, it is possible to impart to the PVA-based resin layer the rigidity required to withstand the tension applied during stretching, and the water resistance required to prevent dissolution in water. Specifically, boric acid can generate tetrahydroxyborate anions in the aqueous solution and crosslink with the PVA-based resin through hydrogen bonds. As a result, it is possible to impart rigidity and water resistance to the PVA-based resin layer, allowing it to be stretched well, and to obtain a polarizing film with excellent optical properties.

上記ホウ酸水溶液は、好ましくは、溶媒である水にホウ酸および/またはホウ酸塩を溶解させることにより得られる。ホウ酸濃度は、水100重量部に対して、好ましくは1重量部~10重量部であり、より好ましくは2.5重量部~6重量部であり、さらに好ましくは3重量部~5重量部である。ホウ酸濃度を1重量部以上とすることにより、PVA系樹脂層の溶解を効果的に抑制することができ、より高特性の偏光膜を製造することができる。なお、ホウ酸またはホウ酸塩以外に、ホウ砂等のホウ素化合物、グリオキザール、グルタルアルデヒド等を溶媒に溶解して得られた水溶液も用いることができる。 The boric acid aqueous solution is preferably obtained by dissolving boric acid and/or a borate in water, which is a solvent. The boric acid concentration is preferably 1 to 10 parts by weight, more preferably 2.5 to 6 parts by weight, and even more preferably 3 to 5 parts by weight, per 100 parts by weight of water. By making the boric acid concentration 1 part by weight or more, dissolution of the PVA-based resin layer can be effectively suppressed, and a polarizing film with higher characteristics can be produced. In addition to boric acid or a borate, an aqueous solution obtained by dissolving a boron compound such as borax, glyoxal, glutaraldehyde, or the like in a solvent can also be used.

好ましくは、上記延伸浴(ホウ酸水溶液)にヨウ化物を配合する。ヨウ化物を配合することにより、PVA系樹脂層に吸着させたヨウ素の溶出を抑制することができる。ヨウ化物としては、例えば、ヨウ化カリウム、ヨウ化リチウム、ヨウ化ナトリウム、ヨウ化亜鉛、ヨウ化アルミニウム、ヨウ化鉛、ヨウ化銅、ヨウ化バリウム、ヨウ化カルシウム、ヨウ化錫、ヨウ化チタンが挙げられる。ヨウ化物の濃度は、水100重量部に対して、好ましくは0.05重量部~15重量部であり、より好ましくは0.5重量部~8重量部である。 Preferably, an iodide is added to the stretching bath (boric acid aqueous solution). By adding an iodide, it is possible to suppress the elution of iodine adsorbed in the PVA-based resin layer. Examples of iodides include potassium iodide, lithium iodide, sodium iodide, zinc iodide, aluminum iodide, lead iodide, copper iodide, barium iodide, calcium iodide, tin iodide, and titanium iodide. The concentration of the iodide is preferably 0.05 to 15 parts by weight, and more preferably 0.5 to 8 parts by weight, per 100 parts by weight of water.

延伸温度(延伸浴の液温)は、好ましくは40℃以上であり、より好ましくは60℃以上である。このような温度であれば、PVA系樹脂層の溶解を抑制しながら高倍率に延伸することができる。具体的には、上述のように、熱可塑性樹脂基材のガラス転移温度(Tg)は、PVA系樹脂層の形成との関係で、好ましくは60℃以上である。この場合、延伸温度が40℃を下回ると、水による熱可塑性樹脂基材の可塑化を考慮しても、良好に延伸できないおそれがある。一方、延伸温度は、例えば70℃以下であり、好ましくは67℃以下であり、より好ましくは65℃以下である。延伸温度が高温になるほど、PVA系樹脂層の溶解性が高くなって、優れた光学特性が得られないおそれがある。また、このような延伸温度によれば、後述の水洗においてPVA系樹脂層が膨潤・溶解するのを抑制し、表面性状に優れた偏光膜を得ることができる。積層体の延伸浴への浸漬時間は、好ましくは15秒~5分である。 The stretching temperature (liquid temperature of the stretching bath) is preferably 40°C or higher, more preferably 60°C or higher. At such a temperature, the film can be stretched at a high ratio while suppressing dissolution of the PVA-based resin layer. Specifically, as described above, the glass transition temperature (Tg) of the thermoplastic resin substrate is preferably 60°C or higher in relation to the formation of the PVA-based resin layer. In this case, if the stretching temperature is below 40°C, even if the plasticization of the thermoplastic resin substrate by water is taken into consideration, the film may not be stretched well. On the other hand, the stretching temperature is, for example, 70°C or lower, preferably 67°C or lower, more preferably 65°C or lower. The higher the stretching temperature, the higher the solubility of the PVA-based resin layer, and the less likely it is that excellent optical properties can be obtained. In addition, such a stretching temperature can suppress swelling and dissolution of the PVA-based resin layer during the water washing described below, and a polarizing film with excellent surface properties can be obtained. The immersion time of the laminate in the stretching bath is preferably 15 seconds to 5 minutes.

水中延伸による延伸倍率は、好ましくは1.5倍以上であり、より好ましくは3.0倍以上である。積層体の総延伸倍率(空中補助延伸と水中延伸とを組み合わせた延伸倍率)は、積層体の元長に対して、好ましくは5.0倍以上であり、より好ましくは5.5倍以上であり、さらに好ましくは6.0倍以上である。このような高い延伸倍率を達成することにより、光学特性に極めて優れた偏光膜を製造することができる。このような高い延伸倍率は、水中延伸方式(ホウ酸水中延伸)を採用することにより、達成し得る。 The stretching ratio by underwater stretching is preferably 1.5 times or more, and more preferably 3.0 times or more. The total stretching ratio of the laminate (stretching ratio of the combined air-assisted stretching and underwater stretching) is preferably 5.0 times or more, more preferably 5.5 times or more, and even more preferably 6.0 times or more, relative to the original length of the laminate. By achieving such a high stretching ratio, a polarizing film with extremely excellent optical properties can be produced. Such a high stretching ratio can be achieved by employing an underwater stretching method (stretching in boric acid water).

B-1-3.染色
上記染色は、代表的には、PVA系樹脂層にヨウ素を吸着させることにより行う。ヨウ素の吸着方法としては、例えば、ヨウ素を含む染色液にPVA系樹脂層(積層体)を浸漬させる方法、PVA系樹脂層に当該染色液を塗工する方法、当該染色液をPVA系樹脂層に噴霧する方法が挙げられる。好ましくは、染色液(染色浴)に積層体を浸漬させる方法である。ヨウ素が良好に吸着され得るからである。
B-1-3. Dyeing The dyeing is typically performed by adsorbing iodine to the PVA-based resin layer. Examples of methods for adsorbing iodine include a method of immersing the PVA-based resin layer (laminate) in a dyeing solution containing iodine, a method of applying the dyeing solution to the PVA-based resin layer, and a method of spraying the dyeing solution onto the PVA-based resin layer. A method of immersing the laminate in a dyeing solution (dye bath) is preferred, because iodine can be well adsorbed in this method.

上記染色液は、好ましくは、ヨウ素水溶液である。ヨウ素の配合量は、水100重量部に対して、好ましくは0.05重量部~0.5重量部である。ヨウ素の水に対する溶解度を高めるため、ヨウ素水溶液にヨウ化物を配合することが好ましい。ヨウ化物の具体例としては、上述のとおりである。好ましくは、ヨウ化カリウムが用いられる。ヨウ化物の配合量は、水100重量部に対して、好ましくは0.1重量部~10重量部であり、より好ましくは0.3重量部~5重量部である。染色液の染色時の液温は、PVA系樹脂の溶解を抑制するため、好ましくは20℃~50℃である。染色液にPVA系樹脂層を浸漬させる場合、浸漬時間は、PVA系樹脂層の透過率を確保するため、好ましくは5秒~5分であり、より好ましくは30秒~90秒である。 The dyeing solution is preferably an aqueous iodine solution. The amount of iodine is preferably 0.05 to 0.5 parts by weight per 100 parts by weight of water. In order to increase the solubility of iodine in water, it is preferable to add an iodide to the aqueous iodine solution. Specific examples of iodide are as described above. Potassium iodide is preferably used. The amount of iodide is preferably 0.1 to 10 parts by weight, more preferably 0.3 to 5 parts by weight, per 100 parts by weight of water. The temperature of the dyeing solution during dyeing is preferably 20°C to 50°C in order to suppress dissolution of the PVA-based resin. When the PVA-based resin layer is immersed in the dyeing solution, the immersion time is preferably 5 seconds to 5 minutes, more preferably 30 to 90 seconds, in order to ensure the transmittance of the PVA-based resin layer.

染色条件(濃度、液温、浸漬時間)は、例えば、最終的に得られる偏光膜の単体透過率が42.0%以上であり、かつ、偏光度が99.98%以上となるように設定することができる。このような染色条件としては、例えば、染色液であるヨウ素水溶液において、ヨウ素およびヨウ化カリウムの含有量の比を1:5~1:20とすることが好ましく、より好ましくは1:5~1:10である。 The dyeing conditions (concentration, liquid temperature, immersion time) can be set, for example, so that the single transmittance of the polarizing film finally obtained is 42.0% or more and the polarization degree is 99.98% or more. As for such dyeing conditions, for example, in the iodine aqueous solution serving as the dyeing solution, the ratio of the iodine and potassium iodide contents is preferably 1:5 to 1:20, and more preferably 1:5 to 1:10.

ホウ酸を含有する処理浴に積層体を浸漬させる処理(例えば、後述の不溶化処理)後に連続して染色を行う場合、ホウ酸が染色浴に混入して染色浴のホウ酸濃度が変化し、染色性が不安定になる場合がある。このような染色性の不安定化を抑制するために、染色浴のホウ酸濃度は、水100重量部に対して、好ましくは4重量部以下、より好ましくは2重量部以下となるように調整される。一方で、染色浴のホウ酸濃度は、水100重量部に対して、好ましくは0.1重量部以上であり、より好ましくは0.2重量部以上であり、さらに好ましくは0.5重量部以上である。1つの実施形態においては、予めホウ酸を含む染色浴を用いて染色する。このような形態によれば、ホウ酸が染色浴に混入した場合のホウ酸濃度の変化の割合を低減し得る。予め染色浴に配合するホウ酸の配合量(上記処理浴に由来しないホウ酸の含有量)は、水100重量部に対して、好ましくは0.1重量部~2重量部であり、より好ましくは0.5重量部~1.5重量部である。 When dyeing is performed continuously after a treatment (for example, an insolubilization treatment described later) in which the laminate is immersed in a treatment bath containing boric acid, the boric acid may be mixed into the dye bath, causing a change in the boric acid concentration in the dye bath and making the dyeability unstable. In order to suppress such instability in the dyeability, the boric acid concentration in the dye bath is preferably adjusted to 4 parts by weight or less, more preferably 2 parts by weight or less, per 100 parts by weight of water. On the other hand, the boric acid concentration in the dye bath is preferably 0.1 parts by weight or more, more preferably 0.2 parts by weight or more, and even more preferably 0.5 parts by weight or more, per 100 parts by weight of water. In one embodiment, the dyeing is performed using a dye bath containing boric acid in advance. According to such an embodiment, the rate of change in the boric acid concentration when boric acid is mixed into the dye bath can be reduced. The amount of boric acid to be added to the dye bath in advance (the content of boric acid not derived from the treatment bath) is preferably 0.1 to 2 parts by weight, and more preferably 0.5 to 1.5 parts by weight, per 100 parts by weight of water.

B-1-4.その他の処理
必要に応じて、上記空中補助延伸の後、水中延伸および染色の前に、不溶化処理を行う。不溶化処理は、代表的には、ホウ酸水溶液にPVA系樹脂層を浸漬させることにより行う。不溶化処理を施すことにより、PVA系樹脂層に耐水性を付与し、水に浸漬した時のPVAの配向低下を防止することができる。不溶化処理におけるホウ酸水溶液の濃度は、水100重量部に対して、好ましくは1重量部~4重量部である。不溶化処理の温度(ホウ酸水溶液の液温)は、好ましくは20℃~50℃である。
B-1-4. Other Treatments If necessary, an insolubilization treatment is performed after the above-mentioned air-assisted stretching and before underwater stretching and dyeing. The insolubilization treatment is typically performed by immersing the PVA-based resin layer in an aqueous solution of boric acid. By performing the insolubilization treatment, water resistance is imparted to the PVA-based resin layer, and it is possible to prevent a decrease in the orientation of the PVA when immersed in water. The concentration of the aqueous solution of boric acid in the insolubilization treatment is preferably 1 part by weight to 4 parts by weight per 100 parts by weight of water. The temperature of the insolubilization treatment (liquid temperature of the aqueous solution of boric acid) is preferably 20°C to 50°C.

必要に応じて、染色の後、水中延伸の前に、架橋処理を行う。架橋処理は、代表的には、ホウ酸水溶液にPVA系樹脂層を浸漬させることにより行う。架橋処理を施すことにより、PVA系樹脂層に耐水性を付与し、後の水中延伸においてPVAの配向低下を防止することができる。架橋処理におけるホウ酸水溶液の濃度は、水100重量部に対して、好ましくは1重量部~5重量部である。ホウ酸水溶液にヨウ化物を配合することが好ましい。ヨウ化物を配合することにより、PVA系樹脂層に吸着させたヨウ素の溶出を抑制することができる。ヨウ化物の具体例は、上述のとおりである。ヨウ化物の配合量は、水100重量部に対して、好ましくは1重量部~5重量部である。架橋処理の温度(ホウ酸水溶液の液温)、好ましくは20℃~50℃である。 If necessary, a crosslinking treatment is performed after dyeing and before underwater stretching. The crosslinking treatment is typically performed by immersing the PVA-based resin layer in an aqueous solution of boric acid. By performing the crosslinking treatment, water resistance is imparted to the PVA-based resin layer, and it is possible to prevent a decrease in the orientation of the PVA during the subsequent underwater stretching. The concentration of the aqueous solution of boric acid in the crosslinking treatment is preferably 1 to 5 parts by weight per 100 parts by weight of water. It is preferable to add an iodide to the aqueous solution of boric acid. By adding an iodide, it is possible to suppress the elution of iodine adsorbed to the PVA-based resin layer. Specific examples of iodides are as described above. The amount of iodide added is preferably 1 to 5 parts by weight per 100 parts by weight of water. The temperature of the crosslinking treatment (liquid temperature of the aqueous solution of boric acid) is preferably 20°C to 50°C.

好ましくは、水中延伸の後、後述の乾燥の前に、洗浄を行う。洗浄は、代表的には、ヨウ化カリウム水溶液にPVA系樹脂層を浸漬させることにより行う。 Preferably, washing is performed after underwater stretching and before drying, which will be described later. Washing is typically performed by immersing the PVA-based resin layer in an aqueous potassium iodide solution.

B-1-5.乾燥
上記乾燥は、上記所定の水分率を有する樹脂膜が得られ得る限り、任意の適切な方式および条件において行い得る。具体的には、ゾーン全体を加熱すること(ゾーン加熱方式)により行ってもよいし、搬送ロールを加熱すること(加熱ロール方式)により行ってもよい。好ましくは加熱ロール方式を採用し、より好ましくはその両方を採用する。加熱ロールを用いることにより、効率的に積層体の加熱カールを抑制して、品質に優れた偏光膜を製造することができる。具体的には、加熱ロールに積層体を沿わせた状態で乾燥することにより、上記熱可塑性樹脂基材の結晶化を効率的に促進させて結晶化度を増加させることができ、比較的低い乾燥温度であっても、熱可塑性樹脂基材の結晶化度を良好に増加させることができる。その結果、熱可塑性樹脂基材は、その剛性が増加して、乾燥によるPVA系樹脂層の収縮に耐え得る状態となり、カールが抑制される。また、加熱ロールを用いることにより、積層体を平らな状態に維持しながら乾燥できるので、カールだけでなくシワの発生も抑制することができる。
B-1-5. Drying The drying can be performed in any suitable manner and under any suitable conditions as long as a resin film having the predetermined moisture content can be obtained. Specifically, the drying can be performed by heating the entire zone (zone heating method) or by heating the transport roll (heating roll method). The heating roll method is preferably adopted, and more preferably both are adopted. By using the heating roll, it is possible to efficiently suppress the heat curl of the laminate and produce a polarizing film with excellent quality. Specifically, by drying the laminate in a state where it is aligned with the heating roll, it is possible to efficiently promote the crystallization of the thermoplastic resin substrate and increase the crystallinity, and even at a relatively low drying temperature, it is possible to satisfactorily increase the crystallinity of the thermoplastic resin substrate. As a result, the rigidity of the thermoplastic resin substrate increases, and it becomes in a state where it can withstand the shrinkage of the PVA-based resin layer due to drying, and curling is suppressed. In addition, by using the heating roll, it is possible to dry the laminate while maintaining it in a flat state, so that not only curling but also wrinkles can be suppressed.

乾燥により、積層体を幅方向に収縮させ、光学特性を向上させることができる。PVAおよびPVA/ヨウ素錯体の配向性を効果的に高めることができるからである。乾燥による積層体の幅方向の収縮率は、好ましくは1%~10%であり、より好ましくは2%~8%であり、さらに好ましくは4%~6%である。加熱ロールを用いることにより、積層体を搬送しながら連続的に幅方向に収縮させることができ、高い生産性を実現することができる。 Drying can shrink the laminate in the width direction, improving the optical properties. This is because it can effectively increase the orientation of the PVA and the PVA/iodine complex. The shrinkage rate of the laminate in the width direction due to drying is preferably 1% to 10%, more preferably 2% to 8%, and even more preferably 4% to 6%. By using a heated roll, the laminate can be continuously shrunk in the width direction while being transported, achieving high productivity.

図2は、加熱ロールを用いた乾燥の一例を示す概略図である。図示例では、所定の温度に加熱された搬送ロールR1~R6と、ガイドロールG1~G4とにより、積層体200を搬送しながら乾燥させる。図示例では、PVA系樹脂層の面と熱可塑性樹脂基材の面を交互に連続加熱するように搬送ロールR1~R6が配置されているが、例えば、積層体200の一方の面(たとえば熱可塑性樹脂基材面)のみを連続的に加熱するように搬送ロールR1~R6を配置してもよい。 Figure 2 is a schematic diagram showing an example of drying using heated rolls. In the illustrated example, the laminate 200 is dried while being transported by transport rolls R1 to R6 heated to a predetermined temperature and guide rolls G1 to G4. In the illustrated example, the transport rolls R1 to R6 are arranged so as to alternately and continuously heat the surface of the PVA-based resin layer and the surface of the thermoplastic resin substrate, but, for example, the transport rolls R1 to R6 may be arranged so as to continuously heat only one surface of the laminate 200 (for example, the thermoplastic resin substrate surface).

搬送ロールの加熱温度(加熱ロールの温度)、加熱ロールの数、加熱ロールとの接触時間等を調整することにより、乾燥条件を制御することができる。加熱ロールの温度は、好ましくは60℃~120℃であり、より好ましくは65℃~100℃であり、さらに好ましくは70℃~80℃である。このような温度によれば、熱可塑性樹脂の結晶化度を増加させてカールを抑制し得るとともに、積層体に極めて優れた耐久性を付与し得る。また、上記樹脂膜の水分率を良好に達成し得る。なお、加熱ロールの温度は、接触式温度計により測定することができる。図示例では、6個の搬送ロールが設けられているが、搬送ロールは複数個であれば特に制限はない。搬送ロールは、通常2個~40個、好ましくは4個~30個設けられる。積層体と加熱ロールとの接触時間(総接触時間)は、好ましくは1秒~300秒であり、より好ましくは1~20秒であり、さらに好ましくは1~10秒である。 Drying conditions can be controlled by adjusting the heating temperature of the transport rolls (temperature of the heating rolls), the number of heating rolls, the contact time with the heating rolls, etc. The temperature of the heating rolls is preferably 60°C to 120°C, more preferably 65°C to 100°C, and even more preferably 70°C to 80°C. Such a temperature can increase the crystallinity of the thermoplastic resin to suppress curling and provide the laminate with extremely excellent durability. In addition, the moisture content of the resin film can be well achieved. The temperature of the heating rolls can be measured with a contact thermometer. In the illustrated example, six transport rolls are provided, but there is no particular restriction as long as there are multiple transport rolls. The number of transport rolls is usually 2 to 40, preferably 4 to 30. The contact time (total contact time) between the laminate and the heating rolls is preferably 1 to 300 seconds, more preferably 1 to 20 seconds, and even more preferably 1 to 10 seconds.

加熱ロールは、加熱炉(例えば、オーブン)内に設けてもよいし、通常の製造ライン(室温環境下)に設けてもよい。好ましくは、送風手段を備える加熱炉内に設けられる。加熱ロールによる乾燥と熱風乾燥とを併用することにより、加熱ロール間での急峻な温度変化を抑制することができ、幅方向の収縮を容易に制御することができる。熱風乾燥の温度は、好ましくは30℃~100℃である。また、熱風乾燥時間は、好ましくは1秒~300秒である。熱風の風速は、好ましくは10m/s~30m/s程度である。なお、当該風速は加熱炉内における風速であり、ミニベーン型デジタル風速計により測定することができる。 The heating rolls may be installed in a heating furnace (e.g., an oven) or in a normal production line (at room temperature). Preferably, they are installed in a heating furnace equipped with a blowing means. By using both drying with the heating rolls and hot air drying, it is possible to suppress abrupt temperature changes between the heating rolls, and it is possible to easily control shrinkage in the width direction. The hot air drying temperature is preferably 30°C to 100°C. The hot air drying time is preferably 1 second to 300 seconds. The hot air speed is preferably about 10 m/s to 30 m/s. The air speed is the air speed in the heating furnace, and can be measured by a mini-vane type digital anemometer.

B-2.水洗
上記水洗は、例えば、上記樹脂膜の表面に水を接触させることにより行う。例えば、樹脂膜を水浴に浸漬させることにより水洗を行う。樹脂膜を水浴に浸漬させる際、樹脂膜の裏面は、任意の適切な保護基材で保護されていることが好ましい。1つの実施形態においては、保護基材として、上記樹脂基材を用いる。具体的には、樹脂膜から樹脂基材を剥離させないで(上記積層体の状態で)、樹脂膜を水浴に浸漬させる。別の実施形態においては、保護基材として、後述の保護層を用いる。例えば、上記積層体の樹脂膜表面に保護層を積層した後、樹脂膜から樹脂基材を剥離して保護層と樹脂膜との積層物を作製し、この積層物を水浴に浸漬させる。水浴に浸漬させる際、樹脂膜は長尺状であってもよいし、枚葉状であってもよい。
B-2. Washing with water The washing with water is carried out, for example, by contacting the surface of the resin film with water. For example, the resin film is washed with water by immersing it in a water bath. When the resin film is immersed in a water bath, the back surface of the resin film is preferably protected with any appropriate protective substrate. In one embodiment, the resin substrate is used as the protective substrate. Specifically, the resin film is immersed in a water bath without peeling the resin substrate from the resin film (in the state of the laminate). In another embodiment, a protective layer described later is used as the protective substrate. For example, after laminating a protective layer on the surface of the resin film of the laminate, the resin substrate is peeled off from the resin film to prepare a laminate of the protective layer and the resin film, and this laminate is immersed in a water bath. When immersed in a water bath, the resin film may be in a long shape or a sheet shape.

上記水浴(接触させる水)の温度は、例えば20℃以上であり、好ましくは25℃以上であり、より好ましくは30℃以上であり、さらに好ましくは35℃以上であり、特に好ましくは40℃以上である。このような温度によれば、例えば、短時間で上記反射率を満足する偏光膜を作製することができる。一方、水浴(接触させる水)の温度は、好ましくは60℃以下であり、より好ましくは50℃以下である。このような温度によれば、例えば、得られる偏光膜は表面性状に優れ、優れた光学特性を保持し得る。 The temperature of the water bath (water to be contacted) is, for example, 20°C or higher, preferably 25°C or higher, more preferably 30°C or higher, even more preferably 35°C or higher, and particularly preferably 40°C or higher. At such a temperature, for example, a polarizing film that satisfies the above reflectance can be produced in a short time. On the other hand, the temperature of the water bath (water to be contacted) is preferably 60°C or lower, more preferably 50°C or lower. At such a temperature, for example, the obtained polarizing film has excellent surface properties and can retain excellent optical properties.

水浴への浸漬時間(接触時間)は、例えば、上記温度、樹脂膜の厚み等に応じて設定される。水浴への浸漬時間は、好ましくは15秒~5分であり、より好ましくは30秒~3分である。 The immersion time in the water bath (contact time) is set according to, for example, the above temperature, the thickness of the resin film, etc. The immersion time in the water bath is preferably 15 seconds to 5 minutes, and more preferably 30 seconds to 3 minutes.

水浴(接触させる水)は、ホウ酸等の添加剤を含んでいてもよい。 The water bath (the water that is brought into contact) may contain additives such as boric acid.

上記水洗後、偏光膜は乾燥処理に供され得る。乾燥温度は、例えば30℃~60℃である。乾燥時間は、例えば15秒~3分である。 After the above water washing, the polarizing film may be subjected to a drying process. The drying temperature is, for example, 30°C to 60°C. The drying time is, for example, 15 seconds to 3 minutes.

C.偏光板
本発明の1つの実施形態による偏光板は、上記偏光膜と、この偏光膜の少なくとも片側に配置される保護層または位相差層とを有する。
C. Polarizing Plate A polarizing plate according to one embodiment of the present invention has the above polarizing film, and a protective layer or a retardation layer disposed on at least one side of the polarizing film.

図3は、本発明の第一実施形態による偏光板の概略の構成を示す模式的な断面図である。偏光板(位相差層付偏光板)100は、偏光膜10、保護層20、位相差層30および粘着剤層40をこの順に有する。偏光板100において、偏光膜10の裏面10b側にのみ保護層20が配置され、表面10a側(例えば、視認側)には保護層は配置されていないが、実用的には、偏光膜10の表面10aは、任意の適切な保護材(図示せず)で保護される。例えば、偏光板100の偏光膜10に対し加工が施された後に、偏光膜10に保護材が積層される。位相差層30は、単一層であってもよいし、二層以上が積層された積層構造を有していてもよい。 Figure 3 is a schematic cross-sectional view showing the outline of the polarizing plate according to the first embodiment of the present invention. The polarizing plate (polarizing plate with retardation layer) 100 has a polarizing film 10, a protective layer 20, a retardation layer 30, and an adhesive layer 40 in this order. In the polarizing plate 100, the protective layer 20 is arranged only on the back surface 10b side of the polarizing film 10, and no protective layer is arranged on the front surface 10a side (e.g., the viewing side). However, in practice, the front surface 10a of the polarizing film 10 is protected by any appropriate protective material (not shown). For example, after processing is performed on the polarizing film 10 of the polarizing plate 100, a protective material is laminated on the polarizing film 10. The retardation layer 30 may be a single layer, or may have a laminated structure in which two or more layers are laminated.

図4は、本発明の第二実施形態による偏光板の概略の構成を示す模式的な断面図である。偏光板(位相差層付偏光板)110は、偏光膜10の裏面10b側に配置された保護層20、偏光膜10、偏光膜10の表面10a側に配置された位相差層30および粘着剤層40を視認側からこの順に有する。本実施形態では、位相差層30が偏光膜10の保護層として機能し得、位相差層30が偏光膜10の表面10a側に配置される点が上記第一実施形態と異なる。 Figure 4 is a schematic cross-sectional view showing the general configuration of a polarizing plate according to a second embodiment of the present invention. The polarizing plate (polarizing plate with a retardation layer) 110 has, in this order from the viewing side, a protective layer 20 arranged on the back surface 10b side of the polarizing film 10, a polarizing film 10, a retardation layer 30 arranged on the front surface 10a side of the polarizing film 10, and an adhesive layer 40. This embodiment differs from the first embodiment in that the retardation layer 30 can function as a protective layer for the polarizing film 10 and the retardation layer 30 is arranged on the front surface 10a side of the polarizing film 10.

図示しないが、偏光板は、その他の機能層をさらに有していてもよい。偏光板が有し得る機能層の種類、特性、数、組み合わせ、配置等は、目的に応じて適切に設定され得る。例えば、偏光板は、導電層または導電層付等方性基材をさらに有していてもよい。導電層または導電層付等方性基材を有する偏光板(位相差層付偏光板)は、例えば、画像表示パネル内部にタッチセンサが組み込まれた、いわゆるインナータッチパネル型入力表示装置に適用される。別の例としては、偏光板は、その他の位相差層をさらに有していてもよい。その他の位相差層の光学的特性(例えば、屈折率特性、面内位相差、Nz係数、光弾性係数)、厚み、配置等は、目的に応じて適切に設定され得る。具体例として、偏光膜10の視認側には、偏光サングラスを介して視認する場合の視認性を改善するその他の位相差層(代表的には、(楕)円偏光機能を付与する層、超高位相差を付与する層)が設けられていてもよい。このような層を有することにより、偏光サングラス等の偏光レンズを介して表示画面を視認した場合でも、優れた視認性を実現することができる。したがって、得られる偏光板(位相差層付偏光板)は、屋外で用いられ得る画像表示装置にも好適に適用され得る。 Although not shown, the polarizing plate may further have other functional layers. The type, characteristics, number, combination, arrangement, etc. of the functional layers that the polarizing plate may have may be appropriately set according to the purpose. For example, the polarizing plate may further have a conductive layer or an isotropic substrate with a conductive layer. A polarizing plate having a conductive layer or an isotropic substrate with a conductive layer (polarizing plate with a retardation layer) is applied to, for example, a so-called inner touch panel type input display device in which a touch sensor is incorporated inside an image display panel. As another example, the polarizing plate may further have other retardation layers. The optical characteristics (e.g., refractive index characteristics, in-plane retardation, Nz coefficient, photoelastic coefficient), thickness, arrangement, etc. of the other retardation layers may be appropriately set according to the purpose. As a specific example, the viewing side of the polarizing film 10 may be provided with other retardation layers (typically, a layer that imparts (elliptical) polarizing function, a layer that imparts ultra-high retardation) that improve visibility when viewed through polarized sunglasses. By having such a layer, excellent visibility can be achieved even when the display screen is viewed through polarized lenses such as polarized sunglasses. Therefore, the resulting polarizing plate (polarizing plate with retardation layer) can be suitably applied to image display devices that can be used outdoors.

偏光板を構成する各部材は、任意の適切な接着層(図示せず)を介して積層され得る。接着層の具体例としては、接着剤層、粘着剤層が挙げられる。具体的には、位相差層30は、接着剤層を介して(好ましくは、活性エネルギー線硬化型接着剤を用いて)偏光膜10または保護層20に貼り合わせられてもよいし、粘着剤層を介して偏光膜10または保護層20に貼り合わせられてもよい。位相差層30が二層以上の積層構造を有する場合、それぞれの位相差層は、例えば、接着剤層を介して(好ましくは、活性エネルギー線硬化型接着剤を用いて)貼り合わせられている。 Each member constituting the polarizing plate may be laminated via any suitable adhesive layer (not shown). Specific examples of the adhesive layer include an adhesive layer and a pressure-sensitive adhesive layer. Specifically, the retardation layer 30 may be attached to the polarizing film 10 or the protective layer 20 via an adhesive layer (preferably using an active energy ray-curable adhesive), or may be attached to the polarizing film 10 or the protective layer 20 via a pressure-sensitive adhesive layer. When the retardation layer 30 has a laminated structure of two or more layers, each retardation layer is, for example, attached via an adhesive layer (preferably using an active energy ray-curable adhesive).

図示しないが、粘着剤層40の表面には、実用的には、剥離フィルム(セパレーター)が貼り合わせられる。剥離フィルムは、偏光板が使用に供されるまで仮着され得る。剥離フィルムを用いることにより、例えば、粘着剤層を保護するとともに、偏光板のロール形成が可能となる。 Although not shown, in practice, a release film (separator) is attached to the surface of the adhesive layer 40. The release film can be temporarily attached until the polarizing plate is used. By using the release film, for example, the adhesive layer is protected and the polarizing plate can be formed into a roll.

偏光板は、長尺状であってもよいし、枚葉状であってもよい。本明細書において、「長尺状」とは、幅に対して長さが十分に長い細長形状をいい、例えば、幅に対して長さが10倍以上、好ましくは20倍以上の細長形状をいう。長尺状の偏光板は、ロール状に巻回可能である。 The polarizing plate may be long or in the form of a sheet. In this specification, "long" refers to an elongated shape in which the length is sufficiently long compared to the width, for example, a long and thin shape in which the length is 10 times or more, preferably 20 times or more, the width. A long polarizing plate can be wound into a roll.

C-1.保護層
保護層20は、偏光膜の保護層として使用できる任意の適切なフィルムで形成され得る。当該フィルムの主成分となる材料の具体例としては、トリアセチルセルロース(TAC)等のセルロース系樹脂や、ポリエステル系、ポリビニルアルコール系、ポリカーボネート系、ポリアミド系、ポリイミド系、ポリエーテルスルホン系、ポリスルホン系、ポリスチレン系、ポリノルボルネン系、ポリオレフィン系、(メタ)アクリル系、アセテート系等の透明樹脂が挙げられる。
C-1. Protective layer The protective layer 20 may be formed of any suitable film that can be used as a protective layer for a polarizing film. Specific examples of materials that are the main components of the film include cellulose-based resins such as triacetyl cellulose (TAC), and transparent resins such as polyesters, polyvinyl alcohols, polycarbonates, polyamides, polyimides, polyethersulfones, polysulfones, polystyrenes, polynorbornenes, polyolefins, (meth)acrylics, and acetates.

上記偏光板は、代表的には、画像表示装置の視認側に配置される。したがって、保護層20には、必要に応じて(例えば、図4に示す形態では)、ハードコート(HC)処理、反射防止処理、スティッキング防止処理、アンチグレア処理等の表面処理が施されていてもよい。 The polarizing plate is typically disposed on the viewing side of the image display device. Therefore, the protective layer 20 may be subjected to surface treatments such as hard coat (HC) treatment, anti-reflection treatment, anti-sticking treatment, and anti-glare treatment, if necessary (for example, in the form shown in FIG. 4).

保護層20の厚みは、好ましくは5μm~80μm、より好ましくは10μm~40μm、さらに好ましくは10μm~30μmである。なお、上記表面処理が施されている場合、保護層20の厚みは、表面処理層の厚みを含めた厚みである。 The thickness of the protective layer 20 is preferably 5 μm to 80 μm, more preferably 10 μm to 40 μm, and even more preferably 10 μm to 30 μm. If the above-mentioned surface treatment has been applied, the thickness of the protective layer 20 includes the thickness of the surface treatment layer.

偏光膜10と位相差層30との間に配置される保護層は、1つの実施形態においては、光学的に等方性であることが好ましい。本明細書において「光学的に等方性である」とは、面内位相差Re(550)が0nm~10nmであり、厚み方向の位相差Rth(550)が-10nm~+10nmであることをいう。 In one embodiment, the protective layer disposed between the polarizing film 10 and the retardation layer 30 is preferably optically isotropic. In this specification, "optically isotropic" means that the in-plane retardation Re(550) is 0 nm to 10 nm, and the retardation in the thickness direction Rth(550) is -10 nm to +10 nm.

1つの実施形態においては、上記樹脂基材を偏光膜の保護層として用い得る。例えば、図3に示す形態では、樹脂基材をそのまま保護層として用いることにより、製造工程を少なくすることができる。 In one embodiment, the resin substrate can be used as a protective layer for the polarizing film. For example, in the embodiment shown in FIG. 3, the resin substrate can be used as a protective layer as is, thereby reducing the number of manufacturing steps.

C-2.位相差層
位相差層30としては、任意の適切な構成が採用され得る。1つの実施形態においては、位相差層30として、液晶化合物の配向固化層(液晶配向固化層)が用いられる。液晶化合物を用いることにより、得られる位相差層のnxとnyとの差を非液晶材料に比べて格段に大きくすることができるので、所望の面内位相差を得るための位相差層の厚みを格段に小さくすることができる。本明細書において「配向固化層」とは、液晶化合物が層内で所定の方向に配向し、その配向状態が固定されている層をいう。なお、「配向固化層」は、後述のように液晶モノマーを硬化させて得られる配向硬化層を包含する概念である。位相差層においては、代表的には、棒状の液晶化合物が位相差層の遅相軸方向に並んだ状態で配向している(ホモジニアス配向)。
C-2. Retardation layer Any suitable configuration may be adopted as the retardation layer 30. In one embodiment, an orientation solidified layer of a liquid crystal compound (liquid crystal orientation solidified layer) is used as the retardation layer 30. By using a liquid crystal compound, the difference between nx and ny of the obtained retardation layer can be significantly increased compared to non-liquid crystal materials, so the thickness of the retardation layer for obtaining a desired in-plane retardation can be significantly reduced. In this specification, the "orientation solidified layer" refers to a layer in which the liquid crystal compound is oriented in a predetermined direction within the layer and the orientation state is fixed. The "orientation solidified layer" is a concept that includes an orientation hardened layer obtained by hardening a liquid crystal monomer as described later. In the retardation layer, typically, rod-shaped liquid crystal compounds are aligned in the slow axis direction of the retardation layer (homogeneous orientation).

上記位相差層の厚みは、その構成(単一層であるか積層構造を有するか)にもよるが、好ましくは8μm以下であり、より好ましくは5μm以下である。一方、位相差層の厚みは、例えば1μm以上である。なお、位相差層が積層構造である場合、「位相差層の厚み」は、各位相差層の厚みの合計を意味する。具体的には、「位相差層の厚み」には接着層の厚みは含まれない。 The thickness of the retardation layer depends on its structure (whether it is a single layer or has a laminated structure), but is preferably 8 μm or less, and more preferably 5 μm or less. On the other hand, the thickness of the retardation layer is, for example, 1 μm or more. Note that when the retardation layer has a laminated structure, the "thickness of the retardation layer" means the sum of the thicknesses of the individual retardation layers. Specifically, the "thickness of the retardation layer" does not include the thickness of the adhesive layer.

上記液晶配向固化層は、所定の基材の表面に配向処理を施し、当該表面に液晶化合物を含む塗工液を塗工して当該液晶化合物を上記配向処理に対応する方向に配向させ、当該配向状態を固定することにより形成され得る。配向処理としては、任意の適切な配向処理が採用され得る。具体的には、機械的な配向処理、物理的な配向処理、化学的な配向処理が挙げられる。機械的な配向処理の具体例としては、ラビング処理、延伸処理が挙げられる。物理的な配向処理の具体例としては、磁場配向処理、電場配向処理が挙げられる。化学的な配向処理の具体例としては、斜方蒸着法、光配向処理が挙げられる。各種配向処理の処理条件は、目的に応じて任意の適切な条件が採用され得る。 The liquid crystal alignment solidified layer can be formed by performing an alignment treatment on the surface of a predetermined substrate, applying a coating liquid containing a liquid crystal compound to the surface to align the liquid crystal compound in a direction corresponding to the alignment treatment, and fixing the alignment state. Any appropriate alignment treatment can be adopted as the alignment treatment. Specific examples include mechanical alignment treatment, physical alignment treatment, and chemical alignment treatment. Specific examples of mechanical alignment treatment include rubbing treatment and stretching treatment. Specific examples of physical alignment treatment include magnetic field alignment treatment and electric field alignment treatment. Specific examples of chemical alignment treatment include oblique deposition and photoalignment treatment. Any appropriate conditions can be adopted as the treatment conditions for various alignment treatments depending on the purpose.

液晶化合物の配向は、液晶化合物の種類に応じて液晶相を示す温度で処理することにより行われる。このような温度処理を行うことにより、液晶化合物が液晶状態をとり、基材表面の配向処理方向に応じて当該液晶化合物が配向する。 The alignment of liquid crystal compounds is achieved by treating them at a temperature that exhibits a liquid crystal phase according to the type of liquid crystal compound. By carrying out such temperature treatment, the liquid crystal compounds assume a liquid crystal state, and the liquid crystal compounds are aligned according to the alignment treatment direction of the substrate surface.

配向状態の固定は、1つの実施形態においては、上記のように配向した液晶化合物を冷却することにより行われる。液晶化合物が重合性モノマーまたは架橋性モノマーである場合には、配向状態の固定は、上記のように配向した液晶化合物に重合処理または架橋処理を施すことにより行われる。 In one embodiment, the alignment state is fixed by cooling the liquid crystal compound aligned as described above. When the liquid crystal compound is a polymerizable monomer or a crosslinkable monomer, the alignment state is fixed by subjecting the liquid crystal compound aligned as described above to a polymerization treatment or a crosslinking treatment.

液晶化合物の具体例および配向固化層の形成方法の詳細は、特開2006-163343号公報に記載されている。当該公報の記載は本明細書に参考として援用される。 Specific examples of liquid crystal compounds and details of the method for forming the alignment solidification layer are described in JP 2006-163343 A. The disclosure of this publication is incorporated herein by reference.

位相差層30が単一層である場合、位相差層30は、例えば、λ/4板として機能し得る。具体的には、位相差層のRe(550)は、好ましくは100nm~180nmであり、より好ましくは110nm~170nmであり、さらに好ましくは110nm~160nmである。位相差層の厚みは、λ/4板の所望の面内位相差が得られるよう調整され得る。位相差層が上述の液晶配向固化層である場合、その厚みは、例えば1.0μm~2.5μmである。本実施形態においては、位相差層の遅相軸と偏光膜の吸収軸とのなす角度は、好ましくは40°~50°であり、より好ましくは42°~48°であり、さらに好ましくは44°~46°である。本実施形態では、位相差層は、好ましくは、位相差値が測定光の波長に応じて大きくなる逆分散波長特性を示す。なお、この実施形態においては、偏光板は、nz>nx=nyの屈折率特性を示す層(その他の位相差層、図示せず)をさらに有し得る。 When the retardation layer 30 is a single layer, the retardation layer 30 can function as, for example, a λ/4 plate. Specifically, the Re(550) of the retardation layer is preferably 100 nm to 180 nm, more preferably 110 nm to 170 nm, and even more preferably 110 nm to 160 nm. The thickness of the retardation layer can be adjusted so as to obtain the desired in-plane retardation of the λ/4 plate. When the retardation layer is the above-mentioned liquid crystal alignment solidification layer, the thickness is, for example, 1.0 μm to 2.5 μm. In this embodiment, the angle between the slow axis of the retardation layer and the absorption axis of the polarizing film is preferably 40° to 50°, more preferably 42° to 48°, and even more preferably 44° to 46°. In this embodiment, the retardation layer preferably exhibits an inverse dispersion wavelength characteristic in which the retardation value increases according to the wavelength of the measurement light. In this embodiment, the polarizing plate may further include a layer (another retardation layer, not shown) that exhibits a refractive index characteristic of nz>nx=ny.

位相差層30が積層構造を有する場合、位相差層30は、例えば、偏光膜10側から順にH層とQ層とが配置された、二層の積層構造を有する。H層は、代表的にはλ/2板として機能し得、Q層は、代表的にはλ/4板として機能し得る。具体的には、H層のRe(550)は好ましくは200nm~300nmであり、より好ましくは220nm~290nmであり、さらに好ましくは230nm~280nmであり;Q層のRe(550)は、好ましくは100nm~180nmであり、より好ましくは110nm~170nmであり、さらに好ましくは110nm~150nmである。H層の厚みは、λ/2板の所望の面内位相差が得られるよう調整され得る。H層が上述の液晶配向固化層である場合、その厚みは、例えば2.0μm~4.0μmである。Q層の厚みは、λ/4板の所望の面内位相差が得られるよう調整され得る。Q層が上述の液晶配向固化層である場合、その厚みは、例えば1.0μm~2.5μmである。本実施形態においては、H層の遅相軸と偏光膜の吸収軸とのなす角度は、好ましくは10°~20°であり、より好ましくは12°~18°であり、さらに好ましくは12°~16°であり;Q層の遅相軸と偏光膜の吸収軸とのなす角度は、好ましくは70°~80°であり、より好ましくは72°~78°であり、さらに好ましくは72°~76°である。位相差層30が積層構造を有する場合、それぞれの層(例えば、H層およびQ層)は、位相差値が測定光の波長に応じて大きくなる逆分散波長特性を示してもよく、位相差値が測定光の波長に応じて小さくなる正の波長分散特性を示してもよく、位相差値が測定光の波長によってもほとんど変化しないフラットな波長分散特性を示してもよい。 When the retardation layer 30 has a laminated structure, the retardation layer 30 has a two-layer laminated structure in which, for example, an H layer and a Q layer are arranged in order from the polarizing film 10 side. The H layer can typically function as a λ/2 plate, and the Q layer can typically function as a λ/4 plate. Specifically, the Re(550) of the H layer is preferably 200 nm to 300 nm, more preferably 220 nm to 290 nm, and even more preferably 230 nm to 280 nm; the Re(550) of the Q layer is preferably 100 nm to 180 nm, more preferably 110 nm to 170 nm, and even more preferably 110 nm to 150 nm. The thickness of the H layer can be adjusted so as to obtain the desired in-plane retardation of the λ/2 plate. When the H layer is the above-mentioned liquid crystal alignment solidified layer, its thickness is, for example, 2.0 μm to 4.0 μm. The thickness of the Q layer can be adjusted so as to obtain the desired in-plane retardation of the λ/4 plate. When the Q layer is the above-mentioned liquid crystal alignment solidified layer, its thickness is, for example, 1.0 μm to 2.5 μm. In this embodiment, the angle between the slow axis of the H layer and the absorption axis of the polarizing film is preferably 10° to 20°, more preferably 12° to 18°, and even more preferably 12° to 16°; the angle between the slow axis of the Q layer and the absorption axis of the polarizing film is preferably 70° to 80°, more preferably 72° to 78°, and even more preferably 72° to 76°. When the retardation layer 30 has a laminated structure, each layer (for example, the H layer and the Q layer) may exhibit a reverse dispersion wavelength characteristic in which the retardation value increases according to the wavelength of the measurement light, may exhibit a positive wavelength dispersion characteristic in which the retardation value decreases according to the wavelength of the measurement light, or may exhibit a flat wavelength dispersion characteristic in which the retardation value hardly changes depending on the wavelength of the measurement light.

位相差層30(積層構造を有する場合にはそれぞれの層)は、代表的には、屈折率特性がnx>ny=nzの関係を示す。なお、「ny=nz」はnyとnzが完全に等しい場合だけではなく、実質的に等しい場合を包含する。したがって、本発明の効果を損なわない範囲で、ny>nzまたはny<nzとなる場合があり得る。位相差層のNz係数は、好ましくは0.9~1.5であり、より好ましくは0.9~1.3である。 The retardation layer 30 (or each layer when it has a laminated structure) typically exhibits the following refractive index characteristic: nx>ny=nz. Note that "ny=nz" does not only include the case where ny and nz are completely equal, but also includes the case where they are substantially equal. Therefore, there may be cases where ny>nz or ny<nz, as long as the effect of the present invention is not impaired. The Nz coefficient of the retardation layer is preferably 0.9 to 1.5, and more preferably 0.9 to 1.3.

上述のとおり、位相差層は、好ましくは液晶配向固化層である。上記液晶化合物としては、例えば、液晶相がネマチック相である液晶化合物(ネマチック液晶)が挙げられる。このような液晶化合物として、例えば、液晶ポリマーや液晶モノマーが使用可能である。液晶化合物の液晶性の発現機構は、リオトロピックでもサーモトロピックでもどちらでもよい。液晶ポリマーおよび液晶モノマーは、それぞれ単独で用いてもよく、組み合わせてもよい。 As described above, the retardation layer is preferably a liquid crystal alignment solidified layer. Examples of the liquid crystal compound include liquid crystal compounds whose liquid crystal phase is a nematic phase (nematic liquid crystals). Examples of such liquid crystal compounds that can be used include liquid crystal polymers and liquid crystal monomers. The mechanism by which the liquid crystallinity of the liquid crystal compound is expressed may be either lyotropic or thermotropic. The liquid crystal polymer and liquid crystal monomer may be used alone or in combination.

液晶化合物が液晶モノマーである場合、当該液晶モノマーは、重合性モノマーおよび架橋性モノマーであることが好ましい。液晶モノマーを重合または架橋(すなわち、硬化)させることにより、液晶モノマーの配向状態を固定できるからである。液晶モノマーを配向させた後に、例えば、液晶モノマー同士を重合または架橋させれば、それによって上記配向状態を固定することができる。ここで、重合によりポリマーが形成され、架橋により3次元網目構造が形成されることとなるが、これらは非液晶性である。したがって、形成された位相差層は、例えば、液晶性化合物に特有の温度変化による液晶相、ガラス相、結晶相への転移が起きることはない。その結果、位相差層は、温度変化に影響されない、極めて安定性に優れた位相差層となる。 When the liquid crystal compound is a liquid crystal monomer, the liquid crystal monomer is preferably a polymerizable monomer and a crosslinkable monomer. This is because the orientation state of the liquid crystal monomer can be fixed by polymerizing or crosslinking (i.e., curing) the liquid crystal monomer. After the liquid crystal monomer is aligned, for example, the liquid crystal monomers can be polymerized or crosslinked with each other, thereby fixing the above-mentioned orientation state. Here, a polymer is formed by polymerization, and a three-dimensional network structure is formed by crosslinking, but these are non-liquid crystals. Therefore, the formed retardation layer does not undergo transition to a liquid crystal phase, a glass phase, or a crystalline phase due to temperature changes, which are specific to liquid crystal compounds. As a result, the retardation layer becomes a retardation layer that is not affected by temperature changes and has excellent stability.

液晶モノマーが液晶性を示す温度範囲は、その種類に応じて異なる。具体的には、当該温度範囲は、好ましくは40℃~120℃であり、さらに好ましくは50℃~100℃であり、最も好ましくは60℃~90℃である。 The temperature range in which the liquid crystal monomer exhibits liquid crystallinity varies depending on the type of the monomer. Specifically, the temperature range is preferably 40°C to 120°C, more preferably 50°C to 100°C, and most preferably 60°C to 90°C.

上記液晶モノマーとしては、任意の適切な液晶モノマーが採用され得る。例えば、特表2002-533742(WO00/37585)、EP358208(US5211877)、EP66137(US4388453)、WO93/22397、EP0261712、DE19504224、DE4408171、およびGB2280445等に記載の重合性メソゲン化合物等が使用できる。このような重合性メソゲン化合物の具体例としては、例えば、BASF社の商品名LC242、Merck社の商品名E7、Wacker-Chem社の商品名LC-Sillicon-CC3767が挙げられる。液晶モノマーとしては、ネマチック性液晶モノマーが好ましい。 As the liquid crystal monomer, any suitable liquid crystal monomer can be used. For example, the polymerizable mesogen compounds described in JP-A-2002-533742 (WO00/37585), EP358208 (US5211877), EP66137 (US4388453), WO93/22397, EP0261712, DE19504224, DE4408171, GB2280445, etc. can be used. Specific examples of such polymerizable mesogen compounds include BASF's product name LC242, Merck's product name E7, and Wacker-Chem's product name LC-Sillicon-CC3767. As the liquid crystal monomer, a nematic liquid crystal monomer is preferable.

C-3.粘着剤層
粘着剤層40としては、任意の適切な構成が採用され得る。具体例としては、アクリル系粘着剤、ゴム系粘着剤、シリコーン系粘着剤、ポリエステル系粘着剤、ウレタン系粘着剤、エポキシ系粘着剤、およびポリエーテル系粘着剤が挙げられる。粘着剤のベース樹脂を形成するモノマーの種類、数、組み合わせおよび配合比、ならびに、架橋剤の配合量、反応温度、反応時間等を調整することにより、目的に応じた所望の特性を有する粘着剤を調製することができる。粘着剤のベース樹脂は、単独で用いてもよく、二種以上を組み合わせて用いてもよい。ベース樹脂は、好ましくはアクリル樹脂である(具体的には、粘着剤層は、好ましくはアクリル系粘着剤で構成される)。粘着剤層の厚みは、例えば10μm~20μmである。
C-3. Adhesive Layer Any suitable structure may be adopted for the adhesive layer 40. Specific examples include acrylic adhesives, rubber adhesives, silicone adhesives, polyester adhesives, urethane adhesives, epoxy adhesives, and polyether adhesives. By adjusting the type, number, combination, and compounding ratio of monomers forming the base resin of the adhesive, as well as the compounding amount of the crosslinking agent, reaction temperature, reaction time, and the like, an adhesive having desired properties according to the purpose can be prepared. The base resin of the adhesive may be used alone or in combination of two or more kinds. The base resin is preferably an acrylic resin (specifically, the adhesive layer is preferably composed of an acrylic adhesive). The thickness of the adhesive layer is, for example, 10 μm to 20 μm.

C-4.偏光板の作製
偏光板は、代表的には、上記水洗後、偏光膜に位相差層等の各種層を積層することにより得ることができる。
C-4. Preparation of Polarizing Plate A polarizing plate can be typically obtained by laminating various layers such as a retardation layer on the polarizing film after the above-mentioned water washing.

図3に示す偏光板100は、例えば、上記水洗後の樹脂基材と偏光膜との積層体の樹脂基材をそのまま保護層20として用い、樹脂基材に位相差層30および粘着剤層40を順次積層することにより得ることができる。また、例えば、上記樹脂基材と樹脂膜との積層体の樹脂膜側に保護層20を積層し、樹脂膜から樹脂基材を剥離して得られた積層物を水洗し、保護層20側に位相差層30および粘着剤層40を順次積層することにより得ることができる。また、例えば、上記保護層20と樹脂膜との積層物に、位相差層30または位相差層30と粘着剤層40とを積層した後に、上記水洗を行うことで、偏光板100を得てもよい。 The polarizing plate 100 shown in FIG. 3 can be obtained, for example, by using the resin substrate of the laminate of the resin substrate and the polarizing film after the water washing as it is as the protective layer 20, and sequentially laminating the retardation layer 30 and the adhesive layer 40 on the resin substrate. Also, for example, the polarizing plate 100 can be obtained by laminating the protective layer 20 on the resin film side of the laminate of the resin substrate and the resin film, peeling the resin substrate from the resin film to obtain a laminate, washing the laminate with water, and sequentially laminating the retardation layer 30 and the adhesive layer 40 on the protective layer 20 side. Also, for example, the polarizing plate 100 may be obtained by laminating the retardation layer 30 or the retardation layer 30 and the adhesive layer 40 on the laminate of the protective layer 20 and the resin film, and then washing with water.

図4に示す偏光板110は、例えば、上記樹脂基材と樹脂膜との積層体の樹脂膜側に保護層20を積層し、樹脂膜から樹脂基材を剥離して得られた積層物を水洗し、偏光膜10側に位相差層30および粘着剤層40を順次積層することにより得ることができる。 The polarizing plate 110 shown in FIG. 4 can be obtained, for example, by laminating a protective layer 20 on the resin film side of the laminate of the resin substrate and the resin film, peeling the resin substrate from the resin film to obtain a laminate, washing the resulting laminate with water, and sequentially laminating a retardation layer 30 and a pressure-sensitive adhesive layer 40 on the polarizing film 10 side.

以下、実施例によって本発明を具体的に説明するが、本発明はこれら実施例によって限定されるものではない。なお、厚み、樹脂膜のヨウ素濃度および水分率は下記の測定方法により測定した値である。また、特に明記しない限り、実施例および比較例における「部」および「%」は重量基準である。
1.厚み
10μm以下の厚みは、走査型電子顕微鏡(日本電子社製、製品名「JSM-7100F」)を用いて測定した。10μmを超える厚みは、デジタルマイクロメーター(アンリツ社製、製品名「KC-351C」)を用いて測定した。
2.樹脂膜のヨウ素濃度
蛍光X線分析装置(リガク社製、製品名「ZSX Primus IV」、測定径:ψ20mm)を用いてヨウ素元素の蛍光X線強度(kcps)強度を測定し、下記式によりヨウ素濃度(重量%)を算出した。ここで、ヨウ素濃度を算出する際の係数は、検量線を用いて求めた。
ヨウ素濃度(重量%)=20.5×蛍光X線強度/樹脂膜の厚み(kcps/μm)
3.樹脂膜の水分率
樹脂膜単体(樹脂基材から剥離した状態の樹脂膜)を120℃、2時間の条件で乾燥し、乾燥前後の重量変化量を測定することにより樹脂膜に含まれる水分量を求め、水分率を算出した。
The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples. The thickness, iodine concentration and moisture content of the resin film are values measured by the following measurement methods. Furthermore, unless otherwise specified, "parts" and "%" in the examples and comparative examples are based on weight.
1. Thickness Thicknesses of 10 μm or less were measured using a scanning electron microscope (manufactured by JEOL Ltd., product name "JSM-7100F"), and thicknesses of more than 10 μm were measured using a digital micrometer (manufactured by Anritsu Corporation, product name "KC-351C").
2. Iodine concentration of resin film The fluorescent X-ray intensity (kcps) of iodine element was measured using a fluorescent X-ray analyzer (manufactured by Rigaku Corporation, product name "ZSX Primus IV", measurement diameter: ψ20 mm), and the iodine concentration (wt%) was calculated by the following formula. Here, the coefficient for calculating the iodine concentration was obtained using a calibration curve.
Iodine concentration (wt%) = 20.5 x fluorescent X-ray intensity / resin film thickness (kcps/μm)
3. Moisture content of resin film The resin film alone (resin film peeled off from the resin substrate) was dried at 120°C for 2 hours, and the amount of moisture contained in the resin film was determined by measuring the weight change before and after drying, and the moisture content was calculated.

[実施例1]
(樹脂膜の作製)
熱可塑性樹脂基材として、長尺状で、吸水率0.75%、Tg約75℃である、非晶質のイソフタル共重合ポリエチレンテレフタレートフィルム(厚み:100μm)を用いた。樹脂基材の片面に、コロナ処理を施した。
ポリビニルアルコール(重合度4200、ケン化度99.2モル%)およびアセトアセチル変性PVA(日本合成化学工業社製、商品名「ゴーセファイマーZ410」)を9:1で混合したPVA系樹脂100重量部に、ヨウ化カリウム13重量部を添加し、PVA水溶液(塗布液)を調製した。
樹脂基材のコロナ処理面に、上記PVA水溶液を塗布して60℃で乾燥することにより、厚み13μmのPVA系樹脂層を形成し、積層体を作製した。
得られた積層体を、130℃のオーブン内で周速の異なるロール間で縦方向(長手方向)に2.4倍に自由端一軸延伸した(空中補助延伸)。
次いで、積層体を、液温40℃の不溶化浴(水100重量部に対して、ホウ酸を4重量部配合して得られたホウ酸水溶液)に30秒間浸漬させた(不溶化処理)。
次いで、液温30℃の染色浴(水100重量部に対して、ヨウ素とヨウ化カリウムを1:7の重量比で配合して得られたヨウ素水溶液)に、最終的に得られる偏光膜の単体透過率(Ts)が43%以上となるように濃度を調整しながら60秒間浸漬させた(染色)。
次いで、液温40℃の架橋浴(水100重量部に対して、ヨウ化カリウムを3重量部配合し、ホウ酸を5重量部配合して得られたホウ酸水溶液)に30秒間浸漬させた(架橋処理)。
その後、積層体を、液温64℃のホウ酸水溶液(ホウ酸濃度4.0重量%)に浸漬させながら、周速の異なるロール間で縦方向(長手方向)に総延伸倍率が5.5倍となるように一軸延伸を行った(水中延伸)。
その後、積層体を液温20℃の洗浄浴(水100重量部に対して、ヨウ化カリウムを4重量部配合して得られた水溶液)に浸漬させた(洗浄)。
その後、90℃に保たれたオーブン中で乾燥しながら、表面温度が75℃に保たれたSUS製の加熱ロールに約2秒接触させた(乾燥)。乾燥収縮処理による積層体の幅方向の収縮率は5.2%であった。
このようにして、樹脂基材上に、厚み5.4μm、ヨウ素濃度6.4%、水分率4.4%の樹脂膜を形成した。
[Example 1]
(Preparation of resin film)
The thermoplastic resin substrate used was a long amorphous isophthalic copolymerized polyethylene terephthalate film (thickness: 100 μm) having a water absorption rate of 0.75% and a Tg of about 75° C. One side of the resin substrate was subjected to a corona treatment.
A PVA aqueous solution (coating solution) was prepared by adding 13 parts by weight of potassium iodide to 100 parts by weight of a PVA-based resin prepared by mixing polyvinyl alcohol (polymerization degree 4,200, saponification degree 99.2 mol%) and acetoacetyl-modified PVA (manufactured by Nippon Synthetic Chemical Industry Co., Ltd., product name "GOHSEFFIMER Z410") in a ratio of 9:1.
The above PVA aqueous solution was applied to the corona-treated surface of a resin substrate and dried at 60° C. to form a PVA-based resin layer having a thickness of 13 μm, thereby producing a laminate.
The obtained laminate was uniaxially stretched at its free end 2.4 times in the machine direction (longitudinal direction) between rolls having different peripheral speeds in an oven at 130° C. (auxiliary air stretching).
Next, the laminate was immersed in an insolubilizing bath (a boric acid aqueous solution obtained by mixing 4 parts by weight of boric acid with 100 parts by weight of water) at a liquid temperature of 40° C. for 30 seconds (insolubilizing treatment).
Next, the film was immersed in a dye bath (an aqueous iodine solution obtained by mixing iodine and potassium iodide in a weight ratio of 1:7 with respect to 100 parts by weight of water) having a liquid temperature of 30° C. for 60 seconds while adjusting the concentration so that the single transmittance (Ts) of the finally obtained polarizing film would be 43% or more (dyeing).
Next, the piece was immersed in a crosslinking bath (a boric acid aqueous solution obtained by mixing 3 parts by weight of potassium iodide and 5 parts by weight of boric acid with 100 parts by weight of water) at a liquid temperature of 40° C. for 30 seconds (crosslinking treatment).
Thereafter, the laminate was immersed in an aqueous boric acid solution (boric acid concentration: 4.0% by weight) at a liquid temperature of 64° C. and uniaxially stretched in the longitudinal direction (longitudinal direction) between rolls having different peripheral speeds to a total stretch ratio of 5.5 times (underwater stretching).
Thereafter, the laminate was immersed in a cleaning bath (an aqueous solution obtained by mixing 4 parts by weight of potassium iodide with 100 parts by weight of water) at a liquid temperature of 20° C. (cleaning).
Thereafter, while drying in an oven maintained at 90° C., the laminate was brought into contact with a SUS heated roll whose surface temperature was maintained at 75° C. for about 2 seconds (drying). The shrinkage rate in the width direction of the laminate due to the drying shrinkage treatment was 5.2%.
In this manner, a resin film having a thickness of 5.4 μm, an iodine concentration of 6.4%, and a moisture content of 4.4% was formed on the resin substrate.

(水洗1)
次いで、得られた樹脂膜の片面(樹脂基材が配置されていない面)に、紫外線硬化型接着剤を介して、厚み20μmのラクトン環構造を有するアクリルフィルムを貼り合わせた後に、樹脂膜から樹脂基材を剥離し、アクリルフィルムと樹脂膜との積層物を43℃の水浴に2分間浸漬させて、樹脂膜の片面(剥離面)を水洗し、50℃にて乾燥することにより、アクリルフィルムと偏光膜との積層物を得た。
(Water washing 1)
Next, a 20 μm-thick acrylic film having a lactone ring structure was bonded to one side of the obtained resin film (the side on which the resin substrate was not disposed) via an ultraviolet-curable adhesive, and then the resin substrate was peeled off from the resin film. The laminate of the acrylic film and the resin film was immersed in a water bath at 43° C. for 2 minutes to wash one side of the resin film (the peeled side) with water and dried at 50° C., thereby obtaining a laminate of an acrylic film and a polarizing film.

(水洗2)
次いで、得られた樹脂膜の片面(樹脂基材が配置されていない面)に、紫外線硬化型接着剤を介して、厚み27μmのHC-COPフィルムを貼り合わせた後に、樹脂膜から樹脂基材を剥離し、HC-COPフィルムと樹脂膜との積層物を43℃の水浴に2分間浸漬させて、樹脂膜の片面(剥離面)を水洗し、50℃にて乾燥することにより、HC-COPフィルムと偏光膜との積層物を得た。なお、HC-COPフィルムは、シクロオレフィン系樹脂(COP)フィルム(厚み25μm)にHC層(厚み2μm)が形成されたフィルムであり、COPフィルムが樹脂膜側となるようにして貼り合わせた。
(Water wash 2)
Next, a 27 μm-thick HC-COP film was bonded to one side of the obtained resin film (the side on which the resin substrate was not disposed) via an ultraviolet-curable adhesive, and then the resin substrate was peeled off from the resin film, and the laminate of the HC-COP film and the resin film was immersed in a water bath at 43° C. for 2 minutes to wash one side (the peeled side) of the resin film with water and dried at 50° C. to obtain a laminate of the HC-COP film and the polarizing film. The HC-COP film was a film in which an HC layer (thickness 2 μm) was formed on a cycloolefin resin (COP) film (thickness 25 μm), and the COP film was bonded to the resin film side.

(位相差層の作製)
ネマチック液晶相を示す重合性液晶(BASF社製:商品名「Paliocolor LC242」、下記式で表される)10gと、当該重合性液晶化合物に対する光重合開始剤(BASF社製:商品名「イルガキュア907」)3gとを、トルエン40gに溶解して、液晶組成物(塗工液)を調製した。

Figure 2024114773000002
(Preparation of Retardation Layer)
A liquid crystal composition (coating liquid) was prepared by dissolving 10 g of a polymerizable liquid crystal exhibiting a nematic liquid crystal phase (manufactured by BASF: product name "Paliocolor LC242", represented by the following formula) and 3 g of a photopolymerization initiator for the polymerizable liquid crystal compound (manufactured by BASF: product name "Irgacure 907") in 40 g of toluene.
Figure 2024114773000002

ポリエチレンテレフタレート(PET)フィルム(厚み38μm)表面を、ラビング布を用いてラビングし、配向処理を施した。配向処理の方向は、偏光板に貼り合わせる際に偏光膜の吸収軸の方向に対して視認側から見て15°方向となるようにした。この配向処理表面に、上記液晶塗工液をバーコーターにより塗工し、90℃で2分間加熱乾燥することによって液晶化合物を配向させた。このようにして形成された液晶層に、メタルハライドランプを用いて1mJ/cmの光を照射し、当該液晶層を硬化させることによって、PETフィルム上に液晶配向固化層A(H層)を形成した。液晶配向固化層Aの厚みは2.5μm、面内位相差Re(550)は270nmであった。さらに、液晶配向固化層Aは、nx>ny=nzの屈折率特性を示した。 The surface of a polyethylene terephthalate (PET) film (thickness 38 μm) was rubbed with a rubbing cloth and subjected to an orientation treatment. The orientation treatment direction was set to be 15° from the viewing side with respect to the direction of the absorption axis of the polarizing film when it was laminated to the polarizing plate. The liquid crystal coating liquid was applied to this orientation treatment surface with a bar coater, and the liquid crystal compound was aligned by heating and drying at 90 ° C for 2 minutes. The liquid crystal layer thus formed was irradiated with light of 1 mJ / cm 2 using a metal halide lamp, and the liquid crystal layer was hardened to form a liquid crystal alignment solidified layer A (H layer) on the PET film. The thickness of the liquid crystal alignment solidified layer A was 2.5 μm, and the in-plane retardation Re (550) was 270 nm. Furthermore, the liquid crystal alignment solidified layer A showed a refractive index characteristic of nx > ny = nz.

塗工厚みを変更したこと、および、配向処理方向を偏光膜の吸収軸の方向に対して視認側から見て75°方向となるようにしたこと以外は上記と同様にして、PETフィルム上に液晶配向固化層B(Q層)を形成した。液晶配向固化層Bの厚みは1.5μm、面内位相差Re(550)は140nmであった。さらに、液晶配向固化層Bは、nx>ny=nzの屈折率特性を示した。 A liquid crystal alignment solidified layer B (Q layer) was formed on a PET film in the same manner as above, except that the coating thickness was changed and the orientation treatment direction was set to a 75° angle from the viewing side with respect to the absorption axis direction of the polarizing film. The thickness of the liquid crystal alignment solidified layer B was 1.5 μm, and the in-plane retardation Re (550) was 140 nm. Furthermore, the liquid crystal alignment solidified layer B exhibited refractive index characteristics of nx>ny=nz.

(偏光板Aの作製)
上記アクリルフィルムと偏光膜との積層物のアクリルフィルム側に、得られた液晶配向固化層A(H層)および液晶配向固化層B(Q層)をこの順に転写した。このとき、偏光膜の吸収軸と配向固化層Aの遅相軸とのなす角度が15°、偏光膜の吸収軸と配向固化層Bの遅相軸とのなす角度が75°になるようにして転写(貼り合わせ)を行った。それぞれの転写は、紫外線硬化型接着剤(厚み1.0μm)を介して行った。その後、液晶配向固化層B上に厚み15μmの粘着剤層を形成して偏光板Aを得た。
(Preparation of Polarizing Plate A)
The obtained liquid crystal alignment solidified layer A (H layer) and liquid crystal alignment solidified layer B (Q layer) were transferred in this order to the acrylic film side of the laminate of the acrylic film and the polarizing film. At this time, the transfer (lamination) was performed so that the angle between the absorption axis of the polarizing film and the slow axis of the alignment solidified layer A was 15°, and the angle between the absorption axis of the polarizing film and the slow axis of the alignment solidified layer B was 75°. Each transfer was performed via an ultraviolet-curing adhesive (thickness 1.0 μm). Then, a 15 μm thick adhesive layer was formed on the liquid crystal alignment solidified layer B to obtain a polarizing plate A.

(偏光板Bの作製)
上記HC-COPフィルムと偏光膜との積層物の偏光膜側に、得られた液晶配向固化層A(H層)および液晶配向固化層B(Q層)をこの順に転写した。このとき、偏光膜の吸収軸と配向固化層Aの遅相軸とのなす角度が15°、偏光膜の吸収軸と配向固化層Bの遅相軸とのなす角度が75°になるようにして転写(貼り合わせ)を行った。それぞれの転写は、紫外線硬化型接着剤(厚み1.0μm)を介して行った。その後、液晶配向固化層B上に厚み15μmの粘着剤層を形成して偏光板Bを得た。
(Preparation of Polarizing Plate B)
The obtained liquid crystal alignment solidified layer A (H layer) and liquid crystal alignment solidified layer B (Q layer) were transferred in this order to the polarizing film side of the laminate of the HC-COP film and the polarizing film. At this time, the transfer (lamination) was performed so that the angle between the absorption axis of the polarizing film and the slow axis of the alignment solidified layer A was 15°, and the angle between the absorption axis of the polarizing film and the slow axis of the alignment solidified layer B was 75°. Each transfer was performed via an ultraviolet-curing adhesive (thickness 1.0 μm). Then, a pressure-sensitive adhesive layer with a thickness of 15 μm was formed on the liquid crystal alignment solidified layer B to obtain a polarizing plate B.

[実施例2]
積層体を40℃の水浴に2分間浸漬させることにより水洗したこと以外は実施例1と同様にして、偏光膜および偏光板を得た。
[Example 2]
A polarizing film and a polarizing plate were obtained in the same manner as in Example 1, except that the laminate was washed by immersing it in a water bath at 40° C. for 2 minutes.

[実施例3]
積層体を液温70℃のホウ酸水溶液に浸漬させて水中延伸して厚み5.4μm、ヨウ素濃度6.6%、水分率4.5%の樹脂膜を作製したこと、および、積層体を25℃の水浴に5分間浸漬させることにより水洗したこと以外は実施例1と同様にして、偏光膜および偏光板を得た。なお、水洗後の偏光膜の表面性状(膨潤)により偏光板Bは作製しなかった。
[Example 3]
A polarizing film and a polarizing plate were obtained in the same manner as in Example 1, except that the laminate was immersed in an aqueous boric acid solution at a liquid temperature of 70° C. and stretched in water to produce a resin film with a thickness of 5.4 μm, an iodine concentration of 6.6%, and a moisture content of 4.5%, and that the laminate was washed with water by immersing in a water bath at 25° C. for 5 minutes. Note that polarizing plate B was not produced due to the surface properties (swelling) of the polarizing film after washing with water.

[実施例4]
積層体を液温67℃のホウ酸水溶液に浸漬させて水中延伸して厚み4.8μm、ヨウ素濃度5.5%、水分率4%の樹脂膜を作製したこと、および、積層体を43℃の水浴に1分間浸漬させることにより水洗したこと以外は実施例1と同様にして、偏光膜および偏光板を得た。
[Example 4]
A polarizing film and a polarizing plate were obtained in the same manner as in Example 1, except that the laminate was immersed in an aqueous boric acid solution at a liquid temperature of 67° C. and stretched in water to produce a resin film with a thickness of 4.8 μm, an iodine concentration of 5.5%, and a moisture content of 4%, and that the laminate was washed by immersing it in a water bath at 43° C. for 1 minute.

[実施例5]
積層体を液温67℃のホウ酸水溶液に浸漬させて水中延伸して厚み4.8μm、ヨウ素濃度5.5%、水分率4%の樹脂膜を作製したこと、および、積層体を35℃の水浴に2分間浸漬させることにより水洗したこと以外は実施例1と同様にして、偏光膜および偏光板を得た。
[Example 5]
A polarizing film and a polarizing plate were obtained in the same manner as in Example 1, except that the laminate was immersed in an aqueous boric acid solution at a liquid temperature of 67° C. and stretched in water to produce a resin film with a thickness of 4.8 μm, an iodine concentration of 5.5%, and a moisture content of 4%, and that the laminate was washed by immersing it in a water bath at 35° C. for 2 minutes.

[比較例1]
樹脂膜を水洗しなかったこと以外は実施例1と同様にして、偏光膜および偏光板を得た。
[Comparative Example 1]
A polarizing film and a polarizing plate were obtained in the same manner as in Example 1, except that the resin film was not washed with water.

[比較例2]
樹脂膜を水洗しなかったこと以外は実施例4と同様にして、偏光膜および偏光板を得た。
[Comparative Example 2]
A polarizing film and a polarizing plate were obtained in the same manner as in Example 4, except that the resin film was not washed with water.

[比較例3]
樹脂膜を水洗しなかったこと以外は実施例3と同様にして、偏光膜および偏光板を得た。
[Comparative Example 3]
A polarizing film and a polarizing plate were obtained in the same manner as in Example 3, except that the resin film was not washed with water.

[参考例1]
(樹脂膜の作製)
厚み30μmのPVA系樹脂フィルムの長尺ロールを、ロール延伸機により総延伸倍率が6.5倍になるように、長手方向に66℃で一軸延伸しながら、同時に膨潤、染色、架橋および洗浄処理を施し、最後に乾燥処理を施すことにより厚み12μm、ヨウ素濃度2.9%、水分率11%の樹脂膜を作製した。
[Reference Example 1]
(Preparation of resin film)
A long roll of a PVA-based resin film having a thickness of 30 μm was uniaxially stretched in the longitudinal direction at 66° C. using a roll stretching machine so that the total stretch ratio became 6.5 times, while simultaneously subjecting the film to swelling, dyeing, crosslinking and washing treatments, and finally subjecting the film to drying treatment, thereby producing a resin film having a thickness of 12 μm, an iodine concentration of 2.9% and a moisture content of 11%.

(水洗1)
得られた樹脂膜の片面に、紫外線硬化型接着剤を介して、厚み20μmのラクトン環構造を有するアクリルフィルムを貼り合わせて積層物を作製し、フィルムと樹脂膜との積層物を43℃の水浴に2分間浸漬させて、得られた樹脂膜の表面(フィルムが貼り合わせられていない面)を水洗し、50℃にて乾燥することにより、フィルムと偏光膜との積層物を得た。
(Water washing 1)
A 20 μm-thick acrylic film having a lactone ring structure was bonded to one side of the obtained resin film via an ultraviolet-curable adhesive to produce a laminate, and the laminate of the film and the resin film was immersed in a water bath at 43° C. for 2 minutes to wash the surface of the obtained resin film (the side to which the film was not bonded) with water and dried at 50° C. to obtain a laminate of a film and a polarizing film.

(水洗2)
得られた樹脂膜の片面に、紫外線硬化型接着剤を介して、厚み27μmのHC-COPフィルムを貼り合わせて積層物を作製し、フィルムと樹脂膜との積層物を43℃の水浴に2分間浸漬させて、得られた樹脂膜の表面(フィルムが貼り合わせられていない面)を水洗し、50℃にて乾燥することにより、フィルムと偏光膜との積層物を得た。
(Water wash 2)
A 27 μm-thick HC-COP film was attached to one side of the obtained resin film via an ultraviolet-curable adhesive to produce a laminate, and the laminate of the film and the resin film was immersed in a water bath at 43° C. for 2 minutes to wash the surface of the obtained resin film (the side to which the film was not attached) with water and dried at 50° C. to obtain a laminate of the film and the polarizing film.

(偏光板Aの作製)
上記アクリルフィルムと偏光膜との積層物のアクリルフィルム側に、得られた液晶配向固化層A(H層)および液晶配向固化層B(Q層)をこの順に転写した。このとき、偏光膜の吸収軸と配向固化層Aの遅相軸とのなす角度が15°、偏光膜の吸収軸と配向固化層Bの遅相軸とのなす角度が75°になるようにして転写(貼り合わせ)を行った。それぞれの転写は、紫外線硬化型接着剤(厚み1.0μm)を介して行った。その後、液晶配向固化層B上に厚み15μmの粘着剤層を形成して偏光板Aを得た。
(Preparation of Polarizing Plate A)
The obtained liquid crystal alignment solidified layer A (H layer) and liquid crystal alignment solidified layer B (Q layer) were transferred in this order to the acrylic film side of the laminate of the acrylic film and the polarizing film. At this time, the transfer (lamination) was performed so that the angle between the absorption axis of the polarizing film and the slow axis of the alignment solidified layer A was 15°, and the angle between the absorption axis of the polarizing film and the slow axis of the alignment solidified layer B was 75°. Each transfer was performed via an ultraviolet-curing adhesive (thickness 1.0 μm). Then, a 15 μm thick adhesive layer was formed on the liquid crystal alignment solidified layer B to obtain a polarizing plate A.

(偏光板Bの作製)
上記HC-COPフィルムと偏光膜との積層物の偏光膜側に、得られた液晶配向固化層A(H層)および液晶配向固化層B(Q層)をこの順に転写した。このとき、偏光膜の吸収軸と配向固化層Aの遅相軸とのなす角度が15°、偏光膜の吸収軸と配向固化層Bの遅相軸とのなす角度が75°になるようにして転写(貼り合わせ)を行った。それぞれの転写は、紫外線硬化型接着剤(厚み1.0μm)を介して行った。その後、液晶配向固化層B上に厚み15μmの粘着剤層を形成して偏光板Bを得た。
(Preparation of Polarizing Plate B)
The obtained liquid crystal alignment solidified layer A (H layer) and liquid crystal alignment solidified layer B (Q layer) were transferred in this order to the polarizing film side of the laminate of the HC-COP film and the polarizing film. At this time, the transfer (lamination) was performed so that the angle between the absorption axis of the polarizing film and the slow axis of the alignment solidified layer A was 15°, and the angle between the absorption axis of the polarizing film and the slow axis of the alignment solidified layer B was 75°. Each transfer was performed via an ultraviolet-curing adhesive (thickness 1.0 μm). Then, a pressure-sensitive adhesive layer with a thickness of 15 μm was formed on the liquid crystal alignment solidified layer B to obtain a polarizing plate B.

[参考例2]
積層体を水洗しなかったこと以外は参考例1と同様にして、偏光膜および偏光板を得た。
[Reference Example 2]
A polarizing film and a polarizing plate were obtained in the same manner as in Reference Example 1, except that the laminate was not washed with water.

実施例および比較例について、下記の評価を行った。評価結果を表1および表2にまとめる。
<評価>
1.単体透過率および偏光度
実施例および比較例の偏光膜(偏光膜/アクリルフィルムまたはHC-COPフィルム)について、紫外可視分光光度計(日本分光社製、V-7100)を用いて測定した単体透過率Ts、平行透過率Tp、直交透過率Tcをそれぞれ、偏光膜のTs、TpおよびTcとした。これらのTs、TpおよびTcは、JIS Z8701の2度視野(C光源)により測定して視感度補正を行なったY値である。
得られたTpおよびTcから、下記式により偏光度Pを求めた。
偏光度P(%)={(Tp-Tc)/(Tp+Tc)}1/2×100
2.反射率(RcおよびRp)
実施例および比較例の偏光膜の表面(水洗した面)の反射率を、分光光度計(日立ハイテク社製、U-4100)により、吸収軸方向の反射率(Rc)および透過軸方向の反射率(Rp)を測定した。その際、水洗した面とは反対側の面を黒板に貼り合わせて表面反射のみを測定できるようにした。また、光源(偏光)の入射角度を5°とし、測定波長を380nm~780nmとした。
3.表面性状
実施例および比較例の偏光膜の表面性状(樹脂膜の膨潤による凹凸の発生の有無)を、目視により観察した。
(評価基準)
良好:凹凸は確認されない
不良:凹凸が確認される
4.偏光板の色相(aおよびb
実施例および比較例の偏光板(円偏光板)をアルミシート上に貼り合わせ、分光測色計(コニカミノルタ社製、cm-2600d)により、SCEモードにて反射色相を測定した。
The following evaluations were carried out for the Examples and Comparative Examples. The evaluation results are summarized in Tables 1 and 2.
<Evaluation>
1. Single transmittance and polarization degree For the polarizing films (polarizing film/acrylic film or HC-COP film) of the Examples and Comparative Examples, the single transmittance Ts, parallel transmittance Tp, and crossed transmittance Tc measured using an ultraviolet-visible spectrophotometer (V-7100, manufactured by JASCO Corporation) were taken as Ts, Tp, and Tc of the polarizing film, respectively. These Ts, Tp, and Tc are Y values measured using a 2-degree visual field (C light source) according to JIS Z8701 and corrected for visibility.
From the obtained Tp and Tc, the degree of polarization P was calculated according to the following formula.
Polarization degree P (%) = {(Tp-Tc)/(Tp+Tc)} 1/2 ×100
2. Reflectance (Rc and Rp)
The reflectance of the surface (washed surface) of the polarizing film in each of the Examples and Comparative Examples was measured using a spectrophotometer (U-4100, manufactured by Hitachi High-Tech Corporation) in terms of the reflectance in the absorption axis direction (Rc) and the reflectance in the transmission axis direction (Rp). At that time, the surface opposite to the surface washed with water was attached to a blackboard so that only the surface reflection could be measured. The incident angle of the light source (polarized light) was set to 5°, and the measurement wavelength was set to 380 nm to 780 nm.
3. Surface Properties The surface properties of the polarizing films of the Examples and Comparative Examples (presence or absence of unevenness due to swelling of the resin film) were visually observed.
(Evaluation Criteria)
Good: No unevenness is observed. Bad: Unevenness is observed. 4. Color of polarizing plate (a * and b * )
The polarizing plates (circular polarizing plates) of the examples and comparative examples were attached to an aluminum sheet, and the reflected hue was measured in SCE mode using a spectrophotometer (manufactured by Konica Minolta, cm-2600d).

Figure 2024114773000003
Figure 2024114773000003

Figure 2024114773000004
Figure 2024114773000004

実施例、比較例ともに、優れた光学特性(単体透過率および偏光度)が得られる。実施例では、赤味が抑制され、優れた外観が得られる。 Both the examples and the comparative examples provide excellent optical properties (single transmittance and polarization degree). In the examples, redness is suppressed, providing an excellent appearance.

実施例1、比較例1および参考例2で得られた偏光膜について、厚み方向におけるヨウ素のイオン強度を測定した。測定は、飛行時間型二次イオン質量分析計(TOF-SIMS)(ION-TOF製、製品名:TOF-SIMS 5)を用い、一次イオンにはBi32 を用いて行った。測定結果(横軸を偏光膜の厚みに換算したグラフ)を図5に示す。図5に示すように、実施例1の偏光膜では、表面側の端部に、表面から裏面に向かってヨウ素量が多くなる傾斜分布領域を有することが確認された。なお、縦軸のヨウ素のイオン強度は、ヨウ素濃度に対応する。 The iodine ion intensity in the thickness direction was measured for the polarizing films obtained in Example 1, Comparative Example 1, and Reference Example 2. The measurement was performed using a time-of-flight secondary ion mass spectrometer (TOF-SIMS) (manufactured by ION-TOF, product name: TOF-SIMS 5) and Bi 32 + as the primary ion. The measurement results (a graph in which the horizontal axis is converted into the thickness of the polarizing film) are shown in FIG. 5. As shown in FIG. 5, it was confirmed that the polarizing film of Example 1 has a gradient distribution region at the end on the front surface side, where the amount of iodine increases from the front surface toward the back surface. The iodine ion intensity on the vertical axis corresponds to the iodine concentration.

本発明の1つの実施形態に係る偏光膜は、例えば、液晶表示装置、有機EL表示装置、無機EL表示装置等の画像表示装置に好適に用いられる。 The polarizing film according to one embodiment of the present invention is suitable for use in image display devices such as liquid crystal display devices, organic EL display devices, and inorganic EL display devices.

10 偏光膜
20 保護層
30 位相差層
40 粘着剤層
100 偏光板
110 偏光板
REFERENCE SIGNS LIST 10 Polarizing film 20 Protective layer 30 Retardation layer 40 Pressure-sensitive adhesive layer 100 Polarizing plate 110 Polarizing plate

Claims (12)

ヨウ素を含む樹脂フィルムから構成され、
厚みが7μm以下であり、
表面の、吸収軸方向の波長680nmの光の反射率Rc680に対する吸収軸方向の波長400nmの光の反射率Rc400の比(Rc400/Rc680)が1を超える、
偏光膜。
It is made of a resin film containing iodine,
The thickness is 7 μm or less,
the ratio (Rc 400 /Rc 680 ) of the reflectance Rc 400 of light having a wavelength of 400 nm in the absorption axis direction to the reflectance Rc 680 of light having a wavelength of 680 nm in the absorption axis direction of the surface exceeds 1;
Polarizing film.
前記表面のRc680が5%以下である、請求項1に記載の偏光膜。 2. The polarizing film according to claim 1, wherein the Rc 680 of the surface is 5% or less. 前記表面のRc400が4.8%以上である、請求項1または2に記載の偏光膜。 3. The polarizing film according to claim 1, wherein the Rc 400 of the surface is 4.8% or more. 前記表面側の端部に、表面から裏面に向かってヨウ素量が多くなる傾斜分布領域を有する、請求項1から3のいずれかに記載の偏光膜。 The polarizing film according to any one of claims 1 to 3, which has a gradient distribution region at the end of the front surface side, in which the amount of iodine increases from the front surface toward the back surface. 前記表面側のヨウ素量が裏面側のヨウ素量よりも少ない、請求項1から4のいずれかに記載の偏光膜。 The polarizing film according to any one of claims 1 to 4, wherein the amount of iodine on the front side is less than the amount of iodine on the back side. 単体透過率が42.0%以上であり、偏光度が99.98%以上である、請求項1から5のいずれかに記載の偏光膜。 The polarizing film according to any one of claims 1 to 5, having a single transmittance of 42.0% or more and a polarization degree of 99.98% or more. ヨウ素を含み、水分率が15重量%以下の樹脂膜の表面を水洗すること、
を含む、請求項1から6のいずれかに記載の偏光膜の製造方法。
washing the surface of a resin film containing iodine and having a moisture content of 15% by weight or less with water;
A method for producing the polarizing film according to claim 1 , comprising:
前記樹脂膜のヨウ素濃度が5重量%以上である、請求項7に記載の製造方法。 The manufacturing method according to claim 7, wherein the iodine concentration of the resin film is 5% by weight or more. 前記樹脂膜が樹脂基材上に形成された樹脂層である、請求項7または8に記載の製造方法。 The manufacturing method according to claim 7 or 8, wherein the resin film is a resin layer formed on a resin substrate. 前記樹脂層を67℃以下で水中延伸することを含む、請求項9に記載の製造方法。 The manufacturing method according to claim 9, which includes stretching the resin layer in water at 67°C or less. 加熱ロールを用いて前記樹脂層を加熱することを含む、請求項9または10に記載の製造方法。 The manufacturing method according to claim 9 or 10, which includes heating the resin layer using a heating roll. 請求項1から6のいずれかに記載の偏光膜と、
前記偏光膜の少なくとも片側に配置される保護層または位相差層と
を有する、偏光板。
The polarizing film according to any one of claims 1 to 6,
and a protective layer or a retardation layer disposed on at least one side of the polarizing film.
JP2024101013A 2020-11-19 2024-06-24 Polarizing film and method for producing the same Withdrawn JP2024114773A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2024101013A JP2024114773A (en) 2020-11-19 2024-06-24 Polarizing film and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020192442A JP7558769B2 (en) 2020-11-19 2020-11-19 Polarizing film and method for producing the same
JP2024101013A JP2024114773A (en) 2020-11-19 2024-06-24 Polarizing film and method for producing the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2020192442A Division JP7558769B2 (en) 2020-11-19 2020-11-19 Polarizing film and method for producing the same

Publications (1)

Publication Number Publication Date
JP2024114773A true JP2024114773A (en) 2024-08-23

Family

ID=81708683

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2020192442A Active JP7558769B2 (en) 2020-11-19 2020-11-19 Polarizing film and method for producing the same
JP2024101013A Withdrawn JP2024114773A (en) 2020-11-19 2024-06-24 Polarizing film and method for producing the same

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2020192442A Active JP7558769B2 (en) 2020-11-19 2020-11-19 Polarizing film and method for producing the same

Country Status (5)

Country Link
JP (2) JP7558769B2 (en)
KR (1) KR20230107792A (en)
CN (1) CN116670547A (en)
TW (1) TW202222546A (en)
WO (1) WO2022107376A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023013221A (en) * 2021-07-15 2023-01-26 住友化学株式会社 Polarizing element, polarizing plate, and image display device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001343521A (en) 2000-05-31 2001-12-14 Sumitomo Chem Co Ltd Polarizing plate and method for manufacturing the same
JP5831249B2 (en) 2012-01-23 2015-12-09 住友化学株式会社 Polarizing film, method for producing the same, and polarizing plate
JP6114160B2 (en) 2012-10-22 2017-04-12 日東電工株式会社 Polarizing film and manufacturing method of polarizing film
JP5615987B2 (en) * 2013-02-07 2014-10-29 日東電工株式会社 Optical laminate having polarizing film
JP2016071349A (en) 2014-09-30 2016-05-09 住友化学株式会社 Production method of polarizing laminate film and polarizing plate
JP2018072711A (en) 2016-11-02 2018-05-10 日東電工株式会社 Polarization plate
JP6470457B1 (en) 2017-09-13 2019-02-13 日東電工株式会社 Polarizing film, polarizing plate, and manufacturing method of polarizing film

Also Published As

Publication number Publication date
JP7558769B2 (en) 2024-10-01
TW202222546A (en) 2022-06-16
WO2022107376A1 (en) 2022-05-27
JP2022081107A (en) 2022-05-31
KR20230107792A (en) 2023-07-18
CN116670547A (en) 2023-08-29

Similar Documents

Publication Publication Date Title
JP7355583B2 (en) Polarizing plate with retardation layer and image display device using the same
JP7355582B2 (en) Polarizing plate with retardation layer and image display device using the same
JP2024114773A (en) Polarizing film and method for producing the same
JP2020064290A (en) Polarizing plate with phase difference layer and image display device using the same
JP6797499B2 (en) Polarizing plate with retardation layer and image display device using it
JP2020064291A (en) Polarizing plate with phase difference layer and image display device using the same
JP2020064274A (en) Polarizing plate with phase difference layer and image display device using the same
JP7355584B2 (en) Polarizing plate with retardation layer and image display device using the same
JP6804168B2 (en) Polarizing plate with retardation layer and image display device using it
WO2020080184A1 (en) Polarizing plate having phase difference layer and image display device using same
WO2020080183A1 (en) Polarizing plate equipped with phase retardation layer and image display apparatus employing same
JP2020064292A (en) Polarizing plate with phase difference layer and image display device using the same
JP2020064298A (en) Polarizing plate with phase difference layer and image display device using the same
JP7555836B2 (en) Manufacturing method for polarizing plate, manufacturing method for image display device, and method for adjusting transmittance of polarizing film
JP7516457B2 (en) Lens portion, laminate, display, manufacturing method of display, and display method
WO2023218822A1 (en) Method for producing polarizing film
WO2023218821A1 (en) Method for producing polarizing film
WO2023218820A1 (en) Method for producing polarizing film
WO2020080173A1 (en) Polarizing plate with phase difference layer, and image display device using this
WO2020080171A1 (en) Polarizing plate with phase difference layer, and image display device using this
WO2020080172A1 (en) Polarizing plate with phase difference layer, and image display device using this
WO2020080182A1 (en) Polarizing plate equipped with phase retardation layer and image display apparatus employing same
WO2020080188A1 (en) Polarizing plate with retardation layer and image display device using same
WO2020080185A1 (en) Polarizing plate with retardation layer and image display device using same
WO2020080187A1 (en) Polarizing plate with retardation layer and image display device using same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240625

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20241025