JP2024071986A - Highly functional fiber and fiber structure - Google Patents
Highly functional fiber and fiber structure Download PDFInfo
- Publication number
- JP2024071986A JP2024071986A JP2022182547A JP2022182547A JP2024071986A JP 2024071986 A JP2024071986 A JP 2024071986A JP 2022182547 A JP2022182547 A JP 2022182547A JP 2022182547 A JP2022182547 A JP 2022182547A JP 2024071986 A JP2024071986 A JP 2024071986A
- Authority
- JP
- Japan
- Prior art keywords
- carbon particles
- fiber
- surface area
- specific surface
- fibers
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000835 fiber Substances 0.000 title claims abstract description 181
- 239000002245 particle Substances 0.000 claims abstract description 244
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 237
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 201
- 229920005992 thermoplastic resin Polymers 0.000 claims abstract description 23
- 229920005989 resin Polymers 0.000 claims description 22
- 239000011347 resin Substances 0.000 claims description 22
- 229920002647 polyamide Polymers 0.000 claims description 7
- 229920001225 polyester resin Polymers 0.000 claims description 6
- 238000010521 absorption reaction Methods 0.000 abstract description 45
- 238000005338 heat storage Methods 0.000 abstract description 36
- 238000005406 washing Methods 0.000 abstract description 13
- 235000013162 Cocos nucifera Nutrition 0.000 description 52
- 244000060011 Cocos nucifera Species 0.000 description 50
- 238000000034 method Methods 0.000 description 26
- 230000000052 comparative effect Effects 0.000 description 24
- 239000004744 fabric Substances 0.000 description 23
- 238000009987 spinning Methods 0.000 description 21
- 239000005539 carbonized material Substances 0.000 description 17
- 239000000843 powder Substances 0.000 description 16
- 238000004519 manufacturing process Methods 0.000 description 15
- 239000003610 charcoal Substances 0.000 description 13
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 12
- 241000196324 Embryophyta Species 0.000 description 12
- 238000011156 evaluation Methods 0.000 description 12
- 230000000704 physical effect Effects 0.000 description 11
- 239000000523 sample Substances 0.000 description 11
- -1 polypropylene Polymers 0.000 description 10
- 238000010298 pulverizing process Methods 0.000 description 10
- 230000008569 process Effects 0.000 description 9
- 239000002994 raw material Substances 0.000 description 9
- 238000001994 activation Methods 0.000 description 8
- 239000007789 gas Substances 0.000 description 8
- 238000005259 measurement Methods 0.000 description 8
- 238000001179 sorption measurement Methods 0.000 description 8
- 239000013068 control sample Substances 0.000 description 7
- 239000000203 mixture Substances 0.000 description 7
- 229920002292 Nylon 6 Polymers 0.000 description 6
- 238000009940 knitting Methods 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 229910052757 nitrogen Inorganic materials 0.000 description 6
- 229920000642 polymer Polymers 0.000 description 6
- 235000017166 Bambusa arundinacea Nutrition 0.000 description 5
- 235000017491 Bambusa tulda Nutrition 0.000 description 5
- 241001330002 Bambuseae Species 0.000 description 5
- 235000015334 Phyllostachys viridis Nutrition 0.000 description 5
- 239000006096 absorbing agent Substances 0.000 description 5
- 230000002776 aggregation Effects 0.000 description 5
- 239000011425 bamboo Substances 0.000 description 5
- 230000008859 change Effects 0.000 description 5
- 238000009826 distribution Methods 0.000 description 5
- 230000004913 activation Effects 0.000 description 4
- 238000004220 aggregation Methods 0.000 description 4
- 238000000227 grinding Methods 0.000 description 4
- 238000002074 melt spinning Methods 0.000 description 4
- 229920000139 polyethylene terephthalate Polymers 0.000 description 4
- 239000005020 polyethylene terephthalate Substances 0.000 description 4
- 239000011148 porous material Substances 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 239000011342 resin composition Substances 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- 239000012298 atmosphere Substances 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 239000002131 composite material Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000007613 environmental effect Effects 0.000 description 3
- 238000010304 firing Methods 0.000 description 3
- 239000011261 inert gas Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 239000004645 polyester resin Substances 0.000 description 3
- 229920005672 polyolefin resin Polymers 0.000 description 3
- 238000012805 post-processing Methods 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 210000004243 sweat Anatomy 0.000 description 3
- 229920002994 synthetic fiber Polymers 0.000 description 3
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 3
- 229920002554 vinyl polymer Polymers 0.000 description 3
- 238000009941 weaving Methods 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 241000737241 Cocos Species 0.000 description 2
- 239000004594 Masterbatch (MB) Substances 0.000 description 2
- 239000004952 Polyamide Substances 0.000 description 2
- 239000004372 Polyvinyl alcohol Substances 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 239000000567 combustion gas Substances 0.000 description 2
- 230000001143 conditioned effect Effects 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- 238000010036 direct spinning Methods 0.000 description 2
- 238000010332 dry classification Methods 0.000 description 2
- 239000013067 intermediate product Substances 0.000 description 2
- QQVIHTHCMHWDBS-UHFFFAOYSA-N isophthalic acid Chemical compound OC(=O)C1=CC=CC(C(O)=O)=C1 QQVIHTHCMHWDBS-UHFFFAOYSA-N 0.000 description 2
- 239000003350 kerosene Substances 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 239000004745 nonwoven fabric Substances 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 239000003208 petroleum Substances 0.000 description 2
- 229920006122 polyamide resin Polymers 0.000 description 2
- 229920001230 polyarylate Polymers 0.000 description 2
- 229920000728 polyester Polymers 0.000 description 2
- 229920002451 polyvinyl alcohol Polymers 0.000 description 2
- 239000012209 synthetic fiber Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- MMINFSMURORWKH-UHFFFAOYSA-N 3,6-dioxabicyclo[6.2.2]dodeca-1(10),8,11-triene-2,7-dione Chemical compound O=C1OCCOC(=O)C2=CC=C1C=C2 MMINFSMURORWKH-UHFFFAOYSA-N 0.000 description 1
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- 239000004953 Aliphatic polyamide Substances 0.000 description 1
- 239000002028 Biomass Substances 0.000 description 1
- 235000003255 Carthamus tinctorius Nutrition 0.000 description 1
- 244000020518 Carthamus tinctorius Species 0.000 description 1
- 229920000742 Cotton Polymers 0.000 description 1
- 240000003133 Elaeis guineensis Species 0.000 description 1
- 235000001950 Elaeis guineensis Nutrition 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 229920000219 Ethylene vinyl alcohol Polymers 0.000 description 1
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 1
- 229920000299 Nylon 12 Polymers 0.000 description 1
- 229920000305 Nylon 6,10 Polymers 0.000 description 1
- 229920002302 Nylon 6,6 Polymers 0.000 description 1
- 229920006152 PA1010 Polymers 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 241000394848 Quercus phillyraeoides Species 0.000 description 1
- 235000006596 Salacca edulis Nutrition 0.000 description 1
- 244000208345 Salacca edulis Species 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 229920003231 aliphatic polyamide Polymers 0.000 description 1
- 239000013566 allergen Substances 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 239000002216 antistatic agent Substances 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 230000000712 assembly Effects 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 239000003225 biodiesel Substances 0.000 description 1
- CDQSJQSWAWPGKG-UHFFFAOYSA-N butane-1,1-diol Chemical compound CCCC(O)O CDQSJQSWAWPGKG-UHFFFAOYSA-N 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 238000010000 carbonizing Methods 0.000 description 1
- 239000011362 coarse particle Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 239000003599 detergent Substances 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000007380 fibre production Methods 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 230000009477 glass transition Effects 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 239000012760 heat stabilizer Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 229920006253 high performance fiber Polymers 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 239000011630 iodine Substances 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 229910052743 krypton Inorganic materials 0.000 description 1
- DNNSSWSSYDEUBZ-UHFFFAOYSA-N krypton atom Chemical compound [Kr] DNNSSWSSYDEUBZ-UHFFFAOYSA-N 0.000 description 1
- 239000002649 leather substitute Substances 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 239000008204 material by function Substances 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 235000019645 odor Nutrition 0.000 description 1
- 239000000123 paper Substances 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 229920001707 polybutylene terephthalate Polymers 0.000 description 1
- 229920013716 polyethylene resin Polymers 0.000 description 1
- 229920000306 polymethylpentene Polymers 0.000 description 1
- 239000011116 polymethylpentene Substances 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920005990 polystyrene resin Polymers 0.000 description 1
- 229920000874 polytetramethylene terephthalate Polymers 0.000 description 1
- 229920002215 polytrimethylene terephthalate Polymers 0.000 description 1
- 229920005749 polyurethane resin Polymers 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000000790 scattering method Methods 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- 229920006012 semi-aromatic polyamide Polymers 0.000 description 1
- 238000007873 sieving Methods 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 229920002803 thermoplastic polyurethane Polymers 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 238000010333 wet classification Methods 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
- 239000002759 woven fabric Substances 0.000 description 1
Landscapes
- Artificial Filaments (AREA)
Abstract
Description
本発明は、高機能性繊維及び繊維構造体に関する。 The present invention relates to highly functional fibers and fiber structures.
従来、秋冬に使用する衣料品や寝装品においては、使用時に蒸れや汗冷えが生じて不快となる場合が多く、汗や汗に起因する水蒸気を素早く吸湿する繊維が求められている。また冬の寒さに対応するために、保温性に優れた繊維が求められている。 Conventionally, clothing and bedding used in autumn and winter often become stuffy or cold from sweat when worn, making them uncomfortable, and so there is a demand for fibers that can quickly absorb sweat and the water vapor that results from sweat. There is also a demand for fibers with excellent heat retention properties to cope with the cold of winter.
繊維に添加する吸湿性を高める機能材料としては活性炭が知られており、例えば特許文献1には、活性炭を含有する繊維が開示されている。そのほかにも吸湿性を高める方法として、特許文献2には、繊維表面に吸湿性を有する高分子化合物を付着させた繊維構造物が提案されている。また、保温性を高めた繊維として、特許文献3には、赤外線吸収剤を含む樹脂層を布帛に積層した保温性布帛が提案されている。特許文献4には、木炭及び/又は竹炭等の炭素粉を含有する繊維も開示されている。さらに、特許文献5には、臭いやアレルゲン物質の除去などを目的として、活性炭粒子及び/又は非活性炭粒子を含有する繊維が開示されている。 Activated carbon is known as a functional material added to fibers to increase their hygroscopicity. For example, Patent Document 1 discloses fibers containing activated carbon. As another method for increasing hygroscopicity, Patent Document 2 proposes a fiber structure in which a polymeric compound having hygroscopicity is attached to the fiber surface. As a fiber with improved heat retention, Patent Document 3 proposes a heat-retaining fabric in which a resin layer containing an infrared absorbing agent is laminated onto the fabric. Patent Document 4 also discloses fibers containing carbon powder such as charcoal and/or bamboo charcoal. Furthermore, Patent Document 5 discloses fibers containing activated carbon particles and/or non-activated carbon particles for the purpose of removing odors and allergens.
特許文献1に記載の活性炭を含有する繊維は、炭化物に比べると吸湿性が高いため水分を吸着しやすく、熱伝導の面で蓄熱性に劣るという問題があり、また繊維内に活性炭を均一に分散させることが困難であるため紡糸性が悪く、生産性に問題があるだけでなく強度が低く、加工性も悪いものであった。特許文献2及び3に記載の繊維は、機能を有した加工剤を後加工で付与しているため、洗濯処理によって脱落等が起き、洗濯後の性能が劣るという問題があった。特許文献4に記載の繊維は、木炭及び/又は竹炭を炭素紛として含むものの、活性炭に比べ比表面積が小さく吸湿性に劣るという問題があった。特許文献5に記載の繊維は、活性炭と炭化物の両方を含む態様の記載はなく、吸湿性及び蓄熱性の両立についても開示されていない。 The fibers containing activated carbon described in Patent Document 1 have a problem that they are more hygroscopic than carbonized materials, so they tend to adsorb moisture, and have poor heat storage in terms of thermal conductivity. In addition, it is difficult to uniformly disperse activated carbon in the fibers, so they have poor spinnability, which not only causes problems in productivity, but also low strength and poor processability. The fibers described in Patent Documents 2 and 3 have a problem that they are given functional processing agents in post-processing, so they fall off during washing, resulting in poor performance after washing. The fibers described in Patent Document 4 contain charcoal and/or bamboo charcoal as carbon powder, but have a problem that they have a smaller specific surface area and poor hygroscopicity than activated carbon. There is no description of the fibers described in Patent Document 5 that contain both activated carbon and carbonized materials, and there is no disclosure of the compatibility of hygroscopicity and heat storage.
本発明の目的は、洗濯耐久性に優れ、かつ吸湿性及び蓄熱性を有する高機能性繊維を提供することである。 The object of the present invention is to provide a highly functional fiber that has excellent washing durability, moisture absorption and heat storage properties.
本発明者らは、上記課題を解決すべく鋭意検討を行った結果、本発明を完成するに至った。即ち本発明は、以下の好適な態様を包含する。
[1]比表面積が500m2/g以上3000m2/g以下である炭素粒子Aと、比表面積が500m2/g未満である炭素粒子Bと、熱可塑性樹脂とを含有する繊維であり、前記炭素粒子A及び前記炭素粒子Bの合計含有量が繊維全体の質量に対して0.2~9質量%であり、前記炭素粒子Aと前記炭素粒子Bの含有比が質量比で95:5~60:40である、繊維。
[2]前記炭素粒子A及び前記炭素粒子Bが植物由来の炭素粒子である、前記[1]に記載の繊維。
[3]前記炭素粒子Aの平均粒子径が0.1~15μmであり、前記炭素粒子Bの平均粒子径が0.2~10.0μmである、前記[1]又は[2]に記載の繊維。
[4]前記熱可塑性樹脂がポリエステル系樹脂又はポリアミド系樹脂である、前記[1]~[3]のいずれかに記載の繊維。
[5]前記[1]~[4]のいずれかに記載の繊維を含む、繊維構造体。
The present inventors have conducted extensive research to solve the above problems and have completed the present invention.
[1] A fiber containing carbon particles A having a specific surface area of 500 m 2 /g or more and 3000 m 2 /g or less, carbon particles B having a specific surface area of less than 500 m 2 /g, and a thermoplastic resin, wherein the total content of the carbon particles A and the carbon particles B is 0.2 to 9 mass% with respect to the mass of the entire fiber, and the content ratio of the carbon particles A to the carbon particles B is 95:5 to 60:40 by mass.
[2] The fiber described in [1], wherein the carbon particles A and the carbon particles B are carbon particles derived from plants.
[3] The fiber according to [1] or [2], wherein the average particle size of the carbon particles A is 0.1 to 15 μm and the average particle size of the carbon particles B is 0.2 to 10.0 μm.
[4] The fiber according to any one of [1] to [3], wherein the thermoplastic resin is a polyester-based resin or a polyamide-based resin.
[5] A fiber structure comprising the fiber according to any one of [1] to [4] above.
本発明によれば、洗濯耐久性に優れ、かつ吸湿性及び蓄熱性を有する高機能性繊維を提供することができる。 The present invention provides highly functional fibers that are excellent in washing durability, moisture absorption, and heat storage properties.
以下、本発明の実施の形態について詳細に説明する。なお、本発明の範囲はここで説明する実施の形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々の変更ができる。 The following describes in detail the embodiments of the present invention. Note that the scope of the present invention is not limited to the embodiments described here, and various modifications can be made without departing from the spirit of the present invention.
本発明の繊維は、比表面積が500m2/g以上3000m2/g以下である炭素粒子Aと、比表面積が500m2/g未満である炭素粒子Bと、熱可塑性樹脂とを含有する繊維であり、前記炭素粒子A及び前記炭素粒子Bの合計含有量が繊維全体の質量に対して0.2~9質量%であり、前記炭素粒子Aと前記炭素粒子Bの含有比が質量比で95:5~60:40である、繊維である。 The fiber of the present invention contains carbon particles A having a specific surface area of 500 m 2 /g or more and 3000 m 2 /g or less, carbon particles B having a specific surface area of less than 500 m 2 /g, and a thermoplastic resin, in which the total content of the carbon particles A and the carbon particles B is 0.2 to 9 mass% with respect to the mass of the entire fiber, and the content ratio of the carbon particles A to the carbon particles B is 95:5 to 60:40 by mass.
本発明に用いる炭素粒子Aは、500m2/g以上3000m2/g以下の比表面積を有している。炭素粒子Aは比表面積が前記の範囲内であればよく、その製法等は特に限定されないが、活性炭であってもよい。環境への配慮、カーボンニュートラルの観点から、炭素粒子Aは植物由来であることが好ましく、ヤシ殻由来であることがより好ましい。ヤシ殻由来の活性炭は竹や針葉樹由来の活性炭と比較して高い比表面積を有するため、比較的少量の活性炭を添加することで、繊維は高い吸湿性を達成することができる。また大量に入手可能であることから、原料植物としてヤシ殻を用いることは商業的にも有利である。 The carbon particles A used in the present invention have a specific surface area of 500 m 2 /g or more and 3000 m 2 /g or less. The carbon particles A may have a specific surface area within the above range, and the manufacturing method thereof is not particularly limited, but may be activated carbon. From the viewpoint of environmental consideration and carbon neutrality, the carbon particles A are preferably derived from plants, and more preferably from coconut shells. Since activated carbon derived from coconut shells has a high specific surface area compared to activated carbon derived from bamboo or coniferous trees, the fiber can achieve high hygroscopicity by adding a relatively small amount of activated carbon. In addition, since it is available in large quantities, it is commercially advantageous to use coconut shells as a raw plant.
本発明に用いる炭素粒子Aの比表面積は、500m2/g以上3000m2/g以下である。これは前記炭素粒子Aを含む繊維を作製する場合、比表面積が前記下限値未満の場合には、所望の吸湿性能を有さない場合がある。また比表面積が前記上限値を超える場合、その比表面積が高すぎるために、凝集により繊維の生産性が低下する場合がある。凝集の原因としては、比表面積の増加により表面エネルギーが増加し、凝集しやすくなるものと推察される。前記炭素粒子Aの比表面積の下限値は800m2/g以上であることが好ましく、1000m2/g以上であることがより好ましい。また、上限値は2500m2/g以下であることが好ましく、2000m2/g以下であることがより好ましい。 The specific surface area of the carbon particles A used in the present invention is 500 m 2 /g or more and 3000 m 2 /g or less. When a fiber containing the carbon particles A is produced, if the specific surface area is less than the lower limit, the fiber may not have the desired moisture absorption performance. If the specific surface area exceeds the upper limit, the specific surface area is too high, and the productivity of the fiber may decrease due to aggregation. It is presumed that the aggregation is caused by an increase in the specific surface area, which increases the surface energy and makes the particles more likely to aggregate. The lower limit of the specific surface area of the carbon particles A is preferably 800 m 2 /g or more, and more preferably 1000 m 2 /g or more. The upper limit is preferably 2500 m 2 /g or less, and more preferably 2000 m 2 /g or less.
本発明でいうところの炭素粒子Aの比表面積は、窒素吸着法により求めることができるBET比表面積を指し、例えば実施例に記載の方法により算出することができる。前記炭素粒子Aの比表面積は、繊維を製造する際に原料として使用する炭素粒子Aを測定試料として測定してもよい。また、繊維から、繊維を構成する樹脂等を溶解除去することによって得た炭素粒子Aを測定試料として測定を行ってもよい。なお、後述する炭素粒子Bの比表面積についても同様に算出することができる。 The specific surface area of carbon particles A in the present invention refers to the BET specific surface area that can be determined by the nitrogen adsorption method, and can be calculated, for example, by the method described in the Examples. The specific surface area of carbon particles A may be measured using carbon particles A used as a raw material in producing fibers as a measurement sample. Alternatively, carbon particles A obtained by dissolving and removing resins and the like that constitute the fibers from the fibers may be used as a measurement sample. The specific surface area of carbon particles B, which will be described later, can also be calculated in the same manner.
本発明に用いる炭素粒子Aの平均粒子径は、熱可塑性樹脂中での良好な分散性を確保する点から、0.1~15μmであることが好ましい。これは前記炭素粒子Aを含む繊維を作製する場合、紡糸安定性を確保した上で、十分な吸湿性を示すことができるよう、繊維樹脂中に十分に分散させることが好ましいためである。前記炭素粒子Aの平均粒子径が前記下限値よりも小さい場合は、繊維への添加時に飛散してしまうことや、紡糸時に溶融ポリマー中で凝集が発生する等、その取扱い性も困難となる場合がある。また、前記炭素粒子Aの平均粒子径が前記上限値よりも大きい場合は、単糸の直径が小さな(例えば、直径15μm程度)ハイカウントの糸を製造する場合に、粒子径が大きすぎて異物となり紡糸性に悪影響を及ぼす場合がある。前記炭素粒子Aの平均粒子径の下限値は0.5μm以上であることがより好ましく、1.0μm以上であることがさらに好ましく、1.5μm以上であることが特に好ましい。また、上限値は10μm以下であることがより好ましく、8μm以下であることがさらに好ましく、6μm以下であることが特に好ましい。上記平均粒子径の炭素粒子Aは後述の粉砕、分級にて得ることができる。ここでいう平均粒子径は後述する実施例に記載の方法によって測定される値である。また、炭素粒子Aは二種類以上使用してもよいが、その場合の平均粒子径は、測定する際に用いる試料をそれぞれの炭素粒子の含有比で混合したものを使用することで、測定することができる。なお、後述する炭素粒子Bの平均粒子径についても同様に測定することができる。 The average particle diameter of the carbon particles A used in the present invention is preferably 0.1 to 15 μm in order to ensure good dispersibility in the thermoplastic resin. This is because, when producing a fiber containing the carbon particles A, it is preferable to disperse the carbon particles A sufficiently in the fiber resin so that the fiber can exhibit sufficient hygroscopicity while ensuring spinning stability. If the average particle diameter of the carbon particles A is smaller than the lower limit, the carbon particles A may scatter when added to the fiber, or may aggregate in the molten polymer during spinning, making the handling difficult. If the average particle diameter of the carbon particles A is larger than the upper limit, the particle diameter may be too large and become a foreign body, which may adversely affect spinnability, when producing a high-count thread with a small diameter of the single thread (for example, a diameter of about 15 μm). The lower limit of the average particle diameter of the carbon particles A is more preferably 0.5 μm or more, even more preferably 1.0 μm or more, and particularly preferably 1.5 μm or more. Also, the upper limit is more preferably 10 μm or less, even more preferably 8 μm or less, and particularly preferably 6 μm or less. Carbon particles A having the above average particle size can be obtained by pulverization and classification, which will be described later. The average particle size referred to here is a value measured by the method described in the Examples, which will be described later. Two or more types of carbon particles A may be used, and in this case, the average particle size can be measured by using a sample that is a mixture of the respective carbon particles in the content ratio used for measurement. The average particle size of carbon particles B, which will be described later, can also be measured in the same manner.
本発明の高機能繊維は、炭素粒子Bを含有する。炭素粒子Bが所定の比表面積を有することにより、可視光波長域に加えて、赤外波長域まで効率的に吸収し、比較的少量の炭化物であっても高い蓄熱性を達成することができる。また、炭素粒子Aよりも比表面積が小さい炭素粒子Bを含有させることにより製造時における炭素粒子Aの凝集を抑制することができ、繊維を紡糸する際の断糸を低減するだけでなく、加工時に仮撚りベルトや編み針等に接触した際の繊維表面に露出する炭素粒子A及び炭素粒子Bの脱離や、製編織時にガイド摩耗等によって生じ得る糸切れや毛羽立ちを防止することができる。 The high-performance fiber of the present invention contains carbon particles B. Since carbon particles B have a specific surface area, they can efficiently absorb not only visible light wavelengths but also infrared wavelengths, and can achieve high heat storage even with a relatively small amount of carbonized material. In addition, by including carbon particles B, which have a smaller specific surface area than carbon particles A, it is possible to suppress the aggregation of carbon particles A during production, which not only reduces thread breakage during fiber spinning, but also prevents the detachment of carbon particles A and carbon particles B exposed on the fiber surface when they come into contact with a false twist belt or knitting needles during processing, and prevents thread breakage and fluffing that may occur due to guide wear during knitting and weaving.
本発明に用いる炭素粒子Bは、その製法等は特に限定されないが、賦活化を行っていない炭化物であってもよい。環境への配慮、カーボンニュートラルの観点から、炭素粒子Bは植物由来であることが好ましく、植物由来の炭化物として木材由来の炭化物(木炭)、竹由来の炭化物(竹炭)、ヤシ殻由来の炭化物等が挙げられるが、その中でもヤシ殻由来の炭化物であることがより好ましい。ヤシ殻由来の炭化物は、例えばカーボンブラック等の石油由来の炭化物と比較して、植物特有の組織構造等に由来した非常に複雑な構造を有するものであると考えられる。 The carbon particles B used in the present invention may be a carbonized material that has not been activated, although there are no particular limitations on the manufacturing method, etc. From the viewpoint of environmental consideration and carbon neutrality, it is preferable that the carbon particles B are derived from plants. Examples of plant-derived carbonized materials include wood-derived carbonized materials (charcoal), bamboo-derived carbonized materials (bamboo charcoal), and coconut shell-derived carbonized materials, and among these, coconut shell-derived carbonized materials are more preferable. Compared to petroleum-derived carbonized materials such as carbon black, coconut shell-derived carbonized materials are considered to have a very complex structure derived from the tissue structure unique to plants, etc.
また、非植物系の原料に由来する炭化物、例えば鉱物由来、石油由来、合成素材由来等の炭化物と比較して、植物由来の炭化物はカーボンニュートラルであるため、環境保護の観点及び商業的な観点等においても有利である。本発明において、繊維の蓄熱性及び生産性をより高めやすい観点から、炭素粒子Bとしてヤシ殻由来の炭化物を使用することができる。また大量に入手可能であることから、原料植物としてヤシ殻を用いることは商業的にも有利である。 Furthermore, compared to carbonized materials derived from non-plant-based raw materials, such as carbonized materials derived from minerals, petroleum, synthetic materials, etc., plant-derived carbonized materials are carbon neutral, and therefore advantageous from the standpoint of environmental protection and commercial standpoints. In the present invention, from the standpoint of making it easier to increase the heat storage capacity and productivity of the fiber, coconut shell-derived carbonized materials can be used as carbon particles B. In addition, since coconut shells are available in large quantities, it is commercially advantageous to use them as the raw plant material.
ヤシ殻の原料となるヤシとしては、特に限定されるものではなく、例えば、パームヤシ(アブラヤシ)、ココヤシ、サラク及びオオミヤシ等が挙げられる。これらのヤシから得られたヤシ殻は、単独で用いてもよく、2種以上を組み合わせて用いてもよい。中でも、食品、洗剤原料、バイオディーゼル油原料等として利用され、大量に発生するバイオマス廃棄物であるココヤシ由来又はパームヤシ由来のヤシ殻は、入手が容易であり、低価格であることから特に好ましい。 The coconuts that are the raw material for coconut shells are not particularly limited, and examples include palm (oil palm), coconut palm, salak palm, and safflower. The coconut shells obtained from these coconuts may be used alone or in combination of two or more types. Among them, coconut shells derived from coconut palm or palm palm, which are biomass waste generated in large quantities and are used as food, detergent raw material, biodiesel oil raw material, etc., are particularly preferred because they are easy to obtain and low in price.
本発明に用いる炭素粒子Bの比表面積は500m2/g未満である。繊維の蓄熱性及び生産性を高めやすい観点から、上限値は400m2/g以下であることが好ましく、350m2/g以下であることがより好ましい。一方、前記炭素粒子Bの比表面積の下限値は200m2/g以上であることが好ましく、220m2/g以上であることがより好ましく、250m2/g以上であることがさらに好ましい。前記炭素粒子Bの比表面積が前記下限値以上であると、炭素粒子B表面に形成される細孔の量が適切なものとなり、より蓄熱性が優れたものとなる。 The specific surface area of the carbon particles B used in the present invention is less than 500 m 2 /g. From the viewpoint of easily increasing the heat storage property and productivity of the fiber, the upper limit is preferably 400 m 2 /g or less, and more preferably 350 m 2 /g or less. On the other hand, the lower limit of the specific surface area of the carbon particles B is preferably 200 m 2 /g or more, more preferably 220 m 2 /g or more, and even more preferably 250 m 2 /g or more. When the specific surface area of the carbon particles B is the lower limit or more, the amount of pores formed on the surface of the carbon particles B becomes appropriate, resulting in better heat storage property.
本発明に用いる炭素粒子Bの平均粒子径は、熱可塑性樹脂中での良好な分散性を確保する点から、0.2~10.0μmであることが好ましい。平均粒子径が前記下限値以上であると、繊維を製造する際の炭素粒子A及び炭素粒子Bの二次凝集を抑制しやすい。また平均粒子径が前記上限値を超える場合、紡糸安定性を確保した上で、十分な蓄熱性を示すことができるよう、繊維樹脂中に十分に分散させることが難しいためである。前記炭素粒子Bの平均粒子径の下限値は0.4μm以上であることが好ましく、0.6μm以上であることがより好ましい。また、上限値は5.0μm以下であることがより好ましく、4.0μm以下であることがさらに好ましく、3.0μm以下であることが特に好ましい。 The average particle size of the carbon particles B used in the present invention is preferably 0.2 to 10.0 μm in order to ensure good dispersibility in the thermoplastic resin. If the average particle size is equal to or greater than the lower limit, secondary aggregation of the carbon particles A and B during fiber production is easily suppressed. If the average particle size exceeds the upper limit, it is difficult to sufficiently disperse the carbon particles in the fiber resin so as to ensure spinning stability and exhibit sufficient heat storage. The lower limit of the average particle size of the carbon particles B is preferably 0.4 μm or more, and more preferably 0.6 μm or more. The upper limit is more preferably 5.0 μm or less, even more preferably 4.0 μm or less, and particularly preferably 3.0 μm or less.
上記の範囲の比表面積を有する炭素粒子A及び炭素粒子Bの製造方法としては、上記に例示した植物を焼成する方法が挙げられる。ヤシ殻を焼成して炭素粒子Bを製造する方法は、特に限定されるものではなく、当該分野において既知の方法を用いて製造することができる。例えば、原料となるヤシ殻を不活性ガス雰囲気下、例えば300~900℃程度の温度で1~20時間程度加熱処理(炭化処理)することによって製造することができる。比表面積や平均粒子径等を所望の範囲に調整するために、上記の焼成工程によって得た炭素粒子Bを粉砕及び/又は分級してもよい。特に、ヤシ殻等の比較的硬度が高い植物を用いる場合、粉砕の際に粗粉が残りやすい傾向がある。そのため、粉砕及び/又は分級工程によって、粗粉を除去することが、熱可塑性樹脂からなる繊維の生産性を高めやすい観点で好ましい。また、炭素粒子Aの製造工程において、炭素粒子Aを用いて製造される電池材料や浄化材料の性能を高める目的で、後述する賦活処理を行う前に、中間生成物である炭素粒子Bの微粉を除去する工程が行われる場合もある。除去された微粉は通常は廃棄もしくは燃料として利用されるが、本発明によれば、廃棄物である微粉を機能性素材としてアップサイクルすることが可能となる。 The method for producing carbon particles A and carbon particles B having the above-mentioned ranges of specific surface area includes a method of burning the plants exemplified above. The method for burning coconut shells to produce carbon particles B is not particularly limited, and can be produced using a method known in the art. For example, coconut shells as raw materials can be produced by heat-treating (carbonizing) them in an inert gas atmosphere at a temperature of, for example, about 300 to 900 ° C for about 1 to 20 hours. In order to adjust the specific surface area, average particle size, etc. to the desired range, the carbon particles B obtained by the above-mentioned burning process may be crushed and/or classified. In particular, when using plants with relatively high hardness such as coconut shells, there is a tendency that coarse powder is easily left during crushing. Therefore, it is preferable to remove the coarse powder by the crushing and/or classification process from the viewpoint of easily increasing the productivity of fibers made of thermoplastic resin. In addition, in the manufacturing process of carbon particles A, a process of removing fine powder of carbon particles B, which is an intermediate product, may be performed before performing the activation process described later in order to improve the performance of battery materials and purification materials manufactured using carbon particles A. The removed fine powder is usually discarded or used as fuel, but with this invention, it is possible to upcycle the fine powder waste into functional materials.
ヤシ殻等の原料を上記のような温度条件で焼成して得た炭素粒子Bは、炭素粒子Aの製造工程における中間生成物として使用してもよい。炭素粒子Aは、例えば上記のようにして得た炭素粒子Bを、さらに賦活処理する工程が行うことで製造することができる。賦活処理は、炭素粒子Bの表面に細孔を形成し多孔質の炭素質物質に変える処理であり、これにより大きな比表面積及び細孔容積を有する炭素粒子Aが製造される。賦活処理としては、例えばガス賦活処理、薬剤賦活処理等が行われている。本発明の繊維に含まれる炭素粒子Bは、500m2/g未満の比表面積を有し、このような比表面積を有する炭素粒子Bとしては、未賦活の炭化物が挙げられる。この炭化物をさらに賦活処理することによって得られる活性炭は、通常、500m2/g以上の比表面積を有し、これを本発明の繊維に含まれる炭素粒子Aとして使用することができる。比表面積や平均粒子径等を所望の範囲に調整するために、上記の焼成工程によって得た炭素粒子Aを粉砕及び/又は分級してもよい。特に、ヤシ殻等の比較的硬度が高い植物を用いる場合、粉砕の際に粗粉が残りやすい傾向がある。そのため、粉砕及び/又は分級工程によって、粗粉を除去することが、熱可塑性樹脂からなる繊維の生産性を高めやすい観点で好ましい。 Carbon particles B obtained by firing raw materials such as coconut shells under the above-mentioned temperature conditions may be used as an intermediate product in the manufacturing process of carbon particles A. Carbon particles A can be manufactured, for example, by subjecting carbon particles B obtained as described above to a further activation process. The activation process is a process for forming pores on the surface of carbon particles B to convert them into a porous carbonaceous material, thereby producing carbon particles A having a large specific surface area and pore volume. Examples of the activation process include gas activation and chemical activation. Carbon particles B contained in the fiber of the present invention have a specific surface area of less than 500 m 2 /g, and examples of carbon particles B having such a specific surface area include unactivated carbonized materials. Activated carbon obtained by further activating this carbonized material usually has a specific surface area of 500 m 2 /g or more, and can be used as carbon particles A contained in the fiber of the present invention. In order to adjust the specific surface area, average particle size, etc. to a desired range, carbon particles A obtained by the above-mentioned firing process may be pulverized and/or classified. In particular, when using plants with a relatively high hardness such as coconut shells, coarse powder tends to remain during pulverization. Therefore, it is preferable to remove the coarse powder by a pulverization and/or classification process from the viewpoint of easily increasing the productivity of fibers made of thermoplastic resin.
不活性ガスは、上記の焼成温度において炭素粒子A及び炭素粒子Bと反応しないガスであれば特に限定されないが、例えば、窒素、ヘリウム、アルゴン、クリプトン、又はそれらの混合ガスが挙げられ、好ましくは窒素である。また、不活性ガスに含まれる不純物ガス、特に酸素の濃度は低ければ低いほど好ましい。通常許容される酸素濃度としては、好ましくは0~2000ppm、より好ましくは0~1000ppmである。 The inert gas is not particularly limited as long as it does not react with carbon particles A and carbon particles B at the above-mentioned firing temperature, but examples include nitrogen, helium, argon, krypton, or a mixture of these gases, and nitrogen is preferred. In addition, the lower the concentration of impurity gases, especially oxygen, contained in the inert gas, the better. The normally acceptable oxygen concentration is preferably 0 to 2000 ppm, and more preferably 0 to 1000 ppm.
粉砕に用いる粉砕機は、特に限定されるものではなく、例えばビーズミル、ジェットミル、ボールミル、ハンマーミル、又はロッドミル等を単独又は組み合わせて使用することができる。所望の比表面積等を有する粉末を得やすいという点では、分級機能を備えたジェットミルが好ましい。一方、ボールミル、ハンマーミル、又はロッドミル等を用いる場合は、粉砕後に分級を行うことで、所望の比表面積や平均粒子径等に調整することができる。 The grinding machine used for grinding is not particularly limited, and for example, a bead mill, a jet mill, a ball mill, a hammer mill, a rod mill, etc. can be used alone or in combination. A jet mill equipped with a classification function is preferred in that it is easy to obtain a powder having the desired specific surface area, etc. On the other hand, when a ball mill, a hammer mill, a rod mill, etc. are used, the specific surface area, average particle size, etc. can be adjusted to the desired value by performing classification after grinding.
粉砕処理後に分級することにより、比表面積や平均粒子径等をより正確に調整することができる。また、粗粒を除くことで繊維の生産性を高めることができる。分級として、篩による分級、湿式分級、又は乾式分級が挙げられる。湿式分級機としては、例えば重力分級、慣性分級、水力分級、又は遠心分級等の原理を利用した分級機が挙げられる。また、乾式分級機としては、沈降分級、機械的分級、又は遠心分級の原理を利用した分級機が挙げられる。 By classifying the material after the grinding process, the specific surface area, average particle size, etc. can be adjusted more accurately. In addition, by removing coarse particles, the productivity of the fiber can be increased. Classification can be performed by sieving, wet classification, or dry classification. Examples of wet classifiers include classifiers that utilize the principles of gravity classification, inertia classification, hydraulic classification, or centrifugal classification. Examples of dry classifiers include classifiers that utilize the principles of sedimentation classification, mechanical classification, or centrifugal classification.
粉砕工程を行う場合、粉砕と分級を1つの装置を用いて行うこともできる。例えば、乾式の分級機能を備えたジェットミルを用いて、粉砕と分級を行うことができる。さらに、粉砕機と分級機とが独立した装置を用いることもできる。この場合、粉砕と分級とを連続して行うこともできるが、粉砕と分級とを不連続に行うこともできる。 When performing a pulverization process, pulverization and classification can be performed using a single device. For example, pulverization and classification can be performed using a jet mill equipped with a dry classification function. Furthermore, a device having a pulverizer and a classifier independent from each other can be used. In this case, pulverization and classification can be performed continuously, or pulverization and classification can be performed discontinuously.
本発明の繊維に含まれる炭素粒子A及び炭素粒子Bが、賦活処理されたものであるか否かは、例えば窒素吸着による比表面積、ベンゼン吸着量、ヨウ素吸着測定等の吸着試験による吸着量によって確認することができる。 Whether or not the carbon particles A and carbon particles B contained in the fiber of the present invention have been activated can be confirmed, for example, by measuring the specific surface area by nitrogen adsorption, the amount of benzene adsorption, and the amount of adsorption by adsorption tests such as iodine adsorption measurement.
本発明の繊維は、上記のような炭素粒子A及び炭素粒子Bを繊維内に含有する繊維である。ここで、炭素粒子A及び炭素粒子Bが繊維内に含有されるとは、炭素粒子A及び炭素粒子Bが繊維表面のみに付着しているのではなく、繊維の内部に一部又は全部が存在することを意味する。なお、本発明の効果を損なわない限り、炭素粒子A及び炭素粒子Bの一部が繊維表面に存在していてもよい。 The fibers of the present invention are fibers that contain carbon particles A and carbon particles B as described above. Here, "carbon particles A and carbon particles B are contained in the fibers" means that carbon particles A and carbon particles B are not attached only to the fiber surface, but are present in part or in whole inside the fiber. Note that carbon particles A and carbon particles B may be present in part on the fiber surface as long as the effect of the present invention is not impaired.
本発明の繊維は、炭素粒子A及び炭素粒子Bを繊維内部に含有させやすく、紡糸しやすい観点から、熱可塑性樹脂を含む。 The fiber of the present invention contains a thermoplastic resin from the viewpoint of easily incorporating carbon particles A and carbon particles B inside the fiber and making it easy to spin.
本発明に用いる熱可塑性樹脂としては、ポリエステル系樹脂、ポリアミド系樹脂、ポリウレタン系樹脂、ポリオレフィン系樹脂、ビニル系樹脂、ポリアリレート系樹脂、ポリスチレン系樹脂等が挙げられる。ポリオレフィン系樹脂は、例えば、ポリエチレン樹脂、ポリプロピレン樹脂、ポリメチルペンテン樹脂等が挙げられる。ビニル系樹脂は、例えば、ポリビニルアルコール樹脂、エチレン-ビニルアルコール共重合体等が挙げられる。これらのうち、有害分解ガスが発生しないため、焼却処分や火災の際にも毒性が問題にならない点において、ポリエステル系樹脂、ポリアミド系樹脂、ポリオレフィン系樹脂、ビニル系樹脂、ポリアリレート系樹脂が好ましい。 Thermoplastic resins used in the present invention include polyester resins, polyamide resins, polyurethane resins, polyolefin resins, vinyl resins, polyarylate resins, polystyrene resins, etc. Examples of polyolefin resins include polyethylene resins, polypropylene resins, polymethylpentene resins, etc. Examples of vinyl resins include polyvinyl alcohol resins, ethylene-vinyl alcohol copolymers, etc. Among these, polyester resins, polyamide resins, polyolefin resins, vinyl resins, and polyarylate resins are preferred because they do not generate harmful decomposition gases and therefore do not pose a toxicity problem even in the event of incineration or fire.
ポリエステル系樹脂は、芳香族ジカルボン酸を主たる酸成分とする繊維形成能を有する樹脂であり、例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリトリメチレンテレフタレート、ポリテトラメチレンテレフタレート、ポリシクロヘキサンジメチレンテレフタレート、ポリエチレン-2,6-ナフタレンジカルボキシレート等が挙げられる。また、これらポリエステルは第3成分として、ブタンジオールのようなアルコール成分又はイソフタル酸等のジカルボン酸を共重合させた共重合体でもよく、さらにこれら各種ポリエステルの混合体でもよい。 Polyester resins are resins with fiber-forming ability that have aromatic dicarboxylic acids as the main acid component, and examples of such resins include polyethylene terephthalate, polybutylene terephthalate, polytrimethylene terephthalate, polytetramethylene terephthalate, polycyclohexane dimethylene terephthalate, and polyethylene-2,6-naphthalene dicarboxylate. These polyesters may also be copolymers in which an alcohol component such as butanediol or a dicarboxylic acid such as isophthalic acid is copolymerized as a third component, or may be mixtures of these various polyesters.
ポリアミド系樹脂は、アミド結合で結びついた繰り返し構造単位を有するポリマーであり、ポリアミド系樹脂はナイロンとも称される。ポリアミド系樹脂としては、例えば、ポリアミド6、ポリアミド66、ポリアミド610、ポリアミド10、ポリアミド1010、ポリアミド12、ポリアミド6-12等の脂肪族ポリアミド及びその共重合体、芳香族ジカルボン酸と脂肪族ジアミンとから合成された半芳香族ポリアミド等が挙げられる。 Polyamide-based resins are polymers that have repeating structural units linked by amide bonds, and are also called nylons. Examples of polyamide-based resins include aliphatic polyamides such as polyamide 6, polyamide 66, polyamide 610, polyamide 10, polyamide 1010, polyamide 12, and polyamide 6-12, as well as copolymers thereof, and semi-aromatic polyamides synthesized from aromatic dicarboxylic acids and aliphatic diamines.
炭素粒子A及び炭素粒子Bを繊維内部に含有させやすく、消費性能及び紡糸性の観点から、熱可塑性樹脂は、ポリエステル系樹脂およびポリアミド系樹脂の少なくとも一つであることが好ましい。これらのうち、取扱性及びコストの観点から、ポリエチレンテレフタレート系重合体及びポリアミド6の少なくともひとつが好ましい。 From the viewpoints of ease of inclusion of carbon particles A and carbon particles B inside the fiber, consumption performance, and spinnability, the thermoplastic resin is preferably at least one of polyester-based resin and polyamide-based resin. Of these, from the viewpoints of ease of handling and cost, at least one of polyethylene terephthalate-based polymer and polyamide 6 is preferable.
本発明の繊維は、炭素粒子Aと、炭素粒子Bと、熱可塑性樹脂とを含有する繊維であり、前記炭素粒子A及び前記炭素粒子Bの合計含有量が繊維全体の質量に対して0.2~9質量%であり、前記炭素粒子Aと前記炭素粒子Bの含有比が質量比で95:5~60:40である。前記炭素粒子Aと前記炭素粒子Bとの含有比率が前記範囲内であると、前記炭素粒子Aによる高い吸湿性を十分に確保できるだけでなく、繊維化工程における凝集を抑制し、高速かつ高収率での製造が可能になる。前記炭素粒子Aの質量比が前記上限値より高いと、前記炭素粒子Bによる均一混練の効果が得られず紡糸時に断糸が多発するだけでなく、品位の良い繊維が得られない。前記炭素粒子Aの質量比が前記下限値よりも小さいと、炭素粒子Aによる吸湿性能が十分に得られない。前記炭素粒子Aと前記炭素粒子Bの含有比は、好ましくは92:8~75:25、より好ましくは90:10~70:30である。 The fiber of the present invention is a fiber containing carbon particles A, carbon particles B, and a thermoplastic resin, and the total content of the carbon particles A and the carbon particles B is 0.2 to 9 mass% with respect to the mass of the entire fiber, and the content ratio of the carbon particles A to the carbon particles B is 95:5 to 60:40 by mass. When the content ratio of the carbon particles A to the carbon particles B is within the above range, not only can the high moisture absorption property of the carbon particles A be sufficiently ensured, but also agglomeration in the fiberization process can be suppressed, enabling high-speed and high-yield production. When the mass ratio of the carbon particles A is higher than the upper limit, the effect of uniform kneading by the carbon particles B cannot be obtained, and not only does yarn breakage occur frequently during spinning, but fibers of good quality cannot be obtained. When the mass ratio of the carbon particles A is lower than the lower limit, the moisture absorption performance of the carbon particles A cannot be sufficiently obtained. The content ratio of the carbon particles A to the carbon particles B is preferably 92:8 to 75:25, more preferably 90:10 to 70:30.
前記炭素粒子A及び前記炭素粒子Bの合計含有量は繊維100質量%に対して、0.2~9質量%の範囲である。前記炭素粒子A及び前記炭素粒子Bの合計含有量が前記下限値以上であると、蓄熱性及び吸湿性に優れるものとなる。また、繊維における前記炭素粒子A及び前記炭素粒子Bの合計含有量が前記上限値以下であると、繊維を紡糸する際の断糸を抑制し、繊維の生産性を向上でき、十分な品質の繊維を得ることができる。前記炭素粒子A及び前記炭素粒子Bの合計含有量は、紡糸安定性を確保した上で、蓄熱性及び吸湿性を高めやすい観点から、繊維の質量に対して好ましくは0.25~8質量%、より好ましくは0.3~7質量%、さらに好ましくは0.4~6.5質量%、さらにより好ましくは0.5~6質量%、特に好ましくは1~5.5質量%、ことさらに好ましくは1.5~5質量%である。 The total content of the carbon particles A and the carbon particles B is in the range of 0.2 to 9% by mass with respect to 100% by mass of the fiber. When the total content of the carbon particles A and the carbon particles B is equal to or greater than the lower limit, the fiber has excellent heat storage and moisture absorption properties. When the total content of the carbon particles A and the carbon particles B in the fiber is equal to or less than the upper limit, fiber breakage during spinning is suppressed, fiber productivity can be improved, and fiber of sufficient quality can be obtained. The total content of the carbon particles A and the carbon particles B is preferably 0.25 to 8% by mass with respect to the mass of the fiber, more preferably 0.3 to 7% by mass, even more preferably 0.4 to 6.5% by mass, even more preferably 0.5 to 6% by mass, particularly preferably 1 to 5.5% by mass, and even more preferably 1.5 to 5% by mass, from the viewpoint of ensuring spinning stability and easily increasing heat storage and moisture absorption properties.
繊維の単糸繊度は、紡糸性と風合いの観点から、0.01~10dtexであることが好ましい。単糸繊度が前記下限値未満である場合、繊維を紡糸する際の断糸の発生が多くするために、好ましくない。また、単糸繊度が前記上限値を超える場合、該繊維を用いてニットや織物を製造した際に、仕上がりが硬くなり、良好な風合いが得られにくい。単糸繊度は、紡糸性を向上させ、かつ風合いの良い製品を作る観点から、好ましくは0.05~7dtex、より好ましくは0.1~4dtexである。 From the viewpoints of spinnability and texture, the single yarn fineness of the fiber is preferably 0.01 to 10 dtex. If the single yarn fineness is less than the lower limit, it is not preferable because it increases the occurrence of yarn breakage when spinning the fiber. Also, if the single yarn fineness exceeds the upper limit, when the fiber is used to manufacture knitted or woven fabrics, the finished product becomes hard and it is difficult to obtain a good texture. From the viewpoints of improving spinnability and producing products with a good texture, the single yarn fineness is preferably 0.05 to 7 dtex, more preferably 0.1 to 4 dtex.
これらの繊維は、長繊維のみならず短繊維、あるいはショートカットとしても用いることができる。短繊維の場合、カット長、捲縮数にも限定はない。 These fibers can be used not only as long fibers but also as short fibers or short cut fibers. In the case of short fibers, there are no limitations on the cut length or number of crimps.
繊維の総繊度は特に限定されず、使用される用途に応じて適宜設定してよいが、紡糸性と汎用性の観点から、総繊度は好ましくは15~300dtex、より好ましくは20~200dtexであり、また、フィラメント数は好ましくは2~200フィラメント、より好ましくは3~100フィラメントである。 The total fiber fineness is not particularly limited and may be set appropriately depending on the application, but from the viewpoint of spinnability and versatility, the total fineness is preferably 15 to 300 dtex, more preferably 20 to 200 dtex, and the number of filaments is preferably 2 to 200 filaments, more preferably 3 to 100 filaments.
繊維の比表面積は、0.2m2/g以上、3.0m2/g以下であることが好ましい。繊維の比表面積が前記下限値以上であると、十分な吸湿性が発揮できる。また、繊維の比表面積が前記上限値を超える場合は、単糸繊度が小さくなるために紡糸する際に断糸しやすくなり、繊維の生産性が低下する場合がある。 The specific surface area of the fiber is preferably 0.2 m2 /g or more and 3.0 m2 /g or less. When the specific surface area of the fiber is equal to or more than the lower limit, sufficient moisture absorption can be exhibited. When the specific surface area of the fiber exceeds the upper limit, the single yarn fineness becomes small, so that the yarn is easily broken during spinning, and the productivity of the fiber may decrease.
繊維のU%は、3.0未満であることが好ましい。繊維軸方向の太さ斑は繊度斑の指標であるU%の値で表すことができ、断面変化に比例する電気容量の変化から測定することができる。U%が上記範囲であることにより、繊維表面に露出する炭素粒子A及び炭素粒子Bが加工時に仮撚りベルトや編み針等に接触した際の脱離が起きにくくなり、編機の汚染等の問題が発生しにくくなる。 The U% of the fiber is preferably less than 3.0. The thickness unevenness in the fiber axis direction can be expressed by the value of U%, which is an index of fineness unevenness, and can be measured from the change in electrical capacitance proportional to the change in cross section. By having U% in the above range, carbon particles A and carbon particles B exposed on the fiber surface are less likely to detach when they come into contact with a false twist belt or knitting needles during processing, and problems such as contamination of the knitting machine are less likely to occur.
繊維の強度は特に限定されず、使用される用途に応じて適宜設定してよいが、製編織時にガイド摩耗等によって生じ得る糸切れや毛羽立ちを防止しやすい観点からは、好ましくは1cN/dtex以上、より好ましくは1.5cN/dtex以上、さらに好ましくは2cN/dtex以上である。強度の上限値は特に制限されるものではないが、通常の溶融紡糸法で得られる強度としては、5.0cN/dtex程度である。 The strength of the fiber is not particularly limited and may be set appropriately depending on the application, but from the viewpoint of easily preventing thread breakage and fluffing that may occur due to guide wear during knitting and weaving, it is preferably 1 cN/dtex or more, more preferably 1.5 cN/dtex or more, and even more preferably 2 cN/dtex or more. There is no particular upper limit to the strength, but the strength obtained by the normal melt spinning method is about 5.0 cN/dtex.
繊維の伸度は特に限定されず、繊維が使用される用途に応じて適宜設定してよいが、糸加工性と製品形態での取り扱い性の観点からは、好ましくは10~150%、より好ましくは20~100%である。 The elongation of the fiber is not particularly limited and may be set appropriately depending on the application for which the fiber is to be used, but from the viewpoint of yarn processability and ease of handling in product form, it is preferably 10 to 150%, more preferably 20 to 100%.
また、本発明の繊維は断面形状に関しても特に制限はなく、丸断面の他、十字断面、扁平断面、多葉断面、中空断面等の種々の断面形状の繊維が可能である。また、芯鞘型複合繊維、海島型複合繊維、分割型複合繊維等であってもよい。 The fibers of the present invention are not particularly limited with respect to their cross-sectional shape, and can have a variety of cross-sectional shapes, including round, cross-sectional, flat, multi-lobal, and hollow cross-sectional shapes. They may also be core-sheath type composite fibers, sea-island type composite fibers, and split type composite fibers.
本発明の繊維には、本発明の効果を損なわない限り、必要に応じて任意の添加剤を含有させることができる。このような添加剤の例としては、酸化防止剤、可塑剤、熱安定剤、紫外線吸収剤、帯電防止剤、滑剤、フィラー、他の高分子化合物等が挙げられる。これらの1種類を使用してもよいし、2種以上を組合せて使用してもよい。 The fibers of the present invention may contain any additives as necessary, as long as they do not impair the effects of the present invention. Examples of such additives include antioxidants, plasticizers, heat stabilizers, UV absorbers, antistatic agents, lubricants, fillers, other polymer compounds, etc. One of these may be used, or two or more may be used in combination.
本発明の繊維は、上記の繊維を構成する熱可塑性樹脂と、炭素粒子A及び炭素粒子Bと、必要に応じて他の成分、添加剤等を用い、従来公知の紡糸装置を用いて製造することが可能である。例えば溶融紡糸法により紡糸を行うことができ、具体的には、低速、中速で溶融紡糸した後に延伸する方法、高速による直接紡糸延伸法、紡糸後に延伸と仮撚を同時に、又は続けて行なう方法等の任意の製造方法で製造することができる。 The fiber of the present invention can be produced using the thermoplastic resin constituting the fiber, carbon particles A and carbon particles B, and other components, additives, etc. as necessary, using a conventionally known spinning device. For example, spinning can be performed by melt spinning, and specifically, it can be produced by any manufacturing method such as a method of melt spinning at low or medium speed and then drawing, a direct spinning and drawing method at high speed, or a method of simultaneously or consecutively drawing and false twisting after spinning.
具体的な製造方法の一例としては、繊維を構成する熱可塑性樹脂と、炭素粒子Aと炭素粒子Bと、任意に他の成分を含む組成物を、溶融押出し機で溶融し、溶融ポリマー流を紡糸頭に導き、ギヤポンプで計量し、所望の形状の紡糸ノズルから吐出させ、必要に応じて延伸処理等を行い、ついで巻き取ることにより、本発明の繊維を製造することができる。繊維を構成する熱可塑性樹脂と、炭素粒子Aと炭素粒子Bとの混合は、これらを直接混合することによって行ってもよいし、一部の成分と前記炭素粒子A及び前記炭素粒子Bとをあらかじめ混合してマスターバッチを得て、該マスターバッチを、繊維を構成する熱可塑性樹脂と混合することによって行ってもよい。紡糸時の溶融温度は、繊維を構成する熱可塑性樹脂の融点等により適宜調整されるが、通常150~300℃程度が好ましい。紡糸ノズルから吐出された糸条は延伸せずにそのまま高速で巻き取るか、必要に応じて延伸される。延伸操作は、通常、繊維を構成する成分のガラス転移点以上の温度において、破断伸度(HDmax)の0.55~0.9倍の延伸倍率で行われる。延伸倍率が破断伸度の0.55倍未満では十分な強度を有する繊維が安定して得られにくく、破断伸度の0.9倍を超えると延伸時に断糸しやすくなる。 As an example of a specific manufacturing method, a composition containing the thermoplastic resin constituting the fiber, carbon particles A and carbon particles B, and optionally other components is melted in a melt extruder, the molten polymer flow is introduced into a spinning head, metered by a gear pump, discharged from a spinning nozzle of a desired shape, and if necessary, subjected to a stretching treatment, etc., and then wound up, whereby the fiber of the present invention can be manufactured. The thermoplastic resin constituting the fiber and the carbon particles A and B may be mixed by directly mixing them, or a master batch may be obtained by previously mixing some of the components with the carbon particles A and the carbon particles B, and the master batch may be mixed with the thermoplastic resin constituting the fiber. The melting temperature during spinning is appropriately adjusted depending on the melting point, etc., of the thermoplastic resin constituting the fiber, but is usually preferably about 150 to 300°C. The thread discharged from the spinning nozzle is wound up at high speed as it is without stretching, or is stretched as necessary. The stretching operation is usually carried out at a temperature equal to or higher than the glass transition point of the components that make up the fiber, with a stretch ratio of 0.55 to 0.9 times the breaking elongation (HDmax). If the stretch ratio is less than 0.55 times the breaking elongation, it is difficult to consistently obtain fibers with sufficient strength, and if it exceeds 0.9 times the breaking elongation, the yarn is more likely to break during stretching.
延伸は紡糸ノズルから吐出された後に、一旦巻き取ってから延伸する場合と、紡糸に引き続いて施される場合があるが、本発明においては、いずれでもよい。延伸操作は、通常、熱延伸によって行われ、熱風、熱板、熱ローラー、水浴等のいずれを用いて行ってもよい。また、引取り速度は、一旦巻き取ってから延伸処理を行う場合、紡糸直結延伸の一工程で紡糸延伸して巻き取る場合、延伸を行わずに高速でそのまま巻き取る場合で異なるが、大凡500~6000m/分の範囲で引き取る。500m/分未満では、生産性が劣るし、6000m/分を超えるような超高速では、繊維の断糸が起こりやすい。また、本発明の繊維断面形状は特に限定されず、通常の溶融紡糸の手法を用いてノズルの形状により真円状にも中空にも異型断面にもできる。また、繊維を構成する熱可塑性樹脂と炭素粒子Aと炭素粒子Bとを含有する組成物から構成される芯部分又は鞘部分と、繊維を構成する熱可塑性樹脂を含有する鞘部分又は芯部分とから構成される芯鞘構造を有していてもよい。繊維化や製織化での工程通過性の点からは真円が好ましい。 After being discharged from the spinning nozzle, the fiber may be drawn once and then wound up, or may be drawn immediately after spinning. Either method may be used in the present invention. The drawing operation is usually performed by hot drawing, and may be performed using hot air, a hot plate, a hot roller, a water bath, or the like. The take-up speed varies depending on whether the fiber is drawn once and then drawn, whether the fiber is drawn and wound up in a single step of direct spinning and drawing, or whether the fiber is taken up at high speed without drawing. The take-up speed is generally in the range of 500 to 6000 m/min. If the take-up speed is less than 500 m/min, productivity is poor, and if the take-up speed is higher than 6000 m/min, fiber breakage is likely to occur. The cross-sectional shape of the fiber of the present invention is not particularly limited, and it can be made circular, hollow, or have an irregular cross section depending on the shape of the nozzle using a normal melt spinning technique. It may also have a core-sheath structure consisting of a core or sheath portion made of a composition containing the thermoplastic resin constituting the fiber, carbon particles A, and carbon particles B, and a sheath or core portion containing the thermoplastic resin constituting the fiber. A perfect circle is preferable from the viewpoint of processability in fiberization and weaving.
本発明の繊維は、各種の繊維構造体(繊維集合体)として用いることができ、本発明は、本発明の繊維を含む繊維構造体も提供する。ここで、「繊維構造体」とは、本発明の繊維のみからなるマルチフィラメント糸、ステープルファイバー、ショートカットファイバー、紡績糸、織編物、不織布、紙、人工皮革、及び詰物材や、本発明の繊維を一部に使用してなる織編物や不織布、例えば、天然繊維、化学繊維、合成繊維、半合成繊維等他の繊維との交編織布、捲縮綿、混紡糸、混繊糸、合撚糸、交絡糸や縮糸等の加工糸として用いた織編物、混綿不織布、繊維積層体等であってもよい。 The fiber of the present invention can be used as various fiber structures (fiber assemblies), and the present invention also provides a fiber structure containing the fiber of the present invention. Here, the "fiber structure" may be a multifilament yarn, staple fiber, short cut fiber, spun yarn, woven or knitted fabric, nonwoven fabric, paper, artificial leather, or padding material consisting only of the fiber of the present invention, or a woven or knitted fabric or nonwoven fabric using the fiber of the present invention as a part thereof, for example, a cross-knitted fabric with other fibers such as natural fibers, chemical fibers, synthetic fibers, or semi-synthetic fibers, a woven or knitted fabric using crimped cotton, blended yarn, blended yarn, twisted yarn, intertwined yarn, or crimped yarn as a processed yarn, etc.
本発明の繊維、及び本発明の繊維を含む繊維構造体は、洗濯耐久性に優れた吸湿性及び蓄熱性を有する。そのため、本発明の繊維及び繊維構造体は、例えばアウターウェアやスポーツウェア、シャツ、パンツ、コート、ユニフォーム、作業服、下着、パンスト、靴下、手袋、スポーツ衣料、ブラックフォーマル衣料等の衣料製品、カーテン、カーペット等のインテリアファブリック等として用いられ得る。 The fiber of the present invention and the fiber structure containing the fiber of the present invention have excellent moisture absorption and heat storage properties with excellent washing durability. Therefore, the fiber and fiber structure of the present invention can be used, for example, as clothing products such as outerwear, sportswear, shirts, pants, coats, uniforms, work clothes, underwear, pantyhose, socks, gloves, sportswear, and black formal clothing, as well as interior fabrics such as curtains and carpets.
本発明の蓄熱性は後述する方法で測定した。蓄熱性評価は、照射15分後において、対照サンプルに対して筒編地の温度差(ΔT)が2℃以上であることが好ましい。 The heat storage property of the present invention was measured by the method described below. It is preferable that the temperature difference (ΔT) of the tubular knitted fabric relative to the control sample is 2°C or more after 15 minutes of irradiation.
蓄熱性の洗濯耐久性についてはJIS L0217-1998、103法により10回の洗濯を行った後の筒編地の蓄熱性が照射15分後において、前記洗濯処理をする前の筒編地に対して両者の差が1℃未満であることが好ましい。 As for the washing durability of heat storage, it is preferable that the difference between the heat storage property of the tubular knit fabric after 10 washings according to JIS L0217-1998, method 103 and the heat storage property of the tubular knit fabric before the washing treatment 15 minutes after irradiation is less than 1°C.
本発明の吸湿性は後述する方法で測定した。吸湿性評価は、筒編地と対照サンプルの吸湿率比(対照サンプルの吸湿率/筒編地の吸湿率)が1.08以上であることが好ましい。 The moisture absorption of the present invention was measured by the method described below. It is preferable that the moisture absorption ratio of the tubular knit fabric to the control sample (moisture absorption rate of the control sample/moisture absorption rate of the tubular knit fabric) is 1.08 or more.
吸湿性の洗濯耐久性についてはJIS L0217-1998、103法により10回の洗濯を行った後の筒編地の吸湿率を同様に測定し、洗濯10回処理後の対照サンプルの吸湿率との吸湿率比(10回洗濯後の対照サンプルの吸湿率/10回洗濯後の実施例、比較例筒編地の吸湿率)が1.08以上であることが好ましい。 Regarding the washing durability of moisture absorption, the moisture absorption rate of the tubular knit fabric after 10 washes is similarly measured according to JIS L0217-1998, Method 103, and it is preferable that the moisture absorption rate ratio to the moisture absorption rate of the control sample after 10 washes (moisture absorption rate of the control sample after 10 washes/moisture absorption rate of the tubular knit fabrics of the examples and comparative examples after 10 washes) is 1.08 or more.
以下に、本発明を実施例により説明するが、本発明はこれらの実施例に限定されるものではない。まず、各物性値の測定方法を説明する。 The present invention will be described below with reference to examples, but the present invention is not limited to these examples. First, the measurement methods for each physical property value will be described.
<平均粒子径>
本発明に用いられる炭素粒子A及び炭素粒子Bの平均粒子径(粒度分布)は、レーザー散乱法により以下の通りに測定した。試料を界面活性剤(和光純薬工業(株)製「ToritonX100」)が0.3質量%含まれた水溶液に適量投入し、超音波洗浄器で10分以上処理し、水溶液中に分散させた。この分散液を用いて粒度分布を測定した。粒度分布測定は、粒子径・粒度分布測定器(日機装(株)製「マイクロトラックMT3000」)を用いて行った。D50は、累積体積が50%となる粒子径であり、この値を平均粒子径として用いた。
<Average particle size>
The average particle size (particle size distribution) of carbon particles A and carbon particles B used in the present invention was measured by a laser scattering method as follows. An appropriate amount of the sample was put into an aqueous solution containing 0.3 mass% of a surfactant ("Toriton X100" manufactured by Wako Pure Chemical Industries, Ltd.), and treated with an ultrasonic cleaner for 10 minutes or more to disperse the sample in the aqueous solution. The particle size distribution was measured using this dispersion. The particle size distribution was measured using a particle size/particle size distribution measuring instrument ("Microtrac MT3000" manufactured by Nikkiso Co., Ltd.). D50 is the particle size at which the cumulative volume is 50%, and this value was used as the average particle size.
<比表面積>
本発明に用いられる炭素粒子A及び炭素粒子Bの比表面積は、高精度表面積/細孔分布測定装置(マイクロトラック・ベル株式会社製「BELSORP28SA」)を使用して測定した。測定試料を300℃で5時間真空脱気した後、77Kでの窒素吸着等温線を求めた。得られた吸着等温線を用いて、BET式により多点法解析を行い、得られた曲線の相対圧P/P0=0.01~0.1の領域での直線から比表面積を算出した。
<Specific surface area>
The specific surface areas of carbon particles A and carbon particles B used in the present invention were measured using a high-precision surface area/pore distribution measuring device ("BELSORP28SA" manufactured by Microtrack-Bel Co., Ltd.). After the measurement sample was degassed in vacuum at 300° C. for 5 hours, a nitrogen adsorption isotherm was obtained at 77 K. Using the obtained adsorption isotherm, a multipoint analysis was performed by the BET equation, and the specific surface area was calculated from a straight line in the region of the relative pressure P/P 0 of the obtained curve from 0.01 to 0.1.
<総繊度および単糸繊度>
本発明の繊維の総繊度は、枠周1.0mの検尺機を用いて100mのカセを作製し、温度20℃、湿度65%RHの環境下で単位長さ当たりの重量を測定し、下記式に従って測定した。これを10回繰り返して測定し、その単純平均値の小数点以下を四捨五入した値を総繊度とした。
総繊度(dtex)=100mのカセ重量(g)×100
また、単糸繊度は下記式に従って、総繊度の値をフィラメント数で除した値とした。
単糸繊度(dtex)=繊度(dtex)/フィラメント数(本)
<Total fineness and single yarn fineness>
The total fineness of the fiber of the present invention was measured by preparing a 100 m skein using a measuring machine with a frame circumference of 1.0 m, measuring the weight per unit length under an environment of a temperature of 20° C. and a humidity of 65% RH, and then measuring according to the following formula: This measurement was repeated 10 times, and the simple average value was rounded off to the nearest whole number to obtain the total fineness.
Total fineness (dtex) = weight of 100 m skein (g) x 100
The single yarn fineness was calculated by dividing the total fineness by the number of filaments according to the following formula.
Single yarn size (dtex) = size (dtex) / number of filaments (number)
<糸の一定長さの平均偏差係数(U%)>
ツエルベーガー社製のウスター斑試験機を用いて、糸を電極間に一定速度で通し(糸速100m/分、レンジ±12.5%、チャート速度10cm/分)、断面変化に比例する電気容量の変化を測定長100mの条件で連続測定し、糸の一定長さの平均偏差係数「U%」を求めた。
<Average deviation coefficient (U%) for a given length of yarn>
Using a Worcestershire spot tester manufactured by Zellweger, the yarn was passed between the electrodes at a constant speed (yarn speed 100 m/min, range ±12.5%, chart speed 10 cm/min), and the change in capacitance proportional to the cross-sectional change was continuously measured over a measurement length of 100 m, and the average deviation coefficient "U%" for a fixed length of the yarn was calculated.
<強度、伸度>
強度および伸度は、実施例によって得られた繊維を試料とし、JIS L1013:2010(化学繊維フィラメント糸試験方法)8.5.1に準じて算出した。温度20℃、湿度65%RHの環境下において、島津製作所製オートグラフAGS-Xを用いて、初期試料長20cm、引張速度20cm/分の条件で引張試験を行った。最大荷重を示す点の応力(cN)を繊度(dtex)で除して強度(cN/dtex)を算出し、最大荷重を示す点の伸び(L1)と初期試料長(L0)を用いて下記式によって伸度(%)を算出した。なお、測定は1試料につき10回行い、その平均値を強度及び伸度とした。
伸度(%)={(L1-L0)/L0}×100
<Strength, elongation>
The strength and elongation were calculated according to JIS L1013:2010 (chemical fiber filament yarn test method) 8.5.1 using the fibers obtained in the examples as samples. A tensile test was performed under conditions of a temperature of 20°C and a humidity of 65% RH using an autograph AGS-X manufactured by Shimadzu Corporation, with an initial sample length of 20 cm and a tensile speed of 20 cm/min. The stress (cN) at the point showing the maximum load was divided by the fineness (dtex) to calculate the strength (cN/dtex), and the elongation (%) was calculated using the elongation (L1) at the point showing the maximum load and the initial sample length (L0) according to the following formula. The measurement was performed 10 times for each sample, and the average values were taken as the strength and elongation.
Elongation (%) = {(L1 - L0) / L0} x 100
<紡糸性>
実施例及び比較例の条件で、12時間連続して繊維を製造した際に、断糸の発生回数を測定し、次の基準で評価した。
◎:12時間で断糸の発生回数が0回
○:12時間で断糸の発生回数が1回以上3回以下
△:12時間で断糸の発生回数が4回以上5回以下
×:12時間で断糸の発生回数が6回以上
<Spinnability>
When fibers were produced continuously for 12 hours under the conditions of the Examples and Comparative Examples, the number of times that yarn breakage occurred was counted and evaluated according to the following criteria.
◎: 0 thread breaks in 12 hours ○: 1 to 3 thread breaks in 12 hours △: 4 to 5 thread breaks in 12 hours ×: 6 or more thread breaks in 12 hours
<加工性>
実施例及び比較例の繊維を用いて、12時間連続して繊維を仮撚り加工した際に、断糸の発生回数を測定し、次の基準で評価した。
◎:12時間で断糸の発生回数が0回
○:12時間で断糸の発生回数が1回以上3回以下
△:12時間で断糸の発生回数が4回以上5回以下
×:12時間で断糸の発生回数が6回以上
<Processability>
The fibers of the Examples and Comparative Examples were false-twisted continuously for 12 hours, during which the number of times yarn breakage occurred was counted and evaluated according to the following criteria.
◎: 0 thread breaks in 12 hours ○: 1 to 3 thread breaks in 12 hours △: 4 to 5 thread breaks in 12 hours ×: 6 or more thread breaks in 12 hours
<蓄熱性>
ボーケン規格BQE A 036を参考に、繊維の蓄熱性の評価を行った。まず、実施例、比較例で得られた繊維で筒編み機(釜径3.5インチ、針本数240本)を用いて筒編地を作製し、試料とした。また、各実施例、比較例で使用した樹脂で炭素粒子Aや炭素粒子Bを含めずに繊維化したものを対照として使用して、試料と同一組織、目付の筒編地を作製し、評価の対照に用いた。前記試料の間に熱電対を挿入して以下の条件にて、レフランプを15分間照射し、温度変化を経時的に測定した。測定は5回測定し、平均した値を用いて、ΔT((15分照射後の実施例又は比較例の筒編地の生地温度)-(15分照射後の対照サンプルの生地温度))を求めた。
使用ランプ:写真用レフランプPRF500WB/D(パナソニック製)
照射距離 :50cm
照射面 :表面
照射時間 :15分間
室温度 :20±2℃
<Heat storage>
The heat storage property of the fiber was evaluated with reference to the Boken standard BQE A 036. First, a cylindrical knitted fabric was prepared using the fibers obtained in the examples and comparative examples using a cylindrical knitting machine (boiler diameter 3.5 inches, number of needles 240) to prepare a sample. In addition, a cylindrical knitted fabric having the same structure and basis weight as the sample was prepared using the resin used in each example and comparative example as a control without carbon particles A or B, and used as a control for evaluation. A thermocouple was inserted between the samples, and a reflector lamp was irradiated for 15 minutes under the following conditions, and the temperature change was measured over time. The measurement was performed five times, and the average value was used to determine ΔT ((fabric temperature of the cylindrical knitted fabric of the example or comparative example after 15 minutes of irradiation) - (fabric temperature of the control sample after 15 minutes of irradiation)).
Lamp used: Photographic reflector lamp PRF500WB/D (manufactured by Panasonic)
Irradiation distance: 50cm
Irradiation surface: Front surface Irradiation time: 15 minutes Room temperature: 20±2℃
<吸湿性>
ボーケン規格BQE A 034を参考に吸湿性試験を行い、吸湿率を測定した。蓄熱性の評価で使用した10×10cmの筒編地を温度25℃、湿度40%RHに設定された初期条件ボックスにて調湿したサンプルの吸湿率と、温度25℃、湿度80%RHに設定にて調湿したサンプルの吸湿率を求め、吸湿率比((対照サンプルの吸湿率)/(実施例、比較例の筒編地の吸湿率))を算出した。
<Moisture absorption>
A moisture absorption test was conducted and the moisture absorption rate was measured with reference to the Boken standard BQE A 034. The moisture absorption rates of samples of 10 x 10 cm cylindrical knitted fabrics used in the evaluation of heat storage properties, which were conditioned in an initial condition box set at a temperature of 25°C and a humidity of 40% RH, and samples conditioned at a temperature of 25°C and a humidity of 80% RH, were determined, and the moisture absorption rate ratio ((moisture absorption rate of control sample)/(moisture absorption rate of cylindrical knitted fabrics of Examples and Comparative Examples)) was calculated.
<参考例1:ヤシ殻由来の炭素粒子Bの製造>
ヤシ殻チップを窒素ガス雰囲気下、500℃で焼成(炭化)後、洗浄・乾燥処理を行い、乾式粉砕後に分級し、微粉を回収した。この時の粒度はD50=1.5μmであった。その後、再度乾式粉砕を行い、分級し、ヤシ殻由来の炭素粒子Bを得た。ヤシ殻由来の炭素粒子Bの粒度(平均粒子径)はD50=0.7μmであり、比表面積は440m2/gであった。
<Reference Example 1: Production of coconut shell-derived carbon particles B>
The coconut shell chips were calcined (carbonized) at 500°C under a nitrogen gas atmosphere, washed and dried, dry-pulverized, classified, and fine powder was collected. The particle size at this time was D50 = 1.5 μm. After that, dry-pulverization was performed again and classified to obtain coconut shell-derived carbon particles B. The particle size (average particle size) of the coconut shell-derived carbon particles B was D50 = 0.7 μm, and the specific surface area was 440 m2 /g.
<参考例2:ヤシ殻由来の炭素粒子Bの製造方法>
ヤシ殻チップを窒素ガス雰囲気下、400℃で焼成(炭化)後、洗浄・乾燥処理を行い、乾式粉砕後に分級し、微粉を回収した。この時の粒度はD50=10μmであった。その後、再度乾式粉砕を行い、分級し、ヤシ殻由来の炭素粒子Bを得た。ヤシ殻由来の炭素粒子Bの粒度(平均粒子径)はD50=9.6μmであり、比表面積は210m2/gであった。
<Reference Example 2: Method for producing coconut shell-derived carbon particles B>
The coconut shell chips were calcined (carbonized) at 400°C under a nitrogen gas atmosphere, washed and dried, dry-pulverized, classified, and fine powder was collected. The particle size at this time was D50 = 10 μm. After that, dry-pulverization was performed again and classified to obtain coconut shell-derived carbon particles B. The particle size (average particle size) of the coconut shell-derived carbon particles B was D50 = 9.6 μm, and the specific surface area was 210 m2 /g.
<参考例3:ヤシ殻由来の炭素粒子Aの製造>
BET比表面積400m2/gのヤシ殻由来の炭素粒子Bを、灯油燃焼ガス(H2O、CO2、CO、N2の混合ガス)にスチームを供給して水蒸気分圧35%に調整した賦活ガス中、900℃で90分間水蒸気賦活し、ヤシ殻由来の原料炭素粒子を調製した。ヤシ殻由来の原料炭素粒子を粉砕して平均粒子径850~2,360μmのヤシ殻由来の活性炭を得た。得られた活性炭をボールミルで平均粒子径8μmに粗粉砕した後、コンパクトジェットミル(コジェットシステムα-mkIII)で粉砕及び分級し、平均粒子径4μm、比表面積1,500m2/gのヤシ殻由来の炭素粒子Aを得た。
<Reference Example 3: Production of coconut shell-derived carbon particles A>
The coconut shell-derived carbon particles B having a BET specific surface area of 400 m 2 /g were activated with steam at 900°C for 90 minutes in an activation gas prepared by supplying steam to kerosene combustion gas (a mixed gas of H 2 O, CO 2 , CO, and N 2 ) and adjusting the water vapor partial pressure to 35%, to prepare coconut shell-derived raw carbon particles. The coconut shell-derived raw carbon particles were pulverized to obtain coconut shell-derived activated carbon having an average particle size of 850 to 2,360 μm. The obtained activated carbon was coarsely pulverized to an average particle size of 8 μm in a ball mill, and then pulverized and classified in a compact jet mill (Cojet System α-mkIII) to obtain coconut shell-derived carbon particles A having an average particle size of 4 μm and a specific surface area of 1,500 m 2 /g.
<参考例4:ヤシ殻由来の炭素粒子Aの製造>
BET比表面積400m2/gのヤシ殻由来の炭素粒子Bを、灯油燃焼ガス(H2O、CO2、CO、N2の混合ガス)にスチームを供給して水蒸気分圧35%に調整した賦活ガス中、900℃で30分間水蒸気賦活し、ヤシ殻由来の原料炭素粒子を調製した。ヤシ殻由来の原料炭素粒子を粉砕して平均粒子径850~2,360μmのヤシ殻由来の活性炭を得た。得られた活性炭をボールミルで粉砕及び分級し、平均粒子径11μm、BET比表面積800m2/gのヤシ殻由来の炭素粒子Aを得た。
<Reference Example 4: Production of coconut shell-derived carbon particles A>
Coconut shell-derived carbon particles B having a BET specific surface area of 400 m2 /g were activated with steam at 900°C for 30 minutes in an activation gas prepared by supplying steam to kerosene combustion gas (a mixed gas of H2O , CO2 , CO, and N2 ) to adjust the steam partial pressure to 35%, to prepare raw material carbon particles derived from coconut shells. The raw material carbon particles derived from coconut shells were pulverized to obtain coconut shell-derived activated carbon having an average particle size of 850 to 2,360 μm. The obtained activated carbon was pulverized and classified in a ball mill to obtain coconut shell-derived carbon particles A having an average particle size of 11 μm and a BET specific surface area of 800 m2 /g.
<参考例5:木炭微粉の製造>
ウバメガシの木を1200℃で焼成し、その後350℃に急冷することで製造された白炭(備長炭)を乾式粉砕し、木炭微粉を得た。得られた木炭微粉の粒度(平均粒子径)はD50=0.5μmであり、比表面積は240m2/gであった。
<Reference Example 5: Production of charcoal fine powder>
White charcoal (binchotan) produced by burning Quercus phillyraeoides at 1200°C and then quenching to 350°C was dry-pulverized to obtain fine charcoal powder. The particle size (average particle size) of the obtained fine charcoal powder was D50 = 0.5 µm and the specific surface area was 240 m2 /g.
<実施例1>
参考例1、3で得たヤシ殻由来の炭素粒子Aとヤシ殻由来の炭素粒子Bをポリアミド6(宇部興産株式会社製ナイロン6 1011FK)に、繊維における含有量として炭素粒子Aが2.7質量%、炭素粒子Bが0.3質量%になるように添加し、二軸押出機を用いて280~300℃の温度条件で混錬し、樹脂組成物を得た。得られた樹脂組成物を、孔数36個で断面形状が丸状の口金を用い、紡糸温度250℃、吐出量29.4g/分で紡出し、温度25℃、湿度60%の冷却風を1.0m/秒の速度で紡出糸条に吹付けた後、紡糸口金下方1.2mの位置に設置した長さ1.0m、入口ガイド径8mm、出口ガイド径10mm、内径30mmφチューブヒーター(内温160℃)に導入してチューブヒーター内で延伸した後、チューブヒーターから出てきた糸条にオイリングノズルで給油し2個の引き取りローラーを介して3500m/分の速度で捲取り、84dtex/36フィラメントの繊維を得た。得られた繊維の物性および紡糸性、加工性、蓄熱性及び吸湿性の評価結果を表1に示す。
Example 1
The coconut shell-derived carbon particles A and coconut shell-derived carbon particles B obtained in Reference Examples 1 and 3 were added to polyamide 6 (Nylon 6 1011FK manufactured by Ube Industries, Ltd.) such that the carbon particles A and carbon particles B were contained in the fiber at 2.7 mass % and 0.3 mass %, respectively, and the mixture was kneaded using a twin-screw extruder at a temperature condition of 280 to 300° C. to obtain a resin composition. The obtained resin composition was spun at a spinning temperature of 250°C and a discharge rate of 29.4g/min using a spinneret with 36 holes and a round cross section, and cooling air at a temperature of 25°C and a humidity of 60% was blown onto the spun yarn at a speed of 1.0m/sec., and then the yarn was introduced into a tube heater (inner temperature 160°C) with a length of 1.0m, an inlet guide diameter of 8mm, an outlet guide diameter of 10mm, and an inner diameter of 30mm, which was installed 1.2m below the spinneret, and stretched in the tube heater. The yarn coming out of the tube heater was oiled with an oiling nozzle and wound up at a speed of 3500m/min through two take-up rollers to obtain a fiber of 84dtex/36 filaments. The evaluation results of the physical properties, spinnability, processability, heat storage property, and moisture absorption property of the obtained fiber are shown in Table 1.
<実施例2~4>
繊維におけるヤシ殻由来の炭素粒子A及びヤシ殻由来の炭素粒子Bの含有比及び/又は合計含有量が表1に示す量になるように変更したこと以外は実施例1と同様にして、繊維を得た。得られた繊維の物性および紡糸性、加工性、蓄熱性及び吸湿性の評価結果を表1に示す。
<Examples 2 to 4>
Fibers were obtained in the same manner as in Example 1, except that the content ratio and/or total content of coconut shell-derived carbon particles A and coconut shell-derived carbon particles B in the fibers were changed to the amounts shown in Table 1. The evaluation results of the physical properties, spinnability, processability, heat storage property and moisture absorption property of the obtained fibers are shown in Table 1.
<実施例5>
孔数96個で断面形状が丸状の口金を用いて紡糸温度250℃、吐出量29.4g/分で紡出し、繊度を84dtex/96フィラメントに変更したこと以外は実施例2と同様にして、繊維を得た。得られた繊維の物性および紡糸性、加工性、蓄熱性及び吸湿性の評価結果を表1に示す。
Example 5
A fiber was obtained in the same manner as in Example 2, except that a spinneret having 96 holes and a round cross-sectional shape was used, the spinning temperature was 250° C., the output rate was 29.4 g/min, and the fineness was changed to 84 dtex/96 filaments. The physical properties of the obtained fiber and the evaluation results of spinnability, processability, heat storage property, and moisture absorption property are shown in Table 1.
<実施例6>
参考例1及び3で得たヤシ殻由来の炭素粒子A及びヤシ殻由来の炭素粒子Bをポリエチレンテレフタレート(PET)に、繊維における含有量として炭素粒子Aが2.1質量%、炭素粒子Bが0.9質量%になるように添加し、二軸押出機を用いて280~300℃の温度条件で混錬し、樹脂組成物を得た。得られた樹脂組成物を、孔数36個で断面形状が丸状の口金を用い、紡糸温度280℃、吐出量29.4g/分で紡出し、温度25℃、湿度60%の冷却風を1.0m/秒の速度で紡出糸条に吹付けた後、紡糸口金下方1.2mの位置に設置した長さ1.0m、入口ガイド径8mm、出口ガイド径10mm、内径30mmφチューブヒーター(内温185℃)に導入してチューブヒーター内で延伸した後、チューブヒーターから出てきた糸条にオイリングノズルで給油し2個の引き取りローラーを介して3500m/分の速度で捲取り、84dtex/36フィラメントの繊維を得た。得られた繊維の物性および紡糸性、加工性、蓄熱性及び吸湿性の評価結果を表1に示す。
Example 6
The coconut shell-derived carbon particles A and coconut shell-derived carbon particles B obtained in Reference Examples 1 and 3 were added to polyethylene terephthalate (PET) so that the carbon particles A and carbon particles B were contained in the fibers at 2.1 mass % and 0.9 mass %, respectively, and the mixture was kneaded using a twin-screw extruder at a temperature of 280 to 300°C to obtain a resin composition. The obtained resin composition was spun at a spinning temperature of 280°C and a discharge rate of 29.4g/min using a spinneret with 36 holes and a round cross section, and cooling air at a temperature of 25°C and a humidity of 60% was blown onto the spun yarn at a speed of 1.0m/sec., and then the yarn was introduced into a tube heater (inner temperature 185°C) with a length of 1.0m, an inlet guide diameter of 8mm, an outlet guide diameter of 10mm, and an inner diameter of 30mm, which was installed 1.2m below the spinneret, and stretched in the tube heater. The yarn coming out of the tube heater was oiled with an oiling nozzle and wound up at a speed of 3500m/min through two take-up rollers to obtain a fiber of 84dtex/36 filaments. The evaluation results of the physical properties, spinnability, processability, heat storage property, and moisture absorption property of the obtained fiber are shown in Table 1.
<実施例7>
参考例4で得たヤシ殻由来の炭素粒子Aを用いた以外は実施例1と同様にして、繊維を得た。得られた繊維の物性および紡糸性、加工性、蓄熱性及び吸湿性の評価結果を表1に示す。
Example 7
Fibers were obtained in the same manner as in Example 1, except that coconut shell-derived carbon particles A obtained in Reference Example 4 were used. The physical properties of the obtained fiber and the evaluation results of spinnability, processability, heat storage property and moisture absorption property are shown in Table 1.
<実施例8>
参考例2で得たヤシ殻由来の炭素粒子Bを用いた以外は実施例1と同様にして、繊維を得た。得られた繊維の物性および紡糸性、加工性、蓄熱性及び吸湿性の評価結果を表1に示す。
Example 8
Fibers were obtained in the same manner as in Example 1, except that coconut shell-derived carbon particles B obtained in Reference Example 2 were used. The physical properties of the obtained fiber and the evaluation results of spinnability, processability, heat storage property and moisture absorption property are shown in Table 1.
<比較例1>
ヤシ殻由来の炭素粒子Bのみを用いて合計含有量が表1に示す量になるように変更したこと以外は実施例1と同様にして、繊維を得た。得られた繊維の物性および紡糸性、加工性、蓄熱性及び吸湿性の評価結果を表1に示す。
<Comparative Example 1>
Fibers were obtained in the same manner as in Example 1, except that only coconut shell-derived carbon particles B were used so that the total content was the amount shown in Table 1. The physical properties of the obtained fiber and the evaluation results of spinnability, processability, heat storage property and moisture absorption property are shown in Table 1.
<比較例2>
ヤシ殻由来の炭素粒子Aのみを用いて合計含有量が表1に示す量になるように変更したこと以外は実施例1と同様にして、繊維を得た。得られた繊維の物性および紡糸性、加工性、蓄熱性及び吸湿性の評価結果を表1に示す。
<Comparative Example 2>
Fibers were obtained in the same manner as in Example 1, except that only coconut shell-derived carbon particles A were used so that the total content was the amount shown in Table 1. The physical properties of the obtained fiber and the evaluation results of spinnability, processability, heat storage property and moisture absorption property are shown in Table 1.
<比較例3~5>
ヤシ殻由来の炭素粒子A及びヤシ殻由来の炭素粒子Bの含有比と合計含有量を表1に示す量になるように変更したこと以外は実施例1と同様にして、繊維を得た。得られた繊維の物性および紡糸性、加工性、蓄熱性及び吸湿性の評価結果を表1に示す。
<Comparative Examples 3 to 5>
Fibers were obtained in the same manner as in Example 1, except that the content ratio and total content of coconut shell-derived carbon particles A and coconut shell-derived carbon particles B were changed to amounts shown in Table 1. The physical properties of the obtained fibers and the evaluation results of spinnability, processability, heat storage property and moisture absorption property are shown in Table 1.
<比較例6>
炭素粒子Bとして、参考例5で得た木炭微粉のみを用いて合計含有量を表1に示す量になるように変更したこと以外は比較例1と同様にして、木炭微粉含有繊維を得た。得られた繊維の物性および紡糸性、加工性、蓄熱性及び吸湿性の評価結果を表1に示す。
<Comparative Example 6>
A charcoal fine powder-containing fiber was obtained in the same manner as in Comparative Example 1, except that only the charcoal fine powder obtained in Reference Example 5 was used as carbon particle B, and the total content was changed to the amount shown in Table 1. The physical properties of the obtained fiber and the evaluation results of spinnability, processability, heat storage property and moisture absorption property are shown in Table 1.
<比較例7>
炭素粒子A及び炭素粒子Bを含有せず、6ナイロン100質量%の樹脂を用いた以外は比較例1と同様にして、熱可塑性樹脂からなる繊維を得た。得られた繊維を用いて筒編地を作製し、赤外線吸収剤を含有するウレタン樹脂を0.8g/m2付与した後、紡糸性、加工性、蓄熱性及び吸湿性を評価した。得られた結果を表1中に示す。
<Comparative Example 7>
A fiber made of a thermoplastic resin was obtained in the same manner as in Comparative Example 1, except that carbon particles A and carbon particles B were not contained and a resin of 100 mass% nylon 6 was used. A cylindrical knitted fabric was produced using the obtained fiber, and 0.8 g/ m2 of urethane resin containing an infrared absorbing agent was applied, after which the spinnability, processability, heat storage property, and moisture absorption property were evaluated. The obtained results are shown in Table 1.
<比較例8>
炭素粒子A及び炭素粒子Bを含有せず、6ナイロン100質量%の樹脂を用いた以外は比較例1と同様にして、熱可塑性樹脂からなる繊維を得た。得られた繊維を用いて筒編地を作製し、ポリビニルアルコール系の吸湿加工剤を約1.5質量%付与した後、紡糸性、加工性、蓄熱性及び吸湿性を評価した。得られた結果を表1中に示す。
<Comparative Example 8>
A fiber made of a thermoplastic resin was obtained in the same manner as in Comparative Example 1, except that carbon particles A and carbon particles B were not contained and a resin of 100 mass% nylon 6 was used. A cylindrical knitted fabric was made using the obtained fiber, and about 1.5 mass% of a polyvinyl alcohol-based moisture absorbing agent was added, and then the spinnability, processability, heat storage property, and moisture absorption property were evaluated. The obtained results are shown in Table 1.
実施例1~8の繊維は、比表面積が500m2/g以上3000m2/g以下である炭素粒子Aと、比表面積が500m2/g未満である炭素粒子Bの含有比が質量比で95:5~60:40であり、炭素粒子A及び炭素粒子Bの合計含有量が繊維全体の質量に対して0.2~9質量%であるため、紡糸性、加工性及び蓄熱性、吸湿性を有するものであり、さらに蓄熱性及び吸湿性は洗濯耐久性に優れることが確認された。 The fibers of Examples 1 to 8 have a mass ratio of carbon particles A having a specific surface area of 500 m 2 /g or more and 3000 m 2 /g or less and carbon particles B having a specific surface area of less than 500 m 2 /g of 95:5 to 60:40, and the total content of carbon particles A and carbon particles B is 0.2 to 9 mass% of the total mass of the fiber. Therefore, it was confirmed that the fibers have spinnability, processability, heat storage property, and moisture absorption property, and further that the heat storage property and moisture absorption property have excellent washing durability.
これに対し、炭素粒子Bのみで炭素粒子Aを含有しない比較例1の場合には、十分な吸湿性が得られなかった。炭素粒子Aのみで炭素粒子Bを含有しない比較例2の場合には、繊維を製造する際に断糸が発生し、紡糸性が十分とは言えないだけでなく、繊維中に炭素粒子Aの凝集物が存在することで低強度かつU%が高くなり、加工性も悪いものであった。また、炭素粒子Aと炭素粒子Bの合計含有量が0.1質量%と少ない比較例3の場合には、十分な蓄熱性及び吸湿性が得られなかった。また、炭素粒子Aと炭素粒子Bの合計含有量が9質量%より高い比較例4の場合には、繊維を製造する際に断糸が発生し、紡糸性が十分とは言えないだけでなく、U%が高くなり、加工性も悪いものであった。炭素粒子Aと炭素粒子Bの含有比が質量比で40:60である比較例5の場合には、十分な吸湿性が得られなかった。木炭微粉を用いる比較例6の場合には、繊維を製造する際に断糸が発生し、紡糸性が十分とは言えないだけでなく、U%が高くなり、加工性も悪いものであった。赤外線吸収剤を後加工で付与した比較例7の場合には、蓄熱性に優れたものであったが、洗濯処理後は性能が著しく低下した。後加工剤を用いる比較例8の場合には、吸湿性能が初期性能は良好な吸湿性が得られたが、洗濯処理後は性能が低下した。 In contrast, in the case of Comparative Example 1, which contained only carbon particles B and no carbon particles A, sufficient moisture absorption was not obtained. In the case of Comparative Example 2, which contained only carbon particles A and no carbon particles B, thread breakage occurred when the fiber was produced, and not only was the spinnability insufficient, but the presence of agglomerates of carbon particles A in the fiber resulted in low strength and a high U%, and the processability was also poor. In Comparative Example 3, in which the total content of carbon particles A and carbon particles B was as low as 0.1% by mass, sufficient heat storage and moisture absorption were not obtained. In Comparative Example 4, in which the total content of carbon particles A and carbon particles B was higher than 9% by mass, thread breakage occurred when the fiber was produced, and not only was the spinnability insufficient, but the U% was high and the processability was also poor. In Comparative Example 5, in which the content ratio of carbon particles A and carbon particles B was 40:60 by mass, sufficient moisture absorption was not obtained. In Comparative Example 6, in which fine charcoal powder was used, thread breakage occurred when the fiber was produced, and not only was the spinnability insufficient, but the U% was high and the processability was also poor. In the case of Comparative Example 7, where an infrared absorbing agent was added as a post-processing agent, the heat storage properties were excellent, but the performance significantly decreased after washing. In the case of Comparative Example 8, where a post-processing agent was used, the initial moisture absorption performance was good, but the performance decreased after washing.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022182547A JP2024071986A (en) | 2022-11-15 | 2022-11-15 | Highly functional fiber and fiber structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022182547A JP2024071986A (en) | 2022-11-15 | 2022-11-15 | Highly functional fiber and fiber structure |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2024071986A true JP2024071986A (en) | 2024-05-27 |
Family
ID=91194033
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2022182547A Pending JP2024071986A (en) | 2022-11-15 | 2022-11-15 | Highly functional fiber and fiber structure |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2024071986A (en) |
-
2022
- 2022-11-15 JP JP2022182547A patent/JP2024071986A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101029515B1 (en) | Porous fiber | |
EP2873756B1 (en) | Sheath-core bicomponent fibre | |
US10202502B2 (en) | Method for producing antimicrobial polyester fiber yarn containing volcanic ash | |
TW201934825A (en) | Spun yarn, method for producing same, and cloth containing same | |
KR101910623B1 (en) | Polyamide fabric enhancing body warming | |
TW202001018A (en) | Fabrics and spun yarns comprising polyester staple fiber | |
KR101618789B1 (en) | Process Of Producing Long Staple Aramid Fiber AirJet Yarn Having Excellent Uniformity Stress And Strain Friction Resistance | |
EP3150751A1 (en) | Polyamide fibers, fiber structure using same, and clothing | |
JP5385085B2 (en) | Deodorant functional agent-containing ultrafine fiber and method for producing the same | |
JP2024071986A (en) | Highly functional fiber and fiber structure | |
JP2005133250A (en) | Core-sheath conjugate fiber | |
CN115698397B (en) | Carbon powder-containing fiber and fiber structure | |
JP4292893B2 (en) | Polymer alloy crimped yarn | |
KR100544780B1 (en) | Antibacterial sea-island polyester composite filament and precipitation thereof | |
JP2004332186A (en) | Nanoporous fiber | |
JP2004270110A (en) | Polymer alloy fiber | |
KR100580321B1 (en) | A partially melted and texturing yarn, and a process of preparing for the same | |
JP2014189915A (en) | Polyester drawn false-twisted yarn | |
JP4325616B2 (en) | Nanoporous fiber | |
JP2005015969A (en) | Nano-porous fiber composite woven or knitted fabric | |
JP2019026991A (en) | Black spun-dyed polyester fiber | |
JP5341673B2 (en) | Deodorant fiber and method for producing the same | |
JP2006152459A (en) | Hollow nylon fiber, method for producing the same, modified cross-section nylon fiber and knit fabric produced by using the same | |
JP2005015705A (en) | Pellet and its producing method | |
TW201800631A (en) | Crimped yarn having flat cross-section, method of manufacturing said crimped yarn, and textile comprising said crimped yarn |