JP2023140279A - Reflective plate, display, and method for manufacturing reflective plate - Google Patents

Reflective plate, display, and method for manufacturing reflective plate Download PDF

Info

Publication number
JP2023140279A
JP2023140279A JP2022211331A JP2022211331A JP2023140279A JP 2023140279 A JP2023140279 A JP 2023140279A JP 2022211331 A JP2022211331 A JP 2022211331A JP 2022211331 A JP2022211331 A JP 2022211331A JP 2023140279 A JP2023140279 A JP 2023140279A
Authority
JP
Japan
Prior art keywords
region
semi
convex portion
light
insulating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022211331A
Other languages
Japanese (ja)
Inventor
昌光 山中
Masamitsu Yamanaka
豊 澤山
Yutaka Sawayama
義雅 近間
Yoshimasa Chikama
英樹 北川
Hideki Kitagawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Display Technology Corp
Original Assignee
Sharp Display Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Display Technology Corp filed Critical Sharp Display Technology Corp
Priority to US18/121,990 priority Critical patent/US20230305201A1/en
Publication of JP2023140279A publication Critical patent/JP2023140279A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Elements Other Than Lenses (AREA)
  • Liquid Crystal (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

To disperse reflected light first, and to manufacture a reflective plate by using a general manufacturing apparatus second.SOLUTION: A reflective plate 12 comprises: a substrate 17; an insulating film 18 that is provided on the substrate 17 and has an irregular surface 18A; and a reflective film 16 that is arranged on a side of an upper layer of the insulating film 18, has a surface extending along the irregular surface 18A, and reflects light. The insulating film 18 includes a plurality of projections 26 arranged at an interval and recesses 27 arranged between the adjacent projections 26, and the irregular surface 18A is formed of surfaces of the plurality of projections 26 and recesses 27. The projections 26 are inclined with respect to a normal direction of a principal surface of the substrate 17. The plurality of projections 26 include a first projection 26α, a second projection 26β adjacent to the first projection 26α at an interval, and a third projection 26γ adjacent to the first projection 26α at an interval. The first projection 26α, second projection 26β, and third projection 26γ are inclined in different directions from each other.SELECTED DRAWING: Figure 4

Description

本明細書が開示する技術は、反射板、表示装置及び反射板の製造方法に関する。 The technology disclosed in this specification relates to a reflective plate, a display device, and a method for manufacturing a reflective plate.

従来、反射型表示素子及びその製造方法の一例として下記特許文献1に記載されたものが知られている。特許文献1に記載された反射型表示素子は、反射板と、上記反射板に対向する対向基板と、上記反射板及び対向基板間に挟持された液晶層とを備えている。上記反射板は、ガラス基板上に設けられ、表層部分は一定の方向に傾斜した複数の凹凸面となっている感光性樹脂層と、該感光性樹脂層上に設けられた反射膜とを有する。 BACKGROUND ART Conventionally, as an example of a reflective display element and a method for manufacturing the same, the one described in Patent Document 1 below is known. The reflective display element described in Patent Document 1 includes a reflector, a counter substrate facing the reflector, and a liquid crystal layer sandwiched between the reflector and the counter substrate. The reflective plate is provided on a glass substrate, and includes a photosensitive resin layer whose surface layer has a plurality of uneven surfaces inclined in a certain direction, and a reflective film provided on the photosensitive resin layer. .

特許文献1に記載された反射型表示素子の製造方法は、反射板のガラス基板上に感光性樹脂層を形成する樹脂層形成工程と、上記ガラス基板面に対して斜め方向から所定の形状の光透過部を備えたマスクを介して上記感光性樹脂層に光を照射して露光する露光工程と、上記露光された感光性樹脂層を現像することにより、一定の方向に傾斜した非対称な断面形状を有する凹部又は凸部を該感光性樹脂層に形成する凹凸部形成工程と、上記感光性樹脂層を熱処理することにより上記凹部又は凸部の角を曲面状にする熱処理工程と、上記感光性樹脂層上に光反射性の反射膜を形成する反射膜形成工程と、を含む。 The method for manufacturing a reflective display element described in Patent Document 1 includes a resin layer forming step of forming a photosensitive resin layer on a glass substrate of a reflective plate, and a step of forming a photosensitive resin layer into a predetermined shape from an oblique direction with respect to the surface of the glass substrate. An asymmetrical cross section tilted in a certain direction is formed by an exposure step of irradiating the photosensitive resin layer with light through a mask having a light-transmitting part and developing the exposed photosensitive resin layer. a step of forming an uneven portion in which a concave portion or a convex portion having a shape is formed in the photosensitive resin layer; a heat treatment step of heat-treating the photosensitive resin layer to make the corners of the concave portion or the convex portion curved; a reflective film forming step of forming a light-reflective reflective film on the transparent resin layer.

特開2000-105370号公報Japanese Patent Application Publication No. 2000-105370

上記した特許文献1に記載された反射型表示素子では、感光性樹脂層の凹凸面における凸部が一定の方向に均一に傾斜しているため、反射膜による反射光が同じ向きに進行することになる。このため、観察者が、反射型表示素子に対して特定の位置にて画像を観察する場合には、十分に明るい画像を視認できるものの、特定の位置から外れた位置にて画像を観察する場合には、画像が極端に暗くなる、という問題が生じる可能性がある。 In the reflective display element described in Patent Document 1 mentioned above, since the convex portions on the uneven surface of the photosensitive resin layer are uniformly inclined in a certain direction, the light reflected by the reflective film does not travel in the same direction. become. Therefore, when an observer observes an image at a specific position relative to the reflective display element, the image is sufficiently bright, but when the observer observes the image from a position away from the specific position. This may cause the problem that the image becomes extremely dark.

上記した特許文献1に記載された反射型表示素子の製造方法の実施の形態1では、感光性樹脂層を露光する露光工程において、ガラス基板の法線に対して30度傾斜した方向から紫外線を照射する必要がある。また、実施の形態2では、感光性樹脂層を熱処理する熱処理工程において、ガラス基板を傾けた姿勢で支持する必要がある。このため、特殊な露光装置や特殊な基板支持装置を用意する必要があった。 In Embodiment 1 of the method for manufacturing a reflective display element described in Patent Document 1 mentioned above, in the exposure step of exposing the photosensitive resin layer, ultraviolet rays are emitted from a direction inclined at 30 degrees with respect to the normal line of the glass substrate. need to be irradiated. Further, in the second embodiment, it is necessary to support the glass substrate in an inclined posture in the heat treatment step of heat-treating the photosensitive resin layer. Therefore, it was necessary to prepare a special exposure device and a special substrate support device.

本明細書に記載の技術は、上記のような事情に基づいて完成されたものであって、第1には、反射光の分散を図り、第2には、汎用的な製造装置を用いて製造を行うことを目的とする。 The technology described in this specification was developed based on the above-mentioned circumstances. Firstly, it aims to disperse reflected light, and secondly, it uses general-purpose manufacturing equipment. The purpose is to manufacture.

(1)本明細書に記載の技術に関わる反射板は、基板と、前記基板上に設けられ、凹凸面を有する絶縁膜と、前記絶縁膜の上層側に配され、前記凹凸面に倣う表面を有し、光を反射する反射膜と、を備え、前記絶縁膜は、間隔を空けて配される複数の凸部と、隣り合う前記凸部の間に配される凹部と、を含み、前記凹凸面が、複数の前記凸部及び前記凹部の表面により構成され、前記凸部は、前記基板の主面の法線方向に対して傾いており、複数の前記凸部には、第1凸部と、前記第1凸部と間隔を空けて隣り合う第2凸部と、前記第1凸部と間隔を空けて隣り合う第3凸部と、が含まれ、前記第1凸部、前記第2凸部及び前記第3凸部は、互いに異なる向きに傾く。 (1) A reflecting plate related to the technology described in this specification includes a substrate, an insulating film provided on the substrate and having an uneven surface, and a surface disposed on the upper layer side of the insulating film that follows the uneven surface. and a reflective film that reflects light, the insulating film including a plurality of convex portions arranged at intervals, and a concave portion disposed between the adjacent convex portions, The uneven surface is constituted by the surfaces of the plurality of convex portions and the concave portions, the convex portions are inclined with respect to the normal direction of the main surface of the substrate, and the plurality of convex portions include a first surface. a convex portion, a second convex portion adjacent to the first convex portion with an interval, and a third convex portion adjacent to the first convex portion with an interval, the first convex portion; The second convex portion and the third convex portion are tilted in different directions.

(2)また、上記反射板は、上記(1)に加え、前記第1凸部は、平面に視た外形の重心である第1重心と、頂点である第1頂点と、が平面に視て不一致とされ、前記第2凸部は、平面に視た外形の重心である第2重心と、頂点である第2頂点と、が平面に視て不一致とされ、前記第3凸部は、平面に視た外形の重心である第3重心と、頂点である第3頂点と、が平面に視て不一致とされ、前記第1凸部、前記第2凸部及び前記第3凸部は、平面に視て前記第1重心から前記第1頂点へ向かう方向と、平面に視て前記第2重心から前記第2頂点へ向かう方向と、平面に視て前記第3重心から前記第3頂点へ向かう方向と、が互いに交差する関係とされてもよい。 (2) In addition to the above (1), in the reflector, the first convex portion has a first center of gravity, which is the center of gravity of the outer shape seen in a plane, and a first apex, which is the apex, when viewed in a plane. In the second protrusion, the second center of gravity, which is the center of gravity of the outer shape seen in a plane, and the second vertex, which is the apex, do not match in the second protrusion, and the third protrusion has the following: A third center of gravity, which is the center of gravity of the outer shape seen in a plane, and a third vertex, which is an apex, do not match when viewed in a plane, and the first convex part, the second convex part, and the third convex part are A direction from the first center of gravity toward the first apex when seen in a plan view, a direction from the second center of gravity toward the second apex when seen in a plan view, and a direction from the third center of gravity toward the third apex when seen in a plan view. and the direction toward which they are directed may intersect with each other.

(3)また、上記反射板は、上記(1)または上記(2)に加え、間隔を空けて隣り合う全ての前記凸部は、互いに異なる向きに傾いてもよい。 (3) In addition to the above (1) or (2), in the reflecting plate, all the convex portions adjacent to each other at intervals may be inclined in different directions.

(4)また、上記反射板は、上記(2)または上記(3)に加え、前記第1凸部、前記第2凸部及び前記第3凸部は、平面に視て前記第1重心から前記第1頂点へ向かう方向である第1方向と、平面に視て前記第2重心から前記第2頂点へ向かう方向である第2方向と、平面に視て前記第3重心から前記第3頂点へ向かう方向である第3方向と、が鉛直方向の上向きのベクトル成分を含んでもよい。 (4) In addition to the above (2) or (3), in the reflecting plate, the first convex portion, the second convex portion, and the third convex portion are located at the center of gravity of the first convex portion when viewed from above. a first direction that is a direction toward the first apex; a second direction that is a direction that is a direction toward the second apex from the second center of gravity as seen in a plane; and a second direction that is a direction toward the second apex from the third center of gravity as seen in a plane. The third direction, which is the direction toward , may include an upward vector component in the vertical direction.

(5)また、上記反射板は、上記(4)に加え、前記基板は、平面形状が方形とされ、前記鉛直方向に沿う第1辺部と、水平方向に沿う第2辺部と、を有しており、前記第1凸部、前記第2凸部及び前記第3凸部は、前記第1辺部の長さを「A」とし、前記第2辺部の長さを「B」とし、前記鉛直方向の上方向に対して前記第1方向がなす角度を「θ1」とし、前記鉛直方向の上方向に対して前記第2方向がなす角度を「θ2」とし、前記鉛直方向の上方向に対して前記第3方向がなす角度を「θ3」としたとき、角度θ1,θ2,θ3が下記の式(1)を満たしてもよい。 (5) In addition to the above (4), the reflector has a rectangular planar shape, and has a first side along the vertical direction and a second side along the horizontal direction. The first convex part, the second convex part, and the third convex part have a length of the first side part "A" and a length of the second side part "B". The angle that the first direction makes with respect to the upward direction in the vertical direction is "θ1", the angle that the second direction makes with respect to the upward direction in the vertical direction is "θ2", and the angle that the first direction makes with the upward direction in the vertical direction is "θ2". When the angle formed by the third direction with respect to the upward direction is "θ3", the angles θ1, θ2, and θ3 may satisfy the following equation (1).

-arctan(B/A)≦θ1,θ2,θ3≦arctan(B/A) (1) -arctan(B/A)≦θ1, θ2, θ3≦arctan(B/A) (1)

(6)また、上記反射板は、上記(5)に加え、前記第1凸部、前記第2凸部及び前記第3凸部のいずれかは、前記角度θ1,θ2,θ3のいずれかが、「arctan(B/A)」と「-arctan(B/A)」との少なくとも一方と一致してもよい。 (6) In addition to the above (5), in the reflecting plate, any one of the first convex portion, the second convex portion, and the third convex portion has an angle θ1, θ2, or θ3. , "arctan(B/A)" and "-arctan(B/A)".

(7)本明細書に記載の技術に関わる表示装置は、上記(1)から上記(6)のいずれかに記載の反射板と、前記反射板に対向して配される対向基板と、を備える。 (7) A display device related to the technology described in this specification includes the reflective plate according to any one of (1) to (6) above, and a counter substrate disposed opposite to the reflective plate. Be prepared.

(8)本明細書に記載の技術に関わる反射板の製造方法は、基板上にポジ型の感光性絶縁材料またはネガ型の感光性絶縁材料からなる絶縁膜を成膜し、前記感光性絶縁材料がポジ型の場合は、光を遮る遮光領域と、前記遮光領域の外周の一部に隣接して配され、光を透過して光透過率が前記遮光領域よりも高い第1半透過領域と、前記遮光領域及び前記第1半透過領域を取り囲んで配され、光を透過して光透過率が前記遮光領域よりも高く前記第1半透過領域よりも低い第2半透過領域と、を含む第1フォトマスクを通して前記絶縁膜を露光し、前記感光性絶縁材料がネガ型の場合は、光を透過する透過領域と、前記透過領域の外周の一部に隣接して配され、光を透過して光透過率が前記透過領域よりも低い第3半透過領域と、前記透過領域及び前記第3半透過領域を取り囲んで配され、光を透過して光透過率が前記透過領域よりも低く前記第3半透過領域よりも高い第4半透過領域と、を含む第2フォトマスクを通して前記絶縁膜を露光し、前記絶縁膜を現像することで、前記絶縁膜のうち、前記遮光領域または前記透過領域と重畳する部分が凸部となり、前記第1半透過領域または前記第3半透過領域と重畳する部分が第1凹部となり、前記第2半透過領域または前記第4半透過領域と重畳する部分が前記第1凹部よりも浅い第2凹部となるよう、前記絶縁膜の表面に凹凸面を形成し、前記絶縁膜を熱処理することで、前記凸部を前記基板の主面の法線方向に対して傾斜させ、前記凸部の頂点を前記第1凹部側に偏在させ、前記絶縁膜の上層側に光を反射する反射膜を成膜する。 (8) A method for manufacturing a reflector related to the technology described in this specification includes forming an insulating film made of a positive-type photosensitive insulating material or a negative-type photosensitive insulating material on a substrate, and If the material is positive type, a light-shielding region that blocks light; and a first semi-transparent region that is arranged adjacent to a part of the outer periphery of the light-shielding region, transmits light, and has a higher light transmittance than the light-shielding region. and a second semi-transparent region that is arranged to surround the light-shielding region and the first semi-transmissive region, and that transmits light and has a light transmittance higher than that of the light-shielding region and lower than that of the first semi-transparent region. The insulating film is exposed to light through a first photomask including a photosensitive insulating material, and when the photosensitive insulating material is of a negative type, a transmissive region that transmits light and a first photomask disposed adjacent to a part of the outer periphery of the transmissive region and that transmits light. a third semi-transmissive region that transmits light and has a lower light transmittance than the transmissive region; and a third semi-transmissive region surrounding the transmissive region and the third semi-transmissive region that transmits light and has a light transmittance lower than that of the transmissive region. By exposing the insulating film through a second photomask including a fourth semi-transmissive region that is lower and higher than the third semi-transmissive region and developing the insulating film, the light-shielding region or A portion that overlaps with the transparent region becomes a convex portion, a portion that overlaps with the first semi-transparent region or the third semi-transparent region becomes a first recess, and overlaps with the second semi-transparent region or the fourth semi-transparent region. An uneven surface is formed on the surface of the insulating film so that a second recess is shallower than the first recess, and the insulating film is heat-treated so that the projection is aligned with the normal to the main surface of the substrate. A reflective film that reflects light is formed on the upper layer side of the insulating film, with the apexes of the convex portion being unevenly distributed on the first recess side.

(9)また、上記反射板の製造方法は、上記(8)に加え、前記感光性絶縁材料がポジ型の場合は、前記遮光領域である第1遮光領域と、前記遮光領域であって前記第1遮光領域と間隔を空けて隣り合う第2遮光領域と、前記遮光領域であって前記第1遮光領域と間隔を空けて隣り合う第3遮光領域と、前記第1半透過領域であって前記第1遮光領域の外周の一部に隣接して配される第5半透過領域と、前記第1半透過領域であって前記第2遮光領域の外周の一部に隣接して配される第6半透過領域と、前記第1半透過領域であって前記第3遮光領域の外周の一部に隣接して配される第7半透過領域と、を含む前記第1フォトマスクであって、前記第1遮光領域の外形の重心から前記第5半透過領域へ向かう方向と、前記第2遮光領域の外形の重心から前記第6半透過領域へ向かう方向と、前記第3遮光領域の外形の重心から前記第7半透過領域へ向かう方向と、が互いに交差する関係の前記第1フォトマスクを通して前記絶縁膜を露光し、前記感光性絶縁材料がネガ型の場合は、前記透過領域である第1透過領域と、前記透過領域であって前記第1透過領域と間隔を空けて隣り合う第2透過領域と、前記透過領域であって前記第1透過領域と間隔を空けて隣り合う第3透過領域と、前記第3半透過領域であって前記第1透過領域の外周の一部に隣接して配される第8半透過領域と、前記第3半透過領域であって前記第2透過領域の外周の一部に隣接して配される第9半透過領域と、前記第3半透過領域であって前記第3透過領域の外周の一部に隣接して配される第10半透過領域と、を含む前記第2フォトマスクであって、前記第1透過領域の外形の重心から前記第8半透過領域へ向かう方向と、前記第2透過領域の外形の重心から前記第9半透過領域へ向かう方向と、前記第3透過領域の外形の重心から前記第10半透過領域へ向かう方向と、が互いに交差する関係の前記第2フォトマスクを通して前記絶縁膜を露光し、前記絶縁膜を現像することで、前記絶縁膜のうち、前記第1遮光領域または前記第1透過領域と重畳する部分が、前記凸部である第1凸部となり、前記第2遮光領域または前記第2透過領域と重畳する部分が、前記凸部であって前記第1凸部と間隔を空けて隣り合う第2凸部となり、前記第3遮光領域または前記第3透過領域と重畳する部分が、前記凸部であって前記第1凸部と間隔を空けて隣り合う第3凸部となり、前記第5半透過領域または前記第8半透過領域と重畳する部分が、前記第1凹部である第3凹部となり、前記第6半透過領域または前記第9半透過領域と重畳する部分が、前記第1凹部である第4凹部となり、前記第7半透過領域または前記第10半透過領域と重畳する部分が、前記第1凹部である第5凹部となり、前記第2半透過領域または前記第4半透過領域と重畳する部分が、前記第3凹部、前記第4凹部及び前記第5凹部よりも浅い前記第2凹部となるよう、前記絶縁膜の表面に凹凸面を形成し、前記絶縁膜を熱処理することで、前記第1凸部を前記基板の主面の法線方向に対して傾斜させ、前記第1凸部の頂点を前記第3凹部側に偏在させ、前記第2凸部を前記基板の主面の法線方向に対して傾斜させ、前記第2凸部の頂点を前記第4凹部側に偏在させ、前記第3凸部を前記基板の主面の法線方向に対して傾斜させ、前記第3凸部の頂点を前記第5凹部側に偏在させてもよい。 (9) In addition to the above (8), when the photosensitive insulating material is positive type, the method for manufacturing the reflector plate includes: a first light-shielding region that is the light-shielding region; a second light-shielding region adjacent to the first light-shielding region with a space therebetween; a third light-shielding region which is the light-shielding region and adjacent to the first light-shielding region with a space therebetween; and the first semi-transparent region. a fifth semi-transmissive region arranged adjacent to a part of the outer periphery of the first light-shielding region; and a fifth semi-transmissive region arranged adjacent to a part of the outer periphery of the second light-shielding region. The first photomask includes a sixth semi-transmissive region, and a seventh semi-transmissive region that is the first semi-transmissive region and is arranged adjacent to a part of the outer periphery of the third light-shielding region. , a direction from the center of gravity of the outer shape of the first light-shielding region toward the fifth semi-transparent region, a direction from the center of gravity of the outer shape of the second light-shielding region toward the sixth semi-transparent region, and an outer shape of the third light-shielding region. The insulating film is exposed through the first photomask in a relationship in which the direction from the center of gravity of a first transmissive region, a second transmissive region that is the transmissive region and is adjacent to the first transmissive region with an interval therebetween, and a third transmissive region that is the transmissive region and is adjacent to the first transmissive region with an interval therebetween. a transmissive region, an eighth semi-transmissive region which is the third semi-transmissive region and is arranged adjacent to a part of the outer periphery of the first transmissive region, and a third semi-transmissive region which is the second transmissive region. a ninth semi-transparent region arranged adjacent to a part of the outer periphery of the region; and a tenth semi-transparent region, which is the third semi-transparent region and arranged adjacent to a part of the outer periphery of the third transmissive region. The second photomask includes a direction from the center of gravity of the outer shape of the first transmissive region toward the eighth semi-transparent region, and a direction from the center of gravity of the outer shape of the second transmissive region to the ninth semi-transparent region. exposing the insulating film through the second photomask in which a direction toward the third transmissive region and a direction from the center of gravity of the outer shape of the third transmissive region toward the tenth semi-transmissive region intersect with each other; By developing, the portion of the insulating film that overlaps with the first light-shielding region or the first transmissive region becomes the first convex portion, which is the convex portion, and the portion of the insulating film that overlaps with the first light-shielding region or the first transmissive region becomes the first convex portion, and the second light-shielding region or the second transmissive region becomes the first convex portion. The portion that overlaps with the third light-shielding region or the third transmissive region is the convex portion and is the second convex portion adjacent to the first convex portion with an interval, and the portion that overlaps with the third light-shielding region or the third transmissive region is the convex portion. A third convex portion adjacent to the first convex portion with an interval therebetween, and a portion overlapping with the fifth semi-transparent region or the eighth semi-transparent region serves as a third concave portion which is the first concave portion. , a portion that overlaps with the sixth semi-transparent region or the ninth semi-transparent region becomes a fourth recess that is the first recess, and a portion that overlaps with the seventh semi-transparent region or the tenth semi-transparent region, The second recess is the first recess, and a portion that overlaps with the second semi-transparent region or the fourth semi-transparent region is shallower than the third recess, the fourth recess, and the fifth recess. An uneven surface is formed on the surface of the insulating film so as to form a concave part, and the insulating film is heat-treated to make the first convex part inclined with respect to the normal direction of the main surface of the substrate. The apex of the convex portion is unevenly distributed on the third recess side, the second convex portion is inclined with respect to the normal direction of the main surface of the substrate, and the apex of the second convex portion is unevenly distributed on the fourth recess side. The third protrusion may be tilted with respect to the normal direction of the main surface of the substrate, and the apex of the third protrusion may be unevenly located on the fifth recess side.

(10)また、上記反射板の製造方法は、上記(8)または上記(9)に加え、前記感光性絶縁材料がポジ型の場合は、平面形状が円形の前記遮光領域と、前記遮光領域の外周のうちの半分以下の範囲に隣接して配される前記第1半透過領域と、を含む前記第1フォトマスクを通して前記絶縁膜を露光し、前記感光性絶縁材料がネガ型の場合は、平面形状が円形の前記透過領域と、前記透過領域の外周のうちの半分以下の範囲に隣接して配される前記第3半透過領域と、を含む前記第2フォトマスクを通して前記絶縁膜を露光してもよい。 (10) In addition to the above (8) or (9), in addition to the above (8) or (9), when the photosensitive insulating material is positive type, the method for manufacturing the reflective plate includes: the insulating film is exposed through the first photomask including the first semi-transparent region adjacent to a half or less of the outer periphery of the insulating film, and when the photosensitive insulating material is negative type; , the insulating film is exposed through the second photomask, which includes the transparent region having a circular planar shape, and the third semi-transparent region adjacent to a half or less of the outer periphery of the transparent region; May be exposed to light.

本明細書に記載の技術によれば、第1には、反射光の分散を図り、第2には、汎用的な製造装置を用いて製造を行うことができる。 According to the technology described in this specification, first, reflected light can be dispersed, and second, manufacturing can be performed using a general-purpose manufacturing apparatus.

実施形態1に係る液晶表示装置の液晶パネルに備わる画素を示す平面図A plan view showing pixels included in the liquid crystal panel of the liquid crystal display device according to Embodiment 1. 液晶パネルにおける図1のii-ii線断面図Cross-sectional view of the liquid crystal panel along the line ii-ii in Figure 1 液晶パネルにおける図1のiii-iii線断面図Cross-sectional view of the liquid crystal panel along line iii-iii in Figure 1 複数の凸部に含まれる3つの凸部を示す平面図A plan view showing three convex parts included in a plurality of convex parts アレイ基板における図4のv-v線断面図Cross-sectional view along the v-v line in Figure 4 of the array substrate 反射膜による反射光のうち正反射方向に向かう反射光の反射率を示すグラフGraph showing the reflectance of the reflected light directed in the specular direction out of the reflected light by the reflective film 成膜工程を経て成膜された第1絶縁膜が、露光工程にて第1フォトマスクを通して露光された状態を示す図5と同じ切断位置の断面図A cross-sectional view taken at the same cutting position as FIG. 5, showing a state in which the first insulating film formed through the film-forming process is exposed through the first photomask in the exposure process. 露光工程で用いられる第1フォトマスクの平面図Plan view of the first photomask used in the exposure process 現像工程にて第1絶縁膜が現像された状態を示す図5と同じ切断位置の断面図A cross-sectional view taken at the same cutting position as FIG. 5 showing the state in which the first insulating film is developed in the development process. 熱処理工程にて第1絶縁膜が熱処理された状態を示す図5と同じ切断位置の断面図A cross-sectional view taken at the same cutting position as FIG. 5, showing a state in which the first insulating film has been heat-treated in the heat treatment process. 実施形態2に係る複数の凸部に含まれる3つの凸部を示す平面図A plan view showing three convex portions included in a plurality of convex portions according to Embodiment 2. アレイ基板における図11のxii-xii線断面図Cross-sectional view along the line xii-xii in Figure 11 of the array substrate 成膜工程を経て成膜された第1絶縁膜1が、露光工程にてグレートーンマスクを通して露光された状態を示す図11と同じ切断位置の断面図A cross-sectional view at the same cutting position as FIG. 11 showing a state in which the first insulating film 1 formed through the film-forming process is exposed through a gray-tone mask in the exposure process. 露光工程で用いられるグレートーンマスクの平面図Plan view of gray tone mask used in exposure process 現像工程にて第1絶縁膜が現像された状態を示す図12と同じ切断位置の断面図A cross-sectional view taken at the same cutting position as FIG. 12 showing a state in which the first insulating film is developed in the development process. 熱処理工程にて第1絶縁膜が熱処理された状態を示す図12と同じ切断位置の断面図A cross-sectional view taken at the same cutting position as FIG. 12 showing a state in which the first insulating film has been heat-treated in the heat treatment process. 実施形態3に係る複数の凸部に含まれる3つの凸部を示す平面図A plan view showing three convex portions included in a plurality of convex portions according to Embodiment 3. アレイ基板における図17のxviii-xviii線断面Cross section of the array substrate along line xviii-xviii in Figure 17 図19は、露光工程で用いられるグレートーンマスクの平面図FIG. 19 is a plan view of a gray tone mask used in the exposure process. 実施形態4に係る成膜工程を経て成膜された第1絶縁膜が、露光工程にて第2フォトマスクを通して露光された状態を示す図5と同じ切断位置の断面図A cross-sectional view taken at the same cutting position as FIG. 5, showing a state in which the first insulating film formed through the film forming process according to Embodiment 4 is exposed through the second photomask in the exposure process. 露光工程で用いられる第2フォトマスクの平面図Plan view of the second photomask used in the exposure process 複数の凸部に含まれる3つの凸部を示す平面図A plan view showing three convex parts included in a plurality of convex parts 現像工程にて第1絶縁膜が現像された状態を示す図5と同じ切断位置の断面図A cross-sectional view taken at the same cutting position as FIG. 5 showing the state in which the first insulating film is developed in the development process. 実施形態5に係る複数の凸部に含まれる3つの凸部を示す平面図A plan view showing three convex portions included in a plurality of convex portions according to Embodiment 5. 露光工程で用いられるグレートーンマスクの平面図Plan view of gray tone mask used in exposure process 実施形態6に係るアレイ基板を構成する基板の平面図A plan view of a substrate constituting an array substrate according to Embodiment 6 複数の凸部に含まれる3つの凸部を示す平面図A plan view showing three convex parts included in a plurality of convex parts. アレイ基板における図27のxxviii-xxviii線断面図Cross-sectional view taken along the line xxviii-xxviii in FIG. 27 on the array substrate 第1凸部を拡大した平面図An enlarged plan view of the first convex portion 第2凸部を拡大した平面図An enlarged plan view of the second convex portion 第3凸部を拡大した平面図An enlarged plan view of the third convex portion 検証実験1の検証結果に係る極座標を示すグラフGraph showing polar coordinates related to the verification results of verification experiment 1 検証実験2の比較例1に係る基板の主面内における反射光の輝度分布を示す図A diagram showing the luminance distribution of reflected light within the main surface of the substrate according to Comparative Example 1 of Verification Experiment 2. 検証実験2の比較例2に係る基板の主面内における反射光の輝度分布を示す図A diagram showing the luminance distribution of reflected light within the main surface of the substrate according to Comparative Example 2 of Verification Experiment 2. 検証実験2の実施例1に係る基板の主面内における反射光の輝度分布を示す図A diagram showing the luminance distribution of reflected light within the main surface of the substrate according to Example 1 of Verification Experiment 2 基板を屋外に設置した状態を示す側面図Side view showing the board installed outdoors 実施形態7に係るアレイ基板を構成する基板の平面図A plan view of a substrate constituting an array substrate according to Embodiment 7 複数の凸部に含まれる3つの凸部を示す平面図A plan view showing three convex parts included in a plurality of convex parts 第2凸部を拡大した平面図An enlarged plan view of the second convex portion 第3凸部を拡大した平面図An enlarged plan view of the third convex portion 実施形態8に係るアレイ基板に備わる複数の凸部に含まれる3つの凸部を示す平面図A plan view showing three convex portions included in a plurality of convex portions provided on an array substrate according to Embodiment 8. 第1凸部を拡大した平面図An enlarged plan view of the first convex portion 第2凸部を拡大した平面図An enlarged plan view of the second convex portion 第3凸部を拡大した平面図An enlarged plan view of the third convex portion

<実施形態1>
実施形態1を図1から図10によって説明する。本実施形態では、反射型の液晶表示装置(表示装置)10について例示する。なお、各図面の一部にはX軸、Y軸、及びZ軸を示しており、各軸方向が各図面で示した方向となるように描かれている。
<Embodiment 1>
Embodiment 1 will be described with reference to FIGS. 1 to 10. In this embodiment, a reflective liquid crystal display device (display device) 10 will be exemplified. Note that a part of each drawing shows an X-axis, a Y-axis, and a Z-axis, and the drawings are drawn so that the direction of each axis is the direction shown in each drawing.

本実施形態に係る反射型の液晶表示装置10は、太陽光や室内灯光などの外光を利用して画像の表示を行うものである。液晶表示装置10は、外光を反射し、反射光の出射光量を制御する液晶パネル11を備える。以下では、液晶パネル11の概略的な構成に関して図1から図3を用いて説明する。 The reflective liquid crystal display device 10 according to the present embodiment displays images using external light such as sunlight or indoor light. The liquid crystal display device 10 includes a liquid crystal panel 11 that reflects external light and controls the amount of output of the reflected light. Below, the schematic structure of the liquid crystal panel 11 will be explained using FIGS. 1 to 3.

図1は、液晶パネル11に備わる画素11PXを示す平面図である。図2は、液晶パネル11における図1のii-ii線断面図である。図3は、液晶パネル11における図1のiii-iii線断面図である。液晶パネル11は、図1に示すように、平面に視て縦長な方形状の画素11PXを備える。画素11PXは、液晶パネル11の面内において、X軸方向及びY軸方向にそれぞれ間隔を空けて複数ずつがマトリクス状に並んで配されている。 FIG. 1 is a plan view showing a pixel 11PX included in the liquid crystal panel 11. FIG. 2 is a cross-sectional view of the liquid crystal panel 11 taken along line ii-ii in FIG. FIG. 3 is a cross-sectional view of the liquid crystal panel 11 taken along line iii--iii in FIG. As shown in FIG. 1, the liquid crystal panel 11 includes vertically elongated rectangular pixels 11PX when viewed from above. A plurality of pixels 11PX are arranged in a matrix in the plane of the liquid crystal panel 11 at intervals in the X-axis direction and the Y-axis direction.

液晶パネル11は、図2及び図3に示すように、アレイ基板(反射板)12と、アレイ基板12と間隔を空けて対向する対向基板13と、アレイ基板12と対向基板13との間に挟持される液晶層14と、を備える。アレイ基板12は、画素11PXを構成する画素電極15と、画素電極15に対して液晶層14側とは反対側に配される反射膜16と、を少なくとも備える。画素電極15は、アレイ基板12の面内において、X軸方向及びY軸方向にそれぞれ間隔を空けて複数ずつがマトリクス状に並んで配されている。アレイ基板12は、画素11PXを駆動するための回路であるバックプレーン回路を備える。バックプレーン回路には、画素電極15に接続されるTFT(薄膜トランジスタ、スイッチング素子)と、TFTを走査するゲート配線と、TFTに画像信号を供給するソース配線と、が少なくとも含まれる。TFTは、画素電極15と同様に、アレイ基板12の面内において複数がマトリクス状に並んで配されている。画素電極15は、ゲート配線による走査によってTFTが駆動されるのに伴い、ソース配線により供給される画像信号に基づく電位に充電される。なお、バックプレーン回路には、複数の画素11PXに対して個別に接続されたメモリ回路(例えばSRAM)を含んでいてもよい。 As shown in FIGS. 2 and 3, the liquid crystal panel 11 includes an array substrate (reflection plate) 12, a counter substrate 13 that faces the array substrate 12 with a space between them, and a space between the array substrate 12 and the counter substrate 13. A liquid crystal layer 14 is sandwiched between the liquid crystal layers 14 and 14. The array substrate 12 includes at least a pixel electrode 15 constituting the pixel 11PX, and a reflective film 16 disposed on the side opposite to the liquid crystal layer 14 with respect to the pixel electrode 15. A plurality of pixel electrodes 15 are arranged in a matrix in the plane of the array substrate 12 at intervals in the X-axis direction and the Y-axis direction. The array substrate 12 includes a backplane circuit that is a circuit for driving the pixels 11PX. The backplane circuit includes at least a TFT (thin film transistor, switching element) connected to the pixel electrode 15, a gate wiring that scans the TFT, and a source wiring that supplies an image signal to the TFT. Similar to the pixel electrode 15, a plurality of TFTs are arranged in a matrix in the plane of the array substrate 12. The pixel electrode 15 is charged to a potential based on an image signal supplied by the source wiring as the TFT is driven by scanning by the gate wiring. Note that the backplane circuit may include a memory circuit (for example, SRAM) that is individually connected to the plurality of pixels 11PX.

アレイ基板12は、図2及び図3に示すように、ガラス材料または樹脂材料からなる基板17を備え、基板17上に各種の膜が形成されている。基板17上には、バックプレーン回路を構成する複数の金属膜及び半導体膜などが形成されている。さらに、基板17上には、バックプレーン回路を上層側から覆う第1絶縁膜(絶縁膜)18と、第1絶縁膜18の上層側に配される導電膜と、導電膜の上層側に配される金属膜と、金属膜の上層側に配される第2絶縁膜19と、第2絶縁膜19の上層側に配される透明電極膜と、透明電極膜の上層側に配される配向膜20と、が下層側から順に重なるよう形成されている。 As shown in FIGS. 2 and 3, the array substrate 12 includes a substrate 17 made of a glass material or a resin material, and various films are formed on the substrate 17. A plurality of metal films, semiconductor films, etc. forming a backplane circuit are formed on the substrate 17. Further, on the substrate 17, a first insulating film (insulating film) 18 that covers the backplane circuit from the upper layer side, a conductive film disposed on the upper layer side of the first insulating film 18, and a conductive film disposed on the upper layer side of the conductive film are disposed on the substrate 17. a second insulating film 19 disposed on the upper layer side of the metal film, a transparent electrode film disposed on the upper layer side of the second insulating film 19, and an orientation disposed on the upper layer side of the transparent electrode film. The films 20 and 20 are formed so as to overlap in order from the lower layer side.

第1絶縁膜18は、ポジ型の感光性樹脂材料からなる。第1絶縁膜18に用いられるポジ型の感光性樹脂材料は、露光量に応じて現像液による溶解速度が速くなる性質を有する。第1絶縁膜18を構成する感光性樹脂材料としては、例えば有機樹脂材料の一種であるアクリル系樹脂材料(例えばポリメタクリル酸メチル樹脂(PMMA))などが用いられる。第1絶縁膜18は、無機樹脂材料からなる絶縁膜に比べると、膜厚が大きくされており、例えば数μm程度とされる。第1絶縁膜18は、図2及び図3に示すように、その表面が凹凸面18Aとされる。従って、第1絶縁膜18の上層側に積層される導電層21及び反射膜16は、いずれも第1絶縁膜18の凹凸面18Aに倣う表面を有する。つまり、導電層21及び反射膜16の表面は、第1絶縁膜18の凹凸面18Aが反映された凹凸形状となっている。また、第1絶縁膜18のうち、画素電極15の中央部と重畳する位置には、第1コンタクトホール18CHが開口して形成されている。第1コンタクトホール18CHは、アレイ基板12の面内において、画素電極15の配列に対応して複数がマトリクス状に並んで配されている。導電膜は、金属材料または透明電極膜材料からなる。導電膜の一部は、反射膜16の下層側に積層される導電層21を構成する。 The first insulating film 18 is made of a positive photosensitive resin material. The positive photosensitive resin material used for the first insulating film 18 has a property that its dissolution rate by a developer increases depending on the amount of exposure. As the photosensitive resin material constituting the first insulating film 18, for example, an acrylic resin material (for example, polymethyl methacrylate resin (PMMA)), which is a type of organic resin material, is used. The first insulating film 18 is thicker than an insulating film made of an inorganic resin material, for example, on the order of several μm. As shown in FIGS. 2 and 3, the first insulating film 18 has an uneven surface 18A. Therefore, the conductive layer 21 and the reflective film 16 stacked on the upper layer side of the first insulating film 18 both have surfaces that follow the uneven surface 18A of the first insulating film 18. That is, the surfaces of the conductive layer 21 and the reflective film 16 have an uneven shape reflecting the uneven surface 18A of the first insulating film 18. Furthermore, a first contact hole 18CH is formed in the first insulating film 18 at a position overlapping with the center portion of the pixel electrode 15. A plurality of first contact holes 18CH are arranged in a matrix in the plane of the array substrate 12, corresponding to the arrangement of the pixel electrodes 15. The conductive film is made of a metal material or a transparent electrode film material. A portion of the conductive film constitutes a conductive layer 21 laminated on the lower layer side of the reflective film 16.

金属膜は、光の反射性に優れた金属材料(例えば、銀合金、アルミニウム、アルミニウム合金など)からなる。金属膜の一部は、反射膜16を構成する。反射膜16の表面は、図2及び図3に示すように、第1絶縁膜18の凹凸面18Aが反映された凹凸形状となっているので、光を拡散(散乱)反射してペーパーホワイトに近い表示を実現することに寄与する。第2絶縁膜19は、樹脂材料からなる。第2絶縁膜19の材料として、例えば有機樹脂材料を用いれば、第2絶縁膜19の表面、つまり透明電極膜の下地を平坦化する上で好適である。第2絶縁膜19のうち、画素電極15の中央部と重畳する位置には、第2コンタクトホール19CHが開口して形成されている。第2コンタクトホール19CHは、アレイ基板12の面内において、画素電極15の配列に対応して複数がマトリクス状に並んで配されている。透明電極膜は、例えばITO(Indium Tin Oxide)やIZO(Indium Zinc Oxide)などの透明電極材料からなる。透明電極膜は、画素電極15を構成する。配向膜20は、例えばポリイミドなどの樹脂材料からなる。配向膜20の表面には、ラビング処理または光配向処理が施されている。 The metal film is made of a metal material (eg, silver alloy, aluminum, aluminum alloy, etc.) that has excellent light reflectivity. A part of the metal film constitutes the reflective film 16. As shown in FIGS. 2 and 3, the surface of the reflective film 16 has an uneven shape that reflects the uneven surface 18A of the first insulating film 18, so it diffuses (scatters) and reflects light, resulting in a paper white color. This contributes to realizing a similar display. The second insulating film 19 is made of resin material. For example, using an organic resin material as the material of the second insulating film 19 is suitable for flattening the surface of the second insulating film 19, that is, the base of the transparent electrode film. A second contact hole 19CH is formed in the second insulating film 19 at a position overlapping the center portion of the pixel electrode 15 . A plurality of second contact holes 19CH are arranged in a matrix in the plane of the array substrate 12, corresponding to the arrangement of the pixel electrodes 15. The transparent electrode film is made of a transparent electrode material such as ITO (Indium Tin Oxide) or IZO (Indium Zinc Oxide). The transparent electrode film constitutes the pixel electrode 15. The alignment film 20 is made of a resin material such as polyimide. The surface of the alignment film 20 is subjected to rubbing treatment or photo alignment treatment.

アレイ基板12には、図2及び図3に示すように、画素電極15とバックプレーン回路を構成するTFTとを接続するためのコンタクト部22が設けられている。コンタクト部22は、第1絶縁膜18に形成された第1コンタクトホール18CHと、第2絶縁膜19に形成された第2コンタクトホール19CHと、の双方に対して重畳して配される。コンタクト部22は、第1コンタクト電極22Aと、第2コンタクト電極22Bと、第3コンタクト電極22Cと、により構成される。第1コンタクト電極22Aは、第1絶縁膜18の下層側にあり、第1コンタクトホール18CHと重畳する位置に配される。第1コンタクト電極22Aは、バックプレーン回路に接続されている。第2コンタクト電極22Bは、第1絶縁膜18の上層側にあり、第1コンタクトホール18CHと第2コンタクトホール19CHとの双方と重畳する範囲に配される。第2コンタクト電極22Bは、第1コンタクトホール18CHを通して第1コンタクト電極22Aに接続されている。第2コンタクト電極22Bは、導電層21と同じ導電膜の一部からなる。第3コンタクト電極22Cは、第2コンタクト電極22Bの上層側で第2絶縁膜19の下層側にあり、第2コンタクトホール19CHと重畳する位置に配される。第3コンタクト電極22Cは、下層側の第2コンタクト電極22Bに接続されるとともに、第2コンタクトホール19CHを通して上層側の画素電極15に接続される。第3コンタクト電極22Cは、反射膜16と同じ金属膜の一部からなる。 As shown in FIGS. 2 and 3, the array substrate 12 is provided with a contact portion 22 for connecting the pixel electrode 15 and the TFT forming the backplane circuit. The contact portion 22 is arranged to overlap both the first contact hole 18CH formed in the first insulating film 18 and the second contact hole 19CH formed in the second insulating film 19. The contact portion 22 includes a first contact electrode 22A, a second contact electrode 22B, and a third contact electrode 22C. The first contact electrode 22A is located on the lower layer side of the first insulating film 18 and is arranged at a position overlapping with the first contact hole 18CH. The first contact electrode 22A is connected to the backplane circuit. The second contact electrode 22B is located on the upper layer side of the first insulating film 18 and is arranged in a range overlapping both the first contact hole 18CH and the second contact hole 19CH. The second contact electrode 22B is connected to the first contact electrode 22A through the first contact hole 18CH. The second contact electrode 22B is made of a part of the same conductive film as the conductive layer 21. The third contact electrode 22C is located above the second contact electrode 22B and below the second insulating film 19, and is arranged at a position overlapping the second contact hole 19CH. The third contact electrode 22C is connected to the second contact electrode 22B on the lower layer side, and is also connected to the pixel electrode 15 on the upper layer side through the second contact hole 19CH. The third contact electrode 22C is made of a part of the same metal film as the reflective film 16.

対向基板13は、図2及び図3に示すように、ガラス材料または樹脂材料からなる基板23上に各種の膜が形成されてなる。基板23の材料としてガラス材料を用いた場合には、基板23の屈折率は、例えば1.53程度となる。基板23上には、カラーフィルタ及びスペーサなどの他に、対向電極24及び配向膜25が積層される。カラーフィルタは、画素電極15と重畳する位置に配されていて、画素電極15と共に画素11PXを構成している。スペーサは、液晶層14側に突き出していて、その突出先端面がアレイ基板12の内面に接触可能とされる。スペーサにより一対の基板12,13間の間隔、つまりセルギャップ(液晶層14の厚み)を保持することが可能とされる。対向電極24は、画素電極15と同様の透明電極材料からなる。対向電極24には、共通電位が供給されている。従って、対向電極24と、TFTにより充電された画素電極15と、の間には、電界が生じるようになっており、その電界によって液晶層14に含まれる液晶分子の配向状態を制御することが可能とされる。なお、反射膜16に共通電位を供給し、反射膜16を対向電極24と同電位とすれば、反射膜16と画素電極15との間に補助容量を形成することが可能である。配向膜25は、アレイ基板12側の配向膜20と同様に、例えばポリイミドなどの樹脂材料からなり、その表面にラビング処理または光配向処理が施されている。 As shown in FIGS. 2 and 3, the counter substrate 13 is formed by forming various films on a substrate 23 made of a glass material or a resin material. When a glass material is used as the material of the substrate 23, the refractive index of the substrate 23 is, for example, about 1.53. On the substrate 23, in addition to color filters, spacers, etc., a counter electrode 24 and an alignment film 25 are laminated. The color filter is disposed at a position overlapping with the pixel electrode 15, and together with the pixel electrode 15 constitutes a pixel 11PX. The spacer protrudes toward the liquid crystal layer 14 side, and its protruding end surface can come into contact with the inner surface of the array substrate 12. The spacer makes it possible to maintain the distance between the pair of substrates 12 and 13, that is, the cell gap (thickness of the liquid crystal layer 14). The counter electrode 24 is made of the same transparent electrode material as the pixel electrode 15. A common potential is supplied to the counter electrode 24. Therefore, an electric field is generated between the counter electrode 24 and the pixel electrode 15 charged by the TFT, and the alignment state of the liquid crystal molecules contained in the liquid crystal layer 14 can be controlled by the electric field. It is considered possible. Note that by supplying a common potential to the reflective film 16 and making the reflective film 16 have the same potential as the counter electrode 24, it is possible to form an auxiliary capacitance between the reflective film 16 and the pixel electrode 15. Like the alignment film 20 on the array substrate 12 side, the alignment film 25 is made of a resin material such as polyimide, and its surface has been subjected to a rubbing process or a photo-alignment process.

ここで、第1絶縁膜18の凹凸面18Aについて詳しく説明する。第1絶縁膜18は、図1から図3に示すように、間隔を空けて配される複数の凸部26と、隣り合う凸部26の間に配される凹部27と、を含む。凹凸面18Aは、複数の凸部26及び凹部27の表面により構成される。凸部26は、平面形状が円形とされる。凸部26の平面に視た外形の直径は、例えば6μm程度とされる。複数の凸部26は、アレイ基板12の基板17の面内において、ランダムに分散配置されている。詳しくは、複数の凸部26は、凹部27を挟んで隣り合う2つずつの凸部26の各並び方向が不規則であり、凹部27を挟んで隣り合う2つずつの凸部26の間の各間隔が不規則である。画素電極15には、平面に視て複数の凸部26が重畳して配される。凹部27は、基板17の面内において、複数ずつの凸部26及び第1コンタクトホール18CHが非配置とされる部分に配されている。 Here, the uneven surface 18A of the first insulating film 18 will be explained in detail. The first insulating film 18 includes a plurality of protrusions 26 arranged at intervals and a recess 27 arranged between adjacent protrusions 26, as shown in FIGS. 1 to 3. The uneven surface 18A is composed of surfaces of a plurality of convex portions 26 and concave portions 27. The convex portion 26 has a circular planar shape. The outer diameter of the convex portion 26 viewed from a plane is, for example, about 6 μm. The plurality of convex portions 26 are randomly distributed within the plane of the substrate 17 of the array substrate 12 . Specifically, in the plurality of convex portions 26, the direction in which two convex portions 26 adjacent to each other with the concave portion 27 in between is irregular, and the direction between the two convex portions 26 adjacent to each other with the concave portion 27 in between is irregular. Each interval is irregular. A plurality of convex portions 26 are arranged on the pixel electrode 15 so as to overlap each other when viewed from above. The recesses 27 are arranged in the plane of the substrate 17 in areas where the plurality of protrusions 26 and the first contact holes 18CH are not arranged.

ここで、複数の凸部26の中から代表して図4に示される3つの凸部26について詳しく説明する。図4は、複数の凸部26に含まれる3つの凸部26を示す平面図である。図4では、各凸部26の平面に視た外形がそれぞれ円によって示されている。図5は、アレイ基板12における図4のv-v線断面図である。複数の凸部26には、図4に示すように、第1凸部26αと、第1凸部26αと間隔を空けて隣り合う第2凸部26βと、第1凸部26αと間隔を空けて隣り合う第3凸部26γと、が少なくとも含まれる。なお、以下では凸部26に係る構成を区別する場合には、第1凸部に係る構成の符号に添え字「α」を付し、第2凸部に係る構成の符号に添え字「β」を付し、第3凸部に係る構成の符号に添え字「γ」を付し、区別せずに総称する場合には、符号に添え字を付さないものとする。 Here, three representative protrusions 26 shown in FIG. 4 from among the plurality of protrusions 26 will be described in detail. FIG. 4 is a plan view showing three protrusions 26 included in the plurality of protrusions 26. In FIG. 4, the outer shape of each convex portion 26 viewed from a plane is shown by a circle. FIG. 5 is a sectional view taken along the line v-v in FIG. 4 of the array substrate 12. As shown in FIG. 4, the plurality of convex portions 26 include a first convex portion 26α, a second convex portion 26β adjacent to the first convex portion 26α with an interval therebetween, and a second convex portion 26β adjacent to the first convex portion 26α with an interval therebetween. At least the third convex portions 26γ adjacent to each other are included. In addition, in the following, when distinguishing the configuration related to the convex portion 26, the suffix "α" is added to the code of the configuration related to the first convex part, and the suffix "β" is added to the code of the configuration related to the second convex part. ", and the suffix "γ" is added to the reference numeral of the structure related to the third convex portion, and when the reference numeral is referred to generically without distinction, no suffix is added to the reference numeral.

凸部26は、図4及び図5に示すように、Z軸方向、つまり基板17の主面の法線方向に対して傾いている。詳しくは、凸部26は、平面に視た外形の重心26Cと、突出先端部(最も高い部位)である頂点26Vと、が不一致である。ここで言う「重心」とは、凸部26を平面に視た外形に属する全ての点にわたってとった算術平均の位置のことであり、幾何中心と同義である。従って、凸部26は、重心26Cから頂点26Vへ向かう方向が、基板17の主面の法線方向に対して傾く構成となっている。なお、本実施形態では、凸部26における平面に視た外形が円形であるから、凸部26の重心26Cが、凸部26の平面に視た外形の中心と一致している。凸部26において重心26Cから頂点26Vへ向かう方向が、基板17の主面の法線方向に対してなす角度(以下では、「凸部26の傾き角度」という)は、例えば20°未満程度とされる。凸部26は、重心26C及び頂点26Vを通る位置にてZ軸方向に沿って切断した断面形状が、非対称となっている。また、凸部26は、平面に視た外形を構成する突出基端部から頂点26Vに向かって丸みを帯びた先細り状をなしている。凸部26における切断面の外形は、殆どが曲線により構成されている。なお、図1から図3では、凸部26及び凹部27の図示を簡略化しており、重心26C及び頂点26Vの図示などを省略している。 As shown in FIGS. 4 and 5, the convex portion 26 is inclined with respect to the Z-axis direction, that is, the normal direction of the main surface of the substrate 17. Specifically, in the convex portion 26, the center of gravity 26C of the outer shape seen in a plane does not match the apex 26V which is the protruding tip (the highest portion). The "center of gravity" here refers to the position of the arithmetic mean taken over all points belonging to the outline of the convex portion 26 viewed in a plane, and is synonymous with the geometric center. Therefore, the convex portion 26 is configured such that the direction from the center of gravity 26C to the apex 26V is inclined with respect to the normal direction of the main surface of the substrate 17. In this embodiment, since the outer shape of the convex portion 26 when viewed in a plan view is circular, the center of gravity 26C of the convex portion 26 coincides with the center of the outer shape of the convex portion 26 in a plan view. The angle that the direction from the center of gravity 26C to the apex 26V of the convex portion 26 makes with respect to the normal direction of the main surface of the substrate 17 (hereinafter referred to as “the inclination angle of the convex portion 26”) is, for example, about less than 20°. be done. The convex portion 26 has an asymmetric cross-sectional shape taken along the Z-axis direction at a position passing through the center of gravity 26C and the apex 26V. Further, the convex portion 26 has a rounded tapered shape from the protruding base end toward the apex 26V constituting the external shape seen in a plan view. Most of the outer shape of the cut surface of the convex portion 26 is formed by a curve. Note that in FIGS. 1 to 3, illustrations of the convex portion 26 and the concave portion 27 are simplified, and illustrations of the center of gravity 26C and the apex 26V are omitted.

このように、凸部26が基板17の主面の法線方向に対して傾く構成とされることで、反射膜16のうちの凸部26と重畳する部分による反射光を、正反射方向とは異なる方向に進行させることができる。これにより、反射膜16による反射光の進行方向が、対向基板13の基板23と偏光板との界面などで正反射された光、つまり映り込みに係る光の進行方向とは不一致となるので、観察者は画像を視認し易くなる。しかも、凸部26の傾き方、つまり平面に視た重心26Cに対する頂点26Vの位置や凸部26の高さなどを調整することで、例えば、図5の矢線に示されるように、反射膜16による反射光を、基板17の主面の法線方向に近い角度で進行させることが可能となる。このように反射光を進行させれば、例えば液晶表示装置10を、屋外で使用されるサイネージやスマート街灯などの表示部分に適用した場合、観察者に対して多くの光を供給することができる。これにより、観察者は明るい画像を視認することが可能となる。具体的には、屋外で使用されるサイネージやスマート街灯などの表示部分に入射する外光は、入射角が80°程度となる光が最も多い傾向にある。80°の入射角とされる光は、対向基板13の基板23に入射すると屈折される。基板23により屈折された光は、反射膜16に対して40°程度の入射角で入射する。40°の入射角の光を、基板17の主面の法線方向に近い角度で進行させるには、凸部26の傾き角度を20°未満とすればよい。但し、凸部26の傾き角度が大きすぎると、対向基板13に備わるカラーフィルタの界面などで乱反射して迷光となり易く、コントラスト性能が悪化するおそれがある。このため、凸部26の傾き角度としては、17.5°以下とすれば、上記のような迷光の発生を抑制し、良好なコントラスト性能を得ることができる。 In this way, by configuring the convex portion 26 to be inclined with respect to the normal direction of the main surface of the substrate 17, the light reflected by the portion of the reflective film 16 that overlaps with the convex portion 26 can be directed in the regular reflection direction. can proceed in different directions. As a result, the traveling direction of the light reflected by the reflective film 16 does not match the traveling direction of the light specularly reflected at the interface between the substrate 23 of the counter substrate 13 and the polarizing plate, that is, the traveling direction of the light related to reflection. It becomes easier for the observer to visually recognize the image. Moreover, by adjusting the inclination of the convex portion 26, that is, the position of the apex 26V with respect to the center of gravity 26C in a plan view, the height of the convex portion 26, etc., the reflective film can be adjusted, for example, as shown by the arrow in FIG. It becomes possible for the light reflected by the substrate 16 to travel at an angle close to the normal direction of the main surface of the substrate 17. By allowing the reflected light to travel in this manner, for example, when the liquid crystal display device 10 is applied to a display part of a signage used outdoors or a smart street light, a large amount of light can be supplied to the viewer. . This allows the viewer to view a bright image. Specifically, most of the external light that enters the display parts of signage, smart street lights, and the like used outdoors tends to have an incident angle of about 80°. When the light having an incident angle of 80° enters the substrate 23 of the counter substrate 13, it is refracted. The light refracted by the substrate 23 is incident on the reflective film 16 at an incident angle of about 40°. In order to cause light having an incident angle of 40° to travel at an angle close to the normal direction of the main surface of the substrate 17, the inclination angle of the convex portion 26 may be set to less than 20°. However, if the inclination angle of the convex portion 26 is too large, the light is likely to be diffusely reflected at the interface of the color filter provided on the counter substrate 13 and become stray light, which may deteriorate the contrast performance. Therefore, by setting the inclination angle of the convex portion 26 to 17.5° or less, the generation of stray light as described above can be suppressed and good contrast performance can be obtained.

ここで、凸部26の構成が、反射膜16による反射光に与える影響を検証するため、下記の比較実験を行った。この比較実験では、前段落に記載した構成の凸部26を有する液晶パネル11を実施例とし、重心と頂点とが一致する構成の凸部を有する液晶パネルを比較例とした。比較例に係る液晶パネルは、凸部の構成を除いては、実施例に係る液晶パネル11と同様の構成である。実施例に係る液晶パネル11と、比較例に係る液晶パネルと、に対し、それぞれ外光を照射し、正反射方向に向かう反射光の光量を測定した。実験結果は、図6の通りである。図6は、反射膜16による反射光のうち正反射方向に向かう反射光の反射率を示すグラフである。図6では、縦軸を反射率(単位は「%」)とした。図6の反射率は、反射膜16に対する入射光の光量を基準(100%)とした、正反射方向に向かう反射光の光量比である。図6の実験結果によれば、実施例に係る液晶パネル11は、比較例に係る液晶パネルに比べると、正反射方向に向かう反射光の反射率が低いことが分かった。その理由は、凸部26が基板17の主面の法線方向に対して傾いた構成とされることで、反射膜16による反射光が正反射され難くなるため、と考えられる。 Here, in order to verify the influence that the configuration of the convex portion 26 has on the light reflected by the reflective film 16, the following comparative experiment was conducted. In this comparative experiment, a liquid crystal panel 11 having a convex portion 26 having the configuration described in the previous paragraph was used as an example, and a liquid crystal panel having a convex portion having a configuration in which the center of gravity and the apex coincided was used as a comparative example. The liquid crystal panel according to the comparative example has the same configuration as the liquid crystal panel 11 according to the example except for the configuration of the convex portion. The liquid crystal panel 11 according to the example and the liquid crystal panel according to the comparative example were each irradiated with external light, and the amount of reflected light directed in the specular reflection direction was measured. The experimental results are shown in FIG. FIG. 6 is a graph showing the reflectance of the reflected light directed in the specular reflection direction among the reflected light by the reflective film 16. In FIG. 6, the vertical axis is the reflectance (unit: "%"). The reflectance in FIG. 6 is the ratio of the amount of reflected light in the specular reflection direction, with the amount of light incident on the reflective film 16 as a reference (100%). According to the experimental results shown in FIG. 6, it was found that the liquid crystal panel 11 according to the example had a lower reflectance of reflected light in the specular reflection direction than the liquid crystal panel according to the comparative example. The reason for this is thought to be that the convex portion 26 is configured to be inclined with respect to the normal direction of the principal surface of the substrate 17, making it difficult for the light reflected by the reflective film 16 to be regularly reflected.

複数の凸部26に含まれる第1凸部26α、第2凸部26β及び第3凸部26γは、図4に示すように、互いに異なる向きに傾いている。具体的には、第1凸部26αは、図4に示す右斜め上向きに傾いている。第2凸部26βは、図4に示す右向きに傾いている。第3凸部26γは、図4に示す左斜め上向きに傾いている。反射膜16による反射光の進行方向は、凸部26が傾く向きに応じて異なる。本実施形態では、反射膜16による反射光が基板17の主面の法線方向に近い角度で進行するよう、凸部26の傾き方、つまり平面に視た重心26Cに対する頂点26Vの位置や凸部26の高さなどが調整されている。従って、反射膜16のうち、第1凸部26αと重畳する部分と、第2凸部26βと重畳する部分と、第3凸部26γと重畳する部分と、による各反射光の進行方向は、いずれも基板17の主面の法線方向に近い角度であるものの、各凸部26α,26β,26γが傾く向きに応じて多少異なる。これにより、反射膜16による反射光の進行方向を分散させることができ、反射膜16による反射光が同一方向に進行することが避けられる。図1に示される複数の凸部26は、図4に示される3つの凸部26α,26β,26γと同様に、間隔を空けて隣り合う凸部26が互いに異なる向きに傾いている。つまり、アレイ基板12の主面内において、間隔を空けて隣り合う全ての凸部26は、互いに異なる向きに傾いており、それぞれが傾く向きはランダムである。 As shown in FIG. 4, the first protrusion 26α, the second protrusion 26β, and the third protrusion 26γ included in the plurality of protrusions 26 are inclined in different directions. Specifically, the first convex portion 26α is inclined diagonally upward to the right as shown in FIG. 4 . The second convex portion 26β is inclined to the right as shown in FIG. The third convex portion 26γ is inclined diagonally upward to the left as shown in FIG. The traveling direction of the light reflected by the reflective film 16 differs depending on the direction in which the convex portion 26 is inclined. In this embodiment, the inclination of the convex portion 26, that is, the position of the apex 26V with respect to the center of gravity 26C as seen in a plane, and the convex portion are determined so that the light reflected by the reflective film 16 travels at an angle close to the normal direction of the main surface of the substrate 17. The height of the portion 26 and the like are adjusted. Therefore, the traveling direction of each reflected light from the portion of the reflective film 16 that overlaps with the first convex portion 26α, the portion that overlaps with the second convex portion 26β, and the portion that overlaps with the third convex portion 26γ is as follows. Although both angles are close to the normal direction of the main surface of the substrate 17, they differ somewhat depending on the direction in which the convex portions 26α, 26β, and 26γ are inclined. This allows the traveling direction of the light reflected by the reflective film 16 to be dispersed, and prevents the light reflected by the reflective film 16 from traveling in the same direction. The plurality of convex portions 26 shown in FIG. 1 are similar to the three convex portions 26α, 26β, and 26γ shown in FIG. 4, such that adjacent convex portions 26 spaced apart are inclined in different directions. That is, within the main surface of the array substrate 12, all the convex parts 26 that are adjacent to each other at intervals are tilted in different directions, and the directions in which they are tilted are random.

より詳細には、第1凸部26αは、図4に示すように、平面に視た外形の重心26Cである第1重心26Cαから頂点26Vである第1頂点26Vαへ向かう方向が、図4にて矢線にて示される第1方向D1となっている。第2凸部26βは、平面に視た外形の重心26Cである第2重心26Cβから頂点26Vである第2頂点26Vβへ向かう方向が、図4にて矢線にて示される第2方向D2となっている。第3凸部26γは、平面に視た外形の重心26Cである第3重心26Cγから頂点26Vである第3頂点26Vγへ向かう方向が、図4にて矢線にて示される第3方向D3となっている。そして、第1凸部26α、第2凸部26β及び第3凸部26γは、第1重心26Cαから第1頂点26Vαへ向かう方向である第1方向D1と、第2重心26Cβから第2頂点26Vβへ向かう方向である第2方向D2と、第3重心26Cγから第3頂点26Vγへ向かう方向である第3方向D3と、が互いに交差する関係となるよう、各頂点26Vα,26Vβ,26Vγが異なる向きに偏在している。これにより、反射膜16による反射光の進行方向を良好に分散させることができるのである。 More specifically, as shown in FIG. 4, in the first convex portion 26α, the direction from the first center of gravity 26Cα, which is the center of gravity 26C of the outer shape seen in a plane, toward the first vertex 26Vα, which is the apex 26V, is as shown in FIG. The first direction D1 is indicated by the arrow. The second convex portion 26β has a second direction D2 shown by an arrow in FIG. It has become. The third convex portion 26γ has a third direction D3 shown by an arrow in FIG. It has become. The first convex portion 26α, the second convex portion 26β, and the third convex portion 26γ are arranged in a first direction D1, which is a direction from the first center of gravity 26Cα to the first apex 26Vα, and from the second center of gravity 26Cβ to the second apex 26Vβ. The vertices 26Vα, 26Vβ, and 26Vγ are arranged in different directions so that the second direction D2, which is the direction toward are unevenly distributed. Thereby, the traveling direction of the light reflected by the reflective film 16 can be dispersed well.

次に、凹部27について説明する。凹部27は、図4及び図5に示すように、凸部26の平面に視た外形(外周)の一部に隣接して配される第1凹部27Aと、凸部26及び第1凹部を取り囲んで配される第2凹部27Bと、により構成される。第1凹部27Aは、凸部26の平面に視た外形を構成する突出基端部の一部に隣接して配されている。第1凹部27Aは、凸部26の平面に視た外形の一部に沿って延在し、平面に視て所定幅の円弧状をなしている。凸部26の周方向についての第1凹部27Aの形成範囲は、凸部26の外周の長さの半分以下の範囲とされる。第1凹部27Aは、凸部26の重心26Cから視て頂点26V側に偏在している。凸部26の重心26Cから頂点26Vへ向かう方向と、凸部26の周方向についての第1凹部27Aの中央位置と、が交差する関係とされる。つまり、第1凹部27Aは、凸部26の外周において、頂点26Vを中心として180°以下の角度範囲で延在するよう構成されている。第1凹部27Aは、第2凹部27Bよりも深く、その深さは例えば3μm程度とされる。つまり、第1凹部27Aの底面は、第2凹部27Bの底面よりも低く、その差は例えば2μm程度とされる。第2凹部27Bは、基板17の面内において、複数ずつの凸部26、第1コンタクトホール18CH及び第1凹部27Aが非配置とされる部分に配されている。第2凹部27Bは、第1凹部27Aよりも浅く、その深さは例えば1μm程度とされる。つまり、第2凹部27Bの底面は、第1凹部27Aの底面よりも高い。 Next, the recess 27 will be explained. As shown in FIGS. 4 and 5, the recess 27 has a first recess 27A disposed adjacent to a part of the outer shape (outer periphery) of the protrusion 26 when viewed in a plane, and a first recess 27A that connects the protrusion 26 and the first recess. and a second recess 27B disposed to surround the second recess 27B. The first recessed portion 27A is arranged adjacent to a part of the protruding base end portion that constitutes the outer shape of the convex portion 26 when viewed in a plane. The first recess 27A extends along a part of the outer shape of the convex portion 26 when viewed from above, and has an arc shape with a predetermined width when viewed from above. The formation range of the first recess 27A in the circumferential direction of the protrusion 26 is a range that is less than half the length of the outer circumference of the protrusion 26. The first recess 27A is unevenly located on the apex 26V side when viewed from the center of gravity 26C of the convex portion 26. The direction from the center of gravity 26C of the protrusion 26 toward the apex 26V intersects with the center position of the first recess 27A in the circumferential direction of the protrusion 26. In other words, the first recess 27A is configured to extend on the outer periphery of the convex portion 26 within an angular range of 180° or less about the apex 26V. The first recess 27A is deeper than the second recess 27B, and its depth is, for example, about 3 μm. That is, the bottom surface of the first recess 27A is lower than the bottom surface of the second recess 27B, and the difference therebetween is, for example, about 2 μm. The second recesses 27B are arranged in the plane of the substrate 17 in areas where the plurality of projections 26, the first contact holes 18CH, and the first recesses 27A are not arranged. The second recess 27B is shallower than the first recess 27A, and has a depth of, for example, about 1 μm. That is, the bottom surface of the second recess 27B is higher than the bottom surface of the first recess 27A.

図4に示される第1凸部26α、第2凸部26β及び第3凸部26γのそれぞれに隣接して配される3つの第1凹部27Aについて説明する。これら3つの第1凹部27Aには、図4に示すように、第1凸部26αの平面に視た外形の一部に隣接して配される第3凹部27Aαと、第2凸部26βの平面に視た外形の一部に隣接して配される第4凹部27Aβと、第3凸部26γの平面に視た外形の一部に隣接して配される第5凹部27Aγと、が含まれる。第3凹部27Aαは、第1凸部26αの第1重心26Cαから視て第1頂点26Vα側(図4の右斜め上側)に偏在している。第4凹部27Aβは、第2凸部26βの第2重心26Cβから視て第2頂点26Vβ側(図4の右側)に偏在している。第5凹部27Aγは、第3凸部26γの第3重心26Cγから視て第3頂点26Vγ側(図4の左斜め上側)に偏在している。このように、第3凹部27Aα、第4凹部27Aβ及び第5凹部27Aγは、各凸部26α,26β,26γの各重心26Cα,26Cβ,26Cγから視て互いに異なる向きに偏在している。 Three first recesses 27A arranged adjacent to each of the first convex portion 26α, the second convex portion 26β, and the third convex portion 26γ shown in FIG. 4 will be described. As shown in FIG. 4, these three first concave portions 27A include a third concave portion 27Aα arranged adjacent to a part of the outer shape of the first convex portion 26α when viewed from a plane, and a second convex portion 26β. The fourth recess 27Aβ is arranged adjacent to a part of the outer shape of the third convex part 26γ when viewed from the plane, and the fifth recess 27Aγ is arranged adjacent to a part of the outer shape of the third protrusion 26γ when viewed from the plane. It will be done. The third recess 27Aα is unevenly distributed on the first apex 26Vα side (diagonally upper right side in FIG. 4) when viewed from the first center of gravity 26Cα of the first convex portion 26α. The fourth recess 27Aβ is unevenly distributed on the second apex 26Vβ side (on the right side in FIG. 4) when viewed from the second center of gravity 26Cβ of the second convex portion 26β. The fifth recess 27Aγ is unevenly distributed on the third apex 26Vγ side (diagonally upper left side in FIG. 4) when viewed from the third center of gravity 26Cγ of the third convex portion 26γ. In this way, the third recess 27Aα, the fourth recess 27Aβ, and the fifth recess 27Aγ are unevenly distributed in different directions when viewed from the centers of gravity 26Cα, 26Cβ, and 26Cγ of the respective projections 26α, 26β, and 26γ.

本実施形態は以上のような構造であり、続いてアレイ基板12の製造方法を説明する。本実施形態に係るアレイ基板12の製造方法は、基板17上にバックプレーン回路を形成する第1工程と、第1絶縁膜18を成膜してパターニングする第2工程と、導電膜を成膜してパターニングする第3工程と、金属膜を成膜してパターニングする第4工程と、第2絶縁膜19を成膜してパターニングする第5工程と、透明電極膜を成膜してパターニングする第6工程と、配向膜20を成膜して配向処理を行う第7工程と、を含む。第1工程を行うことで、バックプレーン回路及び第1コンタクト電極22Aが形成される。第2工程を行うことで、第1絶縁膜18の表面に凹凸面18Aが形成されるとともに第1コンタクトホール18CHが開口形成される。第3工程を行うことで、導電層21及び第2コンタクト電極22Bが形成される。第4工程を行うことで、反射膜16及び第3コンタクト電極22Cが形成される。第5工程を行うことで、第2絶縁膜19に第2コンタクトホール19CHが開口形成される。第6工程を行うことで、画素電極15が形成される。第7工程を行うことで、配向処理された配向膜20が形成される。以下では、主に第2工程について図7から図10を用いて説明する。 This embodiment has the above structure, and a method for manufacturing the array substrate 12 will be described next. The method for manufacturing the array substrate 12 according to the present embodiment includes a first step of forming a backplane circuit on the substrate 17, a second step of forming and patterning the first insulating film 18, and forming a conductive film. a third step of forming and patterning the metal film; a fourth step of forming and patterning the metal film; a fifth step of forming and patterning the second insulating film 19; and forming and patterning the transparent electrode film. The method includes a sixth step and a seventh step of forming an alignment film 20 and performing an alignment treatment. By performing the first step, a backplane circuit and first contact electrode 22A are formed. By performing the second step, an uneven surface 18A is formed on the surface of the first insulating film 18, and a first contact hole 18CH is formed. By performing the third step, the conductive layer 21 and the second contact electrode 22B are formed. By performing the fourth step, the reflective film 16 and the third contact electrode 22C are formed. By performing the fifth step, a second contact hole 19CH is formed in the second insulating film 19. By performing the sixth step, the pixel electrode 15 is formed. By performing the seventh step, an alignment film 20 that has been subjected to alignment treatment is formed. Below, the second step will mainly be explained using FIGS. 7 to 10.

第2工程には、基板17上に第1絶縁膜18を成膜する成膜工程と、成膜した第1絶縁膜18を露光する露光工程と、露光された第1絶縁膜18を現像する現像工程と、現像された第1絶縁膜18を熱処理する熱処理工程と、が含まれる。図7から図10について説明する。図7は、成膜工程を経て成膜された第1絶縁膜18が、露光工程にて第1フォトマスク50を通して露光された状態を示す図5と同じ切断位置の断面図である。図8は、露光工程で用いられる第1フォトマスク50の平面図である。図9は、現像工程にて第1絶縁膜18が現像された状態を示す図5と同じ切断位置の断面図である。図10は、熱処理工程にて第1絶縁膜18が熱処理された状態を示す図5と同じ切断位置の断面図である。 The second step includes a film forming step of forming the first insulating film 18 on the substrate 17, an exposure step of exposing the formed first insulating film 18, and developing the exposed first insulating film 18. The process includes a developing process and a heat treatment process of heat-treating the developed first insulating film 18. 7 to 10 will be explained. FIG. 7 is a cross-sectional view taken at the same cutting position as FIG. 5, showing a state in which the first insulating film 18 formed through the film-forming process is exposed through the first photomask 50 in the exposure process. FIG. 8 is a plan view of the first photomask 50 used in the exposure process. FIG. 9 is a cross-sectional view taken at the same cutting position as FIG. 5, showing a state in which the first insulating film 18 has been developed in the development process. FIG. 10 is a cross-sectional view taken at the same cutting position as FIG. 5, showing a state where the first insulating film 18 has been heat-treated in the heat treatment step.

成膜工程では、基板17上においてバックプレーン回路を覆う形でポジ型の感光性樹脂材料からなる第1絶縁膜18が成膜される。露光工程では、成膜された第1絶縁膜18が、露光装置及び第1フォトマスク50を用いて露光される。ここで、第1フォトマスク50について説明する。第1フォトマスク50は、いわゆるハーフトーンマスクである。第1フォトマスク50は、図7に示すように、十分に高い透光性を有する透明な基材51と、基材51の主面に形成される遮光膜52と、基材51の主面に形成されて一部が遮光膜52上に積層される第1半透過膜53と、第1半透過膜53上に積層される第2半透過膜54と、を備える。遮光膜52は、露光装置の光源からの露光光を遮光し、露光光の透過率がほぼ0%とされる。第1半透過膜53及び第2半透過膜54は、露光装置の光源からの露光光を所定の透過率でもって透過する。第1半透過膜53及び第2半透過膜54は、いずれも露光光の透過率が、遮光膜52における露光光の透過率よりも高く、例えば10%~70%程度とされている。なお、図7では、第1絶縁膜18に照射される露光光を下向きの矢線にて表現している。 In the film forming process, a first insulating film 18 made of a positive photosensitive resin material is formed on the substrate 17 so as to cover the backplane circuit. In the exposure process, the deposited first insulating film 18 is exposed using an exposure device and a first photomask 50. Here, the first photomask 50 will be explained. The first photomask 50 is a so-called halftone mask. As shown in FIG. 7, the first photomask 50 includes a transparent base material 51 having sufficiently high light transmittance, a light shielding film 52 formed on the main surface of the base material 51, and a transparent base material 51 having a sufficiently high light transmittance. A first semi-transparent film 53 is formed on the light shielding film 52 and a part thereof is laminated on the light shielding film 52, and a second semi-transparent film 54 is laminated on the first semi-transparent film 53. The light shielding film 52 blocks exposure light from a light source of an exposure device, and has a transmittance of approximately 0% for the exposure light. The first semi-transparent film 53 and the second semi-transparent film 54 transmit exposure light from a light source of an exposure device with a predetermined transmittance. The first semi-transparent film 53 and the second semi-transparent film 54 both have higher exposure light transmittance than the exposure light transmittance of the light shielding film 52, for example, about 10% to 70%. Note that in FIG. 7, the exposure light irradiated onto the first insulating film 18 is represented by a downward arrow.

遮光膜52、第1半透過膜53及び第2半透過膜54は、基材51の面内において、それぞれ所定の分布パターンとなるようパターニングされている。遮光膜52は、第1絶縁膜18のうちの凸部26の形成予定部分と重畳する位置に選択的に配され、凹部27及び第1コンタクトホール18CHの形成予定部分と重畳する位置には非形成とされる。遮光膜52は、平面形状が円形とされ、基材51の面内において間隔を空けて複数がランダムに配されている。第1半透過膜53は、第1絶縁膜18のうちの凸部26及び凹部27の形成予定部分と重畳する位置に選択的に配され、第1コンタクトホール18CHの形成予定部分と重畳する位置には非形成とされる。第2半透過膜54は、第1絶縁膜18のうちの凸部26及び第2凹部27Bの形成予定部分と重畳する位置に選択的に配され、第1凹部27A及び第1コンタクトホール18CHの形成予定部分と重畳する位置には非形成とされる。 The light-shielding film 52, the first semi-transparent film 53, and the second semi-transparent film 54 are each patterned to have a predetermined distribution pattern within the plane of the base material 51. The light shielding film 52 is selectively disposed in a position of the first insulating film 18 that overlaps with a portion where the convex portion 26 is planned to be formed, and is not placed in a position where it overlaps with a portion where the concave portion 27 and the first contact hole 18CH are planned to be formed. It is said to be formed. The light shielding film 52 has a circular planar shape, and a plurality of light shielding films 52 are randomly arranged at intervals within the plane of the base material 51. The first semi-transparent film 53 is selectively disposed at a position of the first insulating film 18 that overlaps with a portion where the convex portion 26 and the concave portion 27 are planned to be formed, and a position where the first semi-transparent film 53 overlaps with a portion where the first contact hole 18CH is planned to be formed. It is said that it does not form. The second semi-transparent film 54 is selectively disposed in a position overlapping with the portion of the first insulating film 18 where the convex portion 26 and the second concave portion 27B are planned to be formed. No formation is made at a position that overlaps with the portion to be formed.

第1フォトマスク50は、遮光膜52、第1半透過膜53及び第2半透過膜54のパターンに基づいて、露光光を遮る遮光領域50LSと、露光光を透過する透過領域と、露光光を半透過する第1半透過領域50HT1と、第1半透過領域50HT1よりも低い透過率でもって露光光を半透過する第2半透過領域50HT2と、を有する。遮光領域50LSは、遮光膜52の形成範囲と一致する。透過領域は、遮光膜52の非形成範囲と第1半透過膜53の非形成範囲と第2半透過膜54の非形成範囲との重畳範囲と一致する。透過領域は、第1絶縁膜18のうちの第1コンタクトホール18CHの形成予定部分と重畳する配置とされる。第1半透過領域50HT1は、遮光領域50LSの外周の一部に隣接して配される。第1半透過領域50HT1は、遮光膜52の非形成範囲と第1半透過膜53の形成範囲と第2半透過膜54の非形成範囲との重畳範囲と一致する。第2半透過領域50HT2は、遮光膜52の非形成範囲と第1半透過膜53の形成範囲と第2半透過膜54の形成範囲との重畳範囲と一致する。 The first photomask 50 has a light-shielding area 50LS that blocks exposure light, a transmission area that transmits the exposure light, and a light-shielding area 50LS that blocks exposure light, based on the patterns of the light-shielding film 52, the first semi-transparent film 53, and the second semi-transparent film 54. It has a first semi-transparent region 50HT1 that semi-transmits exposure light, and a second semi-transmissive region 50HT2 that semi-transmits exposure light with a lower transmittance than the first semi-transparent region 50HT1. The light shielding region 50LS coincides with the formation range of the light shielding film 52. The transmissive region coincides with the overlapping range of the non-forming range of the light shielding film 52, the non-forming range of the first semi-transparent film 53, and the non-forming range of the second semi-transmissive film 54. The transmission region is arranged to overlap with a portion of the first insulating film 18 where the first contact hole 18CH is to be formed. The first semi-transparent region 50HT1 is arranged adjacent to a part of the outer periphery of the light shielding region 50LS. The first semi-transmissive region 50HT1 coincides with the overlapping range of the non-forming range of the light shielding film 52, the forming range of the first semi-transmissive film 53, and the non-forming range of the second semi-transmissive film 54. The second semi-transparent region 50HT2 coincides with the overlapping range of the non-formation range of the light shielding film 52, the formation range of the first semi-transmission film 53, and the formation range of the second semi-transmission film 54.

図8を用いて第1フォトマスク50の遮光領域50LS及び第1半透過領域50HT1について詳しく説明する。図8は、アレイ基板12の図4に示される範囲と対応する第1フォトマスク50の範囲を示す平面図である。なお、図8では、遮光領域50LSと、第1半透過領域50HT1と、第2半透過領域50HT2と、をそれぞれ異なる網掛け状にして図示している。遮光領域50LSには、図8に示すように、第1遮光領域50LS1と、第1遮光領域50LS1と間隔を空けて配される第2遮光領域50LS2と、第1遮光領域50LS1と間隔を空けて配される第3遮光領域50LS3と、が含まれる。第1遮光領域50LS1は、第1絶縁膜18のうちの第1凸部26αの形成予定部分と重畳する位置に配される。第2遮光領域50LS2は、第1絶縁膜18のうちの第2凸部26βの形成予定部分と重畳する位置に配される。第3遮光領域50LS3は、第1絶縁膜18のうちの第3凸部26γの形成予定部分と重畳する位置に配される。第1半透過領域50HT1には、第1遮光領域50LS1の外周の一部に隣接して配される第5半透過領域50HT3と、第2遮光領域50LS2の外周の一部に隣接して配される第6半透過領域50HT4と、第3遮光領域50LS3の外周の一部に隣接して配される第7半透過領域50HT5と、が含まれる。第5半透過領域50HT3は、第1絶縁膜18のうちの第3凹部27Aαの形成予定部分と重畳する位置に配される。第6半透過領域50HT4は、第1絶縁膜18のうちの第4凹部27Aβの形成予定部分と重畳する位置に配される。第7半透過領域50HT5は、第1絶縁膜18のうちの第5凹部27Aγの形成予定部分と重畳する位置に配される。第1遮光領域50LS1の外形の重心50LS1Cから第5半透過領域50HT3へ向かう方向と、第2遮光領域50LS2の外形の重心50LS2Cから第6半透過領域50HT4へ向かう方向と、第3遮光領域50LS3の外形の重心50LS3Cから第7半透過領域50HT5へ向かう方向と、が互いに交差する関係とされる。 The light-shielding region 50LS and the first semi-transmissive region 50HT1 of the first photomask 50 will be described in detail using FIG. 8. FIG. 8 is a plan view showing a range of the first photomask 50 that corresponds to the range of the array substrate 12 shown in FIG. In addition, in FIG. 8, the light-shielding region 50LS, the first semi-transmissive region 50HT1, and the second semi-transmissive region 50HT2 are illustrated in different hatching shapes. As shown in FIG. 8, the light-shielding region 50LS includes a first light-shielding region 50LS1, a second light-shielding region 50LS2 spaced from the first light-shielding region 50LS1, and a second light-shielding region 50LS2 spaced apart from the first light-shielding region 50LS1. A third light shielding region 50LS3 arranged therein is included. The first light-shielding region 50LS1 is arranged at a position overlapping a portion of the first insulating film 18 where the first convex portion 26α is planned to be formed. The second light-shielding region 50LS2 is arranged at a position overlapping a portion of the first insulating film 18 where the second convex portion 26β is planned to be formed. The third light-shielding region 50LS3 is arranged at a position overlapping a portion of the first insulating film 18 where the third convex portion 26γ is planned to be formed. The first semi-transmissive region 50HT1 includes a fifth semi-transmissive region 50HT3 arranged adjacent to a part of the outer periphery of the first light shielding region 50LS1, and a fifth semi-transmissive region 50HT3 arranged adjacent to a part of the outer periphery of the second light shielding region 50LS2. The third light-shielding region 50LS3 includes a sixth semi-transmissive region 50HT4 and a seventh semi-transmissive region 50HT5 arranged adjacent to a part of the outer periphery of the third light-shielding region 50LS3. The fifth semi-transparent region 50HT3 is arranged at a position overlapping a portion of the first insulating film 18 where the third recess 27Aα is planned to be formed. The sixth semi-transparent region 50HT4 is arranged at a position overlapping a portion of the first insulating film 18 where the fourth recess 27Aβ is planned to be formed. The seventh semi-transparent region 50HT5 is arranged at a position overlapping a portion of the first insulating film 18 where the fifth recess 27Aγ is planned to be formed. The direction from the center of gravity 50LS1C of the outer shape of the first light shielding region 50LS1 toward the fifth semi-transparent region 50HT3, the direction from the center of gravity 50LS2C of the outer shape of the second light shielding region 50LS2 toward the sixth semi-transparent region 50HT4, and the direction of the outer shape of the third light shielding region 50LS3. The direction from the center of gravity 50LS3C of the outer shape toward the seventh semi-transparent region 50HT5 intersects with each other.

露光工程では、図7に示すように、露光装置の光源から発せられた露光光が、上記のような構成の第1フォトマスク50を介して第1絶縁膜18に対して照射される。これにより、第1絶縁膜18の選択的な露光が行われる。具体的には、第1絶縁膜18は、第1フォトマスク50の遮光領域50LSと重畳する部分が、非露光とされる。第1絶縁膜18のうち、第1半透過領域50HT1と重畳する部分は、透過領域と重畳する部分よりは露光量が少ないものの、第2半透過領域50HT2と重畳する部分よりも露光量が多い。第1絶縁膜18のうち、第2半透過領域50HT2と重畳する部分は、遮光領域50LSと重畳する部分に比べると露光量が多いものの、第1半透過領域50HT1と重畳する部分よりも露光量が少ない。また、第1絶縁膜18は、第1フォトマスク50の透過領域と重畳する部分が、全深さにわたって露光される。 In the exposure process, as shown in FIG. 7, exposure light emitted from a light source of an exposure apparatus is applied to the first insulating film 18 through the first photomask 50 having the above-described configuration. As a result, the first insulating film 18 is selectively exposed. Specifically, a portion of the first insulating film 18 that overlaps with the light-shielding region 50LS of the first photomask 50 is not exposed to light. The portion of the first insulating film 18 that overlaps with the first semi-transparent region 50HT1 has a lower exposure amount than the portion that overlaps with the transmissive region, but has a higher exposure amount than the portion that overlaps with the second semi-transparent region 50HT2. . Although the portion of the first insulating film 18 that overlaps with the second semi-transmissive region 50HT2 has a higher exposure amount than the portion that overlaps with the light shielding region 50LS, it has a higher exposure amount than the portion that overlaps with the first semi-transparent region 50HT1. Less is. Further, the first insulating film 18 is exposed to light over its entire depth in a portion that overlaps with the transmission region of the first photomask 50.

現像工程では、露光工程にて選択的に露光された第1絶縁膜18が現像液によって現像される。現像に伴い、第1絶縁膜18は、図9に示すように、露光量が多い部分ほど深い範囲にわたって除去され、非露光の部分は除去されずに残存する。具体的には、第1絶縁膜18は、第1フォトマスク50の遮光領域50LSと重畳する部分が、全深さにわたって残存し、凸部26を構成する部分となる。第1絶縁膜18は、第1フォトマスク50の第1半透過領域50HT1及び第2半透過領域50HT2と重畳する部分のうち、上面側部分が選択的に除去され、底面側部分が選択的に残存する。第1絶縁膜18のうち、第1半透過領域50HT1と重畳する部分は、第2半透過領域50HT2と重畳する部分に比べると、上面側部分がより深く除去されることで、第2凹部27Bよりも深い第1凹部27Aを構成する部分となる。第1絶縁膜18のうち、第2半透過領域50HT2と重畳する部分は、第1半透過領域50HT1と重畳する部分に比べると、上面側部分がより浅く除去されることで、第1凹部27Aよりも浅い第2凹部27Bを構成する部分となる。また、第1絶縁膜18のうち、第1フォトマスク50の透過領域と重畳する部分は、全深さにわたって除去され、第1コンタクトホール18CHが形成される(図3を参照)。 In the development process, the first insulating film 18 that was selectively exposed in the exposure process is developed with a developer. During development, as shown in FIG. 9, the first insulating film 18 is removed over a deeper range as the exposed portion increases, and the unexposed portion remains unremoved. Specifically, a portion of the first insulating film 18 that overlaps with the light-shielding region 50LS of the first photomask 50 remains throughout the entire depth, and becomes a portion that constitutes the convex portion 26 . Of the portions of the first insulating film 18 that overlap with the first semi-transparent region 50HT1 and the second semi-transparent region 50HT2 of the first photomask 50, the top surface side portion is selectively removed, and the bottom surface side portion is selectively removed. remain. The portion of the first insulating film 18 that overlaps with the first semi-transparent region 50HT1 is removed more deeply on the upper surface side than the portion that overlaps with the second semi-transparent region 50HT2, thereby forming the second recess 27B. This is the part that constitutes the first recess 27A, which is deeper than the first recess 27A. The portion of the first insulating film 18 that overlaps with the second semi-transparent region 50HT2 is removed more shallowly on the upper surface side than the portion that overlaps with the first semi-transparent region 50HT1. This is the part that constitutes the second recess 27B, which is shallower than the second recess 27B. Further, a portion of the first insulating film 18 that overlaps with the transparent region of the first photomask 50 is removed to the full depth, and a first contact hole 18CH is formed (see FIG. 3).

より詳細には、第1絶縁膜18のうちの第1遮光領域50LS1と重畳する部分が、第1凸部26αを構成する部分となる(図4及び図8を参照)。第1絶縁膜18のうちの第2遮光領域50LS2と重畳する部分が、第2凸部26βを構成する部分となる。第1絶縁膜18のうちの第3遮光領域50LS3と重畳する部分が、第3凸部26γを構成する部分となる。第1絶縁膜18のうちの第5半透過領域50HT3と重畳する部分が、第3凹部27Aαを構成する部分となる。第1絶縁膜18のうちの第6半透過領域50HT4と重畳する部分が、第4凹部27Aβを構成する部分となる。第1絶縁膜18のうちの第7半透過領域50HT5と重畳する部分が、第5凹部27Aγを構成する部分となる。熱処理前における第1凸部26αの外形の重心から第3凹部27Aαへ向かう方向と、第2凸部26βの外形の重心から第4凹部27Aβへ向かう方向と、第3凸部26γの外形の重心から第5凹部27Aγへ向かう方向と、が互いに交差する関係となる(図4を参照)。以上のようにして現像工程を終えた段階では、第1絶縁膜18のうちの凸部26を構成する部分は、全高さ範囲にわたって径寸法がほぼ一定の略円柱状をなしており、頂面がほぼフラットであるとともに周面(側面)がZ軸方向に並行している。第1絶縁膜18のうちの凹部27を構成する部分は、底面がほぼフラットであるとともに側面がZ軸方向に並行している。 More specifically, a portion of the first insulating film 18 that overlaps with the first light shielding region 50LS1 becomes a portion that constitutes the first convex portion 26α (see FIGS. 4 and 8). A portion of the first insulating film 18 that overlaps with the second light shielding region 50LS2 becomes a portion that constitutes the second convex portion 26β. A portion of the first insulating film 18 that overlaps with the third light shielding region 50LS3 becomes a portion that constitutes the third convex portion 26γ. A portion of the first insulating film 18 that overlaps with the fifth semi-transparent region 50HT3 becomes a portion forming the third recess 27Aα. A portion of the first insulating film 18 that overlaps with the sixth semi-transparent region 50HT4 becomes a portion forming the fourth recess 27Aβ. A portion of the first insulating film 18 that overlaps with the seventh semi-transparent region 50HT5 becomes a portion forming the fifth recess 27Aγ. A direction from the center of gravity of the outer shape of the first convex portion 26α toward the third recess 27Aα, a direction from the center of gravity of the outer shape of the second convex portion 26β toward the fourth recess 27Aβ, and a center of gravity of the outer shape of the third convex portion 26γ before heat treatment. and the direction toward the fifth recess 27Aγ intersect with each other (see FIG. 4). At the stage where the development step is completed as described above, the portion of the first insulating film 18 that constitutes the convex portion 26 has a substantially cylindrical shape with a substantially constant diameter over the entire height range, and the top surface is substantially flat, and the peripheral surface (side surface) is parallel to the Z-axis direction. The portion of the first insulating film 18 constituting the recess 27 has a substantially flat bottom surface and side surfaces parallel to the Z-axis direction.

熱処理工程では、現像工程を経た第1絶縁膜18を有する基板17に対して熱処理が行われる。この熱処理工程では、第1絶縁膜18は、第1絶縁膜18を構成する感光性樹脂材料の融点以上の温度(例えば180℃程度)に加熱される。すると、第1絶縁膜18には「熱ダレ」と呼ばれる変形が生じる。これにより、第1絶縁膜18のうちの凸部26を構成する部分は、頂面及び側面がそれぞれ丸みを帯びた形状になり、先細り状の凸部26となる。同様に、第1絶縁膜18のうちの凹部27を構成する部分は、底面及び側面がそれぞれ丸みを帯びた形状となり、凹部27となる。ここで、凸部26の外周の一部に隣接して配される第1凹部26Aは、凸部26及び第1凹部26Aを取り囲む第2凹部26Bよりも深くなっている。従って、熱処理が行われると、凸部26は、基板17の主面の法線方向に対して傾斜し、頂点26Vが第1凹部26A側に偏在する構成となる。より詳しくは、第1凸部26αは、第1頂点26Vαが第3凹部27Aα側に偏在する構成となる(図4を参照)。第2凸部26βは、第2頂点26Vβが第4凹部27Aβ側に偏在する構成となる。第3凸部26γは、第3頂点26Vγが第5凹部27Aγ側に偏在する構成となる。これにより、第1凸部26α、第2凸部26β及び第3凸部26γは、第1方向D1、第2方向D2及び第3方向D3が互いに交差していて互いに異なる向きに傾いた状態となる。以上のようにして、第1絶縁膜18の凹凸面18Aが形成される。 In the heat treatment process, heat treatment is performed on the substrate 17 having the first insulating film 18 that has undergone the development process. In this heat treatment step, the first insulating film 18 is heated to a temperature higher than the melting point of the photosensitive resin material forming the first insulating film 18 (for example, about 180° C.). Then, a deformation called "thermal sag" occurs in the first insulating film 18. As a result, the portion of the first insulating film 18 that constitutes the convex portion 26 has a rounded top surface and rounded side surfaces, thereby forming the convex portion 26 in a tapered shape. Similarly, the portion of the first insulating film 18 that forms the recess 27 has a rounded bottom and side surfaces, forming the recess 27 . Here, the first recess 26A disposed adjacent to a part of the outer periphery of the protrusion 26 is deeper than the second recess 26B surrounding the protrusion 26 and the first recess 26A. Therefore, when the heat treatment is performed, the convex portion 26 is inclined with respect to the normal direction of the main surface of the substrate 17, and the apex 26V is unevenly distributed on the first concave portion 26A side. More specifically, the first convex portion 26α is configured such that the first vertex 26Vα is unevenly distributed on the third concave portion 27Aα side (see FIG. 4). The second convex portion 26β is configured such that the second vertex 26Vβ is unevenly distributed on the fourth recess 27Aβ side. The third convex portion 26γ has a configuration in which the third vertex 26Vγ is unevenly distributed on the fifth recess 27Aγ side. As a result, the first convex portion 26α, the second convex portion 26β, and the third convex portion 26γ are in a state in which the first direction D1, the second direction D2, and the third direction D3 intersect with each other and are tilted in different directions. Become. In the manner described above, the uneven surface 18A of the first insulating film 18 is formed.

上記のようにして第2工程が行われた後、第3工程が行われると、導電膜が成膜・パターニングされて、導電層21及び第2コンタクト電極22Bが形成される。その後、第4工程が行われると、金属膜が成膜・パターニングされて、反射膜16及び「第3コンタクト部22Cが形成される。形成された反射膜16は、下地である第1絶縁膜18の凹凸面18Aに沿った凹凸形状の表面を有することになる。凹凸面18Aには、上記のように互いに異なる向きに傾く第1凸部26α、第2凸部26β及び第3凸部26γが含まれているから、反射膜16による反射光の進行方向を良好に分散させることができる。 After the second step is performed as described above, when the third step is performed, a conductive film is formed and patterned to form the conductive layer 21 and the second contact electrode 22B. After that, when the fourth step is performed, a metal film is formed and patterned to form a reflective film 16 and a third contact portion 22C. The uneven surface 18A has a first convex portion 26α, a second convex portion 26β, and a third convex portion 26γ that are inclined in different directions from each other as described above. , the traveling direction of the light reflected by the reflective film 16 can be dispersed well.

以上説明したように本実施形態のアレイ基板(反射板)12は、基板17と、基板17上に設けられ、凹凸面18Aを有する第1絶縁膜(絶縁膜)18と、第1絶縁膜18の上層側に配され、凹凸面18Aに倣う表面を有し、光を反射する反射膜16と、を備え、第1絶縁膜18は、間隔を空けて配される複数の凸部26と、隣り合う凸部26の間に配される凹部27と、を含み、凹凸面18Aが、複数の凸部26及び凹部27の表面により構成され、凸部26は、基板17の主面の法線方向に対して傾いており、複数の凸部26には、第1凸部26αと、第1凸部26αと間隔を空けて隣り合う第2凸部26βと、第1凸部26αと間隔を空けて隣り合う第3凸部26γと、が含まれ、第1凸部26α、第2凸部26β及び第3凸部26γは、互いに異なる向きに傾く。 As described above, the array substrate (reflector) 12 of this embodiment includes the substrate 17, the first insulating film (insulating film) 18 provided on the substrate 17 and having the uneven surface 18A, and the first insulating film 18. The first insulating film 18 includes a plurality of convex portions 26 arranged at intervals, and a reflective film 16 disposed on the upper layer side and having a surface that follows the uneven surface 18A and reflecting light. a concave portion 27 disposed between adjacent convex portions 26 , an uneven surface 18A is constituted by the surfaces of a plurality of convex portions 26 and a plurality of concave portions 27 , and the convex portion 26 is aligned with the normal line of the main surface of the substrate 17 . The plurality of convex portions 26 include a first convex portion 26α, a second convex portion 26β adjacent to the first convex portion 26α with a space therebetween, and a second convex portion 26β adjacent to the first convex portion 26α with a space therebetween. The first protrusion 26α, the second protrusion 26β, and the third protrusion 26γ are tilted in different directions.

このようにすれば、第1絶縁膜18の上層側に配される反射膜16は、第1絶縁膜18の凹凸面18Aに倣う表面によって光を反射する。凹凸面18Aを構成する複数の凸部26は、基板17の主面の法線方向に対して傾いているから、反射膜16による反射光を、正反射方向とは異なる方向に進行させることができる。複数の凸部26には、互いに異なる向きに傾く第1凸部26α、第2凸部26β及び第3凸部26γが含まれているので、反射膜16による反射光の進行方向を分散させることができる。本実施形態によれば、反射光の分散を図ることができる。 In this way, the reflective film 16 disposed on the upper layer side of the first insulating film 18 reflects light with its surface that follows the uneven surface 18A of the first insulating film 18. Since the plurality of convex portions 26 constituting the uneven surface 18A are inclined with respect to the normal direction of the principal surface of the substrate 17, the light reflected by the reflective film 16 cannot be caused to travel in a direction different from the direction of specular reflection. can. Since the plurality of convex portions 26 include a first convex portion 26α, a second convex portion 26β, and a third convex portion 26γ that are inclined in mutually different directions, the traveling direction of the light reflected by the reflective film 16 can be dispersed. Can be done. According to this embodiment, it is possible to disperse reflected light.

また、第1凸部26αは、平面に視た外形の重心26Cである第1重心26Cαと、頂点26Vである第1頂点26Vαと、が平面に視て不一致とされ、第2凸部26βは、平面に視た外形の重心26Cである第2重心26Cβと、頂点26Vである第2頂点26Vβと、が平面に視て不一致とされ、第3凸部26γは、平面に視た外形の重心26Cである第3重心26Cγと、頂点26Vである第3頂点26Vγと、が平面に視て不一致とされ、第1凸部26α、第2凸部26β及び第3凸部26γは、平面に視て第1重心26Cαから第1頂点26Vαへ向かう方向と、平面に視て第2重心26Cβから第2頂点26Vβへ向かう方向と、平面に視て第3重心26Cγから第3頂点26Vγへ向かう方向と、が互いに交差する関係とされる。このようにすれば、第1凸部26α、第2凸部26β及び第3凸部26γは、いずれも平面に視た外形の重心26Cと頂点26Vとが不一致であり、頂点26Vが偏在しているので、基板17の主面の法線方向に対して傾いた形状となっている。第1凸部26α、第2凸部26β及び第3凸部26γは、各重心26Cα,26Cβ,26Cγから各頂点26Vα,26Vβ,26Vγへ向かう方向が互いに交差するよう、各頂点26Vα,26Vβ,26Vγが異なる向きに偏在しているので、反射膜16による反射光の進行方向を良好に分散させることができる。 Further, in the first convex portion 26α, the first center of gravity 26Cα, which is the center of gravity 26C of the outer shape seen in the plane, and the first vertex 26Vα, which is the apex 26V, do not match when viewed in the plane, and the second convex portion 26β , the second center of gravity 26Cβ, which is the center of gravity 26C of the outer shape when seen in a plane, and the second vertex 26Vβ, which is the vertex 26V, do not match when seen in a plane, and the third convex portion 26γ is the center of gravity of the outer shape when seen in a plane. The third center of gravity 26Cγ, which is 26C, and the third vertex 26Vγ, which is the vertex 26V, do not match when viewed in a plane, and the first convex portion 26α, the second convex portion 26β, and the third convex portion 26γ are a direction from the first center of gravity 26Cα to the first apex 26Vα, a direction from the second center of gravity 26Cβ to the second apex 26Vβ when seen in a plane, and a direction from the third center of gravity 26Cγ to the third apex 26Vγ when seen in a plane. , are assumed to intersect with each other. In this way, in each of the first convex portion 26α, the second convex portion 26β, and the third convex portion 26γ, the center of gravity 26C of the external shape seen in a plane does not match the apex 26V, and the apex 26V is unevenly distributed. Therefore, the shape is inclined with respect to the normal direction of the main surface of the substrate 17. The first convex portion 26α, the second convex portion 26β, and the third convex portion 26γ are arranged so that the directions from the centers of gravity 26Cα, 26Cβ, 26Cγ to the vertices 26Vα, 26Vβ, 26Vγ intersect with each other. Since they are unevenly distributed in different directions, the traveling direction of the light reflected by the reflective film 16 can be dispersed well.

また、間隔を空けて隣り合う全ての凸部26は、互いに異なる向きに傾く。このようにすれば、反射膜16による反射光の進行方向を一層分散させることができる。 Further, all the convex portions 26 that are adjacent to each other at intervals are inclined in different directions. In this way, the traveling direction of the light reflected by the reflective film 16 can be further dispersed.

また、本実施形態に係る液晶表示装置(表示装置)10は、上記記載のアレイ基板12と、アレイ基板12に対向して配される対向基板13と、を備える。このような液晶表示装置10によれば、アレイ基板12の反射膜16による反射光の進行方向が分散されるので、画像を観察する観察者は、当該液晶表示装置10に対して様々な位置から良好な画像を観察することができる。 Further, the liquid crystal display device (display device) 10 according to the present embodiment includes the array substrate 12 described above and a counter substrate 13 disposed opposite to the array substrate 12. According to such a liquid crystal display device 10, since the traveling direction of the reflected light by the reflective film 16 of the array substrate 12 is dispersed, an observer who observes an image can view the image from various positions with respect to the liquid crystal display device 10. Good images can be observed.

また、本実施形態に係るアレイ基板12の製造方法は、基板17上にポジ型の感光性絶縁材料からなる第1絶縁膜18を成膜し、光を遮る遮光領域50LSと、遮光領域50LSの外周の一部に隣接して配され、光を透過して光透過率が遮光領域50LSよりも高い第1半透過領域50HT1と、遮光領域50LS及び第1半透過領域50HT1を取り囲んで配され、光を透過して光透過率が遮光領域50LSよりも高く第1半透過領域50HT1よりも低い第2半透過領域50HT2と、を含む第1フォトマスク50を通して第1絶縁膜18を露光し、第1絶縁膜18を現像することで、第1絶縁膜18のうち、遮光領域50LSと重畳する部分が凸部26となり、第1半透過領域50HT1と重畳する部分が第1凹部27Aとなり、第2半透過領域50HT2と重畳する部分が第1凹部27Aよりも浅い第2凹部27Bとなるよう、第1絶縁膜18の表面に凹凸面18Aを形成し、第1絶縁膜18を熱処理することで、凸部26を基板17の主面の法線方向に対して傾斜させ、凸部26の頂点26Vを第1凹部27A側に偏在させ、第1絶縁膜18の上層側に光を反射する反射膜16を成膜する。 Furthermore, the method for manufacturing the array substrate 12 according to the present embodiment includes forming a first insulating film 18 made of a positive photosensitive insulating material on the substrate 17, and forming a light-shielding region 50LS that blocks light and a light-shielding region 50LS. a first semi-transmissive region 50HT1 that is arranged adjacent to a part of the outer periphery, transmits light and has a higher light transmittance than the light-shielding region 50LS, and is arranged to surround the light-shielding region 50LS and the first semi-transmissive region 50HT1; The first insulating film 18 is exposed through a first photomask 50 including a second semi-transmissive region 50HT2 that transmits light and has a light transmittance higher than that of the light-shielding region 50LS and lower than that of the first semi-transmissive region 50HT1. By developing the first insulating film 18, the portion of the first insulating film 18 that overlaps with the light-shielding region 50LS becomes a convex portion 26, the portion that overlaps with the first semi-transparent region 50HT1 becomes a first recess 27A, and a second By forming an uneven surface 18A on the surface of the first insulating film 18 and heat-treating the first insulating film 18 so that the portion overlapping with the semi-transparent region 50HT2 becomes a second recess 27B shallower than the first recess 27A, The convex portion 26 is inclined with respect to the normal direction of the main surface of the substrate 17, the apex 26V of the convex portion 26 is unevenly distributed on the first concave portion 27A side, and a reflective film is formed to reflect light toward the upper layer side of the first insulating film 18. 16 is formed into a film.

基板17上にポジ型の感光性絶縁材料からなる第1絶縁膜18が成膜されてから、第1フォトマスク50を通して第1絶縁膜18が露光される。ポジ型の感光性絶縁材料からなる第1絶縁膜18が第1フォトマスク50を通して露光されると、第1絶縁膜18のうち、第1半透過領域50HT1と重畳する部分が、第2半透過領域50HT2と重畳する部分よりも露光量が多くなり、遮光領域50LSと重畳する部分が非露光となる。第1絶縁膜18が現像されると、第1絶縁膜18の表面に凹凸面18Aが形成される。第1絶縁膜18のうち遮光領域50LSと重畳する部分が、凹凸面18Aの凸部26となる。第1絶縁膜18のうち第1半透過領域50HT1と重畳する部分が、凹凸面18Aの第1凹部27Aとなる。第1凹部27Aは、凸部26の外周の一部に隣接して配される。第1絶縁膜18のうち第2半透過領域50HT2と重畳する部分が、凹凸面18Aの第2凹部27Bとなる。第2凹部27Bは、凸部26及び第1凹部27Aを取り囲んで配される。 After a first insulating film 18 made of a positive photosensitive insulating material is formed on the substrate 17 , the first insulating film 18 is exposed to light through a first photomask 50 . When the first insulating film 18 made of a positive photosensitive insulating material is exposed through the first photomask 50, a portion of the first insulating film 18 that overlaps with the first semi-transparent region 50HT1 becomes a second semi-transparent region 50HT1. The amount of exposure is greater than the portion overlapping with the region 50HT2, and the portion overlapping with the light shielding region 50LS is not exposed. When the first insulating film 18 is developed, an uneven surface 18A is formed on the surface of the first insulating film 18. The portion of the first insulating film 18 that overlaps with the light shielding region 50LS becomes the convex portion 26 of the uneven surface 18A. A portion of the first insulating film 18 that overlaps with the first semi-transparent region 50HT1 becomes the first recess 27A of the uneven surface 18A. The first recess 27A is arranged adjacent to a part of the outer periphery of the protrusion 26. A portion of the first insulating film 18 that overlaps with the second semi-transparent region 50HT2 becomes the second recess 27B of the uneven surface 18A. The second recess 27B is arranged to surround the protrusion 26 and the first recess 27A.

現像された第1絶縁膜18が熱処理されると、第1絶縁膜18には「熱ダレ」と呼ばれる変形が生じる。ここで、凸部26の外周の一部に隣接して配される第1凹部27Aは、凸部26及び第1凹部27Aを取り囲む第2凹部27Bよりも深いことから、熱処理に伴って凸部26は、基板17の主面の法線方向に対して傾斜し、頂点26Vが第1凹部27A側に偏在する構成となる。熱処理された第1絶縁膜18の上層側に反射膜16が成膜される。反射膜16は、第1絶縁膜18の凹凸面18Aに倣う表面によって光を反射することができる。凹凸面18Aには、上記のように傾斜した凸部26が含まれているから、反射膜16による反射光を、正反射方向とは異なる方向に進行させることができる。 When the developed first insulating film 18 is heat-treated, a deformation called "thermal sag" occurs in the first insulating film 18. Here, since the first recess 27A disposed adjacent to a part of the outer periphery of the protrusion 26 is deeper than the second recess 27B surrounding the protrusion 26 and the first recess 27A, the protrusion 26 is inclined with respect to the normal direction of the main surface of the substrate 17, and the apex 26V is unevenly located on the first recess 27A side. A reflective film 16 is formed on the upper layer side of the heat-treated first insulating film 18. The reflective film 16 can reflect light with its surface that follows the uneven surface 18A of the first insulating film 18. Since the uneven surface 18A includes the inclined convex portions 26 as described above, the light reflected by the reflective film 16 can be caused to travel in a direction different from the direction of specular reflection.

以上のように、第1絶縁膜18を露光する際に用いる第1フォトマスク50によって上記した傾斜を有する凸部26を第1絶縁膜18に形成することができるので、従来のように特殊な露光装置や特殊な基板支持装置を用意する必要がない。従って、露光や熱処理で用いる製造装置として汎用的なものを用いてアレイ基板12の製造を行うことができる。しかも、第1フォトマスク50のパターン設計に基づいて凸部26をどの向きに傾斜させるか、を自由に設定できる。これにより、凸部26に係る設計自由度が高くなる。本実施形態によれば、汎用的な製造装置を用いて製造を行うことができる。 As described above, the convex portions 26 having the above-mentioned slope can be formed on the first insulating film 18 using the first photomask 50 used when exposing the first insulating film 18. There is no need to prepare an exposure device or a special substrate support device. Therefore, the array substrate 12 can be manufactured using a general-purpose manufacturing apparatus used for exposure and heat treatment. Moreover, the direction in which the convex portions 26 are inclined can be freely set based on the pattern design of the first photomask 50. This increases the degree of freedom in designing the convex portion 26. According to this embodiment, manufacturing can be performed using a general-purpose manufacturing apparatus.

また、遮光領域50LSである第1遮光領域50LS1と、遮光領域50LSであって第1遮光領域50LS1と間隔を空けて隣り合う第2遮光領域50LS2と、遮光領域50LSであって第1遮光領域50LS1と間隔を空けて隣り合う第3遮光領域50LS3と、第1半透過領域50HT1であって第1遮光領域50LS1の外周の一部に隣接して配される第5半透過領域50HT3と、第1半透過領域50HT1であって第2遮光領域50LS2の外周の一部に隣接して配される第6半透過領域50HT4と、第1半透過領域50HT1であって第3遮光領域50LS3の外周の一部に隣接して配される第7半透過領域50HT5と、を含む第1フォトマスク50であって、第1遮光領域50LS1の外形の重心50LS1Cから第5半透過領域50HT3へ向かう方向と、第2遮光領域50LS2の外形の重心50LS2Cから第6半透過領域50HT4へ向かう方向と、第3遮光領域50LS3の外形の重心50LS3Cから第7半透過領域50HT5へ向かう方向と、が互いに交差する関係の第1フォトマスク50を通して第1絶縁膜18を露光し、第1絶縁膜18を現像することで、第1絶縁膜18のうち、第1遮光領域50LS1と重畳する部分が、凸部26である第1凸部26αとなり、第2遮光領域50LS2と重畳する部分が、凸部26であって第1凸部26αと間隔を空けて隣り合う第2凸部26βとなり、第3遮光領域50LS3と重畳する部分が、凸部26であって第1凸部26αと間隔を空けて隣り合う第3凸部26γとなり、第5半透過領域50HT3と重畳する部分が、第1凹部27Aである第3凹部27Aαとなり、第6半透過領域50HT4と重畳する部分が、第1凹部27Aである第4凹部27Aβとなり、第7半透過領域50HT5と重畳する部分が、第1凹部27Aである第5凹部27Aγとなり、第2半透過領域50HT2と重畳する部分が、第3凹部27Aα、第4凹部27Aβ及び第5凹部27Aγよりも浅い第2凹部27Bとなるよう、第1絶縁膜18の表面に凹凸面18Aを形成し、第1絶縁膜18を熱処理することで、第1凸部26αを基板17の主面の法線方向に対して傾斜させ、第1凸部26αの第1頂点26Vαを第3凹部27Aα側に偏在させ、第2凸部26βを基板17の主面の法線方向に対して傾斜させ、第2凸部26βの第2頂点26Vβを第4凹部27Aβ側に偏在させ、第3凸部26γを基板17の主面の法線方向に対して傾斜させ、第3凸部26γの第3頂点26Vγを第5凹部27Aγ側に偏在させる。 Further, a first light-shielding region 50LS1 which is the light-shielding region 50LS, a second light-shielding region 50LS2 which is the light-shielding region 50LS and adjacent to the first light-shielding region 50LS1 with an interval, and a first light-shielding region 50LS1 which is the light-shielding region 50LS. a third light-shielding region 50LS3 adjacent to each other with a space therebetween; a fifth semi-transmissive region 50HT3 which is a first semi-transmissive region 50HT1 and is arranged adjacent to a part of the outer periphery of the first light-shielding region 50LS1; A sixth semi-transmissive region 50HT4, which is the semi-transmissive region 50HT1 and is arranged adjacent to a part of the outer periphery of the second light-shielding region 50LS2, and a part of the outer periphery of the third light-shielding region 50LS3, which is the first semi-transmissive region 50HT1. A first photomask 50 including a seventh semi-transmissive region 50HT5 disposed adjacent to the first light-shielding region 50HT5, and a direction from the center of gravity 50LS1C of the outer shape of the first light shielding region 50LS1 toward the fifth semi-transmissive region 50HT3; A relationship in which the direction from the center of gravity 50LS2C of the outer shape of the second light shielding region 50LS2 toward the sixth semi-transmissive region 50HT4 and the direction from the center of gravity 50LS3C of the outer shape of the third light shielding region 50LS3 toward the seventh semi-transparent region 50HT5 intersect with each other. By exposing the first insulating film 18 through the photomask 50 and developing the first insulating film 18, the portion of the first insulating film 18 that overlaps with the first light-shielding region 50LS1 becomes the convex portion 26. The first convex portion 26α, which overlaps with the second light-shielding region 50LS2, becomes the second convex portion 26β, which is the convex portion 26 and is adjacent to the first convex portion 26α with an interval, and overlaps with the third light-shielding region 50LS3. The portion is the convex portion 26 and is the third convex portion 26γ adjacent to the first convex portion 26α with an interval, and the portion that overlaps with the fifth semi-transparent region 50HT3 is the third concave portion 27Aα which is the first concave portion 27A. The portion that overlaps with the sixth semi-transparent region 50HT4 becomes the fourth recess 27Aβ which is the first recess 27A, and the portion which overlaps with the seventh semi-transparent region 50HT5 becomes the fifth recess 27Aγ which is the first recess 27A. An uneven surface 18A is formed on the surface of the first insulating film 18 so that the portion overlapping with the second semi-transparent region 50HT2 becomes a second recess 27B that is shallower than the third recess 27Aα, the fourth recess 27Aβ, and the fifth recess 27Aγ. Then, by heat-treating the first insulating film 18, the first convex portion 26α is inclined with respect to the normal direction of the main surface of the substrate 17, and the first vertex 26Vα of the first convex portion 26α is moved toward the third concave portion 27Aα. The second convex portion 26β is inclined with respect to the normal direction of the main surface of the substrate 17, the second apex 26Vβ of the second convex portion 26β is unevenly distributed on the fourth concave portion 27Aβ side, and the third convex portion 26γ is inclined with respect to the normal direction of the main surface of the substrate 17, and the third apex 26Vγ of the third convex portion 26γ is unevenly located on the fifth recess 27Aγ side.

このようにすれば、ポジ型の感光性絶縁材料からなる第1絶縁膜18が第1フォトマスク50を通して露光されると、第1絶縁膜18のうち、第1半透過領域50HT1である第5半透過領域50HT3、第6半透過領域50HT4及び第7半透過領域50HT5のそれぞれと重畳する部分が、第2半透過領域50HT2と重畳する部分よりも露光量が多くなり、遮光領域50LSである第1遮光領域50LS1、第2遮光領域50LS2及び第3遮光領域50LS3のそれぞれと重畳する部分が非露光となる。第1絶縁膜18が現像されると、第1絶縁膜18のうち第1遮光領域50LS1と重畳する部分が、凸部26である第1凸部26αとなり、第2遮光領域50LS2と重畳する部分が、凸部26である第2凸部26βとなり、第3遮光領域50LS3と重畳する部分が、凸部26である第3凸部26γとなる。第1凸部26αと第2凸部26βとの間には、間隔が空けられる。第1凸部26αと第3凸部26γとの間には、間隔が空けられる。第1絶縁膜18のうち第5半透過領域50HT3と重畳する部分が、第1凹部27Aである第3凹部27Aαとなり、第6半透過領域50HT4と重畳する部分が、第1凹部27Aである第4凹部27Aβとなり、第7半透過領域50HT5と重畳する部分が、第1凹部27Aである第5凹部27Aγとなる。第1凸部26αの外形の重心から第3凹部27Aαへ向かう方向と、第2凸部26βの外形の重心から第4凹部27Aβへ向かう方向と、第3凸部26γの外形の重心から第5凹部27Aγへ向かう方向と、が互いに交差する関係となる。 In this way, when the first insulating film 18 made of a positive photosensitive insulating material is exposed through the first photomask 50, the fifth part of the first insulating film 18, which is the first semi-transparent region 50HT1, is exposed to light through the first photomask 50. The portions that overlap with each of the semi-transparent region 50HT3, the sixth semi-transparent region 50HT4, and the seventh semi-transparent region 50HT5 have a higher exposure amount than the portions that overlap with the second semi-transparent region 50HT2, and the light shielding region 50LS Portions overlapping each of the first light-shielding region 50LS1, the second light-shielding region 50LS2, and the third light-shielding region 50LS3 are not exposed. When the first insulating film 18 is developed, the portion of the first insulating film 18 that overlaps with the first light-shielding region 50LS1 becomes the first convex portion 26α, which is the convex portion 26, and the portion that overlaps with the second light-shielding region 50LS2. becomes the second protrusion 26β, which is the protrusion 26, and the portion that overlaps with the third light-shielding region 50LS3 becomes the third protrusion 26γ, which is the protrusion 26. A space is left between the first convex portion 26α and the second convex portion 26β. A space is left between the first convex portion 26α and the third convex portion 26γ. The part of the first insulating film 18 that overlaps with the fifth semi-transparent region 50HT3 becomes the third recess 27Aα, which is the first recess 27A, and the part which overlaps with the sixth semi-transparent region 50HT4 becomes the third recess 27A, which is the first recess 27A. The portion that overlaps with the seventh semi-transparent region 50HT5 becomes the fifth recess 27Aγ, which is the first recess 27A. The direction from the center of gravity of the outer shape of the first convex portion 26α toward the third recess 27Aα, the direction from the center of gravity of the outer shape of the second convex portion 26β toward the fourth recess 27Aβ, and the direction from the center of gravity of the outer shape of the third convex portion 26γ toward the third recess 27Aα. The direction toward the concave portion 27Aγ crosses each other.

現像された第1絶縁膜18が熱処理されると、第1凸部26α、第2凸部26β及び第3凸部26γは、いずれも基板17の主面の法線方向に対して傾斜する。第1凸部26αは、頂点26Vが第3凹部27Aα側に偏在する構成となる。第2凸部26βは、頂点26Vが第4凹部27Aβ側に偏在する構成となる。第3凸部26γは、頂点26Vが第5凹部27Aγ側に偏在する構成となる。これにより、第1凸部26α、第2凸部26β及び第3凸部26γは、互いに異なる向きに傾く。熱処理された第1絶縁膜18の上層側に成膜される反射膜16は、第1絶縁膜18の凹凸面18Aに倣う表面によって光を反射することができる。凹凸面18Aには、上記のように互いに異なる向きに傾く第1凸部26α、第2凸部26β及び第3凸部26γが含まれているから、反射膜16による反射光の進行方向を分散させることができる。 When the developed first insulating film 18 is heat-treated, the first convex portion 26α, the second convex portion 26β, and the third convex portion 26γ are all inclined with respect to the normal direction of the main surface of the substrate 17. The first convex portion 26α has a configuration in which the apex 26V is unevenly distributed on the third concave portion 27Aα side. The second convex portion 26β has a configuration in which the apex 26V is unevenly distributed on the fourth concave portion 27Aβ side. The third convex portion 26γ has a configuration in which the apex 26V is unevenly distributed on the fifth concave portion 27Aγ side. As a result, the first convex portion 26α, the second convex portion 26β, and the third convex portion 26γ are tilted in different directions. The reflective film 16 formed on the upper layer side of the heat-treated first insulating film 18 can reflect light with its surface that follows the uneven surface 18A of the first insulating film 18. Since the uneven surface 18A includes the first convex portion 26α, the second convex portion 26β, and the third convex portion 26γ tilted in different directions as described above, the traveling direction of the reflected light by the reflective film 16 is dispersed. can be done.

また、平面形状が円形の遮光領域50LSと、遮光領域50LSの外周のうちの半分以下の範囲に隣接して配される第1半透過領域50HT1と、を含む第1フォトマスク50を通して第1絶縁膜18を露光する。このようにすれば、第1絶縁膜18が現像されると、凸部26と、凸部26の外周のうちの半分以下の範囲に隣接して配される第1凹部27Aと、凸部26及び第1凹部27Aを取り囲んで配される第2凹部27Bと、が形成される。現像された第1絶縁膜18が熱処理されると、第2凹部27Bよりも深い第1凹部27Aが、凸部26の外周のうちの半分以下の範囲に隣接して配されているので、凸部26は、頂点26Vが第1凹部27A側に偏在する形で基板17の主面の法線方向に対して傾斜する確実性が高くなる。これにより、凸部26が傾く向きを容易に制御することができる。 Further, the first insulating film is passed through the first photomask 50 including a light-shielding region 50LS having a circular planar shape and a first semi-transmissive region 50HT1 disposed adjacently within half or less of the outer circumference of the light-shielding region 50LS. The film 18 is exposed. In this way, when the first insulating film 18 is developed, the convex part 26, the first concave part 27A disposed adjacent to less than half of the outer circumference of the convex part 26, and the convex part 26 and a second recess 27B surrounding the first recess 27A. When the developed first insulating film 18 is heat-treated, the first recess 27A, which is deeper than the second recess 27B, is disposed adjacent to less than half of the outer circumference of the projection 26. The portion 26 is highly reliably inclined with respect to the normal direction of the main surface of the substrate 17 in such a manner that the apex 26V is unevenly distributed toward the first recess 27A side. Thereby, the direction in which the convex portion 26 is inclined can be easily controlled.

<実施形態2>
実施形態2を図11から図16によって説明する。この実施形態2では、第1凹部127Aの構成を変更し、第2工程でグレートーンマスク60を用いるようにしたものを示す。なお、上記した実施形態1と同様の構造、作用及び効果について重複する説明は省略する。
<Embodiment 2>
Embodiment 2 will be described with reference to FIGS. 11 to 16. In this second embodiment, the configuration of the first recess 127A is changed and a gray tone mask 60 is used in the second step. Note that redundant explanations regarding the structure, operation, and effects similar to those of the first embodiment described above will be omitted.

図11は、複数の凸部126に含まれる3つの凸部126を示す平面図である。図12は、アレイ基板112における図11のxii-xii線断面図である。本実施形態に係るアレイ基板112に備わる第1絶縁膜118には、図11及び図12に示すように、上記した実施形態1よりも幅狭な第1凹部127Aが設けられている。第1凹部127Aは、上記した実施形態1よりも深くなっている。なお、第1凹部127Aにおける凸部126の周方向についての形成範囲などは、上記した実施形態1と同様である。凸部126は、頂点126Vが第1凹部127A側に偏在するよう、基板117の主面の法線方向に対して傾いている。 FIG. 11 is a plan view showing three protrusions 126 included in the plurality of protrusions 126. FIG. 12 is a cross-sectional view of the array substrate 112 taken along the line xii-xii in FIG. As shown in FIGS. 11 and 12, the first insulating film 118 provided on the array substrate 112 according to this embodiment is provided with a first recess 127A that is narrower than that in the first embodiment described above. The first recess 127A is deeper than in the first embodiment described above. Note that the formation range of the convex portion 126 in the first concave portion 127A in the circumferential direction is the same as in the first embodiment described above. The convex portion 126 is inclined with respect to the normal direction of the main surface of the substrate 117 so that the apex 126V is unevenly distributed on the first concave portion 127A side.

アレイ基板112の製造方法に含まれる第2工程について説明する。第2工程に含まれる露光工程では、グレートーンマスク(第1フォトマスク)60を用いている。グレートーンマスク60について図13及び図14を用いて詳しく説明する。図13は、成膜工程を経て成膜された第1絶縁膜118が、露光工程にてグレートーンマスク60を通して露光された状態を示す図11と同じ切断位置の断面図である。図14は、露光工程で用いられるグレートーンマスク60の平面図である。グレートーンマスク60は、図13に示すように、十分に高い透光性を有する透明な基材61と、基材61の主面に形成される遮光膜62と、を備える。遮光膜62は、露光装置の光源からの露光光を遮光し、露光光の透過率がほぼ0%とされる。遮光膜62の一部には、露光装置の解像度以下のスリット63が複数形成されている。遮光膜62のうちのスリット63の形成部分では、露光光の透過率が、遮光膜52における露光光の透過率よりも高く、例えば10%~70%程度とされている。遮光膜62のうちのスリット63の形成部分での露光光の透過率は、スリット63の分布密度に応じて変化し、スリット63の分布密度が高くなるほど露光光の透過率も高くなる傾向にある。遮光膜62の一部には、露光装置の解像度以上の開口が形成されている。遮光膜62の開口での露光光の透過率は、ほぼ100%とされる。なお、図13では、第1絶縁膜118に照射される露光光を下向きの矢線にて表現している。 The second step included in the method for manufacturing the array substrate 112 will be described. In the exposure step included in the second step, a gray tone mask (first photomask) 60 is used. The gray tone mask 60 will be explained in detail using FIGS. 13 and 14. FIG. 13 is a cross-sectional view taken at the same cutting position as FIG. 11, showing a state in which the first insulating film 118 formed through the film-forming process is exposed through the gray-tone mask 60 in the exposure process. FIG. 14 is a plan view of a graytone mask 60 used in the exposure process. As shown in FIG. 13, the gray tone mask 60 includes a transparent base material 61 having sufficiently high light transmittance and a light shielding film 62 formed on the main surface of the base material 61. The light shielding film 62 blocks exposure light from a light source of an exposure device, and has a transmittance of approximately 0% for the exposure light. A plurality of slits 63 having a resolution lower than that of the exposure device are formed in a part of the light shielding film 62. In the portion of the light-shielding film 62 where the slits 63 are formed, the transmittance of the exposure light is higher than the transmittance of the exposure light in the light-shielding film 52, for example, about 10% to 70%. The transmittance of the exposure light at the portion of the light-shielding film 62 where the slits 63 are formed changes depending on the distribution density of the slits 63, and the higher the distribution density of the slits 63, the higher the transmittance of the exposure light tends to be. . An aperture with a resolution higher than the resolution of the exposure device is formed in a part of the light shielding film 62. The transmittance of the exposure light through the opening of the light shielding film 62 is approximately 100%. Note that in FIG. 13, the exposure light irradiated onto the first insulating film 118 is represented by a downward arrow.

遮光膜62の分布パターンについて詳しく説明する。遮光膜62のうちのスリット63及び開口の非形成部分は、第1絶縁膜118のうちの凸部126の形成予定部分と重畳する位置に選択的に配されている。遮光膜62のうちのスリット63の形成部分は、第1絶縁膜118のうちの凹部127の形成予定部分と重畳する位置に選択的に配されている。遮光膜62のうちのスリット63の形成部分には、スリット63の分布密度が次述する第2部62Bよりも高い第1部62Aと、スリット63の分布密度が第1部62Aよりも低い第2部62Bと、が含まれる。第1部62Aは、第1絶縁膜118のうちの第1凹部127Aの形成予定部分と重畳する位置に選択的に配されている。第2部62Bは、第1絶縁膜118のうちの第2凹部127Bの形成予定部分と重畳する位置に選択的に配されている。遮光膜62の開口は、第1絶縁膜118のうちの第1コンタクトホールの形成予定部分と重畳する位置に配されている。 The distribution pattern of the light shielding film 62 will be explained in detail. The portion of the light shielding film 62 where the slit 63 and the opening are not formed is selectively arranged at a position overlapping with the portion of the first insulating film 118 where the convex portion 126 is planned to be formed. The portion of the light shielding film 62 where the slit 63 is formed is selectively arranged at a position overlapping with the portion of the first insulating film 118 where the recess 127 is planned to be formed. The portion of the light shielding film 62 where the slits 63 are formed includes a first portion 62A in which the distribution density of the slits 63 is higher than a second portion 62B described below, and a first portion 62A in which the distribution density of the slits 63 is lower than the first portion 62A. 2 parts 62B are included. The first portion 62A is selectively disposed at a position of the first insulating film 118 that overlaps a portion of the first insulating film 118 where the first recess 127A is planned to be formed. The second portion 62B is selectively disposed at a position of the first insulating film 118 that overlaps a portion of the first insulating film 118 where the second recess 127B is to be formed. The opening of the light shielding film 62 is arranged at a position overlapping with a portion of the first insulating film 118 where the first contact hole is to be formed.

グレートーンマスク60は、遮光膜62の分布パターンに基づいて、露光光を遮る遮光領域60LSと、露光光を透過する透過領域と、露光光を半透過する第1半透過領域60HT1と、第1半透過領域60HT1よりも低い透過率でもって露光光を半透過する第2半透過領域60HT2と、を有する。遮光領域60LSは、遮光膜62のうちのスリット63及び開口の非形成部分と一致する。透過領域は、遮光膜62の開口と一致する。第1半透過領域60HT1は、遮光領域60LSの外周の一部に隣接して配される。第1半透過領域60HT1は、遮光膜62のうちのスリット63の形成部分に含まれる第1部62Aと一致する。本実施形態に係る第1半透過領域60HT1は、実施形態1に記載した第1半透過領域50HT1よりも幅狭であるとともに光の透過率が僅かに高い。第2半透過領域60HT2は、遮光膜62のうちのスリット63の形成部分に含まれる第2部62Bと一致する。 The gray tone mask 60 includes, based on the distribution pattern of the light shielding film 62, a light shielding area 60LS that blocks exposure light, a transmission area that transmits the exposure light, a first semi-transparent area 60HT1 that partially transmits the exposure light, and a first It has a second semi-transparent region 60HT2 that semi-transmits exposure light with a lower transmittance than the semi-transparent region 60HT1. The light shielding region 60LS coincides with a portion of the light shielding film 62 where the slit 63 and the opening are not formed. The transmission region coincides with the opening of the light shielding film 62. The first semi-transparent region 60HT1 is arranged adjacent to a part of the outer periphery of the light shielding region 60LS. The first semi-transparent region 60HT1 coincides with the first portion 62A included in the portion of the light shielding film 62 where the slit 63 is formed. The first semi-transparent region 60HT1 according to the present embodiment is narrower than the first semi-transparent region 50HT1 described in the first embodiment, and has a slightly higher light transmittance. The second semi-transparent region 60HT2 coincides with the second portion 62B included in the portion of the light shielding film 62 where the slit 63 is formed.

図14には、遮光領域60LSと、第1半透過領域60HT1と、第2半透過領域60HT2と、がそれぞれ異なる網掛け状にして図示されている。遮光領域60LSには、図14に示すように、第1凸部126αの形成予定部分と重畳する位置に配される第1遮光領域60LS1と、第2凸部126βの形成予定部分と重畳する位置に配される第2遮光領域60LS2と、第3凸部126γの形成予定部分と重畳する位置に配される第3遮光領域60LS3と、が含まれる。第1半透過領域60HT1には、第3凹部127Aαの形成予定部分と重畳する位置に配される第5半透過領域60HT3と、第4凹部127Aβの形成予定部分と重畳する位置に配される第6半透過領域60HT4と、第5凹部127Aγの形成予定部分と重畳する位置に配される第7半透過領域60HT5と、が含まれる。第1遮光領域60LS1の外形の重心60LS1Cから第5半透過領域60HT3へ向かう方向と、第2遮光領域60LS2の外形の重心60LS2Cから第6半透過領域60HT4へ向かう方向と、第3遮光領域60LS3の外形の重心60LS3Cから第7半透過領域60HT5へ向かう方向と、が互いに交差する関係とされる。 In FIG. 14, the light-shielding region 60LS, the first semi-transmissive region 60HT1, and the second semi-transmissive region 60HT2 are shown in different hatching shapes. As shown in FIG. 14, the light-shielding region 60LS includes a first light-shielding region 60LS1 disposed at a position overlapping with a portion where the first convex portion 126α is planned to be formed, and a position overlapping with a portion where the second convex portion 126β is planned to be formed. A second light-shielding region 60LS2 disposed in the third convex portion 126γ and a third light-shielding region 60LS3 disposed in a position overlapping the portion where the third convex portion 126γ is to be formed are included. The first semi-transparent region 60HT1 includes a fifth semi-transparent region 60HT3 located at a position overlapping with a portion where the third recess 127Aα is planned to be formed, and a fifth semi-transparent region 60HT3 located at a position overlapping with a portion where the fourth recess 127Aβ is scheduled to be formed. A sixth semi-transparent region 60HT4 and a seventh semi-transparent region 60HT5 arranged at a position overlapping the portion where the fifth recess 127Aγ is to be formed are included. The direction from the center of gravity 60LS1C of the outer shape of the first light shielding region 60LS1 toward the fifth semi-transparent region 60HT3, the direction from the center of gravity 60LS2C of the outer shape of the second light shielding region 60LS2 toward the sixth semi-transparent region 60HT4, and the direction of the outer shape of the third light shielding region 60LS3. The direction from the center of gravity 60LS3C of the outer shape toward the seventh semi-transparent region 60HT5 intersects with each other.

露光工程では、図13に示すように、露光装置の光源から発せられた露光光が、上記のような構成のグレートーンマスク60を介して第1絶縁膜118に対して照射されると、第1絶縁膜118の選択的な露光が行われる。グレートーンマスク60による第1絶縁膜118の露光パターンは、上記した実施形態1と概ね同様である。露光工程の後に現像工程が行われると、図15に示すように、第1絶縁膜118のうち、露光された部分が、露光量に応じて選択的に除去される。図15は、現像工程にて第1絶縁膜118が現像された状態を示す図12と同じ切断位置の断面図である。現像された状態の第1絶縁膜118は、上記した実施形態1と概ね同様である。現像工程の後に熱処理工程が行われると、図16に示すように、第1絶縁膜118には「熱ダレ」と呼ばれる変形が生じる。図16は、熱処理工程にて第1絶縁膜118が熱処理された状態を示す図12と同じ切断位置の断面図である。熱処理された状態の第1絶縁膜118は、上記した実施形態1と概ね同様である。 In the exposure process, as shown in FIG. 13, when the first insulating film 118 is irradiated with exposure light emitted from the light source of the exposure apparatus through the gray tone mask 60 configured as described above, the first insulating film 118 is 1 insulating film 118 is selectively exposed. The exposure pattern of the first insulating film 118 using the gray tone mask 60 is generally the same as in the first embodiment described above. When a development step is performed after the exposure step, as shown in FIG. 15, the exposed portion of the first insulating film 118 is selectively removed according to the amount of exposure. FIG. 15 is a cross-sectional view taken at the same cutting position as FIG. 12, showing a state in which the first insulating film 118 has been developed in the development process. The first insulating film 118 in the developed state is generally the same as that in the first embodiment described above. When a heat treatment process is performed after the development process, a deformation called "thermal sag" occurs in the first insulating film 118, as shown in FIG. 16. FIG. 16 is a cross-sectional view taken at the same cutting position as FIG. 12, showing a state where the first insulating film 118 has been heat-treated in the heat treatment step. The first insulating film 118 in the heat-treated state is generally the same as that in the first embodiment described above.

<実施形態3>
実施形態3を図17から図19によって説明する。この実施形態3では、上記した実施形態2から凸部226の構成などを変更したものを示す。なお、上記した実施形態2と同様の構造、作用及び効果について重複する説明は省略する。
<Embodiment 3>
Embodiment 3 will be described with reference to FIGS. 17 to 19. Embodiment 3 shows a configuration in which the configuration of the convex portion 226 and the like are changed from Embodiment 2 described above. Note that redundant explanations regarding the structure, operation, and effects similar to those of the second embodiment described above will be omitted.

図17は、複数の凸部226に含まれる3つの凸部226を示す平面図である。図18は、アレイ基板212における図17のxviii-xviii線断面図である。本実施形態に係るアレイ基板212に備わる第1絶縁膜218に設けられた凸部226は、図17に示すように、円形から弓形部分を切り欠いた平面形状とされる。凸部226の平面に視た外形は、180°を超える中心角の円弧状部226Aと、円弧状部226Aの両端位置と交差する直線状部226Lと、により画定される。凸部226の外形を構成する直線状部226Lは、曲率半径が無限大であり、円弧状部226Aの曲率半径よりも大きい。外形の一部に曲率半径が大きい直線状部226Lを有する凸部226は、外形の重心226Cが、円弧状部226Aの中心に対して直線状部226L側とは反対側に位置する。第1絶縁膜218に設けられた凹部227のうちの第1凹部227Aは、図17及び図18に示すように、凸部226の外形を構成する直線状部226Lに隣接して配されている。第1凹部227Aは、直線状部226Lに沿って延在し、平面に視て所定幅の帯状をなしている。 FIG. 17 is a plan view showing three protrusions 226 included in the plurality of protrusions 226. FIG. 18 is a cross-sectional view of the array substrate 212 taken along the line xviii-xviii in FIG. As shown in FIG. 17, the convex portion 226 provided on the first insulating film 218 of the array substrate 212 according to this embodiment has a planar shape with an arcuate portion cut out from a circle. The outer shape of the convex portion 226 when viewed from a plane is defined by a circular arc portion 226A having a central angle exceeding 180° and a linear portion 226L that intersects both end positions of the circular arc portion 226A. The linear portion 226L forming the outer shape of the convex portion 226 has an infinite radius of curvature, which is larger than the radius of curvature of the arcuate portion 226A. In the convex portion 226 having a linear portion 226L with a large radius of curvature as part of its outer shape, the center of gravity 226C of the outer shape is located on the opposite side of the linear portion 226L with respect to the center of the arcuate portion 226A. As shown in FIGS. 17 and 18, the first recess 227A of the recesses 227 provided in the first insulating film 218 is arranged adjacent to the linear portion 226L that constitutes the outer shape of the protrusion 226. . The first recess 227A extends along the linear portion 226L and has a band shape with a predetermined width when viewed from above.

アレイ基板212の製造方法に含まれる第2工程の露光工程で用いられるグレートーンマスク260について説明する。グレートーンマスク260の構成は、実施形態2にて説明した通りであり、以下では実施形態2との相違点について主に説明する。図19は、露光工程で用いられるグレートーンマスク260の平面図である。グレートーンマスク260は、露光光を遮る遮光領域260LSと、露光光を透過する透過領域と、露光光を半透過する第1半透過領域260HT1と、第1半透過領域260HT1よりも低い透過率でもって露光光を半透過する第2半透過領域260HT2と、を有する。図19には、遮光領域260LSと、第1半透過領域260HT1と、第2半透過領域260HT2と、がそれぞれ異なる網掛け状にして図示されている。遮光領域260LSは、円形から弓形部分を切り欠いた平面形状とされ、凸部226の平面形状と一致している。第1半透過領域260HT1は、遮光領域260LSの外周の一部に隣接して配される。第1半透過領域260HT1は、平面に視て所定幅の帯状をなしており、第1凹部227Aの平面形状と一致している。 The gray tone mask 260 used in the second exposure step included in the method for manufacturing the array substrate 212 will be described. The configuration of the gray tone mask 260 is as described in the second embodiment, and the differences from the second embodiment will be mainly described below. FIG. 19 is a plan view of a graytone mask 260 used in the exposure process. The gray tone mask 260 includes a light-shielding region 260LS that blocks exposure light, a transmission region that transmits the exposure light, a first semi-transmission region 260HT1 that partially transmits the exposure light, and a transmittance lower than that of the first semi-transmission region 260HT1. It has a second semi-transparent region 260HT2 that semi-transmits exposure light. In FIG. 19, the light-shielding region 260LS, the first semi-transmissive region 260HT1, and the second semi-transmissive region 260HT2 are shown in different hatching shapes. The light-shielding region 260LS has a planar shape obtained by cutting out an arcuate portion from a circle, and matches the planar shape of the convex portion 226. The first semi-transparent region 260HT1 is arranged adjacent to a part of the outer periphery of the light shielding region 260LS. The first semi-transparent region 260HT1 has a band shape with a predetermined width when viewed from above, and matches the planar shape of the first recess 227A.

遮光領域260LSには、図19に示すように、第1凸部226αの形成予定部分と重畳する位置に配される第1遮光領域260LS1と、第2凸部226βの形成予定部分と重畳する位置に配される第2遮光領域260LS2と、第3凸部226γの形成予定部分と重畳する位置に配される第3遮光領域260LS3と、が含まれる。第1半透過領域260HT1には、第3凹部227Aαの形成予定部分と重畳する位置に配される第5半透過領域260HT3と、第4凹部227Aβの形成予定部分と重畳する位置に配される第6半透過領域260HT4と、第5凹部227Aγの形成予定部分と重畳する位置に配される第7半透過領域260HT5と、が含まれる。第1遮光領域260LS1の外形の重心260LS1Cから第5半透過領域260HT3へ向かう方向と、第2遮光領域260LS2の外形の重心260LS2Cから第6半透過領域260HT4へ向かう方向と、第3遮光領域260LS3の外形の重心260LS3Cから第7半透過領域260HT5へ向かう方向と、が互いに交差する関係とされる。 As shown in FIG. 19, the light-shielding region 260LS includes a first light-shielding region 260LS1 disposed at a position overlapping with a portion where the first convex portion 226α is planned to be formed, and a position overlapping with a portion where the second convex portion 226β is planned to be formed. A second light-shielding region 260LS2 disposed in the third convex portion 226γ and a third light-shielding region 260LS3 disposed in a position overlapping the portion where the third convex portion 226γ is to be formed are included. The first semi-transparent region 260HT1 includes a fifth semi-transparent region 260HT3 located at a position overlapping with a portion where the third recess 227Aα is planned to be formed, and a fifth semi-transparent region 260HT3 located at a position overlapping with a portion where the fourth recess 227Aβ is scheduled to be formed. The seventh semi-transparent region 260HT4 includes a sixth semi-transparent region 260HT4 and a seventh semi-transparent region 260HT5 located at a position overlapping with the portion where the fifth recess 227Aγ is planned to be formed. The direction from the center of gravity 260LS1C of the outer shape of the first light shielding region 260LS1 toward the fifth semi-transparent region 260HT3, the direction from the center of gravity 260LS2C of the outer shape of the second light shielding region 260LS2 toward the sixth semi-transparent region 260HT4, and the direction of the outer shape of the third light shielding region 260LS3. The direction from the center of gravity 260LS3C of the outer shape toward the seventh semi-transparent region 260HT5 intersects with each other.

<実施形態4>
実施形態4を図20から図23によって説明する。この実施形態4では、上記した実施形態1から第1絶縁膜318の材料などを変更したものを示す。なお、上記した実施形態1と同様の構造、作用及び効果について重複する説明は省略する。
<Embodiment 4>
Embodiment 4 will be described with reference to FIGS. 20 to 23. In this fourth embodiment, the material of the first insulating film 318 and the like are changed from the first embodiment described above. Note that redundant explanations regarding the structure, operation, and effects similar to those of the first embodiment described above will be omitted.

図20は、成膜工程を経て成膜された第1絶縁膜318が、露光工程にて第2フォトマスク70を通して露光された状態を示す図5と同じ切断位置の断面図である。図21は、露光工程で用いられる第2フォトマスク70の平面図である。本実施形態に係るアレイ基板312に備わる第1絶縁膜318は、図20に示すように、ネガ型の感光性樹脂材料からなる。第1絶縁膜318に用いられるネガ型の感光性樹脂材料は、露光量に応じて現像液による溶解速度が遅くなる性質を有する。 FIG. 20 is a cross-sectional view taken at the same cutting position as FIG. 5, showing a state in which the first insulating film 318 formed through the film-forming process is exposed through the second photomask 70 in the exposure process. FIG. 21 is a plan view of the second photomask 70 used in the exposure process. The first insulating film 318 provided on the array substrate 312 according to this embodiment is made of a negative type photosensitive resin material, as shown in FIG. The negative photosensitive resin material used for the first insulating film 318 has a property that its dissolution rate by a developer decreases depending on the amount of exposure.

本実施形態に係るアレイ基板312の製造方法に含まれる第2工程の露光工程では、第1絶縁膜318の材料をネガ型の感光性樹脂材料としたことに伴い、下記の構成の第2フォトマスク70が用いられている。第2フォトマスク70について説明する。第2フォトマスク70は、上記した実施形態1の第1フォトマスク50と同様に、ハーフトーンマスクである。第2フォトマスク70は、実施形態1の第1フォトマスク50と同様に、基材71、遮光膜、第1半透過膜72及び第2半透過膜73を備えており、これらの機能や透過率などの説明は省略する。 In the second exposure step included in the method for manufacturing the array substrate 312 according to the present embodiment, since the material of the first insulating film 318 is a negative photosensitive resin material, a second photosensitive resin film having the following configuration is used. A mask 70 is used. The second photomask 70 will be explained. The second photomask 70 is a halftone mask like the first photomask 50 of the first embodiment described above. Like the first photomask 50 of Embodiment 1, the second photomask 70 includes a base material 71, a light shielding film, a first semi-transparent film 72, and a second semi-transparent film 73. Explanation of rates etc. will be omitted.

第2フォトマスク70に備わる遮光膜、第1半透過膜72及び第2半透過膜73は、基材71の面内において、それぞれ所定の分布パターンとなるようパターニングされている。遮光膜は、第1絶縁膜318のうちの第1コンタクトホールの形成予定部分と重畳する位置に選択的に配され、凸部326及び凹部327の形成予定部分と重畳する位置には非形成とされる。第1半透過膜72は、第1絶縁膜318のうちの凹部327の形成予定部分と重畳する位置に選択的に配され、凸部326の形成予定部分と重畳する位置には非形成とされる。第2半透過膜73は、第1絶縁膜318のうちの第1凸部327Aの形成予定部分と重畳する位置に選択的に配され、凸部326及び第2凹部327Bの形成予定部分と重畳する位置には非形成とされる。遮光膜、第1半透過膜72及び第2半透過膜73は、第1絶縁膜318のうちの凸部326の形成予定部分と重畳する位置には非形成とされる。遮光膜、第1半透過膜72及び第2半透過膜73の非形成部分は、平面形状が円形とされ、基材71の面内において間隔を空けて複数がランダムに配されている。 The light-shielding film, the first semi-transparent film 72, and the second semi-transparent film 73 included in the second photomask 70 are each patterned to have a predetermined distribution pattern within the plane of the base material 71. The light shielding film is selectively disposed at a position of the first insulating film 318 that overlaps with a portion where the first contact hole is planned to be formed, and is not formed at a position where it overlaps with a portion where the convex portion 326 and the recessed portion 327 are planned to be formed. be done. The first semi-transparent film 72 is selectively disposed at a position of the first insulating film 318 that overlaps with a portion where the concave portion 327 is planned to be formed, and is not formed at a position where it overlaps with a portion where the convex portion 326 is planned to be formed. Ru. The second semi-transparent film 73 is selectively disposed at a position of the first insulating film 318 that overlaps with a portion where the first convex portion 327A is planned to be formed, and overlaps with a portion where the convex portion 326 and the second concave portion 327B are planned to be formed. It is considered non-forming in the position where it occurs. The light-shielding film, the first semi-transparent film 72, and the second semi-transparent film 73 are not formed at positions that overlap with the portions of the first insulating film 318 where the convex portions 326 are planned to be formed. The portions where the light-shielding film, the first semi-transparent film 72, and the second semi-transparent film 73 are not formed have a circular planar shape, and are randomly arranged at intervals within the plane of the base material 71.

第2フォトマスク70は、遮光膜、第1半透過膜72及び第2半透過膜73のパターンに基づいて、露光光を透過する透過領域70Tと、露光光を遮光する遮光領域と、露光光を半透過する第3半透過領域70HT1と、第3半透過領域70HT1よりも高い透過率でもって露光光を半透過する第4半透過領域70HT2と、を有する。透過領域70Tは、遮光膜、第1半透過膜72及び第2半透過膜73の非形成部分の形成範囲と一致する。遮光領域は、遮光膜の形成範囲と一致する。第3半透過領域70HT1は、透過領域70Tの外周の一部に隣接して配される。第3半透過領域70HT1は、第2半透過膜73の形成範囲と一致する。第4半透過領域70HT2は、第1半透過膜72の形成範囲と第2半透過膜73の非形成範囲との重畳範囲と一致する。 The second photomask 70 has a transmission region 70T that transmits the exposure light, a light-shielding region that blocks the exposure light, and a light-shielding region 70T that transmits the exposure light based on the patterns of the light-shielding film, the first semi-transmissive film 72, and the second semi-transparent film 73. It has a third semi-transparent region 70HT1 that semi-transmits the exposure light, and a fourth semi-transmissive region 70HT2 that semi-transmits the exposure light with a higher transmittance than the third semi-transparent region 70HT1. The transmissive region 70T coincides with the formation range of the non-forming portions of the light shielding film, the first semi-transparent film 72, and the second semi-transparent film 73. The light-shielding region coincides with the formation range of the light-shielding film. The third semi-transparent region 70HT1 is arranged adjacent to a part of the outer periphery of the transparent region 70T. The third semi-transparent region 70HT1 coincides with the formation range of the second semi-transparent film 73. The fourth semi-transparent region 70HT2 coincides with the overlapping range of the region where the first semi-transparent film 72 is formed and the region where the second semi-transparent film 73 is not formed.

図21及び図22を用いて第2フォトマスク70の透過領域70T及び第3半透過領域70HT1について詳しく説明する。図21では、透過領域70Tと、第3半透過領域70HT1と、第4半透過領域70HT2と、をそれぞれ異なる網掛け状にして図示している。図22は、複数の凸部326に含まれる3つの凸部326を示す平面図である。透過領域70Tには、図21に示すように、第1透過領域70T1と、第1透過領域70T1と間隔を空けて配される第2透過領域70T2と、第1透過領域70T1と間隔を空けて配される第3透過領域70T3と、が含まれる。第1透過領域70T1は、図21及び図22に示すように、第1絶縁膜318のうちの第1凸部326αの形成予定部分と重畳する位置に配される。第2透過領域70T2は、第1絶縁膜318のうちの第2凸部326βの形成予定部分と重畳する位置に配される。第3透過領域70T3は、第1絶縁膜318のうちの第3凸部326γの形成予定部分と重畳する位置に配される。第3半透過領域70HT1には、図21に示すように、第1透過領域70T1の外周の一部に隣接して配される第8半透過領域70HT3と、第2透過領域70T2の外周の一部に隣接して配される第9半透過領域70HT4と、第3透過領域70T3の外周の一部に隣接して配される第10半透過領域70HT5と、が含まれる。第8半透過領域70HT3は、図21及び図22に示すように、第1絶縁膜318のうちの第3凹部327Aαの形成予定部分と重畳する位置に配される。第9半透過領域70HT4は、第1絶縁膜318のうちの第4凹部327Aβの形成予定部分と重畳する位置に配される。第10半透過領域70HT5は、第1絶縁膜318のうちの第5凹部327Aγの形成予定部分と重畳する位置に配される。第1透過領域70T1の外形の重心70T1Cから第8半透過領域70HT3へ向かう方向と、第2透過領域70T2の外形の重心70T2Cから第9半透過領域70HT4へ向かう方向と、第3透過領域70T3の外形の重心70T3Cから第10半透過領域70HT5へ向かう方向と、が互いに交差する関係とされる。 The transmissive region 70T and third semi-transmissive region 70HT1 of the second photomask 70 will be described in detail using FIGS. 21 and 22. In FIG. 21, the transparent region 70T, the third semi-transparent region 70HT1, and the fourth semi-transparent region 70HT2 are shown in different hatching shapes. FIG. 22 is a plan view showing three protrusions 326 included in the plurality of protrusions 326. As shown in FIG. 21, the transmission region 70T includes a first transmission region 70T1, a second transmission region 70T2 spaced from the first transmission region 70T1, and a second transmission region 70T2 spaced apart from the first transmission region 70T1. A third transmission region 70T3 arranged therein is included. As shown in FIGS. 21 and 22, the first transmission region 70T1 is arranged at a position overlapping a portion of the first insulating film 318 where the first convex portion 326α is planned to be formed. The second transmission region 70T2 is arranged at a position overlapping a portion of the first insulating film 318 where the second convex portion 326β is planned to be formed. The third transmission region 70T3 is arranged at a position overlapping a portion of the first insulating film 318 where the third convex portion 326γ is planned to be formed. As shown in FIG. 21, the third semi-transmissive region 70HT1 includes an eighth semi-transmissive region 70HT3 disposed adjacent to a part of the outer periphery of the first transmissive region 70T1, and a part of the outer periphery of the second transmissive region 70T2. A ninth semi-transparent region 70HT4 is disposed adjacent to the third transmissive region 70T3, and a tenth semi-transmissive region 70HT5 is disposed adjacent to a part of the outer periphery of the third transmissive region 70T3. As shown in FIGS. 21 and 22, the eighth semi-transparent region 70HT3 is arranged at a position overlapping a portion of the first insulating film 318 where the third recess 327Aα is planned to be formed. The ninth semi-transparent region 70HT4 is arranged at a position overlapping a portion of the first insulating film 318 where the fourth recess 327Aβ is planned to be formed. The tenth semi-transparent region 70HT5 is arranged at a position overlapping a portion of the first insulating film 318 where the fifth recess 327Aγ is planned to be formed. The direction from the center of gravity 70T1C of the outer shape of the first transmissive region 70T1 to the eighth semi-transparent region 70HT3, the direction from the center of gravity 70T2C of the outer shape of the second transmissive region 70T2 to the ninth semi-transparent region 70HT4, and the direction of the third transmissive region 70T3. The direction from the center of gravity 70T3C of the outer shape toward the tenth semi-transparent region 70HT5 intersects with each other.

露光工程では、図20に示すように、露光装置の光源から発せられた露光光が、上記のような構成の第2フォトマスク70を介して第1絶縁膜318に対して照射される。これにより、第1絶縁膜318の選択的な露光が行われる。具体的には、第1絶縁膜318は、第2フォトマスク70の透過領域70Tと重畳する部分が、全深さにわたって露光される。第1絶縁膜318のうち、第3半透過領域70HT1と重畳する部分は、遮光領域と重畳する部分よりは露光量が多いものの、第4半透過領域70HT2と重畳する部分よりも露光量が少ない。第1絶縁膜318のうち、第4半透過領域70HT2と重畳する部分は、透過領域70Tと重畳する部分に比べると露光量が少ないものの、第3半透過領域70HT1と重畳する部分よりも露光量が多い。また、第1絶縁膜318は、第2フォトマスク70の遮光領域と重畳する部分が、非露光とされる。 In the exposure process, as shown in FIG. 20, exposure light emitted from a light source of an exposure apparatus is irradiated onto the first insulating film 318 through the second photomask 70 configured as described above. As a result, the first insulating film 318 is selectively exposed. Specifically, a portion of the first insulating film 318 that overlaps with the transmission region 70T of the second photomask 70 is exposed to light over the entire depth. The portion of the first insulating film 318 that overlaps with the third semi-transmissive region 70HT1 has a higher exposure amount than the portion that overlaps with the light shielding region, but has a lower exposure amount than the portion that overlaps with the fourth semi-transparent region 70HT2. . Although the portion of the first insulating film 318 that overlaps with the fourth semi-transmissive region 70HT2 has a lower exposure amount than the portion that overlaps with the transmissive region 70T, it has a lower exposure amount than the portion that overlaps with the third semi-transparent region 70HT1. There are many. Further, a portion of the first insulating film 318 that overlaps with the light-blocking region of the second photomask 70 is not exposed to light.

現像工程では、露光工程にて選択的に露光された第1絶縁膜318が現像液によって現像される。現像に伴い、第1絶縁膜318は、図23に示すように、露光量が少ない部分ほど深い範囲にわたって除去され、所定以上の露光量とされる部分は除去されずに残存する。図23は、現像工程にて第1絶縁膜318が現像された状態を示す図5と同じ切断位置の断面図である。具体的には、第1絶縁膜318は、第2フォトマスク70の透過領域70Tと重畳する部分が、全深さにわたって残存し、凸部326を構成する部分となる。第1絶縁膜318は、第2フォトマスク70の第3半透過領域70HT1及び第4半透過領域70HT2と重畳する部分のうち、上面側部分が選択的に除去され、底面側部分が選択的に残存する。第1絶縁膜318のうち、第3半透過領域70HT1と重畳する部分は、第4半透過領域70HT2と重畳する部分に比べると、上面側部分がより深く除去されることで、第2凹部327Bよりも深い第1凹部327Aを構成する部分となる。第1絶縁膜318のうち、第4半透過領域70HT2と重畳する部分は、第3半透過領域70HT1と重畳する部分に比べると、上面側部分がより浅く除去されることで、第1凹部327Aよりも浅い第2凹部327Bを構成する部分となる。また、第1絶縁膜318のうち、第2フォトマスク70の遮光領域と重畳する部分は、全深さにわたって除去され、第1コンタクトホールが形成される。 In the development process, the first insulating film 318 that was selectively exposed in the exposure process is developed with a developer. During development, as shown in FIG. 23, the first insulating film 318 is removed over a deeper range where the exposure amount is smaller, and the portion where the exposure amount is greater than a predetermined amount remains unremoved. FIG. 23 is a cross-sectional view taken at the same cutting position as FIG. 5, showing a state in which the first insulating film 318 has been developed in the development process. Specifically, a portion of the first insulating film 318 that overlaps with the transparent region 70T of the second photomask 70 remains throughout the entire depth, and becomes a portion forming the convex portion 326. Of the portions of the first insulating film 318 that overlap with the third semi-transparent region 70HT1 and the fourth semi-transparent region 70HT2 of the second photomask 70, the top surface side portion is selectively removed, and the bottom surface side portion is selectively removed. remain. The portion of the first insulating film 318 that overlaps with the third semi-transparent region 70HT1 is removed more deeply on the upper surface side than the portion that overlaps with the fourth semi-transparent region 70HT2, so that the second recess 327B This is the part that constitutes the first recess 327A which is deeper than the first recess 327A. The portion of the first insulating film 318 that overlaps with the fourth semi-transparent region 70HT2 is removed more shallowly on the upper surface side than the portion that overlaps with the third semi-transparent region 70HT1, so that the first recess 327A This is the part that constitutes the second recess 327B, which is shallower than the second recess 327B. Further, a portion of the first insulating film 318 that overlaps with the light-blocking region of the second photomask 70 is removed to the full depth, and a first contact hole is formed.

より詳細には、第1絶縁膜318のうちの第1透過領域70T1と重畳する部分が、第1凸部326αを構成する部分となる(図21及び図22を参照)。第1絶縁膜318のうちの第2透過領域70T2と重畳する部分が、第2凸部326βを構成する部分となる。第1絶縁膜318のうちの第3透過領域70T3と重畳する部分が、第3凸部326γを構成する部分となる。第1絶縁膜318のうちの第8半透過領域70HT3と重畳する部分が、第3凹部327Aαを構成する部分となる。第1絶縁膜318のうちの第9半透過領域70HT4と重畳する部分が、第4凹部327Aβを構成する部分となる。第1絶縁膜318のうちの第10半透過領域70HT5と重畳する部分が、第5凹部327Aγを構成する部分となる。熱処理前における第1凸部326αの外形の重心から第3凹部327Aαへ向かう方向と、第2凸部326βの外形の重心から第4凹部327Aβへ向かう方向と、第3凸部326γの外形の重心から第5凹部327Aγへ向かう方向と、が互いに交差する関係となる(図22を参照)。 More specifically, a portion of the first insulating film 318 that overlaps with the first transmission region 70T1 becomes a portion that constitutes the first convex portion 326α (see FIGS. 21 and 22). A portion of the first insulating film 318 that overlaps with the second transmission region 70T2 becomes a portion forming the second convex portion 326β. A portion of the first insulating film 318 that overlaps with the third transmission region 70T3 becomes a portion forming the third convex portion 326γ. A portion of the first insulating film 318 that overlaps with the eighth semi-transparent region 70HT3 becomes a portion forming the third recess 327Aα. A portion of the first insulating film 318 that overlaps with the ninth semi-transparent region 70HT4 becomes a portion forming the fourth recess 327Aβ. A portion of the first insulating film 318 that overlaps with the tenth semi-transparent region 70HT5 becomes a portion forming the fifth recess 327Aγ. A direction from the center of gravity of the outer shape of the first convex portion 326α toward the third recess 327Aα, a direction from the center of gravity of the outer shape of the second convex portion 326β toward the fourth recess 327Aβ, and a center of gravity of the outer shape of the third convex portion 326γ before heat treatment. and the direction toward the fifth recess 327Aγ intersect with each other (see FIG. 22).

以上のようにして現像工程を終えた段階では、第1絶縁膜318のうちの凸部326を構成する部分は、全高さ範囲にわたって径寸法がほぼ一定の略円柱状をなしており、頂面がほぼフラットであるとともに周面(側面)がZ軸方向に並行している。第1絶縁膜318のうちの凹部327を構成する部分は、底面がほぼフラットであるとともに側面がZ軸方向に並行している。その後、熱処理工程が行われると、第1絶縁膜318には「熱ダレ」と呼ばれる変形が生じる。これにより、第1絶縁膜318のうちの凸部326を構成する部分は、頂面及び側面がそれぞれ丸みを帯びた形状になり、先細り状の凸部326となる(図10を参照)。同様に、第1絶縁膜318のうちの凹部327を構成する部分は、底面及び側面がそれぞれ丸みを帯びた形状となり、凹部327となる。上記のようにして第2工程が行われた後、第3工程及び第4工程が行われると、導電層及び反射膜などが形成される。形成された反射膜は、下地である第1絶縁膜318の凹凸面318Aに沿った凹凸形状の表面を有することになる。 At the stage where the development step is completed as described above, the portion of the first insulating film 318 that constitutes the convex portion 326 has a substantially cylindrical shape with a substantially constant diameter over the entire height range, and the top surface is substantially flat, and the peripheral surface (side surface) is parallel to the Z-axis direction. The portion of the first insulating film 318 constituting the recess 327 has a substantially flat bottom surface and side surfaces parallel to the Z-axis direction. After that, when a heat treatment process is performed, deformation called "thermal sag" occurs in the first insulating film 318. As a result, the portion of the first insulating film 318 that constitutes the convex portion 326 has a rounded top surface and rounded side surfaces, and becomes a tapered convex portion 326 (see FIG. 10). Similarly, the portion of the first insulating film 318 that forms the recess 327 has a rounded bottom and side surfaces, forming the recess 327 . After the second step is performed as described above, a third step and a fourth step are performed to form a conductive layer, a reflective film, and the like. The formed reflective film has an uneven surface along the uneven surface 318A of the first insulating film 318 serving as the base.

以上説明したように本実施形態に係るアレイ基板312の製造方法は、基板317上にネガ型の感光性絶縁材料からなる第1絶縁膜318を成膜し、光を透過する透過領域70Tと、透過領域70Tの外周の一部に隣接して配され、光を透過して光透過率が透過領域70Tよりも低い第3半透過領域70HT1と、透過領域70T及び第3半透過領域70HT1を取り囲んで配され、光を透過して光透過率が透過領域70Tよりも低く第3半透過領域70HT1よりも高い第4半透過領域70HT2と、を含む第2フォトマスク70を通して第1絶縁膜318を露光し、第1絶縁膜318を現像することで、第1絶縁膜318のうち、透過領域70Tと重畳する部分が凸部326となり、第3半透過領域70HT1と重畳する部分が第1凹部327Aとなり、第4半透過領域70HT2と重畳する部分が第1凹部327Aよりも浅い第2凹部327Bとなるよう、第1絶縁膜318の表面に凹凸面318Aを形成し、第1絶縁膜318を熱処理することで、凸部326を基板317の主面の法線方向に対して傾斜させ、凸部326の頂点326Vを第1凹部327A側に偏在させ、第1絶縁膜318の上層側に光を反射する反射膜を成膜する。 As described above, the method for manufacturing the array substrate 312 according to the present embodiment includes forming the first insulating film 318 made of a negative photosensitive insulating material on the substrate 317, and forming the transmitting region 70T through which light passes; A third semi-transmissive region 70HT1 that is arranged adjacent to a part of the outer periphery of the transmissive region 70T, transmits light and has a lower light transmittance than the transmissive region 70T, and surrounds the transmissive region 70T and the third semi-transmissive region 70HT1. The first insulating film 318 is exposed to the first insulating film 318 through the second photomask 70, which includes a fourth semi-transmissive region 70HT2, which transmits light and has a light transmittance lower than the transmissive region 70T and higher than the third semi-transmissive region 70HT1. By exposing and developing the first insulating film 318, the portion of the first insulating film 318 that overlaps with the transmissive region 70T becomes a convex portion 326, and the portion that overlaps with the third semi-transparent region 70HT1 becomes a first recess 327A. An uneven surface 318A is formed on the surface of the first insulating film 318, and the first insulating film 318 is heat-treated so that the portion overlapping with the fourth semi-transparent region 70HT2 becomes a second recess 327B that is shallower than the first recess 327A. By doing so, the convex portion 326 is inclined with respect to the normal direction of the main surface of the substrate 317, the apex 326V of the convex portion 326 is unevenly distributed on the first concave portion 327A side, and light is directed to the upper layer side of the first insulating film 318. A reflective film is formed.

基板317上にネガ型の感光性絶縁材料からなる第1絶縁膜318が成膜されてから、第2フォトマスク70を通して第1絶縁膜318が露光される。ネガ型の感光性絶縁材料からなる第1絶縁膜318が第2フォトマスク70を通して露光されると、第1絶縁膜318のうち、第3半透過領域70HT1と重畳する部分が、第4半透過領域70HT2と重畳する部分よりも露光量が少なくなり、透過領域70Tと重畳する部分の露光量が最も多くなる。 After a first insulating film 318 made of a negative photosensitive insulating material is formed on the substrate 317 , the first insulating film 318 is exposed to light through the second photomask 70 . When the first insulating film 318 made of a negative photosensitive insulating material is exposed through the second photomask 70, the portion of the first insulating film 318 that overlaps with the third semi-transparent region 70HT1 becomes a fourth semi-transparent region. The amount of exposure is smaller than the portion that overlaps with the region 70HT2, and the amount of exposure is the largest in the portion that overlaps with the transmissive region 70T.

第1絶縁膜318が現像されると、第1絶縁膜318の表面に凹凸面318Aが形成される。第1絶縁膜318のうち透過領域70Tと重畳する部分が、凹凸面318Aの凸部326となる。第1絶縁膜318のうち第3半透過領域70HT1と重畳する部分が、凹凸面318Aの第1凹部327Aとなる。第1凹部327Aは、凸部326の外周の一部に隣接して配される。第1絶縁膜318のうち第4半透過領域70HT2と重畳する部分が、凹凸面318Aの第2凹部327Bとなる。第2凹部327Bは、凸部326及び第1凹部327Aを取り囲んで配される。 When the first insulating film 318 is developed, an uneven surface 318A is formed on the surface of the first insulating film 318. A portion of the first insulating film 318 that overlaps with the transmission region 70T becomes a convex portion 326 of the uneven surface 318A. A portion of the first insulating film 318 that overlaps with the third semi-transparent region 70HT1 becomes the first recess 327A of the uneven surface 318A. The first recess 327A is arranged adjacent to a part of the outer periphery of the protrusion 326. A portion of the first insulating film 318 that overlaps with the fourth semi-transparent region 70HT2 becomes a second recess 327B of the uneven surface 318A. The second recess 327B is arranged to surround the protrusion 326 and the first recess 327A.

現像された第1絶縁膜318が熱処理されると、第1絶縁膜318には「熱ダレ」と呼ばれる変形が生じる。ここで、凸部326の外周の一部に隣接して配される第1凹部327Aは、凸部326及び第1凹部327Aを取り囲む第2凹部327Bよりも深いことから、熱処理に伴って凸部326は、基板317の主面の法線方向に対して傾斜し、頂点326Vが第1凹部327A側に偏在する構成となる。熱処理された第1絶縁膜318の上層側に反射膜が成膜される。反射膜は、第1絶縁膜318の凹凸面318Aに倣う表面によって光を反射することができる。凹凸面318Aには、上記のように傾斜した凸部326が含まれているから、反射膜による反射光を、正反射方向とは異なる方向に進行させることができる。 When the developed first insulating film 318 is heat-treated, a deformation called "thermal sag" occurs in the first insulating film 318. Here, since the first recess 327A disposed adjacent to a part of the outer periphery of the protrusion 326 is deeper than the second recess 327B surrounding the protrusion 326 and the first recess 327A, the protrusion 326 is inclined with respect to the normal direction of the main surface of the substrate 317, and the apex 326V is unevenly located on the first recess 327A side. A reflective film is formed on the upper layer side of the heat-treated first insulating film 318. The reflective film can reflect light with its surface that follows the uneven surface 318A of the first insulating film 318. Since the uneven surface 318A includes the inclined convex portions 326 as described above, the light reflected by the reflective film can be caused to travel in a direction different from the direction of specular reflection.

以上のように、第1絶縁膜318を露光する際に用いる第2フォトマスク70によって上記した傾斜を有する凸部326を第1絶縁膜318に形成することができるので、従来のように特殊な露光装置や特殊な基板支持装置を用意する必要がない。従って、露光や熱処理で用いる製造装置として汎用的なものを用いてアレイ基板312の製造を行うことができる。しかも、第2フォトマスク70のパターン設計に基づいて凸部326をどの向きに傾斜させるか、を自由に設定できる。これにより、凸部326に係る設計自由度が高くなる。本実施形態によれば、汎用的な製造装置を用いて製造を行うことができる。 As described above, the convex portions 326 having the above-mentioned slope can be formed on the first insulating film 318 by the second photomask 70 used when exposing the first insulating film 318, so that special There is no need to prepare an exposure device or a special substrate support device. Therefore, the array substrate 312 can be manufactured using a general-purpose manufacturing apparatus used for exposure and heat treatment. Furthermore, the direction in which the convex portions 326 are inclined can be freely set based on the pattern design of the second photomask 70. This increases the degree of freedom in designing the convex portion 326. According to this embodiment, manufacturing can be performed using a general-purpose manufacturing apparatus.

また、透過領域70Tである第1透過領域70T1と、透過領域70Tであって第1透過領域70T1と間隔を空けて隣り合う第2透過領域70T2と、透過領域70Tであって第1透過領域70T1と間隔を空けて隣り合う第3透過領域70T3と、第3半透過領域70HT1であって第1透過領域70T1の外周の一部に隣接して配される第8半透過領域70HT3と、第3半透過領域70HT1であって第2透過領域70T2の外周の一部に隣接して配される第9半透過領域70HT4と、第3半透過領域70HT1であって第3透過領域70T3の外周の一部に隣接して配される第10半透過領域70HT5と、を含む第2フォトマスク70であって、第1透過領域70T1の外形の重心から第8半透過領域70HT3へ向かう方向と、第2透過領域70T2の外形の重心から第9半透過領域70HT4へ向かう方向と、第3透過領域70T3の外形の重心から第10半透過領域70HT5へ向かう方向と、が互いに交差する関係の第2フォトマスク70を通して第1絶縁膜318を露光し、第1絶縁膜318を現像することで、第1絶縁膜318のうち、第1透過領域70T1と重畳する部分が、凸部326である第1凸部326αとなり、第2透過領域70T2と重畳する部分が、凸部326であって第1凸部326αと間隔を空けて隣り合う第2凸部326βとなり、第3透過領域70T3と重畳する部分が、凸部326であって第1凸部326αと間隔を空けて隣り合う第3凸部326γとなり、第8半透過領域70HT3と重畳する部分が、第1凹部327Aである第3凹部327Aαとなり、第9半透過領域70HT4と重畳する部分が、第1凹部327Aである第4凹部327Aβとなり、第10半透過領域70HT5と重畳する部分が、第1凹部327Aである第5凹部327Aγとなり、第4半透過領域70HT2と重畳する部分が、第3凹部327Aα、第4凹部327Aβ及び第5凹部327Aγよりも浅い第2凹部327Bとなるよう、第1絶縁膜318の表面に凹凸面318Aを形成し、第1絶縁膜318を熱処理することで、第1凸部326αを基板317の主面の法線方向に対して傾斜させ、第1凸部326αの第1頂点326Vαを第3凹部327Aα側に偏在させ、第2凸部326βを基板317の主面の法線方向に対して傾斜させ、第2凸部326βの第2頂点326Vβを第4凹部327Aβ側に偏在させ、第3凸部326γを基板317の主面の法線方向に対して傾斜させ、第3凸部326γの第3頂点326Vγを第5凹部327Aγ側に偏在させる。 Further, a first transmitting region 70T1 which is the transmitting region 70T, a second transmitting region 70T2 which is the transmitting region 70T and adjacent to the first transmitting region 70T1 with an interval, and a first transmitting region 70T1 which is the transmitting region 70T. a third transmissive region 70T3 adjacent to the first transmissive region 70T3 with a space therebetween; A ninth semi-transparent region 70HT4, which is the semi-transmissive region 70HT1 and is arranged adjacent to a part of the outer periphery of the second transmissive region 70T2, and a third semi-transmissive region 70HT1, which is arranged adjacent to a part of the outer periphery of the third transmissive region 70T3. A second photomask 70 including a tenth semi-transmissive region 70HT5 disposed adjacent to the second transmissive region 70HT5, and a direction from the center of gravity of the outer shape of the first transmissive region 70T1 toward the eighth semi-transmissive region 70HT3; A second photomask in which a direction from the center of gravity of the outer shape of the transmissive region 70T2 toward the ninth semi-transparent region 70HT4 and a direction from the center of gravity of the outer shape of the third transmissive region 70T3 toward the tenth semi-transparent region 70HT5 intersect with each other. By exposing the first insulating film 318 through 70 and developing the first insulating film 318, a portion of the first insulating film 318 that overlaps with the first transmission region 70T1 becomes a first convex portion which is the convex portion 326. 326α, and the portion that overlaps with the second transmission region 70T2 is the convex portion 326, and the second convex portion 326β adjacent to the first convex portion 326α with an interval, and the portion that overlaps with the third transmission region 70T3 is, The convex portion 326 is a third convex portion 326γ adjacent to the first convex portion 326α with an interval, and the portion that overlaps with the eighth semi-transparent region 70HT3 is the first concave portion 327A, a third concave portion 327Aα. The portion that overlaps with the ninth semi-transparent region 70HT4 becomes the fourth recess 327Aβ, which is the first recess 327A, and the portion that overlaps with the tenth semi-transparent region 70HT5 becomes the fifth recess 327Aγ, which is the first recess 327A. An uneven surface 318A is formed on the surface of the first insulating film 318 so that the portion overlapping with the transmission region 70HT2 becomes a second recess 327B shallower than the third recess 327Aα, the fourth recess 327Aβ, and the fifth recess 327Aγ. By heat-treating the first insulating film 318, the first convex portion 326α is inclined with respect to the normal direction of the main surface of the substrate 317, and the first apex 326Vα of the first convex portion 326α is unevenly distributed on the third concave portion 327Aα side. , the second convex portion 326β is inclined with respect to the normal direction of the main surface of the substrate 317, the second apex 326Vβ of the second convex portion 326β is unevenly distributed on the fourth concave portion 327Aβ side, and the third convex portion 326γ is tilted toward the substrate 317. is inclined with respect to the normal direction of the main surface of the third convex portion 326γ, so that the third vertex 326Vγ of the third convex portion 326γ is unevenly located on the fifth recessed portion 327Aγ side.

このようにすれば、ネガ型の感光性絶縁材料からなる第1絶縁膜318が第2フォトマスク70を通して露光されると、第1絶縁膜318のうち、第3半透過領域70HT1である第8半透過領域70HT3、第9半透過領域70HT4及び第10半透過領域70HT5のそれぞれと重畳する部分が、第4半透過領域70HT2と重畳する部分よりも露光量が少なくなり、透過領域70Tである第1透過領域70T1、第2透過領域70T2及び第3透過領域70T3と重畳する部分の露光量が最も多くなる。 In this way, when the first insulating film 318 made of a negative photosensitive insulating material is exposed through the second photomask 70, the eighth part of the first insulating film 318, which is the third semi-transparent region 70HT1, The portions that overlap with each of the semi-transparent region 70HT3, the ninth semi-transparent region 70HT4, and the tenth semi-transparent region 70HT5 have a lower exposure amount than the portions that overlap with the fourth semi-transparent region 70HT2, so that The amount of exposure is highest in the portion that overlaps with the first transmissive region 70T1, the second transmissive region 70T2, and the third transmissive region 70T3.

第1絶縁膜318が現像されると、第1絶縁膜318のうち第1透過領域70T1と重畳する部分が、凸部326である第1凸部326αとなり、第2透過領域70T2と重畳する部分が、凸部326である第2凸部326βとなり、第3透過領域70T3と重畳する部分が、凸部326である第3凸部326γとなる。第1凸部326αと第2凸部326βとの間には、間隔が空けられる。第1凸部326αと第3凸部326γとの間には、間隔が空けられる。第1絶縁膜318のうち第8半透過領域70HT3と重畳する部分が、第1凹部327Aである第3凹部327Aαとなり、第9半透過領域70HT4と重畳する部分が、第1凹部327Aである第4凹部327Aβとなり、第10半透過領域70HT5と重畳する部分が、第1凹部327Aである第5凹部327Aγとなる。第1凸部326αの外形の重心から第3凹部327Aαへ向かう方向と、第2凸部326βの外形の重心から第4凹部327Aβへ向かう方向と、第3凸部326γの外形の重心から第5凹部327Aγへ向かう方向と、が互いに交差する関係となる。 When the first insulating film 318 is developed, a portion of the first insulating film 318 that overlaps with the first transparent region 70T1 becomes a first convex portion 326α, which is the convex portion 326, and a portion that overlaps with the second transparent region 70T2. The convex portion 326 becomes a second convex portion 326β, and the portion that overlaps with the third transmission region 70T3 becomes a third convex portion 326γ that is the convex portion 326. A space is left between the first convex portion 326α and the second convex portion 326β. A space is left between the first convex portion 326α and the third convex portion 326γ. The portion of the first insulating film 318 that overlaps with the eighth semi-transparent region 70HT3 becomes the third recess 327Aα, which is the first recess 327A, and the portion that overlaps with the ninth semi-transparent region 70HT4 becomes the third recess 327A, which is the first recess 327A. The fourth recess 327Aβ, and the portion overlapping with the tenth semi-transparent region 70HT5 becomes the fifth recess 327Aγ, which is the first recess 327A. The direction from the center of gravity of the outer shape of the first convex portion 326α toward the third recess 327Aα, the direction from the center of gravity of the outer shape of the second convex portion 326β toward the fourth recess 327Aβ, and the direction from the center of gravity of the outer shape of the third convex portion 326γ toward the third recess 327Aα. The direction toward the recessed portion 327Aγ crosses each other.

現像された第1絶縁膜318が熱処理されると、第1凸部326α、第2凸部326β及び第3凸部326γは、いずれも基板317の主面の法線方向に対して傾斜する。第1凸部326αは、頂点326Vが第3凹部327Aα側に偏在する構成となる。第2凸部326βは、頂点326Vが第4凹部327Aβ側に偏在する構成となる。第3凸部326γは、頂点326Vが第5凹部327Aγ側に偏在する構成となる。これにより、第1凸部326α、第2凸部326β及び第3凸部326γは、互いに異なる向きに傾く。熱処理された第1絶縁膜318の上層側に成膜される反射膜は、第1絶縁膜318の凹凸面318Aに倣う表面によって光を反射することができる。凹凸面318Aには、上記のように互いに異なる向きに傾く第1凸部326α、第2凸部326β及び第3凸部326γが含まれているから、反射膜による反射光の進行方向を分散させることができる。 When the developed first insulating film 318 is heat-treated, the first protrusion 326α, the second protrusion 326β, and the third protrusion 326γ are all inclined with respect to the normal direction of the main surface of the substrate 317. The first convex portion 326α has an apex 326V unevenly located on the third concave portion 327Aα side. The second convex portion 326β has a configuration in which the apex 326V is unevenly distributed on the fourth concave portion 327Aβ side. The third convex portion 326γ has a configuration in which the apex 326V is unevenly distributed on the fifth concave portion 327Aγ side. As a result, the first convex portion 326α, the second convex portion 326β, and the third convex portion 326γ are tilted in different directions. The reflective film formed on the upper layer side of the heat-treated first insulating film 318 can reflect light with its surface that follows the uneven surface 318A of the first insulating film 318. Since the uneven surface 318A includes the first convex portion 326α, the second convex portion 326β, and the third convex portion 326γ tilted in different directions as described above, the traveling direction of the reflected light by the reflective film is dispersed. be able to.

また、平面形状が円形の透過領域70Tと、透過領域70Tの外周のうちの半分以下の範囲に隣接して配される第3半透過領域70HT1と、を含む第2フォトマスク70を通して第1絶縁膜318を露光する。このようにすれば、第1絶縁膜318が現像されると、凸部326と、凸部326の外周のうちの半分以下の範囲に隣接して配される第1凹部327Aと、凸部326及び第1凹部327Aを取り囲んで配される第2凹部327Bと、が形成される。現像された第1絶縁膜318が熱処理されると、第2凹部327Bよりも深い第1凹部327Aが、凸部326の外周のうちの半分以下の範囲に隣接して配されているので、凸部326は、頂点326Vが第1凹部327A側に偏在する形で基板317の主面の法線方向に対して傾斜する確実性が高くなる。これにより、凸部326が傾く向きを容易に制御することができる。 Further, the first insulating film is passed through the second photomask 70 including a transparent region 70T having a circular planar shape and a third semi-transparent region 70HT1 disposed adjacently within half or less of the outer circumference of the transparent region 70T. The film 318 is exposed. In this way, when the first insulating film 318 is developed, the convex portion 326, the first concave portion 327A disposed adjacent to less than half of the outer circumference of the convex portion 326, and the convex portion 326 and a second recess 327B surrounding the first recess 327A. When the developed first insulating film 318 is heat-treated, the first recess 327A, which is deeper than the second recess 327B, is disposed adjacent to less than half of the outer circumference of the protrusion 326, so that the protrusion is removed. The portion 326 is highly reliably inclined with respect to the normal direction of the main surface of the substrate 317 in such a manner that the apex 326V is unevenly distributed toward the first recess 327A side. Thereby, the direction in which the convex portion 326 is inclined can be easily controlled.

<実施形態5>
実施形態5を図24または図25によって説明する。この実施形態5では、上記した実施形態3から凸部426の外形を変更したものを示す。なお、上記した実施形態3と同様の構造、作用及び効果について重複する説明は省略する。
<Embodiment 5>
Embodiment 5 will be described with reference to FIG. 24 or 25. In this fifth embodiment, the outer shape of the convex portion 426 is changed from the third embodiment described above. Note that redundant explanations regarding the structure, operation, and effects similar to those of the third embodiment described above will be omitted.

図24は、複数の凸部426に含まれる3つの凸部426を示す平面図である。本実施形態に係るアレイ基板412に備わる第1絶縁膜に設けられた凸部426の外形は、図24に示すように、曲率半径が異なる2つの円弧状部426A1,426A2により構成される。凸部426の平面に視た外形は、180°を超える中心角の第1円弧状部426A1と、第1円弧状部426A1の両端位置と交差する第2円弧状部426A2と、により画定される。凸部426の外形を構成する第2円弧状部426A2の曲率半径は、第1円弧状部426A1の曲率半径よりも大きい。外形の一部に曲率半径が大きい第2円弧状部426A2を有する凸部426は、外形の重心426Cが、第1円弧状部426A1の中心に対して第2円弧状部426A2側とは反対側に位置する。第1絶縁膜に設けられた凹部427のうちの第1凹部427Aは、凸部426の外形を構成する第2円弧状部426A2に隣接して配されている。第1凹部427Aは、第2円弧状部426A2に沿って延在し、平面に視て所定幅の円弧状をなしている。 FIG. 24 is a plan view showing three protrusions 426 included in the plurality of protrusions 426. As shown in FIG. 24, the outer shape of the convex portion 426 provided on the first insulating film of the array substrate 412 according to this embodiment is composed of two arcuate portions 426A1 and 426A2 having different radii of curvature. The outer shape of the convex portion 426 when viewed from a plane is defined by a first arcuate portion 426A1 having a central angle exceeding 180°, and a second arcuate portion 426A2 that intersects both end positions of the first arcuate portion 426A1. . The radius of curvature of the second arcuate portion 426A2 forming the outer shape of the convex portion 426 is larger than the radius of curvature of the first arcuate portion 426A1. The convex portion 426 which has a second arcuate portion 426A2 with a large radius of curvature as a part of its outer shape has a center of gravity 426C of the outer shape on the opposite side of the second arcuate portion 426A2 with respect to the center of the first arcuate portion 426A1. Located in The first recess 427A of the recesses 427 provided in the first insulating film is arranged adjacent to the second arcuate portion 426A2 that forms the outer shape of the protrusion 426. The first recessed portion 427A extends along the second arcuate portion 426A2 and has an arcuate shape with a predetermined width when viewed from above.

アレイ基板412の製造方法に含まれる第2工程の露光工程で用いられるグレートーンマスク460について説明する。グレートーンマスク460の構成に関して説明する。図25は、露光工程で用いられるグレートーンマスク460の平面図である。グレートーンマスク460は、露光光を遮る遮光領域460LSと、露光光を透過する透過領域と、露光光を半透過する第1半透過領域460HT1と、第1半透過領域460HT1よりも低い透過率でもって露光光を半透過する第2半透過領域460HT2と、を有する。図25には、遮光領域460LSと、第1半透過領域460HT1と、第2半透過領域460HT2と、がそれぞれ異なる網掛け状にして図示されている。遮光領域460LSは、凸部426の平面形状と一致している。第1半透過領域460HT1は、遮光領域460LSの外周の一部に隣接して配される。第1半透過領域460HT1は、平面に視て所定幅の円弧状をなしており、第1凹部427Aの平面形状と一致している。 The gray tone mask 460 used in the second exposure step included in the method for manufacturing the array substrate 412 will be described. The configuration of the gray tone mask 460 will be explained. FIG. 25 is a plan view of a graytone mask 460 used in the exposure process. The gray tone mask 460 includes a light-shielding region 460LS that blocks exposure light, a transmissive region that transmits the exposure light, a first semi-transparent region 460HT1 that partially transmits the exposure light, and a transmittance lower than that of the first semi-transparent region 460HT1. It has a second semi-transparent region 460HT2 that semi-transmits exposure light. In FIG. 25, the light-shielding region 460LS, the first semi-transmissive region 460HT1, and the second semi-transmissive region 460HT2 are shown in different hatching shapes. The light shielding region 460LS matches the planar shape of the convex portion 426. The first semi-transparent region 460HT1 is arranged adjacent to a part of the outer periphery of the light shielding region 460LS. The first semi-transparent region 460HT1 has an arc shape with a predetermined width when viewed from above, and matches the planar shape of the first recess 427A.

遮光領域460LSには、図25に示すように、第1凸部426αの形成予定部分と重畳する位置に配される第1遮光領域460LS1と、第2凸部426βの形成予定部分と重畳する位置に配される第2遮光領域460LS2と、第3凸部426γの形成予定部分と重畳する位置に配される第3遮光領域460LS3と、が含まれる。第1半透過領域460HT1には、第3凹部427Aαの形成予定部分と重畳する位置に配される第5半透過領域460HT3と、第4凹部427Aβの形成予定部分と重畳する位置に配される第6半透過領域460HT4と、第5凹部427Aγの形成予定部分と重畳する位置に配される第7半透過領域460HT5と、が含まれる。 As shown in FIG. 25, the light-shielding region 460LS includes a first light-shielding region 460LS1 disposed at a position overlapping with a portion where the first convex portion 426α is planned to be formed, and a position overlapping with a portion where the second convex portion 426β is planned to be formed. A second light-shielding region 460LS2 disposed in the third convex portion 426γ and a third light-shielding region 460LS3 disposed in a position overlapping the portion where the third convex portion 426γ is to be formed are included. The first semi-transparent region 460HT1 includes a fifth semi-transparent region 460HT3 located at a position overlapping with a portion to be formed of the third recess 427Aα, and a fifth semi-transparent region 460HT3 located at a position overlapping with a portion to be formed of the fourth recess 427Aβ. It includes a sixth semi-transparent region 460HT4 and a seventh semi-transparent region 460HT5 arranged at a position overlapping with the portion where the fifth recess 427Aγ is planned to be formed.

<実施形態6>
実施形態6を図26から図36によって説明する。この実施形態6では、上記した実施形態1から凸部526の配置等を変更した場合を示す。なお、上記した実施形態1と同様の構造、作用及び効果について重複する説明は省略する。また、各図面に示されるX軸方向及びZ軸方向が水平方向と一致し、Y軸方向が鉛直方向と一致している。
<Embodiment 6>
Embodiment 6 will be described with reference to FIGS. 26 to 36. This sixth embodiment shows a case where the arrangement of the convex portion 526 and the like are changed from the first embodiment described above. Note that redundant explanations regarding the structure, operation, and effects similar to those of the first embodiment described above will be omitted. Further, the X-axis direction and the Z-axis direction shown in each drawing correspond to the horizontal direction, and the Y-axis direction corresponds to the vertical direction.

本実施形態に係るアレイ基板512は、図26に示すように、基板517の平面形状が横長の方形状とされる。液晶表示装置10の使用に際しては、基板517は、鉛直方向であるY軸方向に沿う第1辺部17Aが短辺とされ、水平方向であるX軸方向に沿う第2辺部17Bが長辺とされる。つまり、基板517は、「横置き」の状態で使用されることが想定されている。基板517は、短辺である第1辺部17Aと、長辺である第2辺部17Bと、の長さの比率が「9:16」となっている。 In the array substrate 512 according to this embodiment, as shown in FIG. 26, the planar shape of the substrate 517 is a horizontally long rectangle. When using the liquid crystal display device 10, the first side 17A of the substrate 517 along the vertical Y-axis direction is the short side, and the second side 17B along the horizontal X-axis direction is the long side. It is said that In other words, the board 517 is assumed to be used in a "horizontal" state. The substrate 517 has a length ratio of 9:16 between the first side 17A, which is the short side, and the second side 17B, which is the long side.

複数の凸部526は、図27及び図28に示すように、アレイ基板512の基板517の主面内において、一定の規則性を持って配されている。図27には、複数の凸部526の中から代表して3つの凸部526α~526γが図示されている。複数の凸部526は、図28に示すように、いずれも平面に視た外形の重心526Cから突出先端部である頂点526Vへ向かう方向Dが、平面に視て(基板517の主面の法線方向から視て)鉛直方向であるY軸方向の上向きのベクトル成分を含むよう構成されている。なお、図27に示す上側と、図28に示す右側と、が鉛直方向の上方向と一致している。 As shown in FIGS. 27 and 28, the plurality of convex portions 526 are arranged with a certain regularity within the main surface of the substrate 517 of the array substrate 512. FIG. 27 shows three representative protrusions 526α to 526γ out of the plurality of protrusions 526. As shown in FIG. 28, in each of the plurality of convex portions 526, a direction D from the center of gravity 526C of the outer shape toward the apex 526V, which is the protruding tip, as viewed in the plane (the direction It is configured to include an upward vector component in the Y-axis direction, which is the vertical direction (viewed from the line direction). Note that the upper side shown in FIG. 27 and the right side shown in FIG. 28 coincide with the upper direction in the vertical direction.

詳しくは、複数の突部526に含まれる第1凸部526α、第2凸部526β及び第3凸部526γは、図27に示すように、第1重心526Cαから第1頂点526Vαへ向かう方向である第1方向D1と、第2重心526Cβから第2頂点526Vβへ向かう方向である第2方向D2と、第3重心526Cγから第3頂点526Vγへ向かう方向である第3方向D3と、がいずれも平面に視て鉛直方向であるY軸方向の上向きのベクトル成分を含むよう構成されている。 Specifically, as shown in FIG. 27, the first convex portion 526α, the second convex portion 526β, and the third convex portion 526γ included in the plurality of protrusions 526 extend in the direction from the first center of gravity 526Cα toward the first vertex 526Vα. A certain first direction D1, a second direction D2 which is a direction from the second center of gravity 526Cβ to the second vertex 526Vβ, and a third direction D3 which is a direction from the third center of gravity 526Cγ to the third vertex 526Vγ are all It is configured to include an upward vector component in the Y-axis direction, which is a vertical direction when viewed from above.

第1凸部526αは、図28及び図29に示すように、第1方向D1が、平面に視て鉛直方向の上方向と一致している。従って、第1凸部526αは、第1方向D1が、平面に視て鉛直方向の上方向のベクトル成分のみを含み、他の方向のベクトル成分を含まない。つまり、第1凸部526αは、第1方向D1が、平面に視て鉛直方向の上方向に対して0°の角度θ1をなしている。第2凸部526βは、図30に示すように、第2方向D2が、平面に視て鉛直方向の上方向に対して図30に示す右側に例えば約60°程度の角度θ2をなしている。従って、第2凸部526βは、第2方向D2が、平面に視て鉛直方向の上方向のベクトル成分V1と、水平方向の右方向のベクトル成分V2と、を含む。第3凸部526γは、図31に示すように、第3方向D3が、平面に視て鉛直方向の上方向に対して図31に示す左側、つまり第2方向D2とは反対側に例えば約60°程度の角度θ3をなしている。従って、第2凸部526βは、第2方向D2が、平面に視て鉛直方向の上方向のベクトル成分V3と、水平方向の左方向のベクトル成分V4と、を含む。なお、複数の凸部526には、重心526Cから頂点526Vへ向かう方向Dが、平面に視て鉛直方向の上方向に対して0°,60°以外の角度(例えば鉛直方向の上方向を中心として±60°の角度範囲内の角度)とされる凸部526が含まれる。 As shown in FIGS. 28 and 29, the first convex portion 526α has a first direction D1 that coincides with the upper direction in the vertical direction when viewed from above. Therefore, in the first convex portion 526α, the first direction D1 includes only an upward vector component in the vertical direction when viewed from a plane, and does not include vector components in other directions. That is, in the first convex portion 526α, the first direction D1 forms an angle θ1 of 0° with respect to the vertically upward direction when viewed from above. In the second convex portion 526β, as shown in FIG. 30, the second direction D2 forms an angle θ2 of, for example, about 60° to the right side shown in FIG. . Therefore, in the second convex portion 526β, the second direction D2 includes an upward vector component V1 in the vertical direction and a rightward vector component V2 in the horizontal direction. As shown in FIG. 31, the third convex portion 526γ is arranged such that the third direction D3 is on the left side in FIG. It forms an angle θ3 of about 60°. Therefore, in the second convex portion 526β, the second direction D2 includes an upward vector component V3 in the vertical direction and a vector component V4 in the left direction in the horizontal direction. Note that the plurality of convex portions 526 may have a direction D from the center of gravity 526C to the apex 526V at an angle other than 0° or 60° with respect to the upward direction in the vertical direction when viewed from above (for example, the direction D toward the apex 526V may be A convex portion 526 having an angle within an angular range of ±60° is included.

ここで、反射膜516は、図28に示すように、重心526Cから頂点526Vへ向かう方向Dが、基板517の主面の法線方向に対して傾く構成とされる凸部526によって反射異方性を有している。反射膜516が有する反射異方性は、特定の向きの入射光を反射させて正反射方向SDよりも基板517の主面の法線方向に近い方向NDに効率的に進行させる、という光学特性である。具体的には、凸部526は、重心526Cから頂点526Vへ向かう方向Dとは平面に視て逆向き(図28の左向き)に進行する入射光を反射膜516により反射させて、正反射方向SDよりも基板517の主面の法線方向に近い方向NDに効率的に進行させることができる。より詳しくは、凸部526のうち、平面に視て第1凹部527Aに隣接する扇状の部分は、他の部分よりも基板517の主面に対する傾斜角度が急になっている。反射膜516のうち、凸部526における傾斜角度が急な扇状部分と重畳する部分によって方向Dとは平面に視て逆向きの入射光を反射し、正反射方向SDよりも基板517の主面の法線方向に近い方向NDに効率的に立ち上げることができる。なお、上記した「方向ND」は、基板517の主面の法線方向と一致してもよいが、基板517の主面の法線方向に対して所定角度傾いてもよい。 Here, as shown in FIG. 28, the reflective film 516 is anisotropically reflective due to the convex portion 526 configured such that the direction D from the center of gravity 526C to the apex 526V is inclined with respect to the normal direction of the main surface of the substrate 517. It has a sexual nature. The reflective anisotropy of the reflective film 516 is an optical property that allows incident light in a specific direction to be reflected and to travel more efficiently in the direction ND, which is closer to the normal direction of the main surface of the substrate 517 than in the specular reflection direction SD. It is. Specifically, the convex portion 526 causes the reflective film 516 to reflect incident light traveling in a direction opposite to the direction D from the center of gravity 526C to the apex 526V (leftward in FIG. 28) when viewed in plan, so that the convex portion 526 reflects the incident light in the specular reflection direction. It is possible to more efficiently advance in the direction ND, which is closer to the normal direction of the main surface of the substrate 517 than in the SD. More specifically, a fan-shaped portion of the convex portion 526 adjacent to the first recess 527A when viewed from above has a steeper inclination angle with respect to the main surface of the substrate 517 than other portions. The part of the reflective film 516 that overlaps with the fan-shaped part with a steep inclination angle in the convex part 526 reflects the incident light in the direction opposite to the direction D when viewed from the plane, and reflects the incident light on the main surface of the substrate 517 rather than in the specular reflection direction SD. can be efficiently raised in the direction ND close to the normal direction. Note that the above-described "direction ND" may coincide with the normal direction of the main surface of the substrate 517, but may also be inclined at a predetermined angle with respect to the normal direction of the main surface of the substrate 517.

凸部526によって反射膜516に付与される反射異方性を検証するために検証実験1を行った。検証実験1では、第1絶縁膜518に含まれる複数の凸部526について、重心526Cから頂点526Vへ向かう方向Dを全て同一とした基板517を作成した。具体的には、全ての凸部526における方向Dを、平面に視て(基板517の主面の法線方向から視て)鉛直方向の上方向と一致させた。このような凸部526を備える基板517の主面のうち、複数の凸部526を含む所定の範囲について、第1絶縁膜518の凹凸面518Aを微小な単位領域に区分し、各単位領域の法線方向が、平面に視て基準方向に対してなす角度を測定または計算により得た。基準方向は、水平方向に沿う一方向(例えば、図27の右方向)とされる。検証実験1の実験結果は、図32に示される通りである。図32には、極座標が示されている。図32に示される極座標の「動径」は、上記した単位領域の数とされる。図32に示される極座標の「偏角」は、上記した単位領域の法線方向が基準方向に対してなす角度とされる。図32に示される極座標における原点から右向きの軸(始線)は、上記した基準方向である。図32に示される極座標における原点から上向きの軸は、鉛直方向の上方向である。図32に示される極座標における原点から左向きの軸は、基準方向とは反対方向である。図32に示される極座標における原点から下向きの軸は、鉛直方向の下方向である。なお、図32に記載された数値は、単位領域の数である。 Verification experiment 1 was conducted to verify the reflection anisotropy imparted to the reflective film 516 by the convex portions 526. In verification experiment 1, a substrate 517 was created in which the plurality of convex portions 526 included in the first insulating film 518 were all set in the same direction D from the center of gravity 526C to the apex 526V. Specifically, the direction D of all the convex portions 526 was made to coincide with the upward direction in the vertical direction when viewed in plan (viewed from the normal direction of the main surface of the substrate 517). Of the main surface of the substrate 517 having such convex portions 526, the uneven surface 518A of the first insulating film 518 is divided into minute unit regions for a predetermined range including the plurality of convex portions 526, and each unit region is The angle that the normal direction makes with respect to the reference direction when viewed in a plane was obtained by measurement or calculation. The reference direction is one direction along the horizontal direction (for example, the right direction in FIG. 27). The experimental results of Verification Experiment 1 are as shown in FIG. In FIG. 32, polar coordinates are shown. The "radius" of the polar coordinates shown in FIG. 32 is the number of unit areas described above. The "deflection angle" of the polar coordinates shown in FIG. 32 is the angle that the normal direction of the above-described unit area makes with respect to the reference direction. The rightward axis (starting line) from the origin in the polar coordinates shown in FIG. 32 is the above-described reference direction. The axis pointing upward from the origin in the polar coordinates shown in FIG. 32 is the upward direction in the vertical direction. The left axis from the origin in the polar coordinates shown in FIG. 32 is in the opposite direction to the reference direction. The downward axis from the origin in the polar coordinates shown in FIG. 32 is the downward direction in the vertical direction. Note that the numerical values shown in FIG. 32 are the numbers of unit areas.

検証実験1の検証結果について図32を用いて説明する。図32によれば、単位領域の数に係る分布には、偏りが存在することが分かる。詳しくは、図32に示される極座標において、原点から上向きの軸付近に存在する単位領域の数が、他の3つの軸付近に存在する単位領域の数よりも遙かに多い。これは、各凸部526には、法線方向が鉛直方向の上方向となる単位領域が最も多く含まれていることを意味する。既述した通り、検証実験1に係る基板517は、全ての凸部526における方向Dが、平面に視て鉛直方向の上方向と一致していることから、凸部526は、法線方向が平面に視て方向Dと一致する単位領域を最も多く含む傾向にある、と言える。従って、スネルの法則に基づけば、検証実験1に係る基板517に備わる凸部526に対して鉛直方向の上側(平面に視て方向Dとは反対側)から入射する入射光は、反射膜516によって正反射方向SDよりも基板517の主面の法線方向に近い方向NDに向けて効率的に反射される傾向にある、と言える。 The verification results of verification experiment 1 will be explained using FIG. 32. According to FIG. 32, it can be seen that there is a bias in the distribution regarding the number of unit areas. Specifically, in the polar coordinates shown in FIG. 32, the number of unit areas existing near the axis pointing upward from the origin is far greater than the number of unit areas existing near the other three axes. This means that each convex portion 526 includes the most unit areas whose normal direction is upward in the vertical direction. As described above, in the substrate 517 according to Verification Experiment 1, the direction D of all the convex portions 526 coincides with the upward direction in the vertical direction when viewed from above, so that the normal direction of the convex portions 526 is It can be said that it tends to include the largest number of unit areas that coincide with direction D when viewed in plan. Therefore, based on Snell's law, the incident light that enters the convex portion 526 of the substrate 517 according to Verification Experiment 1 from the upper side in the vertical direction (the side opposite to the direction D when viewed from above) Therefore, it can be said that the light tends to be reflected more efficiently in the direction ND, which is closer to the normal direction of the principal surface of the substrate 517, than in the regular reflection direction SD.

次に、基板517に備わる複数の凸部526における方向Dを調整した場合に、反射膜516による反射光に係る輝度分布がどのように変化するかを検証するため、検証実験2を行った。検証実験2では、検証実験1にて作成した基板517(重心526Cから頂点526Vへ向かう方向Dを全て同一とした基板517)を比較例1とした。検証実験2では、重心526Cから頂点526Vへ向かう方向Dを、平面に視て鉛直方向の上方向を中心として±90°の角度範囲でばらつかせた複数の凸部526を備える基板517を作成し、比較例2とした。検証実験2では、重心526Cから頂点526Vへ向かう方向Dを、平面に視て鉛直方向の上方向を中心として±60°の角度範囲でばらつかせた複数の凸部526を備える基板517を作成し、実施例1とした。比較例2及び実施例1の説明において方向Dの角度範囲に付した「±」の符号は、鉛直方向の上方向に対して水平方向についての一方側(図27の右側)が「+」の符号とされ、鉛直方向の上方向に対して水平方向についての他方側(図27の左側)が「-」の符号とされることを意味する。比較例2は、複数の凸部526に、方向Dが鉛直方向の上方向に対して「+90°」の角度となる凸部526と、方向Dが鉛直方向の上方向に対して「-90°」の角度となる凸部526と、を少なくとも含み、±90°の角度範囲内において他の角度となる凸部526をも含む。比較例2は、鉛直方向の上方向に対する複数の凸部526の各方向Dがなす角度の平均値が、0°程度になるよう調整されている。実施例1は、複数の凸部526に、方向Dが鉛直方向の上方向に対して「+60°」の角度となる凸部526と、方向Dが鉛直方向の上方向に対して「-60°」の角度となる凸部526と、を少なくとも含み、±60°の角度範囲内において他の角度となる凸部526をも含む。実施例1は、鉛直方向の上方向に対する複数の凸部526の各方向Dがなす角度の平均値が、0°程度になるよう調整されている。 Next, Verification Experiment 2 was conducted to verify how the brightness distribution of light reflected by the reflective film 516 changes when the direction D of the plurality of convex portions 526 provided on the substrate 517 is adjusted. In the verification experiment 2, the substrate 517 created in the verification experiment 1 (the substrate 517 whose direction D from the center of gravity 526C to the apex 526V was all the same) was used as a comparative example 1. In verification experiment 2, a substrate 517 was created that includes a plurality of convex portions 526 that vary in the direction D from the center of gravity 526C to the apex 526V within an angular range of ±90° centered on the vertically upward direction when viewed from above. Comparative Example 2 was prepared. In verification experiment 2, a substrate 517 was created that included a plurality of convex portions 526 that varied in the angle range of ±60° centered on the vertically upward direction when viewed from above in the direction D from the center of gravity 526C to the apex 526V. This was referred to as Example 1. In the explanations of Comparative Example 2 and Example 1, the "±" sign attached to the angular range in direction D is "+" on one side in the horizontal direction (the right side in FIG. 27) with respect to the vertically upward direction. This means that the other side in the horizontal direction (the left side in FIG. 27) with respect to the upper direction in the vertical direction is marked with a "-" symbol. Comparative Example 2 includes a plurality of convex portions 526 in which the direction D is at an angle of “+90°” with respect to the upward direction in the vertical direction, and a convex portion 526 in which the direction D is at an angle of “−90°” with respect to the upward direction in the vertical direction. It includes at least a convex portion 526 that forms an angle of 90 degrees, and also includes convex portions 526 that form other angles within the angular range of ±90°. In Comparative Example 2, the average value of the angles formed by the respective directions D of the plurality of convex portions 526 with respect to the upward direction in the vertical direction is adjusted to be approximately 0°. In the first embodiment, the plurality of convex portions 526 include a convex portion 526 in which the direction D is at an angle of “+60°” with respect to the upward direction in the vertical direction, and a convex portion 526 in which the direction D is at an angle of “−60°” with respect to the upward direction in the vertical direction. It includes at least a convex portion 526 that forms an angle of .degree., and also includes a convex portion 526 that forms an angle of .±.60 degrees. In the first embodiment, the average value of the angles formed by the respective directions D of the plurality of convex portions 526 with respect to the upward direction in the vertical direction is adjusted to be about 0°.

検証実験2では、比較例1,2及び実施例1に係る各基板517に対して鉛直方向の上側で且つ水平方向についての中央位置に点光源を配置し、その点光源から供給される光を各基板517の反射膜516によって反射することで得られる反射光に係る輝度を測定または算出した。検証実験2の検証結果は、図33から図35に示される通りである。図33は、比較例1に係る基板517の主面内における反射光の輝度分布を示す図である。図34は、比較例2に係る基板517の主面内における反射光の輝度分布を示す図である。図35は、実施例1に係る基板517の主面内における反射光の輝度分布を示す図である。図33から図35では、反射光の輝度の高低をグレースケールの濃淡によって表現しており、輝度が高くなるほどグレースケールの濃淡が薄くなり、輝度が低くなるほどグレースケールの濃淡が濃くなる傾向とされる。 In verification experiment 2, a point light source was placed above each substrate 517 in the vertical direction and in the center position in the horizontal direction, and the light supplied from the point light source was The brightness of the reflected light obtained by being reflected by the reflective film 516 of each substrate 517 was measured or calculated. The verification results of verification experiment 2 are as shown in FIGS. 33 to 35. FIG. 33 is a diagram showing the luminance distribution of reflected light within the main surface of the substrate 517 according to Comparative Example 1. FIG. 34 is a diagram showing the luminance distribution of reflected light within the main surface of the substrate 517 according to Comparative Example 2. FIG. 35 is a diagram showing the luminance distribution of reflected light within the main surface of the substrate 517 according to Example 1. In FIGS. 33 to 35, the level of brightness of reflected light is expressed by grayscale shading, and the higher the brightness, the lighter the grayscale shading, and the lower the brightness, the darker the grayscale shading tends to be. Ru.

検証実験2の実験結果について図33から図35を用いて説明する。図33によれば、比較例1は、水平方向についての中央付近の輝度が高いものの、中央位置から両端位置に近づくほど輝度が低くなる傾向にあることから、輝度均一性が低い、と言える。比較例1では、全ての凸部526における方向Dが、平面に視て鉛直方向の上方向と一致している。このため、反射膜516のうち、水平方向についての中央付近に存在する凸部526と重畳する部分は、点光源からの光を効率的に反射するものの、それ以外の部分は反射効率が著しく低くなっており、これが上記した比較例1の検証結果の原因と推考される。図34によれば、比較例2は、輝度均一性が高いものの、全体の輝度が低い傾向にある、と言える。比較例2は、複数の凸部526における方向Dの角度範囲(±90°)が、実施例1に備わる複数の凸部526における方向Dの角度範囲(±60°)よりも広い。このため、比較例2に備わる反射膜516のうち、方向Dの角度の絶対値が大きすぎる凸部526と重畳する部分は、基板517のうちの水平方向についての中央位置にある点光源からの光を効率的に反射することができず、その分輝度が低下する、と推考される。一方、図35によれば、実施例1は、輝度均一性が高く、且つ全体の輝度も高い傾向にある、と言える。実施例1は、複数の凸部526における方向Dの角度範囲(±60°)が、比較例2に備わる複数の凸部526における方向Dの角度範囲(±90°)よりも狭い。このことから、実施例1に備わる反射膜516は、概ね全域にわたって基板517のうちの水平方向についての中央位置にある点光源からの光を効率的に反射することができ、それにより高い輝度均一性と高輝度とが実現されている、と推考される。 The experimental results of Verification Experiment 2 will be explained using FIGS. 33 to 35. According to FIG. 33, in Comparative Example 1, although the brightness near the center in the horizontal direction is high, the brightness tends to decrease as it approaches both end positions from the center position, so it can be said that the brightness uniformity is low. In Comparative Example 1, the direction D of all the convex portions 526 coincides with the upward direction in the vertical direction when viewed from above. Therefore, although the portion of the reflective film 516 that overlaps with the convex portion 526 located near the center in the horizontal direction efficiently reflects light from a point light source, the reflection efficiency of other portions is extremely low. This is considered to be the cause of the verification result of Comparative Example 1 described above. According to FIG. 34, although the comparative example 2 has high brightness uniformity, it can be said that the overall brightness tends to be low. In Comparative Example 2, the angular range (±90°) of the plurality of convex portions 526 in the direction D is wider than the angular range (±60°) of the plurality of convex portions 526 in the direction D provided in the first embodiment. Therefore, the portion of the reflective film 516 provided in Comparative Example 2 that overlaps with the convex portion 526 whose absolute value of the angle in direction D is too large is exposed to light from a point light source located at the center of the substrate 517 in the horizontal direction. It is presumed that the light cannot be reflected efficiently and the brightness decreases accordingly. On the other hand, according to FIG. 35, it can be said that Example 1 has high brightness uniformity and tends to have high overall brightness. In Example 1, the angular range (±60°) of the plurality of convex portions 526 in the direction D is narrower than the angular range (±90°) of the plurality of convex portions 526 in the direction D of the second comparative example. From this, the reflective film 516 provided in Example 1 can efficiently reflect light from a point light source located at the horizontal center of the substrate 517 over almost the entire area, thereby achieving high brightness uniformity. It is inferred that high brightness and high brightness have been achieved.

以上のように、本実施形態に係る複数の凸部526(第1凸部526α、第2凸部526β及び第3凸部526γを含む)は、方向Dに、鉛直方向の上向きのベクトル成分を含んでいる。従って、複数の凸部526は、図36に示すように、太陽光や室内灯等のように、反射膜516に対して鉛直方向の上側から照射される光を反射膜516によって反射させ、正反射方向SDよりも基板517の主面の法線方向に近い方向NDに効率的に進行させることができる。つまり、太陽光や室内灯等を反射光として効率的に利用することができるので、反射光の輝度を向上させる上で好適となる。なお、図36では、基板517を屋外に設置し、光源として太陽を利用した場合を例示しているが、屋内に設置した場合は室内灯等を光源として利用することになる。 As described above, the plurality of convex portions 526 (including the first convex portion 526α, the second convex portion 526β, and the third convex portion 526γ) according to the present embodiment transmits an upward vector component in the vertical direction in the direction D. Contains. Therefore, as shown in FIG. 36, the plurality of convex portions 526 allows the reflective film 516 to reflect light, such as sunlight or indoor lights, that is irradiated from above in the vertical direction to the reflective film 516, and It is possible to make the light travel more efficiently in the direction ND, which is closer to the normal direction of the main surface of the substrate 517 than in the reflection direction SD. In other words, it is possible to efficiently use sunlight, indoor lights, etc. as reflected light, which is suitable for improving the brightness of reflected light. Note that although FIG. 36 illustrates a case where the board 517 is installed outdoors and uses the sun as a light source, if it is installed indoors, an indoor light or the like will be used as a light source.

その上、本実施形態では、検証実験2の実施例1と同様に、複数の凸部526における各方向Dが、平面に視て鉛直方向の上方向を中心として±60°の角度範囲となるようばらついている。当該角度範囲は、基板517における第1辺部17A及び第2辺部17Bの各長さに基づいて設定されている。詳しくは、まず、第1辺部17Aの長さを「A」とし、第2辺部17Bの長さを「B」とし、平面に視て鉛直方向の上方向に対して方向Dがなす角度を「θ」とする。本実施形態に係る複数の凸部526は、角度θが次の式(2)を満たすよう構成されている。式(2)における「+」、「-」の各符号は、検証実験2にて説明した通りである。 Furthermore, in this embodiment, as in Example 1 of Verification Experiment 2, each direction D in the plurality of convex portions 526 has an angular range of ±60° centered on the upper direction in the vertical direction when viewed from the plane. It's fluctuating. The angular range is set based on the lengths of the first side portion 17A and the second side portion 17B of the substrate 517. In detail, first, the length of the first side 17A is "A", the length of the second side 17B is "B", and the angle formed by the direction D with respect to the upward direction in the vertical direction when viewed from a plane. Let be “θ”. The plurality of convex portions 526 according to this embodiment are configured such that the angle θ satisfies the following equation (2). The signs "+" and "-" in equation (2) are as explained in Verification Experiment 2.

-arctan(B/A)≦θ≦arctan(B/A) (2) -arctan(B/A)≦θ≦arctan(B/A) (2)

式(2)に関して詳しく説明する。まず、図26に示すように、平面形状が方形とされる基板517における2つの対角線DI1,DI2が、鉛直方向の上方向に対してなす角度は、「±arctan(B/A)」となる。本実施形態に係る基板517は、短辺である第1辺部17Aと、長辺である第2辺部17Bと、の長さの比率が「9:16」となっていることから、式(2)のAに「9」を代入し、Bに「16」を代入する。すると、凸部526における角度θの角度範囲は、「±60°(-60°~+60°)」程度となる。ここで、基板517における2つの対角線DI1,DI2のいずれかと一致する角度や2つの対角線DI1,DI2よりも鉛直方向に近い角度でもって反射膜516に対して鉛直方向の上側から照射される光の量は、基板517における2つの対角線DI1,DI2よりも水平方向に近い角度でもって鉛直方向の上側から反射膜516に対して照射される光の量よりも多い。従って、角度θが上記した式(2)を満たせば、凸部526は、基板517における2つの対角線DI1,DI2のいずれかと一致する角度や2つの対角線DI1,DI2よりも鉛直方向に近い角度でもって鉛直方向の上側から反射膜516に対して照射される光を反射膜516によって反射させて、正反射方向SDよりも基板517の主面の法線方向に近い方向NDに効率的に進行させることが可能となる。これにより、光の利用効率が向上するので、反射光の輝度を向上させる上でより好適となる。 Equation (2) will be explained in detail. First, as shown in FIG. 26, the angle that the two diagonal lines DI1 and DI2 of the substrate 517, which has a rectangular planar shape, make with respect to the upward vertical direction is "±arctan (B/A)". . Since the substrate 517 according to this embodiment has a length ratio of 9:16 between the first side 17A, which is the short side, and the second side 17B, which is the long side, the equation Substitute "9" for A and "16" for B in (2). Then, the angular range of the angle θ at the convex portion 526 is approximately “±60° (−60° to +60°)”. Here, the light irradiated from above in the vertical direction to the reflective film 516 at an angle that coincides with either of the two diagonal lines DI1 and DI2 on the substrate 517 or at an angle that is closer to the vertical direction than the two diagonal lines DI1 and DI2. The amount of light is greater than the amount of light that is irradiated onto the reflective film 516 from above in the vertical direction at an angle closer to the horizontal direction than the two diagonal lines DI1 and DI2 on the substrate 517. Therefore, if the angle θ satisfies the above formula (2), the convex portion 526 will be formed at an angle that coincides with either of the two diagonal lines DI1 and DI2 on the substrate 517 or an angle that is closer to the vertical direction than the two diagonal lines DI1 and DI2. Therefore, the light irradiated onto the reflective film 516 from above in the vertical direction is reflected by the reflective film 516, and is caused to travel more efficiently in the direction ND, which is closer to the normal direction of the main surface of the substrate 517 than in the regular reflection direction SD. becomes possible. This improves the efficiency of light utilization, making it more suitable for improving the brightness of reflected light.

また、複数の凸部526には、角度θが、「arctan(B/A)」と一致するものと、「-arctan(B/A)」と一致するものと、が含まれている。具体的には、第2凸部526βの角度θ2は、図30に示すように、上記した通り図30に示す右側に約60°程度であり、「arctan(B/A)」と一致している。第3凸部526γの角度θ3は、図31に示すように、上記した通り図31に示す左側に約60°程度であり、「-arctan(B/A)」と一致している。このようにすれば、第2凸部526βは、基板517における対角線DI1と一致する角度θ2でもって鉛直方向の上側から反射膜516に対して照射される光を反射膜516によって反射させて、正反射方向SDよりも基板517の主面の法線方向に近い方向NDに効率的に進行させることができる。同様に、第3凸部526γは、基板517における対角線DI2と一致する角度θ3でもって鉛直方向の上側から反射膜516に対して照射される光を反射膜516によって反射させて、正反射方向SDよりも基板517の主面の法線方向に近い方向NDに効率的に進行させることができる。従って、例えば、基板517の鉛直方向の上端位置であって水平方向についての中央位置付近から入射する入射光を想定した場合、その入射光を、基板517の水平方向の端位置であって鉛直方向についての中央位置付近に存在する第2凸部526β及び第3凸部526γは、反射膜516によって有効に反射させることができる。これにより、基板517の水平方向についての端位置付近に局所的な暗部が生じ難くなるので、基板517の主面内における反射光の輝度を均一化することができる。 Further, the plurality of convex portions 526 include those whose angle θ matches "arctan (B/A)" and those whose angle θ matches "-arctan (B/A)." Specifically, as shown in FIG. 30, the angle θ2 of the second convex portion 526β is approximately 60° toward the right side in FIG. 30 as described above, and is consistent with "arctan (B/A)". There is. As shown in FIG. 31, the angle θ3 of the third convex portion 526γ is approximately 60° to the left in FIG. 31 as described above, and coincides with "-arctan(B/A)". In this way, the second convex portion 526β causes the reflective film 516 to reflect the light irradiated onto the reflective film 516 from above in the vertical direction at an angle θ2 that coincides with the diagonal line DI1 on the substrate 517. It is possible to make the light travel more efficiently in the direction ND, which is closer to the normal direction of the main surface of the substrate 517 than in the reflection direction SD. Similarly, the third convex portion 526γ causes the reflective film 516 to reflect the light irradiated onto the reflective film 516 from above in the vertical direction at an angle θ3 that coincides with the diagonal line DI2 on the substrate 517, so that the light is reflected in the specular reflection direction SD. It is possible to more efficiently advance in the direction ND, which is closer to the normal direction of the main surface of the substrate 517. Therefore, for example, if it is assumed that the incident light is incident from the upper end position of the substrate 517 in the vertical direction and near the center position in the horizontal direction, the incident light is The second convex portion 526β and the third convex portion 526γ that are present near the central position of can be effectively reflected by the reflective film 516. This makes it difficult for local dark areas to occur near the end positions of the substrate 517 in the horizontal direction, so that the brightness of the reflected light within the main surface of the substrate 517 can be made uniform.

以上説明したように本実施形態によれば、第1凸部526α、第2凸部526β及び第3凸部526γは、平面に視て第1重心526Cαから第1頂点526Vαへ向かう方向である第1方向D1と、平面に視て第2重心526Cβから第2頂点526Vβへ向かう方向である第2方向D2と、平面に視て第3重心526Cγから第3頂点526Vγへ向かう方向である第3方向D3と、が鉛直方向の上向きのベクトル成分を含む。第1凸部526α、第2凸部526β及び第3凸部526γによって反射膜516は、特定の向きの入射光を反射させて正反射方向SDよりも基板517の主面の法線方向に近い方向NDに効率的に進行させる、反射異方性を有する。具体的には、第1凸部526α、第2凸部526β及び第3凸部526γは、第1方向D1、第2方向D2及び第3方向D3とはそれぞれ逆向きに進行する入射光を反射膜516により反射させて、正反射方向SDよりも基板517の主面の法線方向に近い方向NDに効率的に進行させることができる。上記したように、第1方向D1、第2方向D2及び第3方向D3に、鉛直方向の上向きのベクトル成分を含ませることで、第1凸部526α、第2凸部526β及び第3凸部526γは、太陽光や室内灯等のように、反射膜516に対して鉛直方向の上側から照射される光を反射膜516によって反射させ、正反射方向SDよりも基板517の主面の法線方向に近い方向NDに効率的に進行させることができる。つまり、太陽光や室内灯等を反射光として効率的に利用することができるので、反射光の輝度を向上させる上で好適となる。 As described above, according to the present embodiment, the first convex portion 526α, the second convex portion 526β, and the third convex portion 526γ are arranged in a direction from the first center of gravity 526Cα toward the first apex 526Vα when viewed from above. one direction D1, a second direction D2 which is a direction from the second center of gravity 526Cβ to the second vertex 526Vβ when seen in a plane, and a third direction which is a direction from the third center of gravity 526Cγ to the third vertex 526Vγ when seen in a plane. D3 includes an upward vector component in the vertical direction. The reflective film 516 reflects incident light in a specific direction by the first convex portion 526α, the second convex portion 526β, and the third convex portion 526γ, and is closer to the normal direction of the main surface of the substrate 517 than the specular reflection direction SD. It has reflection anisotropy that allows it to travel efficiently in the direction ND. Specifically, the first convex portion 526α, the second convex portion 526β, and the third convex portion 526γ reflect incident light traveling in directions opposite to the first direction D1, the second direction D2, and the third direction D3, respectively. The light can be reflected by the film 516 and travel more efficiently in the direction ND, which is closer to the normal direction of the principal surface of the substrate 517 than in the specular reflection direction SD. As described above, by including an upward vector component in the vertical direction in the first direction D1, second direction D2, and third direction D3, the first convex portion 526α, the second convex portion 526β, and the third convex portion 526γ reflects light that is irradiated from above in the vertical direction to the reflective film 516, such as sunlight or an indoor light, so that the normal to the main surface of the substrate 517 is set more closely than the regular reflection direction SD. It is possible to efficiently advance in the direction ND close to the direction. In other words, it is possible to efficiently use sunlight, indoor lights, etc. as reflected light, which is suitable for improving the brightness of reflected light.

また、基板517は、平面形状が方形とされ、鉛直方向に沿う第1辺部17Aと、水平方向に沿う第2辺部17Bと、を有しており、第1凸部526α、第2凸部526β及び第3凸部526γは、第1辺部17Aの長さを「A」とし、第2辺部17Bの長さを「B」とし、鉛直方向の上方向に対して第1方向D1がなす角度を「θ1」とし、鉛直方向の上方向に対して第2方向D2がなす角度を「θ2」とし、鉛直方向の上方向に対して第3方向D3がなす角度を「θ3」としたとき、角度θ1,θ2,θ3が次の式(3)を満たす。 Further, the substrate 517 has a rectangular planar shape, and has a first side portion 17A along the vertical direction and a second side portion 17B along the horizontal direction. The portion 526β and the third convex portion 526γ have a length of the first side portion 17A as “A”, a length of the second side portion 17B as “B”, and are arranged in the first direction D1 with respect to the vertically upward direction. Let the angle made by the second direction D2 with respect to the upward direction in the vertical direction be ``θ2'', and the angle made by the third direction D3 with respect to the upward direction in the vertical direction be ``θ3''. Then, the angles θ1, θ2, and θ3 satisfy the following equation (3).

-arctan(B/A)≦θ1,θ2,θ3≦arctan(B/A) (3) -arctan(B/A)≦θ1, θ2, θ3≦arctan(B/A) (3)

まず、平面形状が方形とされる基板517における2つの対角線DI1,DI2が、鉛直方向の上方向に対してなす角度は、「±arctan(B/A)」となる。ここで、基板517における2つの対角線DI1,DI2のいずれかと一致する角度や2つの対角線DI1,DI2よりも鉛直方向に近い角度でもって反射膜516に対して鉛直方向の上側から照射される光の量は、基板517における2つの対角線DI1,DI2よりも水平方向に近い角度でもって鉛直方向の上側から反射膜516に対して照射される光の量よりも多い。従って、角度θ1,θ2,θ3が上記した式(3)を満たせば、第1凸部526α、第2凸部526β及び第3凸部526γは、基板517における2つの対角線DI1,DI2のいずれかと一致する角度や2つの対角線DI1,DI2よりも鉛直方向に近い角度でもって鉛直方向の上側から反射膜516に対して照射される光を反射膜516によって反射させて、正反射方向SDよりも基板517の主面の法線方向に近い方向NDに効率的に進行させることが可能となる。これにより、光の利用効率が向上するので、反射光の輝度を向上させる上でより好適となる。なお、上記した式(3)における「-」の符号は、鉛直方向の上方向に対して水平方向について「+」の符号側とは反対側であることを意味する。 First, the angle that the two diagonal lines DI1 and DI2 of the substrate 517, which has a rectangular planar shape, make with respect to the upward direction in the vertical direction is "±arctan (B/A)". Here, the light irradiated from above in the vertical direction to the reflective film 516 at an angle that coincides with either of the two diagonal lines DI1 and DI2 on the substrate 517 or at an angle that is closer to the vertical direction than the two diagonal lines DI1 and DI2. The amount of light is greater than the amount of light that is irradiated onto the reflective film 516 from above in the vertical direction at an angle closer to the horizontal direction than the two diagonal lines DI1 and DI2 on the substrate 517. Therefore, if the angles θ1, θ2, and θ3 satisfy the above equation (3), the first convex portion 526α, the second convex portion 526β, and the third convex portion 526γ are aligned with either of the two diagonals DI1, DI2 on the substrate 517. The reflective film 516 reflects the light irradiated onto the reflective film 516 from above in the vertical direction at a matching angle or an angle closer to the vertical direction than the two diagonals DI1 and DI2, and It becomes possible to efficiently advance in the direction ND close to the normal direction of the main surface of 517. This improves the efficiency of light utilization, making it more suitable for improving the brightness of reflected light. Note that the "-" sign in the above equation (3) means that it is on the opposite side from the "+" sign side in the horizontal direction with respect to the upward direction in the vertical direction.

また、第1凸部526α、第2凸部526β及び第3凸部526γのいずれかは、角度θ1,θ2,θ3のいずれかが、「arctan(B/A)」と「-arctan(B/A)」との少なくとも一方と一致する。 Further, any one of the first convex portion 526α, the second convex portion 526β, and the third convex portion 526γ has an angle θ1, θ2, or θ3 that is “arctan (B/A)” or “−arctan (B/A)”. A).

このようにすれば、第1凸部526α、第2凸部526β及び第3凸部526γのいずれかは、基板517における2つの対角線DI1,DI2の少なくとも一方と一致する角度でもって鉛直方向の上側から反射膜516に対して照射される光を反射膜516によって反射させて、正反射方向SDよりも基板517の主面の法線方向に近い方向NDに効率的に進行させることができる。従って、例えば、基板517の鉛直方向の上端位置であって水平方向についての中央位置付近から入射する入射光を想定した場合、その入射光を、基板517の水平方向の端位置であって鉛直方向についての中央位置付近に存在する第1凸部526α、第2凸部526β及び第3凸部526γのいずれかは、反射膜516によって有効に反射させることができる。これにより、基板517の水平方向についての端位置付近に局所的な暗部が生じ難くなるので、基板517の主面内における反射光の輝度を均一化することができる。 In this way, any one of the first convex portion 526α, the second convex portion 526β, and the third convex portion 526γ is positioned on the upper side in the vertical direction at an angle that coincides with at least one of the two diagonals DI1 and DI2 on the substrate 517. The light irradiated onto the reflective film 516 from the reflection film 516 can be reflected by the reflective film 516, and can be made to travel more efficiently in the direction ND, which is closer to the normal direction of the principal surface of the substrate 517 than in the specular reflection direction SD. Therefore, for example, if it is assumed that the incident light is incident from the upper end position of the substrate 517 in the vertical direction and near the center position in the horizontal direction, the incident light is Any one of the first convex portion 526α, the second convex portion 526β, and the third convex portion 526γ existing in the vicinity of the central position can be effectively reflected by the reflective film 516. This makes it difficult for local dark areas to occur near the end positions of the substrate 517 in the horizontal direction, so that the brightness of the reflected light within the main surface of the substrate 517 can be made uniform.

<実施形態7>
実施形態7を図37から図40によって説明する。この実施形態7では、上記した実施形態6から基板617の向きを変更した場合を示す。なお、上記した実施形態6と同様の構造、作用及び効果について重複する説明は省略する。
<Embodiment 7>
Embodiment 7 will be described with reference to FIGS. 37 to 40. This seventh embodiment shows a case where the orientation of the substrate 617 is changed from the above-described sixth embodiment. Note that redundant explanations regarding the structure, operation, and effects similar to those of the sixth embodiment described above will be omitted.

本実施形態に係る基板617は、図37に示すように、平面形状が縦長の方形状とされる。基板617は、鉛直方向であるY軸方向に沿う第1辺部617Aが長辺とされ、水平方向であるX軸方向に沿う第2辺部617Bが短辺とされる。つまり、基板617は、「縦置き」の状態で使用されることが想定されている。基板617は、長辺である第1辺部617Aと、短辺である第2辺部617Bと、の長さの比率が「16:9」となっている。 As shown in FIG. 37, the substrate 617 according to this embodiment has a vertically elongated rectangular planar shape. In the substrate 617, a first side 617A along the vertical Y-axis direction is a long side, and a second side 617B along the horizontal X-axis direction is a short side. In other words, the board 617 is assumed to be used in a "vertical" state. The substrate 617 has a length ratio of 16:9 between a first side 617A, which is a long side, and a second side 617B, which is a short side.

このように、本実施形態に係る基板617は、長辺である第1辺部617Aと、短辺である第2辺部617Bと、の長さの比率が「16:9」となっていることから、実施形態6にて説明した式(2)のAに「16」を代入し、Bに「9」を代入する。すると、凸部626における角度θの角度範囲は、「±30°(-30°~+30°)」程度となる。これに伴い、本実施形態に係る複数の凸部626は、図38に示すように、各方向Dが、平面に視て鉛直方向の上方向を中心として±30°の角度範囲となるようばらついている。第1凸部626αは、第1方向D1が鉛直方向の上方向と一致している。第2凸部626βの角度θ2は、図39に示すように、図39に示す右側に約30°程度であり、式(2),(3)の「arctan(B/A)」と一致している。第3凸部626γの角度θ3は、図40に示すように、図40に示す左側に約30°程度であり、式(2),(3)の「-arctan(B/A)」と一致している。本実施形態によれば、上記した実施形態6と同様の作用及び効果を得ることができる。 In this way, the substrate 617 according to the present embodiment has a length ratio of 16:9 between the first side 617A, which is the long side, and the second side 617B, which is the short side. Therefore, "16" is substituted for A in equation (2) explained in the sixth embodiment, and "9" is substituted for B. Then, the angular range of the angle θ at the convex portion 626 is about "±30° (-30° to +30°)". Accordingly, as shown in FIG. 38, the plurality of convex portions 626 according to the present embodiment vary so that each direction D has an angular range of ±30° centered on the upper direction in the vertical direction when viewed from above. ing. In the first convex portion 626α, the first direction D1 coincides with the upward direction in the vertical direction. As shown in FIG. 39, the angle θ2 of the second convex portion 626β is approximately 30° to the right side in FIG. ing. As shown in FIG. 40, the angle θ3 of the third convex portion 626γ is approximately 30° toward the left side in FIG. We are doing so. According to this embodiment, the same functions and effects as those of the sixth embodiment described above can be obtained.

<実施形態8>
実施形態8を図41から図44によって説明する。この実施形態8では、上記した実施形態3と同様の凸部726を、上記した実施形態6に記載した構成に適用した場合を示す。なお、上記した実施形態3,6と同様の構造、作用及び効果について重複する説明は省略する。
<Embodiment 8>
Embodiment 8 will be described with reference to FIGS. 41 to 44. Embodiment 8 shows a case where a convex portion 726 similar to that of Embodiment 3 described above is applied to the configuration described in Embodiment 6 described above. Note that redundant explanations regarding structures, operations, and effects similar to those of the third and sixth embodiments described above will be omitted.

本実施形態に係る複数の凸部726は、図41に示すように、いずれも円形から弓形部分を切り欠いた平面形状とされる。つまり、各凸部726の平面形状は、実施形態3にて説明した各凸部226の平面形状(図17を参照)と同様である。このような平面形状であっても、複数の凸部726は、各方向Dが、平面に視て鉛直方向の上方向を中心として±60°の角度範囲となるようばらついている。第1凸部726αは、図42に示すように、第1方向D1が鉛直方向の上方向と一致している。第2凸部726βの角度θ2は、図43に示すように、図43に示す右側に約60°程度であり、式(2),(3)の「arctan(B/A)」と一致している。第3凸部726γの角度θ3は、図44に示すように、図44に示す左側に約60°程度であり、式(2),(3)の「-arctan(B/A)」と一致している。本実施形態によれば、上記した実施形態3,6と同様の作用及び効果を得ることができる。 As shown in FIG. 41, each of the plurality of convex portions 726 according to this embodiment has a planar shape with an arcuate portion cut out from a circular shape. That is, the planar shape of each convex portion 726 is similar to the planar shape of each convex portion 226 described in the third embodiment (see FIG. 17). Even with such a planar shape, the plurality of convex portions 726 vary so that each direction D has an angular range of ±60° centered on the upper direction in the vertical direction when viewed from the plane. As shown in FIG. 42, the first convex portion 726α has the first direction D1 aligned with the upper direction in the vertical direction. As shown in FIG. 43, the angle θ2 of the second convex portion 726β is approximately 60° toward the right side in FIG. ing. As shown in FIG. 44, the angle θ3 of the third convex portion 726γ is about 60° toward the left side in FIG. We are doing so. According to this embodiment, the same actions and effects as those of the third and sixth embodiments described above can be obtained.

<他の実施形態>
本明細書が開示する技術は、上記記述及び図面によって説明した実施形態に限定されるものではなく、例えば次のような実施形態も技術的範囲に含まれる。
<Other embodiments>
The technology disclosed in this specification is not limited to the embodiments described above and illustrated in the drawings, and includes, for example, the following embodiments within its technical scope.

(1)実施形態1,4に記載した第1フォトマスク50及び第2フォトマスク70には、それぞれ1枚の半透過膜が設けられていてもよい。その場合、基材51,71の面内の位置に応じて半透過膜の膜厚を異ならせるようにすればよい。例えば、第1フォトマスク50においては、半透過膜のうち、第1半透過領域50HT1を構成する部分は、第2半透過領域50HT2を構成する部分よりも膜厚を薄くすればよい。例えば、第2フォトマスク70においては、半透過膜のうち、第1半透過領域70HT1を構成する部分は、第2半透過領域70HT2を構成する部分よりも膜厚を厚くすればよい。 (1) The first photomask 50 and the second photomask 70 described in Embodiments 1 and 4 may each be provided with one semi-transparent film. In that case, the thickness of the semi-transparent film may be varied depending on the in-plane position of the base materials 51 and 71. For example, in the first photomask 50, the portion of the semi-transparent film that constitutes the first semi-transparent region 50HT1 may be made thinner than the portion that constitutes the second semi-transparent region 50HT2. For example, in the second photomask 70, the portion of the semi-transparent film that constitutes the first semi-transparent region 70HT1 may be made thicker than the portion that constitutes the second semi-transparent region 70HT2.

(2)実施形態2,3,5に記載の第1絶縁膜118,218をパターニングするのに、実施形態1に記載したハーフトーンマスクである第1フォトマスク50を用いることも可能である。 (2) To pattern the first insulating films 118 and 218 described in Embodiments 2, 3, and 5, it is also possible to use the first photomask 50, which is the halftone mask described in Embodiment 1.

(3)実施形態4に記載のネガ型の感光性樹脂材料からなる第1絶縁膜318をパターニングするのに、実施形態2,3,5に記載したグレートーンマスク60,260を用いることも可能である。 (3) In patterning the first insulating film 318 made of the negative photosensitive resin material described in Embodiment 4, it is also possible to use the gray tone masks 60 and 260 described in Embodiments 2, 3, and 5. It is.

(4)実施形態2,3,5に記載の第1絶縁膜118,218の材料として、ネガ型の感光性樹脂材料を用いることも可能である。 (4) As the material for the first insulating films 118 and 218 described in Embodiments 2, 3, and 5, it is also possible to use a negative photosensitive resin material.

(5)凸部26,126,226,326,426,526,626,726及び凹部27,127,227,327,427の具体的な断面形状は、図示以外にも適宜に変更可能である。 (5) The specific cross-sectional shapes of the convex portions 26, 126, 226, 326, 426, 526, 626, 726 and the concave portions 27, 127, 227, 327, 427 can be changed as appropriate other than those shown in the drawings.

(6)凸部26,126,226,326,426,526,626,726の重心26C,226C,426C,526Cと頂点26V,126V,326V,526Vとの位置関係は、図示以外にも適宜に変更可能である。 (6) The positional relationships between the centers of gravity 26C, 226C, 426C, 526C of the convex portions 26, 126, 226, 326, 426, 526, 626, 726 and the vertices 26V, 126V, 326V, 526V may be determined as appropriate in addition to those shown in the drawings. Can be changed.

(7)凸部26,126,226,326,426,526,626,726の径寸法、第1凹部27A,127A,227A,327A,427A,527Aの深さ、及び第2凹部27B,327Bの深さの具体的な数値は、適宜に変更可能である。また、凸部26,126,226,326,426,526,626,726の傾き角度の具体的な数値は、適宜に変更可能である。また、対向基板13の基板23の屈折率の具体的な数値は、適宜に変更可能である。 (7) Diameter dimensions of convex portions 26, 126, 226, 326, 426, 526, 626, 726, depths of first recesses 27A, 127A, 227A, 327A, 427A, 527A, and depths of second recesses 27B, 327B. The specific numerical value of the depth can be changed as appropriate. Further, the specific values of the inclination angles of the convex portions 26, 126, 226, 326, 426, 526, 626, and 726 can be changed as appropriate. Further, the specific numerical value of the refractive index of the substrate 23 of the counter substrate 13 can be changed as appropriate.

(8)凸部26,126,226,326,426,526,626,726が傾く向きのパターンは、図示した3つ以外にも、4つ以上が設定されていてもよい。 (8) In addition to the three illustrated patterns, four or more patterns may be set in which the convex portions 26, 126, 226, 326, 426, 526, 626, and 726 are inclined.

(9)間隔を空けて隣り合う全ての凸部26,126,226,326,426,526,626,726の傾きが互いに異なる構成に限らない。例えば、間隔を空けて隣り合う2つずつの凸部26,126,226,326,426,526,626,726に、同じ向きに傾く2つの凸部26,126,226,326,426,526,626,726が含まれてもよい。 (9) The configuration is not limited to a configuration in which all the convex portions 26, 126, 226, 326, 426, 526, 626, and 726 that are adjacent to each other at intervals have different inclinations. For example, two convex portions 26, 126, 226, 326, 426, 526, 626, 726 that are adjacent to each other with an interval, and two convex portions 26, 126, 226, 326, 426, 526 that are inclined in the same direction. , 626, 726 may be included.

(10)複数の凸部26,126,226,326,426,526,626,726は、傾く向きに一定の規則性があってもよい。 (10) The plurality of convex portions 26, 126, 226, 326, 426, 526, 626, and 726 may have a certain regularity in the direction of inclination.

(11)導電層21及び導電膜を省略することも可能である。 (11) It is also possible to omit the conductive layer 21 and the conductive film.

(12)第2絶縁膜19と、第2絶縁膜19の上層側に配される透明電極膜と、を省略することも可能である。その場合、上記した各実施形態に記載した複数の画素電極15の平面に視たパターンを、反射膜16,516に適用することが可能である。上記パターンが適用された反射膜16,516は、物理的に分離された複数の部位により構成され、これらの部位がそれぞれバックプレーン回路に接続される。バックプレーン回路に接続された反射膜16,516の各部位が複数の画素電極15を構成する。 (12) It is also possible to omit the second insulating film 19 and the transparent electrode film disposed on the upper layer side of the second insulating film 19. In that case, it is possible to apply the pattern of the plurality of pixel electrodes 15 described in each of the above-described embodiments as seen in a plane to the reflective film 16, 516. The reflective film 16, 516 to which the above pattern is applied is composed of a plurality of physically separated parts, and each of these parts is connected to a backplane circuit. Each portion of the reflective film 16, 516 connected to the backplane circuit constitutes a plurality of pixel electrodes 15.

(13)液晶表示装置10に備わる液晶パネル11は、反射型以外にも半透過型であってもよい。半透過型の液晶パネルを用いる場合、液晶パネルの背面側にバックライト装置が設置される。バックライト装置の光源としては、LED、有機ELなどが用いられる。バックライト装置には、量子ドット蛍光体を含む光学部材を用いることが可能である。量子ドット蛍光体は、光源から照射される一次光を波長変換し、色純度に優れた二次光を発することができる。 (13) The liquid crystal panel 11 included in the liquid crystal display device 10 may be of a transflective type instead of a reflective type. When using a transflective liquid crystal panel, a backlight device is installed on the back side of the liquid crystal panel. As a light source of the backlight device, an LED, an organic EL, etc. are used. An optical member containing a quantum dot phosphor can be used in the backlight device. Quantum dot phosphors can convert the wavelength of primary light emitted from a light source and emit secondary light with excellent color purity.

(14)液晶表示装置10以外にも、有機EL表示装置であってもよい。有機EL表示装置は、半透過型とされる。 (14) In addition to the liquid crystal display device 10, an organic EL display device may be used. The organic EL display device is of a transflective type.

(15)実施形態6から実施形態8に記載の構成において、複数の凸部526,626,726(第1凸部526α,626α,726α、第2凸部526β,626β,726β及び第3凸部526γ,626γ,726γ)のいずれかの角度θ(角度θ1,θ2,θ3)が、式(2),(3)の「arctan(B/A)」、「-arctan(B/A)」のうちのいずれか一方のみと一致し、他方とは不一致でもよい。また、複数の凸部526,626,726(第1凸部526α,626α,726α、第2凸部526β,626β,726β及び第3凸部526γ,626γ,726γ)のいずれかの角度θ(角度θ1,θ2,θ3)も、式(2),(3)の「arctan(B/A)」、「-arctan(B/A)」とは不一致であってもよい。いずれにおいても、角度θ(角度θ1,θ2,θ3)が、式(2),(3)を満たすようにすることは可能である。 (15) In the configurations described in Embodiments 6 to 8, the plurality of convex portions 526, 626, 726 (first convex portions 526α, 626α, 726α, second convex portions 526β, 626β, 726β, and third convex portions 526γ, 626γ, 726γ) (angle θ1, θ2, θ3) is equal to “arctan(B/A)” and “-arctan(B/A)” in equations (2) and (3). It may match only one of them and may not match the other. Also, the angle θ (angle θ1, θ2, θ3) may also be inconsistent with "arctan(B/A)" and "-arctan(B/A)" in equations (2) and (3). In either case, it is possible to make the angle θ (angles θ1, θ2, θ3) satisfy equations (2) and (3).

(16)実施形態6から実施形態8に記載の構成において、基板517,617における第1辺部17A,617Aと第2辺部17B,617Bとの長さの比率は、「9:16」、「16:9」以外にも適宜に変更可能である。第1辺部17A,617Aと第2辺部17B,617Bとの長さの比率が変更されるのに伴って、複数の凸部526,626,726における各方向Dが、平面に視て鉛直方向の上方向に対してなす角度θの角度範囲を適宜に変更することができる。この角度範囲を変更するに際しては、上記した式(2),(3)に基づいて角度範囲を設定することが可能であるが、必ずしもその限りではない。 (16) In the configurations described in Embodiments 6 to 8, the length ratio of the first side portions 17A, 617A and the second side portions 17B, 617B in the substrates 517, 617 is “9:16”, It can be changed as appropriate other than "16:9". As the ratio of the lengths of the first side portions 17A, 617A and the second side portions 17B, 617B is changed, each direction D of the plurality of convex portions 526, 626, 726 is vertical when viewed from the plane. The angular range of the angle θ formed with respect to the upward direction can be changed as appropriate. When changing this angular range, it is possible to set the angular range based on the above equations (2) and (3), but this is not necessarily the case.

(17)実施形態6から実施形態8に記載の構成において、基板517,617の平面形状は、長方形以外にも正方形、台形、菱形、円形、楕円形等であってもよい。基板517,617の平面形状が変更されるのに伴って、複数の凸部526,626,726における各方向Dが、平面に視て鉛直方向の上方向に対してなす角度θの角度範囲を適宜に変更することができる。この角度範囲を変更するに際しては、上記した式(2),(3)に基づいて角度範囲を設定することが可能であるが、必ずしもその限りではない。 (17) In the configurations described in Embodiments 6 to 8, the planar shape of the substrates 517 and 617 may be a square, a trapezoid, a rhombus, a circle, an ellipse, etc. other than a rectangle. As the planar shape of the substrates 517, 617 is changed, the angle range of the angle θ that each direction D of the plurality of convex portions 526, 626, 726 makes with respect to the upper direction in the vertical direction when viewed from the plane is changed. It can be changed as appropriate. When changing this angular range, it is possible to set the angular range based on the above equations (2) and (3), but this is not necessarily the case.

(18)実施形態6から実施形態8に記載の構成を、実施形態2,4,5等に適宜に組み合わせることも可能である。 (18) It is also possible to appropriately combine the configurations described in Embodiments 6 to 8 with Embodiments 2, 4, 5, etc.

10…液晶表示装置(表示装置)、12,112,212,312,412,512…アレイ基板(反射板)、13…対向基板、16,516…反射膜、17,117,317,517,617…基板、17A,617A…第1辺部、17B,617B…第2辺部、18,118,218,318,518…第1絶縁膜(絶縁膜)、18A,318A,518A…凹凸面、26,126,226,326,426,526,626,726…凸部、26α,126α,226α,326α,426α,526α,626α,726α…第1凸部、26β,126β,226β,326β,426β,526β,626β,726β…第2凸部、26γ,126γ,226γ,326γ,426γ,526γ,626γ,726γ…第3凸部、26C,226C,426C,526C…重心、26Cα,526Cα…第1重心、26Cβ,526Cβ…第2重心、26Cγ,526Cγ…第3重心、26V,126V,326V,526V…頂点、26Vα,526Vα…第1頂点、26Vβ,526Vβ…第2頂点、26Vγ,526Vγ…第3頂点、27,127,227,327,427…凹部、27A,127A,227A,327A,427A,527A…第1凹部、27B,327B…第2凹部、27Aα,127α,227α,327α,427α…第3凹部、27Aβ,127β,227β,327β,427β…第4凹部、27Aγ,127γ,227γ,327γ,427γ…第5凹部、50…第1フォトマスク、50HT1…第1半透過領域、50HT2…第2半透過領域、50HT3…第5半透過領域、50HT4…第6半透過領域、50HT5…第7半透過領域、50LS…遮光領域、50LS1…第1遮光領域、50LS2…第2遮光領域、50LS3…第3遮光領域、50LS1C,50LS2C,50LS3C…重心、60,260,460…グレートーンマスク(第1フォトマスク)、60HT1,260HT1,460HT1…第1半透過領域、60HT2,260HT2,460HT2…第2半透過領域、60HT3,260HT3,460HT3…第5半透過領域、60HT4,260HT4,460HT4…第6半透過領域、60HT5,260HT5,460HT5…第7半透過領域、60LS,260LS,60LS…遮光領域、60LS1,260LS1,460LS1…第1遮光領域、60LS2,260LS2,460LS2…第2遮光領域、60LS3,260LS3,460LS3…第3遮光領域、70…第2フォトマスク、70HT1…第3半透過領域、70HT2…第4半透過領域、70HT3…第8半透過領域、70HT4…第9半透過領域、70HT5…第10半透過領域、70T…透過領域、70T1…第1透過領域、70T2…第2透過領域、70T3…第3透過領域、重心…70T1C,70T2C,70T3C 10...Liquid crystal display device (display device), 12,112,212,312,412,512...Array substrate (reflection plate), 13...Counter substrate, 16,516...Reflection film, 17,117,317,517,617 ... Substrate, 17A, 617A... First side, 17B, 617B... Second side, 18, 118, 218, 318, 518... First insulating film (insulating film), 18A, 318A, 518A... Uneven surface, 26 , 126, 226, 326, 426, 526, 626, 726...convex portion, 26α, 126α, 226α, 326α, 426α, 526α, 626α, 726α...first convex portion, 26β, 126β, 226β, 326β, 426β, 526β , 626β, 726β...Second convex portion, 26γ, 126γ, 226γ, 326γ, 426γ, 526γ, 626γ, 726γ...Third convex portion, 26C, 226C, 426C, 526C... Center of gravity, 26Cα, 526Cα... First center of gravity, 26Cβ , 526Cβ...Second center of gravity, 26Cγ, 526Cγ...Third center of gravity, 26V, 126V, 326V, 526V...Vertex, 26Vα, 526Vα...First vertex, 26Vβ, 526Vβ...Second vertex, 26Vγ, 526Vγ...Third vertex, 27 , 127, 227, 327, 427... recess, 27A, 127A, 227A, 327A, 427A, 527A... first recess, 27B, 327B... second recess, 27Aα, 127α, 227α, 327α, 427α… third recess, 27Aβ , 127β, 227β, 327β, 427β...fourth recess, 27Aγ, 127γ, 227γ, 327γ, 427γ...fifth recess, 50...first photomask, 50HT1...first semi-transparent region, 50HT2...second semi-transparent region, 50HT3...Fifth semi-transparent area, 50HT4...Sixth semi-transparent area, 50HT5...Seventh semi-transparent area, 50LS...Light blocking area, 50LS1...First light blocking area, 50LS2...Second light blocking area, 50LS3...Third light blocking area, 50LS1C, 50LS2C, 50LS3C... Center of gravity, 60,260,460... Gray tone mask (first photomask), 60HT1, 260HT1, 460HT1... First semi-transparent region, 60HT2, 260HT2, 460HT2... Second semi-transparent region, 60HT3, 260HT3, 460HT3...Fifth semi-transparent area, 60HT4, 260HT4, 460HT4...Sixth semi-transparent area, 60HT5, 260HT5, 460HT5...Seventh semi-transparent area, 60LS, 260LS, 60LS...Light shielding area, 60LS1, 260LS1, 460LS1...th 1 light-shielding region, 60LS2, 260LS2, 460LS2...second light-shielding region, 60LS3, 260LS3, 460LS3...third light-shielding region, 70...second photomask, 70HT1...third semi-transmissive region, 70HT2...fourth semi-transmissive region, 70HT3 ... 8th semi-transparent area, 70HT4... 9th semi-transparent area, 70HT5... 10th semi-transparent area, 70T... Transmissive area, 70T1... 1st transparent area, 70T2... 2nd transparent area, 70T3... 3rd transparent area, center of gravity ...70T1C, 70T2C, 70T3C

Claims (10)

基板と、
前記基板上に設けられ、凹凸面を有する絶縁膜と、
前記絶縁膜の上層側に配され、前記凹凸面に倣う表面を有し、光を反射する反射膜と、を備え、
前記絶縁膜は、間隔を空けて配される複数の凸部と、隣り合う前記凸部の間に配される凹部と、を含み、前記凹凸面が、複数の前記凸部及び前記凹部の表面により構成され、
前記凸部は、前記基板の主面の法線方向に対して傾いており、
複数の前記凸部には、第1凸部と、前記第1凸部と間隔を空けて隣り合う第2凸部と、前記第1凸部と間隔を空けて隣り合う第3凸部と、が含まれ、
前記第1凸部、前記第2凸部及び前記第3凸部は、互いに異なる向きに傾く反射板。
A substrate and
an insulating film provided on the substrate and having an uneven surface;
a reflective film disposed on the upper layer side of the insulating film, having a surface that follows the uneven surface, and reflecting light;
The insulating film includes a plurality of convex portions arranged at intervals, and a concave portion disposed between adjacent convex portions, and the uneven surface is formed on the surfaces of the plurality of convex portions and the concave portions. It is composed of
The convex portion is inclined with respect to the normal direction of the main surface of the substrate,
The plurality of convex portions include a first convex portion, a second convex portion adjacent to the first convex portion with an interval, and a third convex portion adjacent to the first convex portion with an interval, contains,
The first convex portion, the second convex portion, and the third convex portion are reflective plates that are inclined in different directions.
前記第1凸部は、平面に視た外形の重心である第1重心と、頂点である第1頂点と、が平面に視て不一致とされ、
前記第2凸部は、平面に視た外形の重心である第2重心と、頂点である第2頂点と、が平面に視て不一致とされ、
前記第3凸部は、平面に視た外形の重心である第3重心と、頂点である第3頂点と、が平面に視て不一致とされ、
前記第1凸部、前記第2凸部及び前記第3凸部は、平面に視て前記第1重心から前記第1頂点へ向かう方向と、平面に視て前記第2重心から前記第2頂点へ向かう方向と、平面に視て前記第3重心から前記第3頂点へ向かう方向と、が互いに交差する関係とされる請求項1記載の反射板。
The first convex portion has a first center of gravity, which is the center of gravity of the outer shape seen in a plane, and a first apex, which is an apex, which do not match when seen in a plane,
In the second convex portion, a second center of gravity, which is the center of gravity of the outer shape seen in a plane, and a second apex, which is an apex, do not match when seen in a plane,
In the third convex portion, a third center of gravity, which is the center of gravity of the outer shape seen in a plane, and a third apex, which is an apex, do not match when viewed in a plane,
The first convex portion, the second convex portion, and the third convex portion are arranged in a direction toward the first apex from the first center of gravity when viewed in plan, and from the second center of gravity toward the second apex when viewed in plan. 2. The reflector according to claim 1, wherein a direction toward the center of gravity and a direction toward the third vertex from the third center of gravity in a plan view intersect with each other.
間隔を空けて隣り合う全ての前記凸部は、互いに異なる向きに傾く請求項1または請求項2記載の反射板。 3. The reflector according to claim 1, wherein all of the convex portions adjacent to each other at intervals are inclined in different directions. 前記第1凸部、前記第2凸部及び前記第3凸部は、平面に視て前記第1重心から前記第1頂点へ向かう方向である第1方向と、平面に視て前記第2重心から前記第2頂点へ向かう方向である第2方向と、平面に視て前記第3重心から前記第3頂点へ向かう方向である第3方向と、が鉛直方向の上向きのベクトル成分を含む請求項2記載の反射板。 The first convex portion, the second convex portion, and the third convex portion are arranged in a first direction, which is a direction toward the first vertex from the first center of gravity when viewed from above, and from the second center of gravity when viewed from above. A second direction, which is a direction from the center toward the second apex, and a third direction, which is a direction from the third center of gravity to the third apex, include an upward vector component in the vertical direction. Reflector plate according to 2. 前記基板は、平面形状が方形とされ、前記鉛直方向に沿う第1辺部と、水平方向に沿う第2辺部と、を有しており、
前記第1凸部、前記第2凸部及び前記第3凸部は、前記第1辺部の長さを「A」とし、前記第2辺部の長さを「B」とし、前記鉛直方向の上方向に対して前記第1方向がなす角度を「θ1」とし、前記鉛直方向の上方向に対して前記第2方向がなす角度を「θ2」とし、前記鉛直方向の上方向に対して前記第3方向がなす角度を「θ3」としたとき、角度θ1,θ2,θ3が下記の式(1)を満たす請求項4記載の反射板。
-arctan(B/A)≦θ1,θ2,θ3≦arctan(B/A) (1)
The substrate has a rectangular planar shape and has a first side extending in the vertical direction and a second side extending in the horizontal direction,
The first convex part, the second convex part, and the third convex part have a length of the first side part "A", a length of the second side part "B", and the length of the first side part is "B", and the length of the first side part is "B", and the length of the first side part is "B". The angle that the first direction makes with respect to the upward direction is "θ1", the angle that the second direction makes with respect to the upward direction of the vertical direction is "θ2", and the angle that the first direction makes with respect to the upward direction of the vertical direction is "θ2", 5. The reflecting plate according to claim 4, wherein angles θ1, θ2, and θ3 satisfy the following formula (1), where the angle formed by the third direction is θ3.
-arctan(B/A)≦θ1, θ2, θ3≦arctan(B/A) (1)
前記第1凸部、前記第2凸部及び前記第3凸部のいずれかは、前記角度θ1,θ2,θ3のいずれかが、「arctan(B/A)」と「-arctan(B/A)」との少なくとも一方と一致する請求項5記載の反射板。 Any one of the first convex portion, the second convex portion, and the third convex portion has the angles θ1, θ2, and θ3 that are equal to “arctan (B/A)” and “−arctan (B/A).” 6. The reflector plate according to claim 5, which matches at least one of the following. 請求項1、請求項2、請求項4、請求項5、請求項6のいずれか1項に記載の反射板と、
前記反射板に対向して配される対向基板と、を備える表示装置。
The reflector plate according to any one of claims 1, 2, 4, 5, and 6;
A display device comprising: a counter substrate disposed to face the reflective plate.
基板上にポジ型の感光性絶縁材料またはネガ型の感光性絶縁材料からなる絶縁膜を成膜し、
前記感光性絶縁材料がポジ型の場合は、光を遮る遮光領域と、前記遮光領域の外周の一部に隣接して配され、光を透過して光透過率が前記遮光領域よりも高い第1半透過領域と、前記遮光領域及び前記第1半透過領域を取り囲んで配され、光を透過して光透過率が前記遮光領域よりも高く前記第1半透過領域よりも低い第2半透過領域と、を含む第1フォトマスクを通して前記絶縁膜を露光し、
前記感光性絶縁材料がネガ型の場合は、光を透過する透過領域と、前記透過領域の外周の一部に隣接して配され、光を透過して光透過率が前記透過領域よりも低い第3半透過領域と、前記透過領域及び前記第3半透過領域を取り囲んで配され、光を透過して光透過率が前記透過領域よりも低く前記第3半透過領域よりも高い第4半透過領域と、を含む第2フォトマスクを通して前記絶縁膜を露光し、
前記絶縁膜を現像することで、前記絶縁膜のうち、前記遮光領域または前記透過領域と重畳する部分が凸部となり、前記第1半透過領域または前記第3半透過領域と重畳する部分が第1凹部となり、前記第2半透過領域または前記第4半透過領域と重畳する部分が前記第1凹部よりも浅い第2凹部となるよう、前記絶縁膜の表面に凹凸面を形成し、
前記絶縁膜を熱処理することで、前記凸部を前記基板の主面の法線方向に対して傾斜させ、前記凸部の頂点を前記第1凹部側に偏在させ、
前記絶縁膜の上層側に光を反射する反射膜を成膜する反射板の製造方法。
An insulating film made of a positive photosensitive insulating material or a negative photosensitive insulating material is formed on the substrate,
When the photosensitive insulating material is positive type, there is a light-shielding area that blocks light, and a third layer that is arranged adjacent to a part of the outer periphery of the light-shielding area and that transmits light and has a higher light transmittance than the light-shielding area. a second semi-transmissive region, which is disposed surrounding the light-shielding region and the first semi-transmissive region, transmits light and has a light transmittance higher than the light-shielding region and lower than the first semi-transmissive region. exposing the insulating film through a first photomask including a region;
When the photosensitive insulating material is of a negative type, it is arranged adjacent to a transmissive region that transmits light and a part of the outer periphery of the transmissive region, and that transmits light and has a lower light transmittance than the transmissive region. a third semi-transmissive region, and a fourth semi-transmissive region that is disposed surrounding the transmissive region and the third semi-transmissive region and that transmits light and has a light transmittance lower than that of the transmissive region and higher than that of the third semi-transmissive region. exposing the insulating film through a second photomask including a transparent region;
By developing the insulating film, a portion of the insulating film that overlaps with the light-shielding region or the transmissive region becomes a convex portion, and a portion that overlaps with the first semi-transparent region or the third semi-transmissive region becomes a convex portion. forming an uneven surface on the surface of the insulating film so that a portion that overlaps with the second semi-transparent region or the fourth semi-transparent region becomes a second recess that is shallower than the first recess;
heat-treating the insulating film so that the convex portion is inclined with respect to the normal direction of the main surface of the substrate, and the apex of the convex portion is unevenly distributed on the first concave side;
A method for manufacturing a reflecting plate, comprising forming a reflective film that reflects light on the upper layer side of the insulating film.
前記感光性絶縁材料がポジ型の場合は、前記遮光領域である第1遮光領域と、前記遮光領域であって前記第1遮光領域と間隔を空けて隣り合う第2遮光領域と、前記遮光領域であって前記第1遮光領域と間隔を空けて隣り合う第3遮光領域と、前記第1半透過領域であって前記第1遮光領域の外周の一部に隣接して配される第5半透過領域と、前記第1半透過領域であって前記第2遮光領域の外周の一部に隣接して配される第6半透過領域と、前記第1半透過領域であって前記第3遮光領域の外周の一部に隣接して配される第7半透過領域と、を含む前記第1フォトマスクであって、前記第1遮光領域の外形の重心から前記第5半透過領域へ向かう方向と、前記第2遮光領域の外形の重心から前記第6半透過領域へ向かう方向と、前記第3遮光領域の外形の重心から前記第7半透過領域へ向かう方向と、が互いに交差する関係の前記第1フォトマスクを通して前記絶縁膜を露光し、
前記感光性絶縁材料がネガ型の場合は、前記透過領域である第1透過領域と、前記透過領域であって前記第1透過領域と間隔を空けて隣り合う第2透過領域と、前記透過領域であって前記第1透過領域と間隔を空けて隣り合う第3透過領域と、前記第3半透過領域であって前記第1透過領域の外周の一部に隣接して配される第8半透過領域と、前記第3半透過領域であって前記第2透過領域の外周の一部に隣接して配される第9半透過領域と、前記第3半透過領域であって前記第3透過領域の外周の一部に隣接して配される第10半透過領域と、を含む前記第2フォトマスクであって、前記第1透過領域の外形の重心から前記第8半透過領域へ向かう方向と、前記第2透過領域の外形の重心から前記第9半透過領域へ向かう方向と、前記第3透過領域の外形の重心から前記第10半透過領域へ向かう方向と、が互いに交差する関係の前記第2フォトマスクを通して前記絶縁膜を露光し、
前記絶縁膜を現像することで、前記絶縁膜のうち、前記第1遮光領域または前記第1透過領域と重畳する部分が、前記凸部である第1凸部となり、前記第2遮光領域または前記第2透過領域と重畳する部分が、前記凸部であって前記第1凸部と間隔を空けて隣り合う第2凸部となり、前記第3遮光領域または前記第3透過領域と重畳する部分が、前記凸部であって前記第1凸部と間隔を空けて隣り合う第3凸部となり、前記第5半透過領域または前記第8半透過領域と重畳する部分が、前記第1凹部である第3凹部となり、前記第6半透過領域または前記第9半透過領域と重畳する部分が、前記第1凹部である第4凹部となり、前記第7半透過領域または前記第10半透過領域と重畳する部分が、前記第1凹部である第5凹部となり、前記第2半透過領域または前記第4半透過領域と重畳する部分が、前記第3凹部、前記第4凹部及び前記第5凹部よりも浅い前記第2凹部となるよう、前記絶縁膜の表面に凹凸面を形成し、
前記絶縁膜を熱処理することで、前記第1凸部を前記基板の主面の法線方向に対して傾斜させ、前記第1凸部の頂点を前記第3凹部側に偏在させ、前記第2凸部を前記基板の主面の法線方向に対して傾斜させ、前記第2凸部の頂点を前記第4凹部側に偏在させ、前記第3凸部を前記基板の主面の法線方向に対して傾斜させ、前記第3凸部の頂点を前記第5凹部側に偏在させる請求項8記載の反射板の製造方法。
When the photosensitive insulating material is positive type, a first light-shielding region which is the light-shielding region, a second light-shielding region which is the light-shielding region and is adjacent to the first light-shielding region with a space therebetween, and the light-shielding region. a third light-shielding region adjacent to the first light-shielding region with a space therebetween; and a fifth half of the first semi-transmissive region adjacent to a part of the outer periphery of the first light-shielding region. a transmissive region, a sixth semi-transmissive region which is the first semi-transmissive region and is arranged adjacent to a part of the outer periphery of the second light-shielding region, and a sixth semi-transmissive region which is the first semi-transmissive region and is disposed adjacent to a part of the outer periphery of the second light-shielding region; a seventh semi-transmissive region disposed adjacent to a part of the outer periphery of the region, the first photomask comprising: a direction from the center of gravity of the outer shape of the first light-shielding region toward the fifth semi-transmissive region; and a direction from the center of gravity of the outer shape of the second light shielding region toward the sixth semi-transparent region and a direction from the center of gravity of the outer shape of the third light shielding region toward the seventh semi-transparent region intersect with each other. exposing the insulating film through the first photomask;
When the photosensitive insulating material is negative type, the first transmissive region is the transmissive region, the second transmissive region is the transmissive region and is adjacent to the first transmissive region with a space therebetween, and the transmissive region is a third transmissive region adjacent to the first transmissive region with a space therebetween; and an eighth semi-transmissive region which is the third semi-transmissive region and is disposed adjacent to a part of the outer periphery of the first transmissive region. a ninth semi-transmissive region that is the third semi-transparent region and is arranged adjacent to a part of the outer periphery of the second transmissive region; and a ninth semi-transparent region that is the third semi-transparent region a tenth semi-transparent region disposed adjacent to a part of the outer periphery of the region, the second photomask comprising: a direction from the center of gravity of the outer shape of the first transmissive region toward the eighth semi-transparent region; and a direction from the center of gravity of the outer shape of the second transmissive region toward the ninth semi-transparent region and a direction from the center of gravity of the outer shape of the third transmissive region toward the tenth semi-transparent region intersect with each other. exposing the insulating film through the second photomask;
By developing the insulating film, a portion of the insulating film that overlaps with the first light-shielding region or the first transmissive region becomes the first convex portion, which is the convex portion, and the portion of the insulating film that overlaps with the first light-shielding region or the first transmissive region becomes the first convex portion, which is the second light-shielding region or the first transmissive region. The portion that overlaps with the second transmissive region is the convex portion and is the second convex portion adjacent to the first convex portion with an interval, and the portion that overlaps with the third light-shielding region or the third transmissive region is the convex portion. , a portion of the convex portion that is a third convex portion adjacent to the first convex portion with an interval therebetween and overlaps with the fifth semi-transparent region or the eighth semi-transparent region is the first concave portion. A third recess, which overlaps with the sixth semi-transparent region or the ninth semi-transparent region, becomes a fourth recess, which is the first recess, and overlaps with the seventh semi-transparent region or the tenth semi-transparent region. The portion that overlaps with the second semi-transparent region or the fourth semi-transparent region is the first recess, which is the fifth recess, and the portion that overlaps with the second semi-transparent region or the fourth semi-transparent region is larger than the third recess, the fourth recess, and the fifth recess. forming an uneven surface on the surface of the insulating film so that the second recess is shallow;
By heat-treating the insulating film, the first convex portion is inclined with respect to the normal direction of the main surface of the substrate, the apex of the first convex portion is unevenly distributed toward the third concave portion, and the second convex portion is unevenly distributed on the third concave side. The convex portion is inclined with respect to the normal direction of the principal surface of the substrate, the apex of the second convex portion is unevenly distributed toward the fourth concave portion, and the third convex portion is inclined with respect to the normal direction of the principal surface of the substrate. 9. The method of manufacturing a reflector according to claim 8, wherein the third convex portion is tilted toward the fifth concave portion so that the apex of the third convex portion is unevenly distributed toward the fifth concave portion.
前記感光性絶縁材料がポジ型の場合は、平面形状が円形の前記遮光領域と、前記遮光領域の外周のうちの半分以下の範囲に隣接して配される前記第1半透過領域と、を含む前記第1フォトマスクを通して前記絶縁膜を露光し、
前記感光性絶縁材料がネガ型の場合は、平面形状が円形の前記透過領域と、前記透過領域の外周のうちの半分以下の範囲に隣接して配される前記第3半透過領域と、を含む前記第2フォトマスクを通して前記絶縁膜を露光する請求項8または請求項9記載の反射板の製造方法。
When the photosensitive insulating material is positive type, the light-shielding region has a circular planar shape, and the first semi-transparent region is arranged adjacent to a half or less of the outer circumference of the light-shielding region. exposing the insulating film through the first photomask including;
When the photosensitive insulating material is negative type, the transmissive region has a circular planar shape, and the third semi-transmissive region is arranged adjacent to a half or less of the outer circumference of the transmissive region. 10. The method of manufacturing a reflective plate according to claim 8, wherein the insulating film is exposed through the second photomask including the second photomask.
JP2022211331A 2022-03-22 2022-12-28 Reflective plate, display, and method for manufacturing reflective plate Pending JP2023140279A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/121,990 US20230305201A1 (en) 2022-03-22 2023-03-15 Reflection plate, display device, and method of producing reflection plate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022045019 2022-03-22
JP2022045019 2022-03-22

Publications (1)

Publication Number Publication Date
JP2023140279A true JP2023140279A (en) 2023-10-04

Family

ID=88205013

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022211331A Pending JP2023140279A (en) 2022-03-22 2022-12-28 Reflective plate, display, and method for manufacturing reflective plate

Country Status (1)

Country Link
JP (1) JP2023140279A (en)

Similar Documents

Publication Publication Date Title
WO2012081410A1 (en) Light diffusing member, method for manufacturing same, and display device
US9279919B2 (en) Light diffusing member comprising hollow portions and a plurality of light-shielding layers dotted on one surface of a base material, method for manufacturing the same and display device
JPWO2009001508A1 (en) Liquid crystal display device and method of manufacturing liquid crystal display device
US20160139453A1 (en) Display apparatus
JP3974787B2 (en) Reflective liquid crystal display
JP2014106249A (en) Polarizer and method for manufacturing the same, and display device
JPWO2008001595A1 (en) Liquid crystal display device and method of manufacturing liquid crystal display device
KR100907422B1 (en) Reflective plate and the fabrication method for LCD
KR100770472B1 (en) Method for manufacturing array substrate for liquid crystal display
JP2023140279A (en) Reflective plate, display, and method for manufacturing reflective plate
JP4308570B2 (en) Method for manufacturing light reflective structure
CN115032830B (en) Display panel and preparation method thereof
JP4608882B2 (en) Exposure mask, method for manufacturing the same, and method for manufacturing a liquid crystal device
KR100840538B1 (en) Fabricating method for reflective liquid crystal display device
JP2004151685A (en) Method for manufacturing reflective substrate and method for manufacturing electro-optic device
US20230305201A1 (en) Reflection plate, display device, and method of producing reflection plate
US6986983B2 (en) Method for forming a reflection-type light diffuser
JP2006330602A (en) Liquid crystal display device and its manufacturing method
KR100693649B1 (en) Reflector and liquid-crystal display
KR100735237B1 (en) Method for forming slit electrode in reflective region of fringe field switching mode transflective type liquid crystal display
JP2006133625A (en) Reflector, and liquid crystal display device with the reflector
JP4880839B2 (en) Method for manufacturing transflective liquid crystal display element
JP2005055762A (en) Reflective body, liquid crystal display device, and method for manufacturing reflective body
JP2003043232A (en) Reflector and method for manufacturing the same, liquid crystal display device, and electronic appliance
JP4345270B2 (en) Liquid crystal display device and electronic device