JP2023178223A - Continuous casting method for steel - Google Patents

Continuous casting method for steel Download PDF

Info

Publication number
JP2023178223A
JP2023178223A JP2023083287A JP2023083287A JP2023178223A JP 2023178223 A JP2023178223 A JP 2023178223A JP 2023083287 A JP2023083287 A JP 2023083287A JP 2023083287 A JP2023083287 A JP 2023083287A JP 2023178223 A JP2023178223 A JP 2023178223A
Authority
JP
Japan
Prior art keywords
nozzle
mold
molten steel
axis
cross
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2023083287A
Other languages
Japanese (ja)
Inventor
則親 荒牧
Norichika Aramaki
圭吾 外石
Keigo Toishi
賛佑 鄭
Zanyou Zheng
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Publication of JP2023178223A publication Critical patent/JP2023178223A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Continuous Casting (AREA)
  • Casting Support Devices, Ladles, And Melt Control Thereby (AREA)

Abstract

To provide a continuous casting method for steel that can produce cast pieces with excellent surface and internal quality.SOLUTION: Provided is a continuous casting method for steel in which when molten steel is fed into a casting mold from a sliding nozzle at the bottom of a tundish through an immersion nozzle, the immersion nozzle is made to have a transverse cross-sectional shape of the outside of an immersion part into the molten steel in the casting mold as an ellipse or streamlined shape, and a length ratio D1/D2 of one axis D1 approximately parallel to a casting mold long side and the other axis D2 perpendicular to the one axis is in the range of 1.00 to 3.00, a ratio S1/S0 of a cross-sectional area S1 at a smallest cross-sectional area part of the inner hole to a cross-sectional area S0 of a nozzle hole of the sliding nozzle is in the range of 0.96 to 1.30, and a ratio N1/S1 of an area N1 of one of the discharge holes to the cross-sectional area S1 is in the range of 0.96 to 1.20.SELECTED DRAWING: Figure 1

Description

本発明は、タンディッシュの底部に設けたスライディングノズルから浸漬ノズルを介して溶鋼を鋳型内に供給する鋼の連続鋳造方法に関するものである。 The present invention relates to a continuous steel casting method in which molten steel is supplied into a mold from a sliding nozzle provided at the bottom of a tundish through a submerged nozzle.

溶鋼を取鍋から中間容器であるタンディッシュを介して鋳型に供給する鋼の連続鋳造方法が一般的に行われている。その際、タンディッシュの底部に設置した浸漬ノズルを鋳型内溶鋼に浸漬して鋳造する。たとえば、横断面形状が長方形である鋳片を鋳造するための鋳型内に溶鋼を注入する際、通常、鋳型の両側の短辺方向にそれぞれ1つの吐出孔を有する浸漬ノズルが用いられる。このような浸漬ノズル内を通過する溶鋼の流量を制御する装置として、タンディッシュ内に設置したストッパーやタンディッシュ底部に設置したスライディングノズルが用いられる。 BACKGROUND OF THE INVENTION A continuous steel casting method is generally used in which molten steel is supplied from a ladle to a mold via a tundish, which is an intermediate container. At that time, the immersion nozzle installed at the bottom of the tundish is immersed in the molten steel in the mold for casting. For example, when pouring molten steel into a mold for casting slabs having a rectangular cross-sectional shape, a submerged nozzle having one discharge hole on each side of the mold is usually used. As a device for controlling the flow rate of molten steel passing through such an immersion nozzle, a stopper installed in the tundish or a sliding nozzle installed at the bottom of the tundish is used.

一般的にはスライディングノズルは2枚板と3枚板の場合がある。2枚板の場合には摺動方向が幅方向(鋳型長辺に平行な方向)なので幅方向に偏流が発生する。3枚板の場合は、摺動方向が厚み方向(鋳型長辺に直交する方向)になるので厚み方向に偏流が発生する。一方、ストッパー制御の場合には、ストッパーの周辺から均一に湯が落下するため偏流が起こりにくいといわれている。しかし、ストッパーは耐火物であり、溶鋼中では浮力があるので、必ずしもストッパーの軸と上ノズルの軸とが同軸配置にならず、偏流を防止できていない。 Generally, sliding nozzles may have two plates or three plates. In the case of two plates, the sliding direction is the width direction (direction parallel to the long side of the mold), so a drift occurs in the width direction. In the case of three plates, since the sliding direction is the thickness direction (direction perpendicular to the long side of the mold), drift occurs in the thickness direction. On the other hand, in the case of stopper control, it is said that drifting is less likely to occur because hot water falls uniformly from around the stopper. However, since the stopper is made of refractory material and has buoyancy in molten steel, the axis of the stopper and the axis of the upper nozzle are not necessarily coaxially disposed, making it impossible to prevent drifting.

浸漬ノズルからの溶鋼の吐出流を安定させて良好な表面品質や内部品質を有する鋳片を製造するために、従来から種々の技術が開発されている。特許文献1には、鋳型内の溶鋼の片流れ現象を防止するために、スライディングノズルと吐出流のなす水平面内の角度を80~90°とした連続鋳造方法が開示されている。特許文献2には、浸漬ノズルを矩形断面のものとして、注入ノズルから鋳型への注入流を一様な低速下降流に保持して鋳造する注入方法が開示されている。特許文献3には、吐出孔をスリット状として浸漬ノズルから吐出する溶鋼流を分散化、均一化することにより、表面、内部欠陥のない鋳片を製造する連続鋳造方法が開示されている。 Various techniques have been developed in the past in order to stabilize the flow of molten steel discharged from a submerged nozzle and to produce slabs having good surface quality and internal quality. Patent Document 1 discloses a continuous casting method in which the angle in the horizontal plane between the sliding nozzle and the discharge flow is 80 to 90 degrees in order to prevent the phenomenon of one-sided flow of molten steel in the mold. Patent Document 2 discloses an injection method in which a submerged nozzle has a rectangular cross section and the injection flow from the injection nozzle to the mold is maintained at a uniform low-speed downward flow for casting. Patent Document 3 discloses a continuous casting method for producing slabs free of surface and internal defects by using slit-shaped discharge holes to disperse and homogenize the flow of molten steel discharged from a submerged nozzle.

特許文献4には、内部にねじりテープ状の旋回羽根を備えた浸漬ノズルが開示されている。特許文献5には、浸漬ノズル内に不活性ガスを導入し内部の圧力を制御することにより吐出孔からの溶鋼流動に偏流が生じることを防止する連続鋳造方法が開示されている。 Patent Document 4 discloses a submerged nozzle equipped with twisted tape-shaped swirl vanes inside. Patent Document 5 discloses a continuous casting method that prevents uneven flow of molten steel from a discharge hole by introducing an inert gas into a submerged nozzle and controlling the internal pressure.

特許文献6には、浸漬ノズル内孔の横断面形状を楕円などの扁平なものとしてその長軸を鋳型長辺と平行とし、かつスライディングノズルの摺動方向を前記長軸と直交する方向とする技術が開示されている。もって、浸漬ノズル内での溶鋼流を安定させるものである。 Patent Document 6 discloses that the cross-sectional shape of the immersion nozzle inner hole is flat such as an ellipse, the long axis thereof is parallel to the long side of the mold, and the sliding direction of the sliding nozzle is perpendicular to the long axis. The technology has been disclosed. This stabilizes the flow of molten steel within the immersion nozzle.

特開2002-301549号公報Japanese Patent Application Publication No. 2002-301549 特開昭58-74257号公報Japanese Unexamined Patent Publication No. 58-74257 特開平9-285852号公報Japanese Patent Application Publication No. 9-285852 特開2000-237852号公報Japanese Patent Application Publication No. 2000-237852 特開平9-225604号公報Japanese Patent Application Publication No. 9-225604 特開2007-69222号公報JP2007-69222A

しかしながら、上記従来技術の方法によってもなお、鋳型内に吐出する溶鋼流を安定させて偏流を十分に防止することはできていない。圧延後のコイル表面に発生するスリバーと呼ばれる介在物起因の表面欠陥やブローホールと呼ばれる浸漬ノズル吹込みアルゴン起因の気泡欠陥を十分防止することはできなかった。 However, even with the above-mentioned prior art method, it is still not possible to stabilize the flow of molten steel discharged into the mold and sufficiently prevent drift. It has not been possible to sufficiently prevent surface defects caused by inclusions called slivers that occur on the coil surface after rolling and bubble defects called blowholes caused by argon blown into the submerged nozzle.

本発明は、上記した従来の問題点を解決し、浸漬ノズルからの吐出流を安定させることによってスリバーの原因となるアルミナなど非金属介在物やブローホールの原因となるアルゴン気泡の巻き込みを防止して、表面、内部品質に優れた鋳片を製造することができる鋼の連続鋳造方法を提供することを目的とする。 The present invention solves the above-mentioned conventional problems and prevents the entrainment of non-metallic inclusions such as alumina, which cause slivers, and argon bubbles, which cause blowholes, by stabilizing the discharge flow from the immersion nozzle. It is an object of the present invention to provide a continuous steel casting method that can produce slabs with excellent surface and internal quality.

上記課題を有利に解決する本発明にかかる鋼の連続鋳造方法は、タンディッシュの底部に設けたスライディングノズルから浸漬ノズルを介して溶鋼を鋳型内に供給するに際し、前記浸漬ノズルは、前記鋳型内溶鋼への浸漬部の外形の横断面形状を楕円形または流線形とし、内孔の横断面形状の前記鋳型長辺に略平行な一の軸Dと該一の軸に直交する他の軸Dとの長さ比D/Dを1.00~3.00の範囲とし、前記内孔の最小断面積部における断面積Sと前記スライディングノズルのノズル孔の断面積Sとの比S/Sを、0.96~1.30の範囲とし、吐出孔の一方の面積Nと前記断面積Sとの比N/Sを0.96~1.20の範囲とすることを特徴とする。 In the continuous casting method of steel according to the present invention, which advantageously solves the above problems, when molten steel is supplied into the mold from a sliding nozzle provided at the bottom of a tundish through a submerged nozzle, the submerged nozzle is placed inside the mold. The cross-sectional shape of the outer shape of the part immersed in the molten steel is elliptical or streamlined, and the cross-sectional shape of the inner hole has one axis D1 substantially parallel to the long side of the mold and another axis perpendicular to the one axis. The length ratio D 1 /D 2 with D 2 is in the range of 1.00 to 3.00, and the cross-sectional area S 1 at the minimum cross-sectional area portion of the inner hole and the cross-sectional area S 0 of the nozzle hole of the sliding nozzle are The ratio S 1 /S 0 is in the range of 0.96 to 1.30, and the ratio N 1 /S 1 between the area N 1 of one side of the discharge hole and the cross-sectional area S 1 is 0.96 to 1.20. It is characterized by having a range of .

なお、本発明にかかる鋼の連続鋳造方法は、
a.前記浸漬ノズルは、前記一の軸の方向が前記鋳型の長辺に略平行となるように配置し、対向する前記鋳型の短辺方向に向けて溶鋼を吐出するように、前記一の軸方向の両側面に少なくとも一対の吐出孔を設けること、
b.前記浸漬ノズルは、前記一の軸の方向が前記鋳型の長辺に略平行となるように配置し、前記吐出孔が対向する前記鋳型の長辺と60°以内に偏向させて溶鋼を吐出するように、両側面に少なくとも一対の吐出孔を設けること、
c.前記浸漬ノズルは、前記他の軸側外側面と鋳型の長辺側内壁との距離が80mm以上となるように配置すること、
d.電磁攪拌装置により鋳型内の溶鋼に旋回性を付与しつつ鋳造を行うこと、
などがより好ましい解決手段になり得るものと考えられる。
The method for continuous casting of steel according to the present invention is as follows:
a. The immersion nozzle is arranged so that the direction of the one axis is substantially parallel to the long side of the mold, and the direction of the one axis is arranged so that the direction of the one axis is substantially parallel to the long side of the mold, and the direction of the one axis is arranged so that the direction of the one axis is substantially parallel to the long side of the mold. providing at least one pair of discharge holes on both sides of the
b. The immersion nozzle is arranged so that the direction of the one axis is substantially parallel to the long side of the mold, and the discharge hole is deflected within 60° with respect to the opposing long side of the mold to discharge molten steel. providing at least one pair of discharge holes on both sides;
c. The immersion nozzle is arranged so that the distance between the other shaft-side outer surface and the long-side inner wall of the mold is 80 mm or more;
d. Performing casting while imparting swirling properties to the molten steel in the mold using an electromagnetic stirring device;
It is thought that this could be a more preferable solution.

本発明によれば、浸漬ノズルの鋳型内溶鋼への浸漬部の外形を楕円形または流線形とし、内孔の横断面形状の長軸と短軸の長さ比を特定し、長軸を鋳型長辺と平行に配置した。それにより、浸漬ノズル近傍の鋳型内溶鋼の流れを乱すことなく浸漬することができ、メニスカス部の表面流速を確保できる。また、浸漬ノズルの内孔断面積とスライディングノズルのノズル孔の断面積との比を特定し、浸漬ノズルの吐出孔の面積と内孔断面積との比を特定した。そのことにより、浸漬ノズル内への空気の吸い込みに起因するノズル閉塞を発生させることなく偏流を防止することができる。 According to the present invention, the outer shape of the part of the immersion nozzle immersed in the molten steel in the mold is made elliptical or streamlined, the length ratio of the long axis and short axis of the cross-sectional shape of the inner hole is specified, and the long axis is set in the mold. Placed parallel to the long side. Thereby, the molten steel in the mold near the immersion nozzle can be immersed without disturbing the flow, and the surface flow velocity of the meniscus portion can be ensured. Furthermore, the ratio between the cross-sectional area of the inner hole of the submerged nozzle and the cross-sectional area of the nozzle hole of the sliding nozzle was determined, and the ratio between the area of the discharge hole and the cross-sectional area of the inner hole of the submerged nozzle was determined. This makes it possible to prevent drifting without causing nozzle blockage due to air being sucked into the submerged nozzle.

さらに、浸漬ノズルは、その浸漬部の長軸を鋳型の長辺に略平行に配置し、長軸方向の両側面に少なくとも一対の吐出孔を設けることが好ましい。そうすれば、溶鋼吐出流がメニスカスから未凝固部の奥深く侵入することを防止することができる。 Furthermore, it is preferable that the long axis of the immersed part of the immersed nozzle is arranged substantially parallel to the long side of the mold, and that at least one pair of discharge holes is provided on both sides in the long axis direction. This can prevent the molten steel discharge flow from penetrating deeply into the unsolidified portion from the meniscus.

また、浸漬ノズルは、その浸漬部の長軸を鋳型の長辺に略平行に配置し、吐出孔が対向する鋳型の長辺と所定の角度以内に偏向させて溶鋼を吐出するように、両側面に少なくとも一対の吐出孔を設けることが好ましい。そうすれば、鋳型内溶鋼に旋回流を付与することができる。もって、非金属介在物などの凝固シェルへの捕捉を防止して表面性状に優れた鋳片を製造することができる。 In addition, the immersion nozzle is arranged such that the long axis of the immersion part is approximately parallel to the long side of the mold, and the discharge hole is deflected within a predetermined angle with the opposing long side of the mold to discharge molten steel. Preferably, at least one pair of discharge holes is provided on the surface. By doing so, it is possible to impart a swirling flow to the molten steel in the mold. As a result, it is possible to prevent non-metallic inclusions from being captured in the solidified shell, thereby producing a slab with excellent surface properties.

さらに、浸漬ノズルの短軸側外側面と鋳型の長辺側内壁との距離を適正化することが好ましい。そうすることで、浸漬ノズル近傍の溶鋼流速を十分に確保して溶鋼を鋳造することができる。 Furthermore, it is preferable to optimize the distance between the short axis side outer surface of the immersion nozzle and the long side inner wall of the mold. By doing so, the molten steel can be cast while ensuring a sufficient flow rate of the molten steel near the immersion nozzle.

加えて、電磁攪拌装置により鋳型内の溶鋼に旋回性を付与しつつ鋳造を行うことが好ましい。そうすれば、非金属介在物などの凝固シェルへの捕捉を防止して表面性状に優れた鋳片を製造することができる。 In addition, it is preferable to perform casting while imparting swirling properties to the molten steel in the mold using an electromagnetic stirring device. By doing so, it is possible to prevent nonmetallic inclusions and the like from being captured in the solidified shell, and to produce a slab with excellent surface properties.

本発明の一実施形態にかかる鋼の連続鋳造方法に適した鋳型および浸漬ノズルの縦断面図である。1 is a longitudinal cross-sectional view of a mold and a submerged nozzle suitable for a continuous steel casting method according to an embodiment of the present invention. 浸漬ノズルの最小断面積部の断面形状を示す図であって、(a)は楕円形状を示し、(b)は軸対称の流線形状を示す。It is a figure which shows the cross-sectional shape of the minimum cross-sectional area part of an immersion nozzle, Comprising: (a) shows an ellipse shape, (b) shows an axially symmetrical streamline shape. 鋳型内部の鋳型と浸漬ノズルの位置関係を示す模式上面図であって、(a)は吐出孔の向きが鋳型の長辺に平行な場合を示し、(b)は吐出孔が長辺側に偏向している場合を示す。FIG. 3 is a schematic top view showing the positional relationship between the mold and the immersion nozzle inside the mold, where (a) shows the case where the discharge hole is parallel to the long side of the mold, and (b) shows the case where the discharge hole is oriented on the long side. Indicates a case of deflection.

以下、本発明の実施の形態について具体的に説明する。なお、各図面は模式的なものであって、現実のものとは異なる場合がある。また、以下の実施形態は、本発明の技術的思想を具体化するための装置や方法を例示するものであり、構成を下記のものに特定するものでない。すなわち、本発明の技術的思想は、特許請求の範囲に記載された技術的範囲内において、種々の変更を加えることができる。 Embodiments of the present invention will be specifically described below. Note that each drawing is schematic and may differ from the actual drawing. Furthermore, the following embodiments are intended to exemplify devices and methods for embodying the technical idea of the present invention, and the configuration is not limited to the following. That is, the technical idea of the present invention can be modified in various ways within the technical scope described in the claims.

発明者らは浸漬ノズル内や鋳型内の溶鋼の流れを解析した結果、以下のような知見を得て本発明を完成するに至った。 As a result of analyzing the flow of molten steel in a submerged nozzle and a mold, the inventors obtained the following knowledge and completed the present invention.

浸漬ノズル内孔の横断面形状が真円である従来型浸漬ノズルの場合には、スライディングノズルを摺動させると、開口部が一方に偏っているために浸漬ノズル内でスライディングノズルの摺動方向に向かう偏流が発生する。この偏流によって、浸漬ノズル吐出孔からの溶鋼流速のばらつきが増大し、最大吐出流速が増大する。 In the case of a conventional immersion nozzle in which the cross-sectional shape of the immersion nozzle inner hole is a perfect circle, when the sliding nozzle is slid, the sliding direction of the sliding nozzle inside the immersion nozzle is distorted because the opening is biased to one side. A drifting flow toward . This drift increases the variation in the flow rate of molten steel from the submerged nozzle discharge hole, and increases the maximum discharge flow rate.

最大吐出流速の増加によって吐出流が未凝固部へ浸入する深さが増大する。そのため、脱酸生成物であるアルミナ、連鋳パウダー等の介在物や浸漬ノズル内への吹込みアルゴン気泡が、溶鋼の未凝固部の奥深くまで侵入し浮上できずに残留してしまう。そして、製品表面欠陥や割れ等の内部欠陥につながることがわかった。また、浸漬ノズルの外形の横断面形状が真円であると、浸漬ノズルの浸漬部の鋳型内溶鋼流動に対する抵抗が増加し、メニスカス表面流速が低減してしまう。メニスカス表面の流れが浸漬ノズルに衝突した場合に、流速が不均一になったり、周辺に渦が形成されたりして連鋳パウダーを削り込んで表面欠陥につながることがわかった。 As the maximum discharge flow rate increases, the depth into which the discharge flow penetrates into the unsolidified portion increases. Therefore, inclusions such as deoxidized products such as alumina and continuous casting powder and argon bubbles blown into the immersion nozzle penetrate deep into the unsolidified portion of the molten steel and remain without being able to float. It was also found that this leads to product surface defects and internal defects such as cracks. Further, if the external cross-sectional shape of the immersed nozzle is a perfect circle, the resistance of the immersed part of the immersed nozzle to the flow of molten steel in the mold increases, and the meniscus surface flow velocity decreases. It was found that when the flow on the meniscus surface collides with the immersion nozzle, the flow velocity becomes non-uniform and vortices are formed around the continuous casting powder, leading to surface defects.

これらを防止するためには、ノズル内孔横断面形状を楕円形や長円形などの扁平なものや流線形として、その長軸の方向を鋳型の長辺方向と略平行とし、鋳造することが有効であることを見出した。 In order to prevent these, it is possible to cast the nozzle inner hole with a flat cross-sectional shape such as an ellipse or an oblong, or a streamlined shape, with the long axis direction approximately parallel to the long side direction of the mold. It was found to be effective.

図1は、本実施形態にかかる鋼の連続鋳造方法を実施するための連続鋳造設備の鋳片短辺側から見た概略構成を示す模式縦断面図である。図示しないタンディッシュの底部にスライディングノズル1を設けている。スライディングノズル1の下方には浸漬ノズル2がつながっている。浸漬ノズル2から鋳型3に溶鋼が注入される。図1の例では、鋳型内溶鋼を撹拌するための電磁撹拌コイル4が鋳型3に設置されている。スライディングノズル1は、断面積がSのノズル孔11を有している。図1の例では、上プレート5と下プレート6に挟まれて、鋳型3の長辺に直交する方向を摺動方向SDとする3枚板タイプである。鋳型3に冷却され凝固した凝固シェルは鋳造方向CDに引き抜かれる。 FIG. 1 is a schematic longitudinal cross-sectional view showing a schematic configuration of continuous casting equipment for carrying out the continuous steel casting method according to the present embodiment, as viewed from the short side of a slab. A sliding nozzle 1 is provided at the bottom of a tundish (not shown). An immersion nozzle 2 is connected below the sliding nozzle 1. Molten steel is injected into the mold 3 from the immersion nozzle 2 . In the example of FIG. 1, an electromagnetic stirring coil 4 for stirring molten steel in the mold is installed in the mold 3. The sliding nozzle 1 has a nozzle hole 11 with a cross-sectional area S0 . In the example shown in FIG. 1, it is a three-plate type which is sandwiched between an upper plate 5 and a lower plate 6 and whose sliding direction SD is a direction perpendicular to the long side of the mold 3. The solidified shell cooled and solidified in the mold 3 is pulled out in the casting direction CD.

本実施形態では、スライディングノズル1はノズル孔11を真円形とする。また、浸漬ノズル2は上部の内孔21の形状を真円形としている。そして、浸漬ノズル2は下部の内孔21の形状を図2(a)に示す楕円形や図2(b)に示す軸対称な流線形とする。浸漬ノズルはノズル耐火物の厚みをほぼ一定とすることから、内孔の断面形状が外形の形状を支配する。ここで、楕円形には、長楕円形を含み、真円形を含まない。また、楕円形に代えて、矩形の短辺側を円弧で置き換えた平行部を有する長円形とすることができる。また、流線形とは、流れの中に置かれたとき、周りに渦を発生せず、流れから受ける抵抗が最も小さくなる曲線で構成される形をいう。一様な流れにあっては、先端を丸く後端がとがる形状となる。 In this embodiment, the sliding nozzle 1 has a nozzle hole 11 that is perfectly circular. Moreover, the shape of the upper inner hole 21 of the immersion nozzle 2 is a perfect circle. The lower inner hole 21 of the immersion nozzle 2 has an elliptical shape as shown in FIG. 2(a) or an axisymmetric streamline shape as shown in FIG. 2(b). Since the thickness of the nozzle refractory is approximately constant in the immersion nozzle, the cross-sectional shape of the inner hole governs the outer shape. Here, the ellipse includes a long ellipse and does not include a perfect circle. Moreover, instead of an ellipse, it may be an oval shape having a parallel portion in which the short side of the rectangle is replaced with a circular arc. Furthermore, the term "streamlined" refers to a shape consisting of a curved line that, when placed in a flow, does not generate vortices around it and minimizes the resistance it receives from the flow. In a uniform flow, the tip is rounded and the rear end is pointed.

図2(a)に例示するように、楕円形や長円形では、一の軸である長軸の長さ(長径)Dとこれに直交する他の軸である短軸の長さ(短径)Dを有する。図2(b)に示す軸対称な流線形では、流れに平行な一の軸の長さDと一の軸から最も離れた周囲の点から一の軸へおろす垂線の長さを他の軸の長さDの半分と定義する。後述するように、上面視で長方形の鋳型内中央(幅方向および厚み方向で)に設置された浸漬ノズルと対向する鋳型の長辺との間の溶鋼は旋回流、つまり、鋳型中央を挟んで逆向きの溶鋼流れとすることが好ましく、浸漬ノズルの浸漬部の外形を軸対称の流線形とすることで、鋳型内溶鋼表面の渦の発生を低減できるからである。 As illustrated in Fig. 2(a), in an ellipse or an oblong, the length of one major axis (major axis) D1 and the length of the minor axis (major axis) that is orthogonal to this diameter) D2 . In the axially symmetrical streamline shown in Figure 2(b), the length of one axis parallel to the flow is D1 , and the length of the perpendicular line drawn from the peripheral point farthest from the one axis to the one axis is the other. It is defined as half of the axis length D2 . As will be described later, the molten steel flows between the immersion nozzle installed at the center (in the width and thickness directions) of the rectangular mold when viewed from above and the long side of the opposing mold. It is preferable to flow the molten steel in the opposite direction, and by making the outer shape of the immersed part of the immersion nozzle into an axially symmetric streamlined shape, it is possible to reduce the generation of vortices on the surface of the molten steel in the mold.

本実施形態では、図3(a)や(b)に示すような配置で鋳型内溶鋼に浸漬ノズル2を浸漬する。浸漬ノズル2の最小断面積部23の断面形状は楕円形とした。本実施形態では、浸漬ノズル2の長軸方向LAを鋳型3の長辺に平行または実質的に平行に一の軸方向として配置し、短軸方向SAを他の軸方向とする。上面視で長方形の鋳型内溶鋼に水平方向の旋回流を与えたときに浸漬ノズル近傍の溶鋼は長辺に平行に流れるので、図3(a)や(b)のように設置すれば流動抵抗を低減できる。この場合、短軸方向SAは、鋳型の長辺に直交または実質的に直交する。ここで、「長辺に実質的に平行に配置する」とは、設備や装置の設置誤差精度を許容することを意味し、5°以内の偏差であれば許容される。 In this embodiment, the immersion nozzle 2 is immersed in the molten steel in the mold in an arrangement as shown in FIGS. 3(a) and 3(b). The minimum cross-sectional area portion 23 of the immersion nozzle 2 had an elliptical cross-sectional shape. In this embodiment, the long axis direction LA of the immersion nozzle 2 is arranged parallel or substantially parallel to the long side of the mold 3 as one axial direction, and the short axis direction SA is the other axial direction. When a horizontal swirling flow is applied to the molten steel in a rectangular mold when viewed from above, the molten steel near the immersion nozzle flows parallel to the long side, so if it is installed as shown in Figure 3 (a) or (b), the flow resistance will be reduced. can be reduced. In this case, the short axis direction SA is perpendicular or substantially perpendicular to the long sides of the mold. Here, "arranged substantially parallel to the long side" means to allow installation error precision of equipment and devices, and deviations within 5 degrees are allowed.

図3(a)の例では、浸漬ノズル2には二つの吐出孔22が長軸方向LAの両側に一対設けてあるので、対向する鋳型の短辺方向に向けて溶鋼を吐出することができる。吐出孔22は少なくとも一対であればよく、二対としてもよい。この配置であれば、溶鋼吐出流がメニスカスから奥深く鋳造方向CDに侵入することを防止することができる。 In the example of FIG. 3(a), the immersion nozzle 2 is provided with a pair of two discharge holes 22 on both sides of the long axis direction LA, so that molten steel can be discharged in the direction of the short side of the opposing mold. . The number of discharge holes 22 may be at least one pair, or may be two pairs. With this arrangement, it is possible to prevent the molten steel discharge flow from penetrating deeply from the meniscus in the casting direction CD.

図3(b)の例では、吐出孔22が対向する鋳型の長辺と角度θに偏向させて溶鋼を吐出するように一対設けてあるので、鋳型内溶鋼に旋回流を形成することができ、メニスカス近傍の凝固シェルを洗浄して介在物の付着を防止できる。吐出孔22は少なくとも一対であればよく、二対としてもよい。偏向角度θは60°以内が好ましい。より好ましくは30°以内である。偏向角度θが大きすぎると長辺側の凝固シェルに浸漬ノズルからの吐出流が衝突し、凝固シェルの凝固遅れによる内部割れやブレークアウトなどの操業事故のおそれがある。また、偏向角度θは0°を含まず、鋳型内溶鋼の旋回流を有効に発生させる観点から5°以上とすることがより好ましい。 In the example shown in FIG. 3(b), a pair of discharge holes 22 are provided so as to discharge the molten steel at an angle θ with the opposing long sides of the mold, so that a swirling flow can be formed in the molten steel in the mold. , the solidified shell near the meniscus can be cleaned to prevent inclusions from adhering. The number of discharge holes 22 may be at least one pair, or may be two pairs. The deflection angle θ is preferably within 60°. More preferably, it is within 30°. If the deflection angle θ is too large, the discharge flow from the submerged nozzle will collide with the solidified shell on the long side, and there is a risk of operational accidents such as internal cracks and breakouts due to delayed solidification of the solidified shell. Further, the deflection angle θ does not include 0°, and is more preferably 5° or more from the viewpoint of effectively generating a swirling flow of molten steel in the mold.

本実施形態では、スライディングノズル1の摺動方向を浸漬ノズル2の内孔の長軸方向LAと直交する方向とすることが好ましい。浸漬ノズル2内での溶鋼の偏流する方向の幅を押さえて溶鋼を長軸方向LAに均等に流動させることができる。そのため、スライディングノズル1を摺動させたときに発生する浸漬ノズル2内溶鋼の偏流を小さいものとすることができる。 In this embodiment, it is preferable that the sliding direction of the sliding nozzle 1 be perpendicular to the longitudinal direction LA of the inner hole of the submerged nozzle 2. It is possible to suppress the width of the molten steel in the direction in which the molten steel drifts within the immersion nozzle 2, thereby allowing the molten steel to flow uniformly in the longitudinal direction LA. Therefore, the drift of the molten steel in the immersion nozzle 2 that occurs when the sliding nozzle 1 is slid can be reduced.

上記した形状の内孔21を有する浸漬ノズル2において、一の軸長さDと他の軸長さDとの長さ比D/Dを吐出孔22直上の最小断面積部23において1.00~3.00の範囲とする必要がある。長さ比D/Dが1.00未満では、内孔21の扁平度が逆転しスライディングノズル1摺動方向への偏流の発生を効果的に防止することができない。そのうえ、浸漬ノズル2の内孔断面積Sがスライディングノズル1のノズル孔断面積Sより小さくなりすぎるおそれがある。一方、長さ比D/Dが3.00超では扁平形状になり過ぎ浸漬ノズルが折損する危険性が増大するうえ、鋳造中に発生するアルミナ閉塞状況になった場合に十分な溶鋼流量の確保が難しく鋳型内湯面の制御ができず、湯面変動によって、安定操業の続行ができない状況が発生するおそれがある。なお、最小断面積部23は上下に複数の吐出孔22を有する浸漬ノズル2にあっては、最上部の吐出孔22の上端位置となる。 In the immersion nozzle 2 having the inner hole 21 having the above-described shape, the length ratio D 1 /D 2 of one axial length D 1 and the other axial length D 2 is determined by the minimum cross-sectional area portion 23 directly above the discharge hole 22 . must be in the range of 1.00 to 3.00. If the length ratio D 1 /D 2 is less than 1.00, the flatness of the inner hole 21 will be reversed, and the occurrence of drift in the sliding direction of the sliding nozzle 1 cannot be effectively prevented. Moreover, there is a possibility that the inner hole cross-sectional area S 1 of the submerged nozzle 2 becomes too small than the nozzle hole cross-sectional area S 0 of the sliding nozzle 1 . On the other hand, if the length ratio D 1 /D 2 exceeds 3.00, the immersion nozzle becomes too flat and the risk of breakage increases, and in addition, there is not enough molten steel flow rate in case of alumina blockage that occurs during casting. It is difficult to maintain the level of hot water in the mold, making it impossible to control the hot water level in the mold, and fluctuations in the hot water level may result in a situation where stable operation cannot be continued. In addition, in the immersion nozzle 2 having a plurality of discharge holes 22 above and below, the minimum cross-sectional area portion 23 is the upper end position of the uppermost discharge hole 22.

上述したように浸漬ノズル2の内孔21は、上部から下部にむかって形状が変化するだけでなく、断面積が縮小される。吐出孔22直上の最小断面積部23の断面積Sとスライディングノズル1のノズル孔11の断面積Sとの比S/Sを0.96~1.30の範囲とする必要がある。この比S/Sが0.96未満では、タンディッシュ内溶鋼高さが低下する非定常部において、スライディングノズルの開度が上昇したときに溶鋼の供給が不足する。そのために、鋳型内湯面の制御ができず、湯面変動によって、安定操業の続行ができない状況が発生するおそれがある。一方、比S/Sが1.30超では、内孔扁平度の影響が小さくなり、摺動方向の偏流が抑制される効果が低下する。それと共に、ノズル自体が大型化し、ランニングコストが増大してしまうという懸念がある。また、下ノズル6と浸漬ノズル2の段差に負圧が発生し、空気を吸い込む恐れがあるうえ、スライディングノズル1の摺動とともに浸漬ノズル内溶鋼に偏流が発生するおそれが高くなる。 As described above, the inner hole 21 of the submerged nozzle 2 not only changes in shape from the top to the bottom, but also decreases in cross-sectional area. The ratio S 1 /S 0 of the cross-sectional area S 1 of the minimum cross-sectional area portion 23 directly above the discharge hole 22 and the cross-sectional area S 0 of the nozzle hole 11 of the sliding nozzle 1 needs to be in the range of 0.96 to 1.30. be. If this ratio S 1 /S 0 is less than 0.96, the supply of molten steel will be insufficient when the opening degree of the sliding nozzle increases in the unsteady part where the height of the molten steel in the tundish decreases. As a result, the level of the molten metal in the mold cannot be controlled, and fluctuations in the level of the molten metal may cause a situation in which stable operation cannot be continued. On the other hand, when the ratio S 1 /S 0 exceeds 1.30, the influence of the flatness of the inner hole becomes small, and the effect of suppressing drifting in the sliding direction decreases. At the same time, there is a concern that the nozzle itself will become larger and the running cost will increase. Further, negative pressure is generated in the step between the lower nozzle 6 and the immersed nozzle 2, which may cause air to be sucked in, and there is also a high possibility that a drift will occur in the molten steel in the immersed nozzle as the sliding nozzle 1 slides.

鋳造のスタート時には、鍋から注入された溶鋼がタンディッシュを満たし、浸漬ノズルを介して鋳型に注入されるまでの間に、それぞれの耐火物に熱を奪われ、溶鋼温度が低下する。この温度低下が大きい場合には凝固点を下回って、浸漬ノズル内で溶鋼の凝固が生じ、いわゆる棚吊り状態となることがある。そのような場合、「鋳造スタート時の手動介入」として、たとえば、浸漬ノズルの吐出孔より酸素パイプを挿入して、凝固表面に酸素を吹きかけて溶融することが行われる。この鋳造スタート時の手動介入は作業員にとって危険を伴うものであるうえ、品質上もこのましくないなど連続鋳造の安定操業にとって妨げとなる。 At the start of casting, molten steel is injected from a pot, fills a tundish, and before being injected into a mold via an immersion nozzle, heat is absorbed by each refractory and the temperature of the molten steel decreases. If this temperature drop is large, the temperature drops below the freezing point and solidification of the molten steel occurs within the immersion nozzle, resulting in a so-called suspended state. In such a case, as "manual intervention at the start of casting", for example, an oxygen pipe is inserted through the discharge hole of the submerged nozzle, and oxygen is sprayed onto the solidified surface to melt it. This manual intervention at the start of casting is not only dangerous for workers, but also impedes the stable operation of continuous casting due to poor quality.

また、吐出孔22の一方の面積Nと前記断面積Sとの比N/Sを0.96~1.20の範囲とする必要がある。吐出孔22の一方の面積Nは、浸漬ノズル2の両側面に吐出孔22が対になって設けてある場合には、一方の側面の吐出孔22の合計面積とする。吐出孔22の一方の面積Nは、浸漬ノズル2の底に吐出孔22が設けてある場合には、底の吐出孔22の面積を合算して計算する。なお、製品の表面品質を重視する場合には、浸漬ノズルの底に吐出孔22を配置せず、側面にのみ吐出孔22を配置することが好ましい。比N/Sが0.96未満では、ノズル閉塞が発生しやすくなり、湯面変動が大きくなったり、必要吐出量に対する溶鋼吐出量の不足が発生し安定した操業ができなくなったりするおそれがある。一方、比N/Sが1.20を超えると、対向する吐出孔間の吐出量のバランスが崩れ、一方の吐出孔の流量が多くなる、いわゆる偏流が生じる。その偏流により、介在物等を溶鋼の未凝固部の鋳造方向CDの深くまで送り込むおそれが生じる。さらに、吐出口での流速低下部にノズル詰まりが生じて湯面変動が増大するおそれがある。加えて、偏流が極端に大きくなるとブレークアウトなど操業事故が発生する危険性がある。 Further, the ratio N 1 /S 1 between the area N 1 of one side of the discharge hole 22 and the cross-sectional area S 1 needs to be in the range of 0.96 to 1.20. When the discharge holes 22 are provided in pairs on both sides of the immersion nozzle 2, the area N1 of one side of the discharge holes 22 is the total area of the discharge holes 22 on one side. When the discharge hole 22 is provided at the bottom of the submerged nozzle 2, the area N1 of one side of the discharge hole 22 is calculated by adding up the area of the discharge hole 22 at the bottom. In addition, when placing importance on the surface quality of the product, it is preferable not to arrange the discharge holes 22 at the bottom of the immersion nozzle, but to arrange the discharge holes 22 only on the side surface. If the ratio N 1 /S 1 is less than 0.96, nozzle clogging is likely to occur, and there is a risk that fluctuations in the molten metal level will increase or that the molten steel discharge rate will be insufficient compared to the required discharge rate, making stable operation impossible. There is. On the other hand, when the ratio N 1 /S 1 exceeds 1.20, the balance of the discharge amount between the opposing discharge holes is lost, and the flow rate of one discharge hole increases, which is called a drift. Due to the drift, there is a risk that inclusions and the like may be sent deep into the unsolidified portion of the molten steel in the casting direction CD. Furthermore, there is a risk that nozzle clogging may occur at the flow rate reduction portion at the discharge port, increasing fluctuations in the melt level. In addition, if the drift becomes extremely large, there is a risk of operational accidents such as breakouts occurring.

図3(a)に示すように、浸漬ノズル2の短軸側外側面と、鋳型3の長辺側内壁との距離Lを、80mm以上とするのが好ましい。ここで、距離Lは、対向する2つの鋳型長辺に対する距離のうち小さい方とする。距離Lが80mm未満では、鋳型内に旋回流を発生させる、たとえば、溶鋼を電磁攪拌したような場合に十分な溶鋼流速が得られないため、表面疵の原因となる介在物等を凝固シェルが捕捉するおそれが高いからである。 As shown in FIG. 3(a), it is preferable that the distance L S between the short axis side outer surface of the immersion nozzle 2 and the long side inner wall of the mold 3 be 80 mm or more. Here, the distance L S is the smaller of the distances between the two opposing long sides of the mold. If the distance LS is less than 80 mm, a sufficient flow rate of molten steel cannot be obtained when generating a swirling flow in the mold, for example, when molten steel is electromagnetically stirred, so that inclusions that cause surface defects are removed from the solidified shell. This is because there is a high possibility that it will be captured.

図1や図3(a)、(b)に示すように、鋳型3に電磁撹拌用の電磁撹拌コイル4を設置することが好ましい。鋳型3内の溶鋼に旋回性を付与しつつ鋳造を行うことができる。溶鋼を電磁的に攪拌することによって、介在物などの凝固シェルへの捕捉を防止して表面性状に優れた鋳片を製造することができる。 As shown in FIGS. 1, 3(a) and 3(b), it is preferable to install an electromagnetic stirring coil 4 for electromagnetic stirring in the mold 3. Casting can be performed while imparting swirling properties to the molten steel in the mold 3. By electromagnetically stirring molten steel, it is possible to prevent inclusions and the like from being captured in the solidified shell, and to produce slabs with excellent surface properties.

次に、本発明の実施例について説明する。なお、本発明は以下の実施例のみに限定されるものではない。 Next, examples of the present invention will be described. Note that the present invention is not limited only to the following examples.

極低炭素鋼の溶鋼300トンを転炉-RH脱ガス処理工程にて溶製した。タンディッシュ内の溶鋼温度を1560~1580℃とし、3層式スライディングノズルおよび2層式スライディングノズルと浸漬ノズルとを使用して鋳型内に溶鋼を注入し、厚さ250mm、幅1200~1600mmの鋳片を鋳造速度1.6~2.0mm/minで製造した。鋳造に当っては溶鋼を電磁攪拌で水平方向に旋回させた。鋼板は、0.7~1.2mmの冷延鋼板とした。効果はコイル欠陥混入率(欠陥個数/コイル長(m))および鋳造中のノズル閉塞の有無にて評価した。種々の条件で連続鋳造を行って試験した結果を表1-1および1-2に示す。表中の、浸漬ノズル内孔形状は上側吐出孔直上の最小断面積部23の形状であり、処理No.19を除き楕円形状をなし、処理No.19は流線形をなす。また、Dは鋳型の長辺に平行な一の軸長さ(mm)、Dは一の軸に直交する他の軸長さ(mm)、Sは浸漬ノズル2の最小断面積部23の断面積(mm)、Sはスライディングノズル1のノズル孔11の断面積(mm)、θは浸漬ノズル吐出孔の方向と鋳型長辺とのなす角度(°)、nは浸漬ノズル2の吐出孔22の数、N/Sは吐出孔の一方の面積と浸漬ノズル2の最小断面積23の断面積との比、Lは浸漬ノズル2の短軸側外側面と鋳型の長辺側内壁との距離(mm)、ηDはコイル欠陥発生率であってコイル長(m)当たりの欠陥個数の百分率(%/m)を表す。鋳造スタート時の成功率を鋳造スタート時の手動介入率として、手動介入数の鋳造スタート全数に対する百分率で表す。手動介入率は小さいほど安定した操業といえる。湯面変動による異常発生率を湯面変動回数の鋳込み回数に対する百分率として表す。表1-1および1-2中で、SDはスライディングノズル1の摺動方向と鋳型長辺との関係を表し、「直交」は3層式スライディングノズル、「平行」は2層式スライディングノズルを示す。 300 tons of molten ultra-low carbon steel was melted in a converter-RH degassing process. The temperature of the molten steel in the tundish was set to 1560 to 1580°C, and the molten steel was injected into the mold using a three-layer sliding nozzle, a two-layer sliding nozzle, and an immersion nozzle to form a casting with a thickness of 250 mm and a width of 1200 to 1600 mm. Pieces were produced at a casting speed of 1.6-2.0 mm/min. During casting, the molten steel was swirled horizontally using electromagnetic stirring. The steel plate was a cold-rolled steel plate with a thickness of 0.7 to 1.2 mm. The effectiveness was evaluated based on the coil defect inclusion rate (number of defects/coil length (m)) and the presence or absence of nozzle clogging during casting. Tables 1-1 and 1-2 show the results of continuous casting tests under various conditions. The shape of the inner hole of the immersion nozzle in the table is the shape of the minimum cross-sectional area portion 23 directly above the upper discharge hole, and the shape of the inner hole of the immersion nozzle is the shape of the minimum cross-sectional area portion 23 directly above the upper discharge hole. Except for No. 19, it has an elliptical shape. 19 forms a streamlined shape. In addition, D 1 is the length of one axis parallel to the long side of the mold (mm), D 2 is the length of another axis perpendicular to the one axis (mm), and S 1 is the minimum cross-sectional area of the immersion nozzle 2. 23 cross-sectional area (mm 2 ), S 0 is the cross-sectional area (mm 2 ) of the nozzle hole 11 of the sliding nozzle 1, θ is the angle (°) between the direction of the immersion nozzle discharge hole and the long side of the mold, and n is the immersion The number of discharge holes 22 of the nozzle 2, N1 / S1 is the ratio of the area of one of the discharge holes to the cross-sectional area of the minimum cross-sectional area 23 of the submerged nozzle 2, and LS is the outer surface of the short axis side of the submerged nozzle 2. The distance (mm) from the inner wall on the long side of the mold, ηD is the coil defect occurrence rate and represents the percentage (%/m) of the number of defects per coil length (m). The success rate at the start of casting is expressed as the manual intervention rate at the start of casting, expressed as a percentage of the number of manual interventions to the total number of starts. The smaller the manual intervention rate, the more stable the operation. The rate of occurrence of abnormalities due to fluid level fluctuations is expressed as a percentage of the number of fluid surface fluctuations relative to the number of castings. In Tables 1-1 and 1-2, SD represents the relationship between the sliding direction of sliding nozzle 1 and the long side of the mold, "orthogonal" means a three-layer sliding nozzle, and "parallel" means a two-layer sliding nozzle. show.

Figure 2023178223000002
Figure 2023178223000002

Figure 2023178223000003
Figure 2023178223000003

処理No.1~19については、本発明の範囲内で鋳造試験を実施した結果である。コイル欠陥発生率ηDも1.9%以下であり品質結果は非常に良好である。また、鋳造中のノズル閉塞も発生してない。鋳造スタート時の手動介入率も低く、湯面変動による異常発生率も低く、安定した操業であった。 Processing No. Nos. 1 to 19 are the results of casting tests conducted within the scope of the present invention. The coil defect incidence rate ηD is also 1.9% or less, and the quality results are very good. Furthermore, no nozzle blockage occurred during casting. The rate of manual intervention at the start of casting was low, the rate of abnormalities due to fluctuations in the metal level was low, and operations were stable.

処理No.20は、ノズルの扁平度合D/Dが大きい場合である。この場合、耐火物自体の製造が難しく割れやすく、かつ溶鋼の通過抵抗が大きくなり、ノズル閉塞が発生したものと推定される。加えて、D/Dが大きすぎて、内孔形状が扁平になり、鋳造中に発生するアルミナ閉塞状況になった場合に十分な溶鋼流量の確保が得られず湯面変動による異常発生率が高かった。
処理No.21は、比S/Sが小さかった場合である。この場合、鋳型内への注ぎ上げ時にノズルの閉塞が発生した。スライディングノズル1のノズル孔断面積に対してノズル内径断面積が小さかったためと推定される。Sが小さくなること、つまり、Sが全開状態になってもS部分で溶鋼の流通抵抗が大きく、溶鋼流速が低下してしまい、必要な溶鋼量が供給されない状態となった。いわゆる、S部分での棚吊り状態が発生し、湯面変動の制御性が著しく低下するだけでなく、鋳造スタート時の溶鋼温度降下が著しく大きくなり、鋳造スタート時の手動介入率が極めて高くなり、安定操業が行えなかった。
処理No.22は、比S/Sが大きかった場合である。この場合、整流効果が得られず、鋳造中の湯面変動による異常発生率も高かった。そのため、コイル品質の悪化と鋳造末期でのノズルの閉塞が発生した。
処理No.23は、ノズル扁平度D/Dが1.00よりも小さい場合であり、長軸と短軸の長さが逆転してしまう。また、比S/Sが小さくなった。そのため、流動の浸漬ノズルによる抵抗が大きくなり、品質は悪化した。Sが小さくなること、つまり、Sが全開状態になってもS部分で溶鋼の流通抵抗が大きく、溶鋼流速が低下してしまい、必要な溶鋼量が供給されない状態となった。いわゆる、S部分での棚吊り状態が発生し、湯面変動の制御性が著しく低下するだけでなく、鋳造スタート時の溶鋼温度降下が著しく大きくなり、鋳造スタート時の手動介入率が極めて高くなり、安定操業が行えなかった。
処理No.24は、ノズル最小断面積Sに対して吐出孔の面積Nが小さすぎた場合である。コイル成績は改善したが、鋳造中のノズル閉塞が散見された。SよりもNが小さいと吐出孔での溶鋼の流通抵抗が大きく、溶鋼流速が低下してしまい、必要な溶鋼量が供給されない状態となった。そのため、湯面変動の制御性が著しく低下するだけでなく、鋳造スタート時の溶鋼温度降下が著しく大きくなり、鋳造スタート時の手動介入率が極めて高くなり、安定操業が行えなかった。
処理No.25は、ノズル最小断面積Sに対して吐出孔の面積Nが大きすぎた場合である。吐出穴が大きいため整流効果は確認されず、鋳造中の湯面変動による異常発生率も高かった。そのため、コイル品質は改善しなかった。
Processing No. 20 is a case where the flatness degree D 1 /D 2 of the nozzle is large. In this case, it is presumed that the refractory itself is difficult to manufacture and easily cracks, and the resistance to passage of molten steel becomes large, causing nozzle clogging. In addition, if D1 / D2 is too large, the shape of the inner hole becomes flat, and if alumina blockage occurs during casting, a sufficient flow rate of molten steel cannot be secured and abnormalities may occur due to fluctuations in the molten metal level. The rate was high.
Processing No. 21 is a case where the ratio S 1 /S 0 is small. In this case, nozzle blockage occurred during pouring into the mold. This is presumed to be because the nozzle inner diameter cross-sectional area was smaller than the nozzle hole cross-sectional area of the sliding nozzle 1. Even if S 1 becomes small, that is, even if S 0 is fully open, the flow resistance of molten steel is large in the S 1 portion, the molten steel flow rate decreases, and the required amount of molten steel is not supplied. A so-called suspended shelf condition occurs in the S1 section, which not only significantly reduces the controllability of molten metal level fluctuations, but also significantly increases the temperature drop of molten steel at the start of casting, and the rate of manual intervention at the start of casting is extremely high. As a result, stable operation could not be achieved.
Processing No. 22 is a case where the ratio S 1 /S 0 is large. In this case, a rectification effect could not be obtained, and the occurrence of abnormalities due to fluctuations in the molten metal level during casting was high. This resulted in deterioration in coil quality and blockage of the nozzle at the final stage of casting.
Processing No. No. 23 is a case where the nozzle flatness D 1 /D 2 is smaller than 1.00, and the lengths of the major axis and the minor axis are reversed. Moreover, the ratio S 1 /S 0 became smaller. As a result, the flow resistance caused by the submerged nozzle increased, and the quality deteriorated. Even if S 1 becomes small, that is, even if S 0 is fully open, the flow resistance of molten steel is large in the S 1 portion, the molten steel flow rate decreases, and the required amount of molten steel is not supplied. A so-called suspended shelf condition occurs in the S1 section, which not only significantly reduces the controllability of molten metal level fluctuations, but also significantly increases the temperature drop of molten steel at the start of casting, and the rate of manual intervention at the start of casting is extremely high. As a result, stable operation could not be achieved.
Processing No. 24 is a case where the area N1 of the discharge hole is too small with respect to the minimum cross-sectional area S1 of the nozzle. Although the coil performance improved, nozzle blockages were occasionally observed during casting. When N1 is smaller than S1 , the flow resistance of molten steel at the discharge hole is large, the flow rate of molten steel decreases, and the required amount of molten steel is not supplied. As a result, not only the controllability of the melt level fluctuation was significantly reduced, but also the drop in molten steel temperature at the start of casting was significantly large, and the rate of manual intervention at the start of casting was extremely high, making stable operation impossible.
Processing No. 25 is a case where the area N1 of the discharge hole is too large with respect to the minimum cross-sectional area S1 of the nozzle. Due to the large discharge hole, no rectification effect was observed, and the occurrence of abnormalities due to fluctuations in the melt level during casting was high. Therefore, the coil quality did not improve.

上記の結果から、本発明の特徴、すなわち、浸漬ノズルの断面形状および内孔の直交する軸の長さ比D/D、浸漬ノズルの内孔とスライディングノズルのノズル孔との断面積比S/S、ならびに、浸漬ノズルの吐出孔と内孔との面積比N/Sをすべて適正な値とすることで、連続鋳造の操業開始から終了まで安定して操業することができる。本発明の特徴のいずれかの条件を外れる場合、短時間であれば安定操業できるものの、湯面変動時の制御性、スタートの安定性、アルミナ閉塞など安定操業性に影響するいずれかの因子が悪化し、連続鋳造の安定操業が損なわれる。 From the above results, the features of the present invention, namely, the length ratio D 1 /D 2 of the orthogonal axes of the cross-sectional shape of the submerged nozzle and the inner hole, and the cross-sectional area ratio of the inner hole of the submerged nozzle and the nozzle hole of the sliding nozzle. By setting S 1 /S 0 and the area ratio N 1 /S 1 between the discharge hole and the inner hole of the immersion nozzle to appropriate values, continuous casting can be operated stably from the start to the end. can. If any of the characteristics of the present invention are not met, stable operation is possible for a short period of time, but if any of the factors that affect stable operation, such as controllability during fluid level fluctuations, starting stability, or alumina blockage, The problem worsens and the stable operation of continuous casting is impaired.

本明細書中で質量の単位「トン」は10kgを表す。 The unit of mass "ton" herein represents 10 3 kg.

本発明の鋼の連続鋳造方法によれば、浸漬ノズルの閉塞なく安定して操業できるうえ、製品の欠陥の発生を少なくすることができるので産業上有用である。 The continuous steel casting method of the present invention allows stable operation without clogging of the immersion nozzle, and reduces the occurrence of product defects, which is industrially useful.

1 スライディングノズル
2 浸漬ノズル
3 鋳型
4 電磁撹拌コイル
5 上プレート
6 下プレート
11 ノズル孔
21 内孔
22 吐出孔
23 最小断面積部
SD 摺動方向
CD 鋳造方向
LA 一の軸方向(長軸方向)
SA 他の軸方向(短軸方向)
一の軸(長さ)、長径
他の軸(長さ)、短径
浸漬ノズル外側面と鋳型長辺との距離
1 Sliding nozzle 2 Immersion nozzle 3 Mold 4 Electromagnetic stirring coil 5 Upper plate 6 Lower plate 11 Nozzle hole 21 Inner hole 22 Discharge hole 23 Minimum cross-sectional area SD Sliding direction CD Casting direction LA One axial direction (long axis direction)
SA Other axis direction (short axis direction)
D1 One axis (length), major axis D2 Other axis (length), minor axis L S Distance between the outer surface of the immersion nozzle and the long side of the mold

Claims (6)

タンディッシュの底部に設けたスライディングノズルから浸漬ノズルを介して溶鋼を鋳型内に供給するに際し、
前記浸漬ノズルは、前記鋳型内溶鋼への浸漬部の外形の横断面形状を楕円形または流線形とし、
内孔の横断面形状における前記鋳型長辺に略平行な一の軸Dと該一の軸に直交する他の軸Dとの長さ比D/Dを1.00~3.00の範囲とし、
前記内孔の最小断面積部における断面積Sと前記スライディングノズルのノズル孔の断面積Sとの比S/Sを、0.96~1.30の範囲とし、
吐出孔の一方の面積Nと前記断面積Sとの比N/Sを0.96~1.20の範囲とする、鋼の連続鋳造方法。
When feeding molten steel into the mold from the sliding nozzle installed at the bottom of the tundish through the immersion nozzle,
The immersion nozzle has an elliptical or streamlined outer cross-sectional shape of the immersion part into the molten steel in the mold,
The length ratio D 1 /D 2 of one axis D 1 substantially parallel to the long side of the mold and the other axis D 2 perpendicular to the one axis in the cross-sectional shape of the inner hole is set to 1.00 to 3. The range is 00,
The ratio S 1 /S 0 of the cross-sectional area S 1 at the minimum cross-sectional area portion of the inner hole and the cross-sectional area S 0 of the nozzle hole of the sliding nozzle is in the range of 0.96 to 1.30,
A continuous casting method for steel, wherein the ratio N 1 /S 1 of the area N 1 of one side of the discharge hole and the cross-sectional area S 1 is in the range of 0.96 to 1.20.
前記浸漬ノズルは、前記一の軸の方向が前記鋳型の長辺に略平行となるように配置し、対向する前記鋳型の短辺方向に向けて溶鋼を吐出するように、前記一の軸方向の両側面に少なくとも一対の吐出孔を設ける、請求項1に記載の鋼の連続鋳造方法。 The immersion nozzle is arranged so that the direction of the one axis is substantially parallel to the long side of the mold, and the direction of the one axis is arranged so that the direction of the one axis is substantially parallel to the long side of the mold, and the direction of the one axis is arranged so that the direction of the one axis is substantially parallel to the long side of the mold. The continuous casting method for steel according to claim 1, wherein at least one pair of discharge holes is provided on both sides of the steel. 前記浸漬ノズルは、前記一の軸の方向が前記鋳型の長辺に略平行となるように配置し、前記吐出孔が対向する前記鋳型の長辺と60°以内に偏向させて溶鋼を吐出するように、両側面に少なくとも一対の吐出孔を設ける、請求項1に記載の鋼の連続鋳造方法。 The immersion nozzle is arranged so that the direction of the one axis is substantially parallel to the long side of the mold, and the discharge hole is deflected within 60° with respect to the opposing long side of the mold to discharge molten steel. 2. The continuous steel casting method according to claim 1, wherein at least one pair of discharge holes are provided on both side surfaces. 前記浸漬ノズルは、前記他の軸側外側面と鋳型の長辺側内壁との距離が80mm以上となるように配置する、請求項1~3のいずれか1項に記載の鋼の連続鋳造方法。 The continuous casting method for steel according to any one of claims 1 to 3, wherein the immersion nozzle is arranged such that the distance between the other shaft side outer surface and the long side inner wall of the mold is 80 mm or more. . 電磁攪拌装置により鋳型内の溶鋼に旋回性を付与しつつ鋳造を行う、請求項1~3のいずれか1項に記載の鋼の連続鋳造方法 The continuous casting method for steel according to any one of claims 1 to 3, wherein casting is performed while imparting swirling properties to the molten steel in the mold using an electromagnetic stirring device. 電磁攪拌装置により鋳型内の溶鋼に旋回性を付与しつつ鋳造を行う、請求項4に記載の鋼の連続鋳造方法

The continuous steel casting method according to claim 4, wherein casting is performed while giving swirling properties to the molten steel in the mold using an electromagnetic stirring device.

JP2023083287A 2022-06-03 2023-05-19 Continuous casting method for steel Pending JP2023178223A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022090625 2022-06-03
JP2022090625 2022-06-03

Publications (1)

Publication Number Publication Date
JP2023178223A true JP2023178223A (en) 2023-12-14

Family

ID=89123997

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2023083287A Pending JP2023178223A (en) 2022-06-03 2023-05-19 Continuous casting method for steel

Country Status (1)

Country Link
JP (1) JP2023178223A (en)

Similar Documents

Publication Publication Date Title
JP4670762B2 (en) Method for continuous casting of molten metal
EP1952913B1 (en) Method for manufacture of ultra-low carbon steel slab
KR100997367B1 (en) Method of continuous casting of steel
JP2023178223A (en) Continuous casting method for steel
JP4903281B1 (en) Pouring type pouring pipe and pouring method
JP5831163B2 (en) Manufacturing method of high cleanliness steel
JP6491039B2 (en) Bottom pouring method
JP5206584B2 (en) Tundish for continuous casting and continuous casting method
CN210132028U (en) Lower casting device
JP2018051598A (en) Bottom pouring ingot-making equipment
JP5206591B2 (en) Tundish for continuous casting
JP3817209B2 (en) Continuous casting method for stainless steel slabs to prevent surface and internal defects
WO2023190017A1 (en) Immersion nozzle, mold, and steel continuous casting method
JP4444034B2 (en) Immersion nozzle for continuous casting and method of pouring a mold for continuous casting using this immersion nozzle for continuous casting
JP5239554B2 (en) Immersion nozzle for continuous casting of slabs
JP5053226B2 (en) Tundish for continuous casting
JPH04238658A (en) Immersion nozzle for continuous casting
JP2005224852A (en) Continuous casting method of high-titanium-contained steel
KR20240164569A (en) Continuous casting method of immersion nozzle, mould and steel
JP2018058097A (en) Immersion nozzle, continuous casting machine, and continuous casting method
JP2004106021A (en) Method for casting molten stainless steel using vertical-bending type continuous caster
JP2024085133A (en) Injection nozzle for ladle and continuous casting method
JP2009090323A (en) Continuous casting machine and continuous casting method
JP2001087843A (en) Immersion nozzle for continuous casting
JP4902276B2 (en) Continuous casting method of high carbon steel using dipping nozzle with dimple

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240126