JP2023122101A - heat management system - Google Patents

heat management system Download PDF

Info

Publication number
JP2023122101A
JP2023122101A JP2022025531A JP2022025531A JP2023122101A JP 2023122101 A JP2023122101 A JP 2023122101A JP 2022025531 A JP2022025531 A JP 2022025531A JP 2022025531 A JP2022025531 A JP 2022025531A JP 2023122101 A JP2023122101 A JP 2023122101A
Authority
JP
Japan
Prior art keywords
heat medium
temperature
heat
storage chamber
side storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022025531A
Other languages
Japanese (ja)
Inventor
巌 内門
Iwao Uchikado
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanden Corp
Original Assignee
Sanden Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanden Corp filed Critical Sanden Corp
Priority to JP2022025531A priority Critical patent/JP2023122101A/en
Priority to CN202380020263.6A priority patent/CN118647518A/en
Priority to PCT/JP2023/002095 priority patent/WO2023162548A1/en
Publication of JP2023122101A publication Critical patent/JP2023122101A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/02Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant
    • B60H1/04Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant from cooling liquid of the plant
    • B60H1/08Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant from cooling liquid of the plant from other radiator than main radiator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/22Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K11/00Arrangement in connection with cooling of propulsion units
    • B60K11/02Arrangement in connection with cooling of propulsion units with liquid cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/615Heating or keeping warm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • H01M10/633Control systems characterised by algorithms, flow charts, software details or the like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • H01M10/6568Liquids characterised by flow circuits, e.g. loops, located externally to the cells or cell casings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/66Heat-exchange relationships between the cells and other systems, e.g. central heating systems or fuel cells
    • H01M10/663Heat-exchange relationships between the cells and other systems, e.g. central heating systems or fuel cells the system being an air-conditioner or an engine

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Automation & Control Theory (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Secondary Cells (AREA)
  • Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)

Abstract

To provide a heat management system which is capable of controlling temperature of a temperature control target in cheap price when controlling temperature by causing a heat medium to circulate through the temperature control target and can solve problem caused by deviation of the heat medium.SOLUTION: A heat management system is provided with a storage part 26 on a route on which a heat medium is returned from a temperature control circuit 42 to low temperature heat medium circuits 43, 43A. The storage part 26 includes a high temperature side storage chamber 65 which includes high temperature side outlets 64A, 66A into which the heat medium flowing through a high temperature heat medium circuit 44 is introduced and which return the heat medium to the high temperature heat medium circuit 44, a temperature control side storage chamber 63 which stores the heat medium by the heat medium being introduced which circulates through the temperature control circuit 42, and a partition wall 67 which partitions the high temperature side storage chamber 65 and the temperature control side storage chamber 63 in such a condition that the heat medium in the high temperature side storage chamber 65 and the heat medium in the temperature control side storage chamber 63 have heat exchange relationship.SELECTED DRAWING: Figure 1

Description

本発明は、温調対象に熱媒体を循環させて温調する熱マネジメントシステムに関するものである。 BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat management system that regulates temperature by circulating a heat medium to an object to be temperature controlled.

従来より、例えば電動車両(電気自動車、ハイブリッド自動車等)に搭載されるバッテリ(電池)や走行用電動モータ、インバータ等(以下、温調対象と称する)は発熱を生じる。そのため、熱媒体を複数の温調対象に循環させて温調するものや、車室内を空調するためのヒートポンプ回路(冷媒回路)を用い、放熱器で放熱する冷媒(フロン冷媒)と吸熱器内で吸熱する冷媒で熱媒体(水等)を加熱、冷却し、この熱媒体を熱媒体回路で温調対象に循環させることで温調する熱マネジメントシステムが開発されている(例えば、特許文献1、2、3参照)。 2. Description of the Related Art Conventionally, a battery (battery), an electric motor for running, an inverter, and the like (hereinafter referred to as a temperature control target) mounted on, for example, an electric vehicle (electric vehicle, hybrid vehicle, etc.) generate heat. Therefore, a heat pump circuit (refrigerant circuit) is used to control the temperature by circulating the heat medium to multiple temperature control targets, or a heat pump circuit (refrigerant circuit) is used to air the vehicle interior. A heat management system has been developed that heats and cools a heat medium (such as water) with a refrigerant that absorbs heat in a heat medium circuit and circulates the heat medium through a temperature control target (for example, Patent Document 1 , 2, 3).

特開2014-80123号公報JP 2014-80123 A 特開2012-232730号公報JP 2012-232730 A 特開2021-138209号公報Japanese Patent Application Laid-Open No. 2021-138209

しかしながら、例えば特許文献2や特許文献3の構成では、空調用のヒータコアやクーラコア用の熱交換器に加えて、温調対象用の熱交換器をヒートポンプ回路に設ける必要がある。そこで、例えばクーラコアに循環される熱媒体と、ヒータコアに循環される熱媒体を温調対象にも流すことが考えられるが、温調対象側に流れた熱媒体が、導入された分だけクーラコア側やヒータコア側にそれぞれ戻るとは限らず、偏りが生じて何れかの熱媒体の量が過剰となり、リザーブタンクが満杯になってしまうと云う問題も生じる。 However, in the configurations of Patent Documents 2 and 3, for example, it is necessary to provide a heat exchanger for temperature control in the heat pump circuit in addition to the heat exchangers for the heater core and cooler core for air conditioning. Therefore, for example, the heat medium circulated in the cooler core and the heat medium circulated in the heater core can be flowed to the temperature control target side, but the heat medium that has flowed to the temperature control target side is introduced to the cooler core side. or the heater core side, and there is also a problem that the amount of one of the heat medium becomes excessive due to unevenness, and the reserve tank becomes full.

本発明は、係る従来の技術的課題を解決するためになされたものであり、熱媒体を温調対象に循環させて温調する際に、安価に温調対象を温調可能となり、且つ、熱媒体の偏りに伴う問題も解消することができる熱マネジメントシステムを提供することを目的とする。 SUMMARY OF THE INVENTION The present invention has been made to solve such conventional technical problems. It is an object of the present invention to provide a heat management system capable of solving the problem associated with uneven heating medium.

上記課題を解決するために、本発明の熱マネジメントシステムは、温調対象に熱媒体を循環させて温調する熱媒体回路を備えたものであって、熱媒体を温調対象に循環させる循環部を有する温調回路と、熱媒体を加熱する加熱部を有して、当該加熱部により加熱された熱媒体が循環される高温熱媒体回路と、温調回路に接続されると共に、熱媒体を冷却する冷却部を有し、当該冷却部により冷却された熱媒体が循環される低温熱媒体回路と、温調回路から低温熱媒体回路に熱媒体を戻す経路上に設けられ、熱媒体を貯留する貯留部を備え、この貯留部は、高温熱媒体回路を流れる熱媒体が導入されて当該熱媒体を貯留すると共に、高温熱媒体回路に熱媒体を戻す高温側出口を有する高温側貯留室と、温調回路を循環する熱媒体が導入されて当該熱媒体を貯留する温調側貯留室と、高温側貯留室内の熱媒体と温調側貯留室内の熱媒体とが熱交換関係を有した状態で高温側貯留室と温調側貯留室を区画する区画壁を有することを特徴とする。 In order to solve the above problems, the heat management system of the present invention includes a heat medium circuit that circulates a heat medium to a temperature control target to control the temperature, and includes a heat medium circuit that circulates the heat medium to the temperature control target. a temperature control circuit having a portion; a high-temperature heat medium circuit having a heating portion for heating a heat medium and through which the heat medium heated by the heating portion is circulated; and a heat medium connected to the temperature control circuit, and a low-temperature heat medium circuit in which the heat medium cooled by the cooling unit is circulated, and a path for returning the heat medium from the temperature control circuit to the low-temperature heat medium circuit, A high-temperature side storage chamber having a high-temperature side outlet for returning the heat medium to the high-temperature heat medium circuit. Then, the heat medium circulating in the temperature control circuit is introduced into the temperature control side storage chamber for storing the heat medium, and the heat medium in the high temperature side storage chamber and the heat medium in the temperature control side storage chamber have a heat exchange relationship. It is characterized by having a partition wall that partitions the high temperature side storage chamber and the temperature adjustment side storage chamber in a state where the storage chamber is closed.

請求項2の発明の熱マネジメントシステムは、上記発明において高温側貯留室は、熱媒体が区画壁に接する熱交換用高温側貯留室と、熱媒体が区画壁とは接しないバイパス用高温側貯留室から構成されており、高温熱媒体回路を流れる熱媒体を熱交換用高温側貯留室に導入するか、バイパス用高温側貯留室に導入するかを切り替える温度調整部を備えたことを特徴とする。 In the heat management system of the invention of claim 2, the high temperature side storage chamber in the above invention includes a heat exchange high temperature side storage chamber in which the heat medium is in contact with the partition wall, and a bypass high temperature side storage chamber in which the heat medium is not in contact with the partition wall. The heat medium flowing through the high-temperature heat medium circuit is introduced into the high-temperature side storage chamber for heat exchange or introduced into the high-temperature side storage chamber for bypass. do.

請求項3の発明の熱マネジメントシステムは、上記発明において温度調整部は、高温熱媒体回路を流れる熱媒体の温度が所定値より低い場合に、当該熱媒体を熱交換用高温側貯留室に導入することを特徴とする。 In the heat management system of the invention of claim 3, in the above invention, when the temperature of the heat medium flowing through the high temperature heat medium circuit is lower than a predetermined value, the temperature adjustment unit introduces the heat medium into the high temperature side storage chamber for heat exchange. characterized by

請求項4の発明の熱マネジメントシステムは、上記各発明において貯留部は、低温熱媒体回路を流れる熱媒体が導入されて当該熱媒体を貯留すると共に、温調回路に熱媒体を流入させる低温側出口を有する低温側貯留室を有し、この低温側貯留室と高温側貯留室は、それらの上部において相互に連通されていることを特徴とする。 In the heat management system of the invention of claim 4, in each of the above inventions, the storage unit stores the heat medium introduced by the heat medium flowing through the low temperature heat medium circuit, and the low temperature side that allows the heat medium to flow into the temperature control circuit. A low temperature side storage chamber having an outlet is provided, and the low temperature side storage chamber and the high temperature side storage chamber are communicated with each other at their upper portions.

請求項5の発明の熱マネジメントシステムは、上記発明において低温側貯留室内の熱媒体を温調回路に導入するか否かを切り替えるもう一つの温度調整部を備えたことを特徴とする。 According to a fifth aspect of the present invention, there is provided a heat management system according to the above invention, further comprising another temperature control section for switching whether or not to introduce the heat medium in the low-temperature side storage chamber into the temperature control circuit.

請求項6の発明の熱マネジメントシステムは、上記発明においてもう一つの温度調整部は、温調回路を流れる熱媒体の温度が、所定値以上となった場合に、低温側貯留室から温調回路に熱媒体を導入することを特徴とする。 In the heat management system of the invention of claim 6, in the above invention, the other temperature control unit is configured to control the temperature of the heat medium flowing through the temperature control circuit from the low temperature storage chamber to the temperature control circuit when the temperature of the heat medium flowing through the temperature control circuit reaches or exceeds a predetermined value. characterized in that a heat medium is introduced into the

請求項7の発明の熱マネジメントシステムは、請求項2乃至請求項6の発明において温度調整部は、内部を流れる流体の温度を感知する感温部を有して当該流体の流路を切り替える流路切替弁であることを特徴とする。 The heat management system of the invention of claim 7 is characterized in that, in the inventions of claims 2 to 6, the temperature adjustment unit has a temperature sensing unit that senses the temperature of the fluid flowing therein and switches the flow path of the fluid. It is characterized by being a path switching valve.

請求項8の発明の熱マネジメントシステムは、上記各発明において温調対象は車両に搭載されたバッテリ、車両の走行用モータ、若しくは、当該モータを駆動するインバータであることを特徴とする。 A heat management system according to an eighth aspect of the present invention is characterized in that, in each of the above inventions, the object of temperature regulation is a battery mounted on a vehicle, a motor for running the vehicle, or an inverter that drives the motor.

請求項9の発明の熱マネジメントシステムは、上記各発明において高温熱媒体回路は、加熱部により加熱された熱媒体が循環されて車両の車室内を暖房するためのヒータコアを有し、低温熱媒体回路は、冷却部により冷却された熱媒体が循環されて車両の車室内を冷房するためのクーラコアを有することを特徴とする。 In the heat management system of the invention of claim 9, in each of the above inventions, the high-temperature heat medium circuit has a heater core for heating the interior of the vehicle by circulating the heat medium heated by the heating unit, and the low-temperature heat medium The circuit is characterized by having a cooler core for circulating the heat medium cooled by the cooling unit to cool the interior of the vehicle.

請求項10の発明の熱マネジメントシステムは、上記各発明において冷媒を圧縮する圧縮機と、この圧縮機から吐出された冷媒を放熱させる放熱器と、この放熱器で放熱した冷媒を減圧する減圧部と、この減圧部で減圧された冷媒を吸熱させる吸熱器を有するヒートポンプ回路を備え、放熱器と高温熱媒体回路の加熱部とが熱交換関係に設けられ、吸熱器と低温熱媒体回路の冷却部とが熱交換関係に設けられていることを特徴とする。 The heat management system of the invention of claim 10 comprises a compressor that compresses the refrigerant in each of the above inventions, a radiator that radiates heat from the refrigerant discharged from the compressor, and a decompression unit that decompresses the refrigerant radiated by the radiator. and a heat pump circuit having a heat absorber that absorbs heat from the refrigerant decompressed by the decompression unit, the radiator and the heating unit of the high-temperature heat medium circuit are provided in a heat exchange relationship, and the heat absorber and the low-temperature heat medium circuit are cooled. and are provided in a heat exchange relationship.

本発明によれば、温調対象に熱媒体を循環させて温調する熱マネジメントシステムにおいて、熱媒体を温調対象に循環させる循環部を有する温調回路と、熱媒体を加熱する加熱部を有して、当該加熱部により加熱された熱媒体が循環される高温熱媒体回路と、温調回路に接続されると共に、熱媒体を冷却する冷却部を有し、当該冷却部により冷却された熱媒体が循環される低温熱媒体回路と、温調回路から低温熱媒体回路に熱媒体を戻す経路上に、熱媒体を貯留する貯留部を設け、この貯留部が、高温熱媒体回路を流れる熱媒体が導入されて当該熱媒体を貯留すると共に、高温熱媒体回路に熱媒体を戻す高温側出口を有する高温側貯留室と、温調回路を循環する熱媒体が導入されて当該熱媒体を貯留する温調側貯留室と、高温側貯留室内の熱媒体と温調側貯留室内の熱媒体とが熱交換関係を有した状態で高温側貯留室と温調側貯留室を区画する区画壁を有する構成としたので、貯留部の高温側貯留室内の熱媒体により温調側貯留室内の熱媒体を加熱して温調対象の暖機を行うことができるようになる。また、低温熱媒体回路の熱媒体を温調回路に導入することで、温調対象の冷却も行うことができ、これらにより、温調対象を効果的に温調することが可能となる。 According to the present invention, a heat management system that regulates the temperature by circulating a heat medium to a temperature control target includes a temperature control circuit having a circulation unit that circulates the heat medium to the temperature control target, and a heating unit that heats the heat medium. a high-temperature heat medium circuit in which the heat medium heated by the heating unit is circulated; and a cooling unit connected to the temperature control circuit for cooling the heat medium. A low-temperature heat medium circuit through which the heat medium is circulated, and a reservoir for storing the heat medium are provided on a path for returning the heat medium from the temperature control circuit to the low-temperature heat medium circuit, and the reservoir flows through the high-temperature heat medium circuit. A high-temperature side storage chamber having a high-temperature side outlet for returning the heat medium to the high-temperature heat medium circuit, and a heat medium circulating in the temperature control circuit is introduced and stores the heat medium. A partition wall that separates the high temperature side storage chamber and the temperature adjustment side storage chamber in a state in which the heat medium in the high temperature side storage chamber and the heat medium in the temperature adjustment side storage chamber have a heat exchange relationship. , the heat medium in the high-temperature side storage chamber of the storage section heats the heat medium in the temperature control side storage chamber, thereby warming up the temperature control target. Also, by introducing the heat medium of the low-temperature heat medium circuit into the temperature control circuit, it is possible to cool the temperature control target, thereby enabling the temperature control target to be effectively temperature controlled.

この場合、高温熱媒体回路から温調回路に熱媒体を導入するものではないので、高温熱媒体回路と低温熱媒体回路の間で熱媒体の偏りが生じることもない。特に、温調回路から低温熱媒体回路に熱媒体を戻す経路上に貯留部を設け、この貯留部にて高温熱媒体回路の熱媒体と温調回路の熱媒体を熱交換させる構造であるので、コストの上昇も最小限に抑えることもできる。 In this case, since the heat medium is not introduced from the high-temperature heat-medium circuit to the temperature control circuit, the heat medium is not biased between the high-temperature heat-medium circuit and the low-temperature heat-medium circuit. In particular, the structure is such that a reservoir is provided on the path for returning the heat medium from the temperature control circuit to the low-temperature heat medium circuit, and the heat medium in the high-temperature heat medium circuit and the heat medium in the temperature control circuit are heat-exchanged in this reservoir. , the cost increase can be minimized.

また、請求項2の発明によれば、上記発明に加えて高温側貯留室を、熱媒体が区画壁に接する熱交換用高温側貯留室と、熱媒体が区画壁とは接しないバイパス用高温側貯留室から構成し、高温熱媒体回路を流れる熱媒体を熱交換用高温側貯留室に導入するか、バイパス用高温側貯留室に導入するかを切り替える温度調整部を設けたので、温調対象の加熱が必要な場合には、温度調整部により熱交換用高温側貯留室に高温熱媒体回路の熱媒体を流して温調対象を暖機し、加熱の必要が無い場合にはバイパス用高温側貯留室に高温熱媒体回路の熱媒体を流して、温調対象の過剰な加熱を防止することができるようになる。 According to the invention of claim 2, in addition to the above invention, the high temperature side storage chamber is a heat exchange high temperature side storage chamber in which the heat medium is in contact with the partition wall, and a bypass high temperature side storage chamber in which the heat medium is not in contact with the partition wall. Since the temperature control unit is provided to switch whether the heat medium flowing through the high-temperature heat medium circuit is introduced into the high-temperature side storage chamber for heat exchange or introduced into the high-temperature side storage chamber for bypass, temperature control is performed. When the target needs to be heated, the heat medium of the high-temperature heat medium circuit flows into the heat exchange high temperature side storage chamber by the temperature control unit to warm up the temperature control target, and when there is no need for heating, the bypass By flowing the heat medium of the high temperature heat medium circuit into the high temperature side storage chamber, it is possible to prevent excessive heating of the object to be temperature controlled.

この場合、請求項3の発明の如く温度調整部が、高温熱媒体回路を流れる熱媒体の温度が所定値より低い場合に、当該熱媒体を熱交換用高温側貯留室に導入するようにすれば、温調対象を迅速に暖機することができるようになる。 In this case, when the temperature of the heat medium flowing through the high-temperature heat medium circuit is lower than a predetermined value, the temperature control unit, as in the invention of claim 3, introduces the heat medium into the high-temperature side storage chamber for heat exchange. If so, the object to be temperature controlled can be quickly warmed up.

また、請求項4の発明の如く貯留部に、低温熱媒体回路を流れる熱媒体が導入されて当該熱媒体を貯留すると共に、温調回路に熱媒体を流入させる低温側出口を有する低温側貯留室を設け、この低温側貯留室と高温側貯留室を、それらの上部において相互に連通させることにより、低温熱媒体回路と高温熱媒体回路で熱媒体の量に偏りが生じた場合にも、貯留部の低温側貯留室と高温側貯留室の間で熱媒体の量を調整することができるようになる。 Further, as in the fourth aspect of the present invention, the heat medium flowing through the low-temperature heat medium circuit is introduced into the storage section to store the heat medium, and the low-temperature side storage has a low-temperature side outlet through which the heat medium flows into the temperature control circuit. A chamber is provided, and the low-temperature side storage chamber and the high-temperature side storage chamber are communicated with each other at their upper portions, so that even if the amount of heat medium is uneven in the low-temperature heat medium circuit and the high-temperature heat medium circuit, It becomes possible to adjust the amount of the heat medium between the low temperature side storage chamber and the high temperature side storage chamber of the storage section.

また、請求項5の発明の如く低温側貯留室内の熱媒体を温調回路に導入するか否かを切り替えるもう一つの温度調整部を設けることで、温調対象の冷却を的確に行うことが可能となる。 Further, by providing another temperature control section for switching whether or not the heat medium in the low-temperature side storage chamber is introduced into the temperature control circuit as in the fifth aspect of the invention, it is possible to accurately cool the object to be temperature controlled. It becomes possible.

この場合、請求項6の発明の如くもう一つの温度調整部が、温調回路を流れる熱媒体の温度が所定値以上となった場合に、低温側貯留室から温調回路に熱媒体を導入するようにすれば、温調対象の過熱を確実に防止することができるようになる。 In this case, when the temperature of the heat medium flowing through the temperature control circuit reaches or exceeds a predetermined value, the other temperature control section introduces the heat medium from the low-temperature storage chamber into the temperature control circuit. By doing so, overheating of the temperature control target can be reliably prevented.

また、温度調整部を請求項7の発明の如く、内部を流れる流体の温度を感知する感温部を有して当該流体の流路を切り替える流路切替弁で構成すれば、電子的な制御も不要となり、システムのコストを削減することが可能となる。 Further, if the temperature control unit is composed of a channel switching valve that has a temperature sensing part that senses the temperature of the fluid flowing inside and switches the channel of the fluid as in the seventh aspect of the invention, electronic control can be performed. is also unnecessary, and the cost of the system can be reduced.

ここで、温調対象としては請求項8の発明の如く例えば電動車両に搭載されたバッテリや、電動車両の走行用電動モータ、当該走行用電動モータを駆動するインバータが考えられる。 Here, as an object to be temperature controlled, for example, a battery mounted on an electric vehicle, an electric motor for running the electric vehicle, and an inverter for driving the electric motor for running can be considered as the object of temperature control.

尚、高温熱媒体回路としては、請求項9の発明の如く加熱部により加熱された熱媒体が循環されて車両の車室内を暖房するためのヒータコアを有するもの、低温熱媒体回路としては、冷却部により冷却された熱媒体が循環されて車両の車室内を冷房するためのクーラコアを有するものが考えられるが、その場合には、請求項10の発明の如く冷媒を圧縮する圧縮機と、この圧縮機から吐出された冷媒を放熱させる放熱器と、この放熱器で放熱した冷媒を減圧する減圧部と、この減圧部で減圧された冷媒を吸熱させる吸熱器を有するヒートポンプ回路を設け、放熱器と高温熱媒体回路の加熱部とを熱交換関係に設けると共に、吸熱器と低温熱媒体回路の冷却部とを熱交換関係に設ける。 The high-temperature heat medium circuit includes a heater core for circulating the heat medium heated by the heating unit to heat the interior of the vehicle, and the low-temperature heat medium circuit includes a cooling It is conceivable to have a cooler core for cooling the interior of the vehicle by circulating the heat medium cooled by the section. a heat pump circuit having a radiator for dissipating heat from the refrigerant discharged from the compressor, a decompression section for decompressing the refrigerant radiated by the radiator, and a heat absorber for absorbing heat from the decompressed refrigerant by the decompression section, and the heating section of the high temperature heat medium circuit are provided in a heat exchange relationship, and the heat absorber and the cooling section of the low temperature heat medium circuit are provided in a heat exchange relationship.

これにより、電動車両の車室内を空調するためのヒートポンプ回路や高温熱媒体回路、低温熱媒体回路を利用して温調対象の温調を行うことができるようになる。また、温調対象を加熱する必要が無い場合には、前述したように高温熱媒体回路を流れる熱媒体は貯留部のバイパス用高温側貯留室を流れるようになるので、ヒータコアにはより高温の熱媒体が循環されるようになり、車室内の暖房も支障無く行えるようになる。更に、温調対象を冷却する必要が無い場合には、前述したように低温熱媒体回路を流れる熱媒体は温調回路に導入されなくなるので、クーラコアにはより低温の熱媒体が循環されるようになり、車室内の冷房も支障無く行えるようになる。 As a result, the heat pump circuit, the high-temperature heat medium circuit, and the low-temperature heat medium circuit for air-conditioning the interior of the electric vehicle can be used to control the temperature of the temperature control target. Further, when there is no need to heat the temperature control target, the heat medium flowing through the high temperature heat medium circuit flows through the bypass high temperature side storage chamber of the storage unit as described above, so that the heater core receives a higher temperature. The heat medium can be circulated, and heating of the passenger compartment can be performed without any trouble. Furthermore, when there is no need to cool the object to be temperature controlled, the heat medium flowing through the low-temperature heat medium circuit is not introduced into the temperature control circuit as described above. It becomes possible to perform air conditioning in the passenger compartment without any trouble.

本発明の熱マネジメントシステムの一実施例の構成図である(実施例1。暖房モードでの第1経路状態)。1 is a block diagram of one embodiment of a heat management system of the present invention (Embodiment 1; first path state in heating mode); FIG. 図1の熱マネジメントシステムの温度調整部の実施例としてのサーモバルブの断面図である。FIG. 2 is a cross-sectional view of a thermovalve as an example of the temperature adjustment unit of the heat management system of FIG. 1; 図1の熱マネジメントシステムの温調回路及び貯留部を抽出した構成図である。FIG. 2 is a configuration diagram extracting a temperature control circuit and a storage unit of the heat management system of FIG. 1; 図1の貯留部の平断面図である。FIG. 2 is a plan cross-sectional view of the reservoir of FIG. 1; 図1の場合の温調回路及び貯留部を抽出した構成図である。FIG. 2 is a configuration diagram extracting a temperature control circuit and a reservoir in the case of FIG. 1; 図1の熱マネジメントシステムの暖房モードでの第2経路状態を説明する構成図である。2 is a configuration diagram illustrating a second path state in a heating mode of the heat management system of FIG. 1; FIG. 図6の場合の温調回路及び貯留部を抽出した構成図である。FIG. 7 is a configuration diagram extracting a temperature control circuit and a reservoir in the case of FIG. 6; 図1の熱マネジメントシステムの冷房モードでの構成図である。2 is a configuration diagram of the heat management system of FIG. 1 in a cooling mode; FIG. 本発明の他の実施例の熱マネジメントシステムの温調回路及び貯留部を抽出した構成図である(実施例2)。FIG. 10 is a block diagram of a temperature control circuit and a reservoir extracted from a heat management system according to another embodiment of the present invention (embodiment 2); 図9の貯留部の平断面図である。FIG. 10 is a plan cross-sectional view of the reservoir of FIG. 9;

以下、本発明の実施の形態について、図面に基づき詳細に説明する。 BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described in detail based on the drawings.

(1)熱マネジメントシステム1の構成
図1は本発明の一実施例の熱マネジメントシステム1の構成を示している。実施例の熱マネジメントシステム1は、電気自動車やハイブリッド自動車等の電動車両の車室内を空調すると共に、実施例で採りあげるバッテリ2の他、走行用電動モータやインバータ等の温調対象を温調する車両用空気調和装置であり、ヒートポンプ回路3と、熱媒体回路4と、制御装置6を備えた構成とされている。尚、本出願において、バッテリは燃料電池も含む概念とする。
(1) Configuration of Thermal Management System 1 FIG. 1 shows the configuration of a thermal management system 1 according to an embodiment of the present invention. The thermal management system 1 of the embodiment air-conditions the interior of an electric vehicle such as an electric vehicle or a hybrid vehicle, and also temperature-controls temperature control objects such as a battery 2, an electric motor for traveling, an inverter, etc., which are taken up in the embodiment. The air conditioner for a vehicle is configured to include a heat pump circuit 3 , a heat medium circuit 4 , and a control device 6 . In the present application, the concept of battery also includes a fuel cell.

実施例のヒートポンプ回路3は、冷媒(フロン冷媒)を圧縮する圧縮機7と、この圧縮機7から吐出された冷媒(高温冷媒)を放熱させる放熱器8と、放熱器8で放熱した冷媒を減圧する減圧部としての膨張弁9と、この膨張弁9で減圧された冷媒が蒸発して吸熱する吸熱器11と、アキュムレータ12が冷媒配管により順次環状に接続された冷媒回路を備えており、通常は電動車両のボンネット下の所謂エンジンルームに配設されている。 The heat pump circuit 3 of the embodiment includes a compressor 7 that compresses a refrigerant (freon refrigerant), a radiator 8 that dissipates heat from the refrigerant (high-temperature refrigerant) discharged from the compressor 7, and a refrigerant that has dissipated heat from the radiator 8. A refrigerant circuit in which an expansion valve 9 as a decompression unit that decompresses, a heat absorber 11 that absorbs heat by evaporating the refrigerant decompressed by the expansion valve 9, and an accumulator 12 are sequentially connected in a ring by refrigerant pipes. It is usually installed in a so-called engine room under the hood of an electric vehicle.

熱媒体回路4は水等の熱媒体が流通する回路であり、この実施例では冷却部13(熱交換器)と、加熱部14(熱交換器)と、クーラコア16と、ヒータコア17と、循環部としての第1~第3ポンプ21~23と、ラジエータ29と、本発明の温度調整部としてのサーモバルブ30及び31と、8つの三方弁32~39と、逆止弁41と、所定容量のリザーブタンクから構成される本発明の貯留部26を備え、それらが後述する如く熱媒体配管で接続されている。 The heat medium circuit 4 is a circuit through which a heat medium such as water flows. First to third pumps 21 to 23 as units, a radiator 29, thermo valves 30 and 31 as temperature control units of the present invention, eight three-way valves 32 to 39, a check valve 41, and a predetermined capacity , which are connected by heat medium pipes as will be described later.

尚、実施例の三方弁32~39は三つの接続口を備え、全ての接続口を連通する状態と、それらのうちの二つの接続口のみを連通する状態(合わせて四つの状態)に切り替えることが可能とされた弁装置である。 The three-way valves 32 to 39 of the embodiment have three connection ports, and can be switched between a state in which all connection ports are communicated and a state in which only two of them are communicated (four states in total). It is a valve device that makes it possible.

この場合、冷却部13の出口は熱媒体配管C1により三方弁32の第1接続口に接続され、三方弁32の第2接続口は熱媒体配管C2により三方弁33の第3接続口に接続されている。三方弁33の第1接続口は熱媒体配管C4によりクーラコア16の入口に接続され、クーラコア16の出口は熱媒体配管C5により三方弁34の第1接続口に接続されている。三方弁34の第2接続口は熱媒体配管C6により三方弁35の第1接続口に接続され、三方弁35の第2接続口は熱媒体配管C7により第1ポンプ21の入口に接続されている。第1ポンプ21の出口は熱媒体配管C8により冷却部13の入口に接続されている。 In this case, the outlet of the cooling unit 13 is connected to the first connection port of the three-way valve 32 by the heat medium pipe C1, and the second connection port of the three-way valve 32 is connected to the third connection port of the three-way valve 33 by the heat medium pipe C2. It is A first connection port of the three-way valve 33 is connected to an inlet of the cooler core 16 by a heat medium pipe C4, and an outlet of the cooler core 16 is connected to a first connection port of the three-way valve 34 by a heat medium pipe C5. The second connection port of the three-way valve 34 is connected to the first connection port of the three-way valve 35 by the heat medium pipe C6, and the second connection port of the three-way valve 35 is connected to the inlet of the first pump 21 by the heat medium pipe C7. there is The outlet of the first pump 21 is connected to the inlet of the cooling section 13 by a heat medium pipe C8.

三方弁33の第2接続口は熱媒体配管C10により貯留部26の後述する低温側貯留室61の上部に連通接続されている。低温側貯留室61の底部には低温側出口61A(図3)が形成されており、この低温側出口61Aには熱媒体配管C42の一端が連通接続されている。熱媒体配管C42の他端はサーモバルブ30(温度調整部)の後述するメインバルブポートMVに接続されており、サーモバルブ30の後述するバイパスバルブポートBVは熱媒体配管C11、C12により逆止弁41の入口に接続されている。逆止弁41の出口は熱媒体配管C13により三方弁34の第3接続口に接続されている。この逆止弁41は三方弁34の方向が順方向とされている。 A second connection port of the three-way valve 33 is connected to an upper portion of a low-temperature side storage chamber 61 of the storage section 26, which will be described later, through a heat medium pipe C10. A low temperature side outlet 61A (FIG. 3) is formed at the bottom of the low temperature side storage chamber 61, and one end of a heat medium pipe C42 is connected to the low temperature side outlet 61A. The other end of the heat medium pipe C42 is connected to a main valve port MV, which will be described later, of the thermovalve 30 (temperature adjustment unit). 41 inlet. The outlet of the check valve 41 is connected to the third connection port of the three-way valve 34 through the heat medium pipe C13. The direction of the three-way valve 34 of the check valve 41 is the forward direction.

サーモバルブ30の後述する混合水ポートXVは熱媒体配管C41により第3ポンプ23の入口に接続されており、第3ポンプ23の出口は熱媒体配管C15によりバッテリ2(温調対象)の入口に接続されている。尚、バッテリ2の周囲には入口と出口を有して熱媒体が流れるジャケット構造が構成され、このジャケット構造を介してバッテリ2は熱媒体と熱交換する構成とされている。そして、バッテリ2の入口とはこのジャケット構造の入口であり、バッテリ2の出口、即ち、ジャケット構造の出口は熱媒体配管C16により貯留部26の後述する温調側貯留室63の上部に連通接続されている。この温調側貯留室63の底部には温調側出口63A(図3)が形成されており、この温調側出口63Aは熱媒体配管C46により、熱媒体配管C11と熱媒体配管C12の接続点に接続されている。 A mixed water port XV, which will be described later, of the thermo valve 30 is connected to the inlet of the third pump 23 through a heat medium pipe C41, and the outlet of the third pump 23 is connected to the inlet of the battery 2 (temperature control target) through a heat medium pipe C15. It is connected. A jacket structure having an inlet and an outlet through which a heat medium flows is formed around the battery 2, and the battery 2 is configured to exchange heat with the heat medium through this jacket structure. The inlet of the battery 2 is the inlet of this jacket structure, and the outlet of the battery 2, i.e., the outlet of the jacket structure, is communicated and connected to the upper part of a temperature control side reservoir 63 of the reservoir 26, which will be described later, by a heat medium pipe C16. It is A temperature control side outlet 63A (FIG. 3) is formed at the bottom of the temperature control side storage chamber 63, and the temperature control side outlet 63A is connected to the heat medium pipe C11 and the heat medium pipe C12 by a heat medium pipe C46. connected to the dots.

サーモバルブ31の後述するバイパスバルブポートBVは、熱媒体配管C48により貯留部26の後述する熱交換用高温側貯留室64の上部に連通接続されている。この熱交換用高温側貯留室64の底部には第1の高温側出口64A(図3)が形成されており、この第1の高温側出口64Aには、熱媒体配管C43の一端が接続されている。サーモバルブ31の後述するメインバルブポートMVは、熱媒体配管C49により貯留部26の後述するバイパス用高温側貯留室66の上部に連通接続されている。 A later-described bypass valve port BV of the thermo valve 31 is connected to an upper portion of a later-described heat exchange high temperature side storage chamber 64 of the storage section 26 through a heat medium pipe C48. A first high temperature side outlet 64A (FIG. 3) is formed at the bottom of the high temperature side storage chamber 64 for heat exchange, and one end of the heat medium pipe C43 is connected to the first high temperature side outlet 64A. ing. A main valve port MV of the thermo valve 31, which will be described later, is communicated with the upper portion of a bypass high-temperature side storage chamber 66, which will be described later, of the storage section 26 through a heat medium pipe C49.

このバイパス用高温側貯留室66と前述した熱交換用高温側貯留室64により、本発明における高温側貯留室65が構成される。また、バイパス用高温側貯留室66の底部には第2の高温側出口66A(図3)が形成されており、この第2の高温側出口66Aには、熱媒体配管C47の一端が接続されている。熱媒体配管C43と熱媒体配管C47の他端は接続されており、この接続点は熱媒体配管C45によりヒータコア17の入口に接続されている。また、サーモバルブ31の後述する混合水ポートXVには熱媒体配管C19が接続されている。 The bypass high temperature side storage chamber 66 and the heat exchange high temperature side storage chamber 64 described above constitute the high temperature side storage chamber 65 of the present invention. A second high temperature side outlet 66A (FIG. 3) is formed at the bottom of the bypass high temperature side storage chamber 66, and one end of the heat medium pipe C47 is connected to the second high temperature side outlet 66A. ing. The other ends of the heat medium pipe C43 and the heat medium pipe C47 are connected, and this connection point is connected to the inlet of the heater core 17 by the heat medium pipe C45. A mixed water port XV of the thermo valve 31, which will be described later, is connected to a heat medium pipe C19.

上記第3ポンプ23、熱媒体配管C15、バッテリ2のジャケット構造、熱媒体配管C16、貯留部26の温調側貯留室63、熱媒体配管C46、熱媒体配管C11、サーモバルブ30、熱媒体配管C41で構成される閉ループと、熱媒体配管C10、貯留部26の低温側貯留室61、熱媒体配管C42、熱媒体配管C12、逆止弁41、熱媒体配管C13が本発明における温調回路42を構成している。 The third pump 23, the heat medium pipe C15, the jacket structure of the battery 2, the heat medium pipe C16, the temperature control side storage chamber 63 of the storage unit 26, the heat medium pipe C46, the heat medium pipe C11, the thermo valve 30, the heat medium pipe C41, the heat medium pipe C10, the low-temperature side reservoir 61 of the reservoir 26, the heat medium pipe C42, the heat medium pipe C12, the check valve 41, and the heat medium pipe C13 constitute the temperature control circuit 42 in the present invention. constitutes

また、冷却部13、熱媒体配管C1、三方弁32、熱媒体配管C2、三方弁33、熱媒体配管C4、クーラコア16、熱媒体配管C5、三方弁34、熱媒体配管C6、三方弁35、熱媒体配管C7、第1ポンプ21、熱媒体配管C8が、後述する冷房モードでの本発明における低温熱媒体回路43を構成する。熱媒体配管C10、貯留部26の低温側貯留室61、熱媒体配管C42はこの場合の低温熱媒体回路43と温調回路42との接続部を構成する。サーモバルブ30は熱媒体配管C42(接続部)に接続され、低温側貯留室61から温調回路42への低温熱媒体回路43の熱媒体の流入を制御する。 Also, the cooling unit 13, the heat medium pipe C1, the three-way valve 32, the heat medium pipe C2, the three-way valve 33, the heat medium pipe C4, the cooler core 16, the heat medium pipe C5, the three-way valve 34, the heat medium pipe C6, the three-way valve 35, The heat medium pipe C7, the first pump 21, and the heat medium pipe C8 constitute a low-temperature heat medium circuit 43 in the present invention in the cooling mode, which will be described later. The heat medium pipe C10, the low-temperature side reservoir 61 of the reservoir 26, and the heat medium pipe C42 form a connecting portion between the low-temperature heat medium circuit 43 and the temperature control circuit 42 in this case. The thermo valve 30 is connected to the heat medium pipe C42 (connecting portion) and controls the inflow of the heat medium of the low temperature heat medium circuit 43 from the low temperature side storage chamber 61 to the temperature control circuit 42 .

また、加熱部14の出口は熱媒体配管C17により三方弁36の第3接続口に接続されている。三方弁36の第1接続口は熱媒体配管C19により前述した如くサーモバルブ31の混合水ポートXVに接続され、サーモバルブ31の後述するメインバルブポートMVは前述した如く熱媒体配管C49により貯留部26のバイパス用高温側貯留室66に接続されている。また、サーモバルブ31の後述するバイパスバルブポートBVは前述した如く熱媒体配管C48により貯留部26の熱交換用高温側貯留室64に接続されている。 Also, the outlet of the heating unit 14 is connected to the third connection port of the three-way valve 36 through the heat medium pipe C17. The first connection port of the three-way valve 36 is connected to the mixed water port XV of the thermo valve 31 through the heat medium pipe C19 as described above. 26 is connected to the bypass high temperature side storage chamber 66 . A bypass valve port BV of the thermo valve 31, which will be described later, is connected to the heat exchange high temperature side reservoir 64 of the reservoir 26 through the heat medium pipe C48 as described above.

また、前述した如く熱媒体配管C45はヒータコア17の入口に接続されており、ヒータコア17の出口は熱媒体配管C20により三方弁38の第1接続口に接続されている。三方弁38の第2接続口は熱媒体配管C21により第2ポンプ22の入口に接続され、第2ポンプ22の出口は熱媒体配管C22により加熱部14の入口に接続されている。 As described above, the heat medium pipe C45 is connected to the inlet of the heater core 17, and the outlet of the heater core 17 is connected to the first connection port of the three-way valve 38 by the heat medium pipe C20. The second connection port of the three-way valve 38 is connected to the inlet of the second pump 22 through the heat medium pipe C21, and the outlet of the second pump 22 is connected to the inlet of the heating unit 14 through the heat medium pipe C22.

この加熱部14、熱媒体配管C17、三方弁36、熱媒体配管C19、サーモバルブ31、熱媒体配管C48、熱媒体配管C49、貯留部26の熱交換用高温側貯留室64とバイパス用高温側貯留室66、熱媒体配管C43、熱媒体配管C47、熱媒体配管C45、ヒータコア17、熱媒体配管C20、三方弁38、熱媒体配管C21、第2ポンプ22、熱媒体配管C22が本発明における高温熱媒体回路44を構成する。また、サーモバルブ31は、高温熱媒体回路44の熱媒体を、貯留部26の熱交換用高温側貯留室64に導入するか、バイパス用高温側貯留室66に導入するかを切り替える制御を行う。 The heating unit 14, the heat medium pipe C17, the three-way valve 36, the heat medium pipe C19, the thermo valve 31, the heat medium pipe C48, the heat medium pipe C49, the heat exchange high temperature side reservoir 64 of the reservoir 26, and the bypass high temperature side The storage chamber 66, the heat medium pipe C43, the heat medium pipe C47, the heat medium pipe C45, the heater core 17, the heat medium pipe C20, the three-way valve 38, the heat medium pipe C21, the second pump 22, and the heat medium pipe C22 are the high-temperature components of the present invention. A heating medium circuit 44 is configured. Further, the thermo valve 31 performs control to switch between introducing the heat medium of the high temperature heat medium circuit 44 into the heat exchange high temperature side storage chamber 64 of the storage section 26 and introducing it into the bypass high temperature side storage chamber 66. .

また、三方弁36の第2接続口は熱媒体配管C24により三方弁37の第1接続口に接続されており、三方弁37の第3接続口は熱媒体配管C25によりラジエータ29の入口に接続されている。ラジエータ29の出口は熱媒体配管C26により三方弁39の第2接続口に接続されており、三方弁39の第1接続口は熱媒体配管C27により三方弁38の第3接続口に接続されている。 The second connection port of the three-way valve 36 is connected to the first connection port of the three-way valve 37 through a heat medium pipe C24, and the third connection port of the three-way valve 37 is connected to the inlet of the radiator 29 through a heat medium pipe C25. It is The outlet of the radiator 29 is connected to the second connection port of the three-way valve 39 through the heat medium pipe C26, and the first connection port of the three-way valve 39 is connected to the third connection port of the three-way valve 38 through the heat medium pipe C27. there is

更に、三方弁37の第2接続口は熱媒体配管C28により三方弁32の第3接続口に接続されており、三方弁35の第3接続口は熱媒体配管C29により三方弁39の第3接続口に接続されている。冷却部13、熱媒体配管C1、三方弁32、熱媒体配管C28、三方弁37、熱媒体配管C25、ラジエータ29、熱媒体配管C26、三方弁39、熱媒体配管C29、三方弁35、熱媒体配管C7、第1ポンプ21、熱媒体配管C8が、後述する暖房モードでの本発明における低温熱媒体回路43Aを構成することになる。この場合、熱媒体配管C2と熱媒体配管C10、貯留部26の低温側貯留室61、熱媒体配管C42はこの場合の低温熱媒体回路43と温調回路42との接続部を構成する。 Furthermore, the second connection port of the three-way valve 37 is connected to the third connection port of the three-way valve 32 through a heat medium pipe C28, and the third connection port of the three-way valve 35 is connected to the third connection port of the three-way valve 39 through a heat medium pipe C29. connected to the connection port. Cooling unit 13, heat medium pipe C1, three-way valve 32, heat medium pipe C28, three-way valve 37, heat medium pipe C25, radiator 29, heat medium pipe C26, three-way valve 39, heat medium pipe C29, three-way valve 35, heat medium The pipe C7, the first pump 21, and the heat medium pipe C8 constitute a low-temperature heat medium circuit 43A in the present invention in the heating mode, which will be described later. In this case, the heat medium pipe C2, the heat medium pipe C10, the low temperature side storage chamber 61 of the storage unit 26, and the heat medium pipe C42 form a connecting portion between the low temperature heat medium circuit 43 and the temperature control circuit 42 in this case.

図1において46は、電動車両の車室内に空調用の空気を供給するHVACユニットであり、内部の空気流通路47に送給する空気を内気と外気で切り替える吸込切替ダンパ48と、室内ファン49が設けられている。そして、前述したクーラコア16とヒータコア17は、この室内ファン49の下流側の空気流通路47内に順次配設されている。 In FIG. 1, reference numeral 46 denotes an HVAC unit that supplies air for air conditioning to the interior of the electric vehicle. is provided. The cooler core 16 and the heater core 17 described above are sequentially arranged in the air flow passage 47 on the downstream side of the indoor fan 49 .

(2)貯留部26の構成
ここで、貯留部26の内部を図3と図4に拡大して示す。図中67は熱交換用高温側貯留室64と温調側貯留室63とを区画する区画壁である。区画壁67は貯留部26の底部から天井部まで渡っているので、熱交換用高温側貯留室64と温調側貯留室63との間は熱媒体の流通はないが、区画壁67は熱伝導率の高い素材(金属等)にて構成されており、これにより、高温側貯留室65の熱交換用高温側貯留室64と温調側貯留室63は熱交換関係を有した状態で区画壁67により区画されている。
(2) Configuration of Storing Portion 26 Here, the inside of the storing portion 26 is shown enlarged in FIGS. 3 and 4. FIG. Reference numeral 67 in the drawing denotes a partition wall that separates the high temperature side storage chamber 64 for heat exchange and the temperature control side storage chamber 63 . Since the partition wall 67 extends from the bottom to the ceiling of the reservoir 26, the heat medium does not flow between the heat exchange high temperature side reservoir 64 and the temperature control side reservoir 63, but the partition wall 67 allows heat to flow. The high-temperature storage chamber 64 for heat exchange of the high-temperature storage chamber 65 and the temperature control storage chamber 63 are partitioned in a heat exchange relationship. It is partitioned by walls 67 .

図中68は低温側貯留室61と温調側貯留室63とを区画する区画壁である。区画壁68も貯留部26の底部から天井部まで渡っているので、低温側貯留室61と温調側貯留室63との間は熱媒体の流通はない。また、区画壁68は断熱素材(硬質樹脂等)にて構成されており、これにより、温調側貯留室63と低温側貯留室61は断熱されている。 Reference numeral 68 in the drawing denotes a partition wall that separates the low temperature storage chamber 61 and the temperature control storage chamber 63 from each other. Since the partition wall 68 also extends from the bottom to the ceiling of the reservoir 26 , the heat medium does not flow between the low temperature reservoir 61 and the temperature control reservoir 63 . Moreover, the partition wall 68 is made of a heat insulating material (hard resin, etc.), so that the temperature control side storage chamber 63 and the low temperature side storage chamber 61 are insulated from each other.

図中69は高温側貯留室65内を熱交換用高温側貯留室64とバイパス用高温側貯留室66とに仕切る仕切壁である。この仕切壁69は断熱素材(硬質樹脂等)にて構成されており、貯留部26の底部から起立しているが、天井部までは至っていない。これにより、熱交換用高温側貯留室64とバイパス用高温側貯留室66は断熱されているが、それらの上部では連通している。また、熱交換用高温側貯留室64は区画壁67に面しており、内部の熱媒体は区画壁67に接するが、バイパス用高温側貯留室66は区画壁67には面しておらず、内部の熱媒体は区画壁67に接しない。 Reference numeral 69 in the drawing denotes a partition wall that divides the inside of the high temperature side storage chamber 65 into a high temperature side storage chamber 64 for heat exchange and a high temperature side storage chamber 66 for bypass. The partition wall 69 is made of a heat insulating material (hard resin or the like) and stands up from the bottom of the reservoir 26 but does not reach the ceiling. As a result, the heat exchange high temperature side storage chamber 64 and the bypass high temperature side storage chamber 66 are insulated, but are communicated at their upper portions. Further, the heat exchange high temperature side storage chamber 64 faces the partition wall 67, and the internal heat medium is in contact with the partition wall 67, but the bypass high temperature side storage chamber 66 does not face the partition wall 67. , the heat medium inside does not come into contact with the partition wall 67 .

実施例の貯留部26は略円筒状を呈しているが、上述した区画壁67は貯留部26の中央部に位置しており、区画壁68と仕切壁69は貯留部26と略同心円の円弧状を呈している(図4)。これにより、温調側貯留室63と熱交換用高温側貯留室64は貯留部26の内側に位置し、低温側貯留室61とバイパス用高温側貯留室66はそれらの外側に位置する。また、低温側貯留室61とバイパス用高温側貯留室66は、区画壁67の延長上に位置する仕切壁71、72により相互に仕切られている。仕切壁71、72は断熱素材(硬質樹脂等)にて構成されており、貯留部26の底部から起立しているが、天井部までは至っていない。これにより、低温側貯留室61と高温側貯留室65(バイパス用高温側貯留室66と熱交換用高温側貯留室64)は相互に断熱されているが、それらの上部では連通している。 Although the reservoir 26 of the embodiment has a substantially cylindrical shape, the partition wall 67 described above is positioned in the central portion of the reservoir 26, and the partition wall 68 and the partition wall 69 are substantially concentric with the reservoir 26. It has an arcuate shape (Fig. 4). As a result, the temperature control side storage chamber 63 and the heat exchange high temperature side storage chamber 64 are located inside the storage section 26, and the low temperature side storage chamber 61 and the bypass high temperature side storage chamber 66 are located outside them. The low-temperature storage chamber 61 and the bypass high-temperature storage chamber 66 are partitioned from each other by partition walls 71 and 72 that extend from the partition wall 67 . The partition walls 71 and 72 are made of a heat-insulating material (hard resin or the like) and stand up from the bottom of the reservoir 26, but do not reach the ceiling. As a result, the low-temperature side storage chamber 61 and the high-temperature side storage chamber 65 (the high-temperature side storage chamber 66 for bypass and the high-temperature side storage chamber 64 for heat exchange) are insulated from each other, but are communicated at their upper portions.

(3)サーモバルブ(温度調整部)30、31の構成
図2は前述したサーモバルブ(温度調整部)30、31の断面図である。サーモバルブ30及び31は基本的には同一の構造であるが、使い方が異なっている。即ち、サーモバルブ30は熱媒体配管C42(温調回路42と低温熱媒体回路43、43Aの接続部分)に接続され、サーモバルブ31は熱媒体配管C19(温調回路42と高温熱媒体回路44の接続部分)に接続されている。
(3) Configuration of Thermovalves (Temperature Control Units) 30 and 31 FIG. 2 is a sectional view of the thermovalves (temperature control units) 30 and 31 described above. The thermo valves 30 and 31 have basically the same structure, but are used differently. That is, the thermo valve 30 is connected to the heat medium pipe C42 (the connection portion between the temperature control circuit 42 and the low temperature heat medium circuits 43 and 43A), and the thermo valve 31 is connected to the heat medium pipe C19 (the temperature control circuit 42 and the high temperature heat medium circuit 44). connection part).

そして、何れもハウジング51と、メインバルブ52と、バイパスバルブ53と、感温部54と、スプリング56、57を備えている。ハウジング51には、前述したメインバルブポートMV、バイパスバルブポートBV、及び、混合水ポートXVが形成され、更にハウジング51内は混合室58とされている。 Each of them includes a housing 51 , a main valve 52 , a bypass valve 53 , a temperature sensing portion 54 and springs 56 and 57 . The housing 51 is formed with the aforementioned main valve port MV, bypass valve port BV, and mixed water port XV, and a mixing chamber 58 is provided inside the housing 51 .

メインバルブポートMVは開口59を介して混合室58と連通しており、バイパスバルブポートBVは混合室58に連通している。そして、メインバルブ52は感温部54とスプリング56、57の作用により、開口59を開閉すると共に、バイパスバルブ53はバイパスバルブポートBVを開閉する。尚、混合水ポートXVは混合室58と連通している。 Main valve port MV communicates with mixing chamber 58 through opening 59 and bypass valve port BV communicates with mixing chamber 58 . The main valve 52 opens and closes the opening 59 by the action of the temperature sensing portion 54 and the springs 56 and 57, and the bypass valve 53 opens and closes the bypass valve port BV. Incidentally, the mixed water port XV communicates with the mixing chamber 58 .

感温部54は、メインバルブ52とバイパスバルブ53に接続されており、内部にはワックス(例えば、パラフィンワックス)が内蔵されて伸縮する構造とされている。感温部54は混合室58内の熱媒体の温度により伸縮し、メインバルブ52とバイパスバルブ53を移動させ、開口59とバイパスバルブポートBVの開度を調節する。 The temperature sensing part 54 is connected to the main valve 52 and the bypass valve 53, and has a structure in which wax (for example, paraffin wax) is incorporated and expands and contracts. The temperature sensing part 54 expands and contracts according to the temperature of the heat medium in the mixing chamber 58, moves the main valve 52 and the bypass valve 53, and adjusts the opening degrees of the opening 59 and the bypass valve port BV.

尚、サーモバルブ31の混合室58内の熱媒体の温度とは、後述する如く混合水ポートXVから流入した熱媒体の温度(高温熱媒体回路44を流れる熱媒体の温度)である。また、サーモバルブ30の混合室58内の熱媒体の温度とは、後述する如くバイパスバルブポートBVから流入した熱媒体の温度、又は、当該熱媒体とメインバルブポートMVから開口59を介して流入した熱媒体が混合された熱媒体の温度であり、何れの混合室58内の熱媒体の温度も温調回路42を流れる熱媒体の温度である。 The temperature of the heat medium in the mixing chamber 58 of the thermo valve 31 is the temperature of the heat medium flowing from the mixed water port XV (the temperature of the heat medium flowing through the high-temperature heat medium circuit 44) as described later. Further, the temperature of the heat medium in the mixing chamber 58 of the thermo valve 30 is the temperature of the heat medium flowing from the bypass valve port BV as described later, or the temperature of the heat medium and the heat medium flowing from the main valve port MV through the opening 59. It is the temperature of the heat medium mixed with the mixed heat medium, and the temperature of the heat medium in any mixing chamber 58 is also the temperature of the heat medium flowing through the temperature control circuit 42 .

サーモバルブ31のメインバルブポートMVには前述した如く熱媒体配管C49が接続されており、バイパスバルブポートBVには熱媒体配管C48が接続され、混合水ポートXVは熱媒体配管C19に接続されている。そして、サーモバルブ31は、混合室58内の熱媒体の温度が所定値T1(例えば、+30℃)より低い場合、メインバルブ52が開口59を閉じ、バイパスバルブ53がバイパスバルブポートBVを開く。これにより、サーモバルブ31は高温熱媒体回路44の熱媒体を混合水ポートXVから混合室58内に導入し、バイパスバルブポートBVから熱媒体配管C48に流すことで、貯留部26の熱交換用高温側貯留室64に高温熱媒体回路44の高温熱媒体を導入する。 The heat medium pipe C49 is connected to the main valve port MV of the thermo valve 31 as described above, the heat medium pipe C48 is connected to the bypass valve port BV, and the mixed water port XV is connected to the heat medium pipe C19. there is When the temperature of the heat medium in the mixing chamber 58 is lower than a predetermined value T1 (eg, +30° C.), the thermo valve 31 causes the main valve 52 to close the opening 59 and the bypass valve 53 to open the bypass valve port BV. As a result, the thermo valve 31 introduces the heat medium of the high-temperature heat medium circuit 44 from the mixed water port XV into the mixing chamber 58, and flows it from the bypass valve port BV to the heat medium pipe C48, so that The high temperature heat medium of the high temperature heat medium circuit 44 is introduced into the high temperature storage chamber 64 .

一方、サーモバルブ31は、混合室58内の熱媒体の温度が所定値T1以上になると、メインバルブ52が開口59を開き、バイパスバルブ53がバイパスバルブポートBVを閉じる。これにより、サーモバルブ31は混合水ポートXVから流入した熱媒体を開口59からメインバルブポートMVに流し、熱媒体配管C49に流出させ、貯留部26のバイパス用高温側貯留室66に高温熱媒体回路55の高温熱媒体を導入する。 On the other hand, in the thermo valve 31, when the temperature of the heat medium in the mixing chamber 58 reaches or exceeds a predetermined value T1, the main valve 52 opens the opening 59 and the bypass valve 53 closes the bypass valve port BV. As a result, the thermo valve 31 causes the heat medium that has flowed in from the mixed water port XV to flow from the opening 59 to the main valve port MV, flow out to the heat medium pipe C49, and flow into the high temperature side reservoir 66 for bypass of the reservoir 26. A hot heat transfer medium in circuit 55 is introduced.

他方、サーモバルブ30のメインバルブポートMVには前述した如く貯留部26の低温側貯留室61に接続された熱媒体配管C42が接続されており、バイパスバルブポートBVには熱媒体配管C11が接続され、混合水ポートXVには熱媒体配管C41が接続される。そして、混合室58内の熱媒体の温度が前述した所定値T1より高いもう一つの所定値T2(例えば、+40℃)より低い場合、メインバルブ52が開口59を閉じ、バイパスバルブ53がバイパスバルブポートBVを開き、混合室58内の熱媒体の温度が所定値T2以上となると、メインバルブ52が開口59を開き始め、低温側貯留室61から低温熱媒体回路43の熱媒体(後述する低温熱媒体)が混合室58内に導入される設定とされている。尚、サーモバルブ30、31のメインバルブ52については、開口59を閉じている状態でメインバルブポートMVからは僅かながら熱媒体が混合室58に流れる構造とされている。 On the other hand, the main valve port MV of the thermo valve 30 is connected to the heat medium pipe C42 connected to the low temperature side reservoir 61 of the reservoir 26 as described above, and the bypass valve port BV is connected to the heat medium pipe C11. A heat medium pipe C41 is connected to the mixed water port XV. When the temperature of the heat medium in the mixing chamber 58 is lower than another predetermined value T2 (for example, +40° C.) higher than the predetermined value T1, the main valve 52 closes the opening 59 and the bypass valve 53 closes the bypass valve. When the port BV is opened and the temperature of the heat medium in the mixing chamber 58 reaches or exceeds a predetermined value T2, the main valve 52 begins to open the opening 59, and the heat medium (low-temperature A heat medium) is introduced into the mixing chamber 58 . The main valve 52 of the thermovalves 30 and 31 is structured so that a slight amount of heat medium flows into the mixing chamber 58 from the main valve port MV while the opening 59 is closed.

以上の構成で、実施例の熱マネジメントシステム1の動作を説明する。
(4)暖房モードとバッテリ2(温調対象)の温調
先ず、制御装置6による暖房モードについて説明する。図1中の各矢印は暖房モードにおける熱媒体の流れ方を示している。暖房モードでは制御装置6は、三方弁32が熱媒体配管C1、C28、C2を連通する状態とし、三方弁33は熱媒体配管C2と熱媒体配管C10のみを連通する状態とする。また、三方弁34は熱媒体配管C6と熱媒体配管C13のみを連通する状態とし、三方弁35は熱媒体配管C6、C7、C29を連通する状態とする。また、三方弁36は熱媒体配管C17と熱媒体配管C19のみを連通する状態とし、三方弁37は熱媒体配管C25と熱媒体配管C28のみを連通する状態とする。また、三方弁39は熱媒体配管C26と熱媒体配管C29のみを連通する状態とし、三方弁38は熱媒体配管C20と熱媒体配管C21のみを連通する状態に切り替える。
The operation of the heat management system 1 of the embodiment with the above configuration will be described.
(4) Heating Mode and Temperature Control of Battery 2 (Temperature Control Target) First, the heating mode by the controller 6 will be described. Each arrow in FIG. 1 indicates how the heat medium flows in the heating mode. In the heating mode, the control device 6 sets the three-way valve 32 to communicate the heat medium pipes C1, C28, and C2, and sets the three-way valve 33 to communicate only the heat medium pipes C2 and C10. Also, the three-way valve 34 is set to a state in which only the heat medium pipe C6 and the heat medium pipe C13 are communicated, and the three-way valve 35 is set to a state in which the heat medium pipes C6, C7, and C29 are communicated. In addition, the three-way valve 36 is put in a state in which only the heat medium pipe C17 and the heat medium pipe C19 are communicated, and the three-way valve 37 is put in a state in which only the heat medium pipe C25 and the heat medium pipe C28 are communicated. Further, the three-way valve 39 is switched to a state in which only the heat medium pipe C26 and the heat medium pipe C29 are communicated, and the three-way valve 38 is switched to a state in which only the heat medium pipe C20 and the heat medium pipe C21 are communicated.

そして、圧縮機7、各ポンプ21、22、23、室内ファン49を運転する。これにより、第1ポンプ21から吐出された熱媒体は冷却部13、ラジエータ29を順次経て第1ポンプ21に吸い込まれるかたちで低温熱媒体回路43A内を循環される。また、氷点下の低外気温条件では、サーモバルブ30のバイパスバルブポートBVから混合室58に流入する熱媒体の温度は低いので(所定値T2より低い)、感温部54は係る混合室53内の熱媒体の温度に基づいてメインバルブ52により開口59を閉じ、バイパスバルブ3によりバイパスバルブポートBVを開いている。これにより、温調回路42の温調側貯留室63を含む閉ループ内を熱媒体が循環される(図1に矢印で示す)。 Then, the compressor 7, the pumps 21, 22, 23 and the indoor fan 49 are operated. As a result, the heat medium discharged from the first pump 21 is sucked into the first pump 21 through the cooling unit 13 and the radiator 29 in order, and is circulated in the low-temperature heat medium circuit 43A. In addition, under low outside air temperature conditions below freezing, the temperature of the heat medium flowing into the mixing chamber 58 from the bypass valve port BV of the thermo valve 30 is low (lower than the predetermined value T2). The opening 59 is closed by the main valve 52 and the bypass valve port BV is opened by the bypass valve 3 based on the temperature of the heat medium. As a result, the heat medium is circulated in a closed loop including the temperature control side storage chamber 63 of the temperature control circuit 42 (indicated by arrows in FIG. 1).

また、第2ポンプ22から吐出された熱媒体は加熱部14を経てサーモバルブ31に至る。ここで、氷点下の低外気温条件では、サーモバルブ31の混合水ポートXVから混合室58に流入する熱媒体の温度も低いので(所定値T1より低い)、感温部54は係る混合室58内の熱媒体の温度に基づいてメインバルブ52により開口59を閉じ、バイパスバルブ53によりバイパスバルブポートBVを開くので、サーモバルブ31に至った熱媒体は熱媒体配管C48を経て貯留部26の熱交換用高温側貯留室64に導入され、一旦貯留される。 Also, the heat medium discharged from the second pump 22 reaches the thermo valve 31 through the heating section 14 . Here, under low outside air temperature conditions below freezing, the temperature of the heat medium flowing into the mixing chamber 58 from the mixed water port XV of the thermo valve 31 is also low (lower than the predetermined value T1). The opening 59 is closed by the main valve 52 and the bypass valve port BV is opened by the bypass valve 53 based on the temperature of the heat medium inside. It is introduced into the replacement high temperature side storage chamber 64 and temporarily stored.

貯留部26の熱交換用高温側貯留室64内の熱媒体は、区画壁67を介して温調側貯留室63内の熱媒体と熱交換するので、当該温調側貯留室63内の熱媒体は加熱される。この加熱された熱媒体は、熱媒体配管C46、熱媒体配管C11、サーモバルブ30、熱媒体配管C41を経て第3ポンプ23に吸い込まれる。そして、熱媒体配管C15からバッテリ2に循環されて当該バッテリ2を加熱する。これにより、バッテリ2の暖機が行われることになる。 Since the heat medium in the heat exchange high temperature side storage chamber 64 of the storage section 26 exchanges heat with the heat medium in the temperature control side storage chamber 63 via the partition wall 67, the heat in the temperature control side storage chamber 63 The medium is heated. This heated heat medium is sucked into the third pump 23 through the heat medium pipe C46, the heat medium pipe C11, the thermo valve 30, and the heat medium pipe C41. Then, the heat is circulated from the heat medium pipe C15 to the battery 2 to heat the battery 2 . Thereby, the warm-up of the battery 2 is performed.

貯留部26の熱交換用高温側貯留室64内の熱媒体は、熱媒体配管C43、熱媒体配管C45を経てヒータコア17に流入する。そして、ヒータコア17から流出した熱媒体は、第2ポンプ22に吸い込まれるかたちで高温熱媒体回路44内を循環される。図5の実線矢印はこの状態を示しており、これを熱媒体回路4の第1経路状態とする。 The heat medium in the heat exchange high temperature side storage chamber 64 of the storage section 26 flows into the heater core 17 through the heat medium pipe C43 and the heat medium pipe C45. The heat medium flowing out of the heater core 17 is sucked into the second pump 22 and circulated in the high-temperature heat medium circuit 44 . A solid arrow in FIG. 5 indicates this state, which is defined as the first path state of the heat medium circuit 4 .

圧縮機7が運転されることで放熱器8では冷媒が放熱し、吸熱器11では冷媒が吸熱するので、放熱器8では加熱部14を流れる熱媒体が高温の冷媒により加熱される。この加熱された熱媒体は、前述した如く貯留部26の熱交換用高温側貯留室64に導入され、区画壁67を介して温調側貯留室63の熱媒体を加熱する。そして、温調側貯留室63の熱媒体はバッテリ2に循環されるので、バッテリ2は加熱される。また、貯留部26の熱交換用高温側貯留室64を経た熱媒体は次にヒータコア17に循環されるので、室内ファン49から車室内に送給される空気はヒータコア17により加熱され、これにより車室内の暖房が行われる。 When the compressor 7 is operated, the refrigerant releases heat in the radiator 8 and absorbs heat in the heat absorber 11 . This heated heat medium is introduced into the heat exchange high temperature side storage chamber 64 of the storage section 26 as described above, and heats the heat medium in the temperature control side storage chamber 63 via the partition wall 67 . Since the heat medium in the temperature control storage chamber 63 is circulated to the battery 2, the battery 2 is heated. Further, since the heat medium passing through the heat exchange high temperature side storage chamber 64 of the storage portion 26 is then circulated to the heater core 17, the air supplied from the indoor fan 49 to the vehicle interior is heated by the heater core 17, thereby The vehicle interior is heated.

他方、吸熱器11では冷却部13を流れる熱媒体が冷媒により吸熱されて冷却される。この冷却された低温熱媒体はラジエータ29に循環され、外気により暖められる。即ち、外気中の熱を汲み上げる。この汲み上げられた熱はヒートポンプ回路3により放熱器8に搬送され、バッテリ2の加熱や、車室内の暖房に利用されることになる。 On the other hand, in the heat absorber 11, the heat medium flowing through the cooling section 13 is cooled by the refrigerant. This cooled low-temperature heat medium is circulated to the radiator 29 and warmed by the outside air. That is, it draws up heat in the outside air. The heat thus pumped up is conveyed to the radiator 8 by the heat pump circuit 3, and is used for heating the battery 2 and heating the interior of the vehicle.

運転開始後。高温熱媒体回路44を循環する熱媒体の温度は上昇していく。そして、サーモバルブ31の混合水ポートXVから混合室58内に流入する熱媒体の温度が前述した所定値T1(+30℃)以上まで上昇すると、感温部54は係る混合室58内の熱媒体の温度に基づいてバイパスバルブ53とメインバルブ52を移動させ、バイパスバルブポートBVを閉じ、開口59を開く。 After starting operation. The temperature of the heat medium circulating in the high temperature heat medium circuit 44 rises. Then, when the temperature of the heat medium flowing into the mixing chamber 58 from the mixed water port XV of the thermo valve 31 rises above the predetermined value T1 (+30° C.), the temperature sensing part 54 detects the temperature of the heat medium in the mixing chamber 58. By moving the bypass valve 53 and the main valve 52 based on the temperature of , the bypass valve port BV is closed and the opening 59 is opened.

これにより、サーモバルブ31の混合水ポートXVから流入した熱媒体は混合室58内を経て開口59を通過し、メインバルブポートMVから熱媒体配管C49に流出し、貯留部26のバイパス用高温側貯留室66に導入され、一旦貯留される。貯留部26のバイパス用高温側貯留室66内の熱媒体は区画壁67に接していないので、高温熱媒体回路44の熱媒体は熱交換用高温側貯留室64をバイパスして貯留部26内を流れることになり、温調側貯留室63内の熱媒体の加熱は停止される。これにより、バッテリ2の過剰な加熱は防止される。 As a result, the heat medium flowing in from the mixed water port XV of the thermo valve 31 passes through the mixing chamber 58 and the opening 59, flows out from the main valve port MV to the heat medium pipe C49, and reaches the bypass high temperature side of the reservoir 26. It is introduced into the storage chamber 66 and temporarily stored. Since the heat medium in the bypass high temperature side storage chamber 66 of the storage section 26 is not in contact with the partition wall 67, the heat medium in the high temperature heat medium circuit 44 bypasses the heat exchange high temperature side storage chamber 64 and flows into the storage section 26. , and the heating of the heat medium in the temperature control side storage chamber 63 is stopped. This prevents excessive heating of the battery 2 .

貯留部26のバイパス用高温側貯留室66内の熱媒体は、熱媒体配管C47、熱媒体配管C45を経てヒータコア17に流入する。そして、ヒータコア17から流出した熱媒体は、第2ポンプ22に吸い込まれるかたちで高温熱媒体回路44内を循環される。図6、図7の実線矢印はこの状態を示しており、これを熱媒体回路4の第2経路状態とする。 The heat medium in the bypass high-temperature side storage chamber 66 of the storage section 26 flows into the heater core 17 through the heat medium pipe C47 and the heat medium pipe C45. The heat medium flowing out of the heater core 17 is sucked into the second pump 22 and circulated in the high-temperature heat medium circuit 44 . Solid-line arrows in FIGS. 6 and 7 indicate this state, which is defined as the second path state of the heat medium circuit 4 .

その後、バッテリ2の自己発熱により温調回路42の閉ループ内を循環される熱媒体の温度は上昇していく。そして、サーモバルブ30のバイパスバルブポートBVから混合室58内に流入する熱媒体の温度が前述した所定値T2(+40℃)以上になると、感温部54は係る混合室58内の熱媒体の温度に基づいてメインバルブ52を移動させ、開口59を開き始める。これにより、低温熱媒体回路43Aを流れる低温熱媒体の一部が、三方弁32で分流され、熱媒体配管C2、三方弁33、熱媒体配管C10、貯留部26の低温側貯留室61、熱媒体配管C42を経てメインバルブポートMVからサーモバルブ30内に入り、開口59から混合室58内に流入し始める(図7中に破線矢印で示す)。 Thereafter, the self-heating of the battery 2 increases the temperature of the heat medium circulating in the closed loop of the temperature control circuit 42 . When the temperature of the heat medium flowing into the mixing chamber 58 from the bypass valve port BV of the thermo valve 30 reaches or exceeds the predetermined value T2 (+40° C.), the temperature sensing part 54 detects that the heat medium in the mixing chamber 58 is Based on the temperature, the main valve 52 is moved to start opening the opening 59 . As a result, part of the low-temperature heat medium flowing through the low-temperature heat medium circuit 43A is split by the three-way valve 32, the heat medium pipe C2, the three-way valve 33, the heat medium pipe C10, the low-temperature side reservoir 61 of the reservoir 26, the heat It enters into the thermo valve 30 from the main valve port MV via the medium pipe C42 and begins to flow into the mixing chamber 58 from the opening 59 (indicated by the dashed arrow in FIG. 7).

開口59から流入した熱媒体は、バイパスバルブポートBVから流入した熱媒体と混合室58内で混合され、混合水ポートXVから熱媒体配管C41に流出する。そして、第3ポンプ23に吸い込まれ、バッテリ2に向けて吐出されるようになる。これにより、バッテリ2には温度が下がった熱媒体が循環されるので、バッテリ2は冷却されるようになる。 The heat medium that has flowed in from the opening 59 is mixed with the heat medium that has flowed in from the bypass valve port BV in the mixing chamber 58, and flows out from the mixed water port XV to the heat medium pipe C41. Then, it is sucked into the third pump 23 and discharged toward the battery 2 . As a result, the battery 2 is cooled because the heat medium whose temperature is lowered is circulated in the battery 2 .

バッテリ2を経て熱媒体配管C16に流出した熱媒体は、貯留部26の温調側貯留室63、熱媒体配管C46に至る。この熱媒体配管C46からは、もともと温調回路42の閉ループ内を循環していた分の熱媒体が熱媒体配管C11に流れ、熱媒体配管C10を経て低温熱媒体回路43Aから導入された分の熱媒体は、熱媒体配管C12に分流され、逆止弁41、熱媒体配管C13を経て三方弁34に至り、低温熱媒体回路43Aに戻される(図7中破線矢印で示す)。即ち、熱媒体配管C46、熱媒体配管C12、逆止弁41、熱媒体配管C13が温調回路42から低温熱媒体回路43Aに熱媒体を戻す経路となり、貯留部26はこの経路上に設けられていることになる。これを熱媒体回路4の第3経路状態とする。 The heat medium that has flowed out to the heat medium pipe C16 through the battery 2 reaches the temperature control side reservoir 63 of the reservoir 26 and the heat medium pipe C46. From the heat medium pipe C46, the heat medium originally circulating in the closed loop of the temperature control circuit 42 flows into the heat medium pipe C11, and the heat medium pipe C10 is introduced from the low-temperature heat medium circuit 43A. The heat medium is branched to the heat medium pipe C12, passes through the check valve 41 and the heat medium pipe C13, reaches the three-way valve 34, and is returned to the low-temperature heat medium circuit 43A (indicated by the dashed arrow in FIG. 7). That is, the heat medium pipe C46, the heat medium pipe C12, the check valve 41, and the heat medium pipe C13 form a path for returning the heat medium from the temperature control circuit 42 to the low-temperature heat medium circuit 43A, and the reservoir 26 is provided on this path. It means that This is the third path state of the heat medium circuit 4 .

このとき、貯留部26のバイパス用高温側貯留室66には高温熱媒体回路44を流れる熱媒体が貯留されているが、仕切壁68、71、72により両室61、66は断熱されているので、高温熱媒体回路44の熱媒体と低温熱媒体回路43Aの熱媒体が熱交換することは防止、若しくは、最低限に抑えられる。 At this time, the heat medium flowing through the high temperature heat medium circuit 44 is stored in the bypass high temperature side storage chamber 66 of the storage section 26, but both chambers 61 and 66 are insulated by the partition walls 68, 71 and 72. Therefore, heat exchange between the heat medium of the high temperature heat medium circuit 44 and the heat medium of the low temperature heat medium circuit 43A is prevented or minimized.

尚、上述の如く低温熱媒体回路43Aから導入された低温熱媒体によりバッテリ2が冷却され、サーモバルブ30の混合室58内の熱媒体(混合された熱媒体)の温度が前述した所定値T2より低くなると、感温部54は係る混合室58内の熱媒体の温度に基づいてメインバルブ52により開口59を閉じる。これにより、再び第2経路状態に戻され、熱媒体は温調回路42の閉ループ内を循環するかたちに復帰する。以上のようにしてバッテリ2は最適温度範囲(例えば、+10℃以上、+40℃以下の目標温度)に維持されるようになる。 The battery 2 is cooled by the low temperature heat medium introduced from the low temperature heat medium circuit 43A as described above, and the temperature of the heat medium (mixed heat medium) in the mixing chamber 58 of the thermo valve 30 rises to the predetermined value T2. When the temperature becomes lower, the temperature sensing part 54 closes the opening 59 by the main valve 52 based on the temperature of the heat medium in the mixing chamber 58 . As a result, the state is returned to the second path state, and the heat medium returns to the form of circulating in the closed loop of the temperature control circuit 42 . As described above, the battery 2 is maintained within the optimum temperature range (for example, a target temperature of +10° C. or higher and +40° C. or lower).

また、前述した如く貯留部26内の低温側貯留室61と高温側貯留室65(熱交換用高温側貯留室64とバイパス用高温側貯留室66)の上部は連通されているので、低温熱媒体回路43Aと高温熱媒体回路44で熱媒体の量に偏りが生じ、低温側貯留室61と高温側貯留室65のうちの何れかの熱媒体が仕切壁71、72を超えた場合は、超えた方の室から他方の室に熱媒体が流入するので、低温側貯留室61と高温側貯留室65において、高温熱媒体回路44と低温熱媒体回路43Aの熱媒体の量は調整されることになる。また、低温側貯留室61と高温側貯留室65の何れかが満杯になってしまうこともなくなる。 Further, as described above, the upper portions of the low temperature side storage chamber 61 and the high temperature side storage chamber 65 (the high temperature side storage chamber 64 for heat exchange and the high temperature side storage chamber 66 for bypass) in the storage section 26 are communicated with each other. If the amounts of the heat medium in the medium circuit 43A and the high temperature heat medium circuit 44 are uneven and the heat medium in either the low temperature side storage chamber 61 or the high temperature side storage chamber 65 exceeds the partition walls 71 and 72, Since the heat medium flows into the other chamber from the chamber beyond, the amount of heat medium in the high temperature heat medium circuit 44 and the low temperature heat medium circuit 43A is adjusted in the low temperature side storage chamber 61 and the high temperature side storage chamber 65. It will be. Also, either the low temperature storage chamber 61 or the high temperature storage chamber 65 will not become full.

また、熱交換用高温側貯留室64とバイパス用高温側貯留室66も上部で連通されており、熱交換用高温側貯留室64とバイパス用高温側貯留室66のうちの何れか一方の熱媒体が増加して、仕切壁69を超えた場合は、他方に流入するので、何れかの室が満杯になってしまうこともない。 In addition, the heat exchange high temperature side storage chamber 64 and the bypass high temperature side storage chamber 66 are also communicated at the top, and the heat in either the heat exchange high temperature side storage chamber 64 or the bypass high temperature side storage chamber 66 is If the medium increases and exceeds the partition wall 69, it will flow into the other, so that either chamber will not become full.

(5)冷房モードとバッテリ(温調対象)2の温調
次に、制御装置6による冷房モードについて説明する。図8中の各矢印は冷房モードにおける熱媒体の流れ方を示している。冷房モードでは制御装置6は、三方弁32が熱媒体配管C1と熱媒体配管C2のみを連通する状態とし、三方弁33は熱媒体配管C2、C4、C10を連通する状態とする。また、三方弁34は熱媒体配管C5、C6、C13を連通する状態とし、三方弁35は熱媒体配管C6と熱媒体配管C7のみを連通する状態とする。また、三方弁36は熱媒体配管C17と熱媒体配管C24のみを連通する状態とし、三方弁37は熱媒体配管C24と熱媒体配管C25のみを連通する状態とする。また、三方弁39は熱媒体配管C26と熱媒体配管C27のみを連通する状態とし、三方弁38は熱媒体配管C27と熱媒体配管C21のみを連通する状態に切り替える。
(5) Cooling Mode and Temperature Control of Battery (Temperature Control Target) 2 Next, the cooling mode by the control device 6 will be described. Each arrow in FIG. 8 indicates how the heat medium flows in the cooling mode. In the cooling mode, the control device 6 sets the three-way valve 32 in a state in which only the heat medium pipes C1 and C2 are communicated, and the three-way valve 33 in a state in which the heat medium pipes C2, C4, and C10 are communicated. In addition, the three-way valve 34 is put in a state in which the heat medium pipes C5, C6, and C13 are communicated, and the three-way valve 35 is put in a state in which only the heat medium pipes C6 and C7 are communicated. In addition, the three-way valve 36 is put in a state in which only the heat medium pipe C17 and the heat medium pipe C24 are communicated, and the three-way valve 37 is put in a state in which only the heat medium pipe C24 and the heat medium pipe C25 are communicated. Also, the three-way valve 39 is switched to a state in which only the heat medium pipe C26 and the heat medium pipe C27 are communicated, and the three-way valve 38 is switched to a state in which only the heat medium pipe C27 and the heat medium pipe C21 are communicated.

そして、圧縮機7、各ポンプ21、22、23、室内ファン49を運転する。これにより、第1ポンプ21から吐出された熱媒体は、冷却部13、クーラコア47を順次経て第1ポンプ21に吸い込まれるかたちで低温熱媒体回路43内を循環される。また、第2ポンプ22から吐出された熱媒体は、加熱部14、ラジエータ29を順次経て第2ポンプ22に吸い込まれるかたちで循環される。 Then, the compressor 7, the pumps 21, 22, 23 and the indoor fan 49 are operated. As a result, the heat medium discharged from the first pump 21 is circulated in the low-temperature heat medium circuit 43 while being sucked into the first pump 21 through the cooling unit 13 and the cooler core 47 in sequence. Also, the heat medium discharged from the second pump 22 is circulated by being sucked into the second pump 22 through the heating unit 14 and the radiator 29 in sequence.

一方、圧縮機7が運転されることで前述同様に放熱器8では冷媒が放熱し、吸熱器11では冷媒が吸熱するので、吸熱器11では冷却部13を流れる熱媒体が冷媒により吸熱されて冷却される。この冷却された低温熱媒体はクーラコア16に循環されるので、室内ファン49から車室内に送給される空気はクーラコア16により冷却され、これにより車室内の冷房が行われる。他方、放熱器8では加熱部14を流れる熱媒体が高温の冷媒により加熱される。この加熱された高温熱媒体はラジエータ29に循環され、外気中に放熱する。 On the other hand, when the compressor 7 is operated, the refrigerant releases heat in the radiator 8 and absorbs heat in the heat absorber 11 in the same manner as described above. Cooled. Since the cooled low-temperature heat medium is circulated to the cooler core 16, the air supplied from the indoor fan 49 into the vehicle interior is cooled by the cooler core 16, thereby cooling the vehicle interior. On the other hand, in the radiator 8, the heat medium flowing through the heating portion 14 is heated by the high-temperature refrigerant. This heated high-temperature heat medium is circulated to the radiator 29 and radiates heat to the outside air.

運転開始当初は温調回路42内を循環する熱媒体の温度も前述した所定値T2より低いので、第3ポンプ23から吐出された熱媒体はバッテリ(温調対象)2を経て貯留部26の温調側貯留室63に至り、そこからサーモバルブ30を経て再び第3ポンプ23に吸い込まれるかたちで温調回路42の閉ループ内を循環される。即ち、サーモバルブ30はバイパスバルブポートBVから混合室58内に流入する熱媒体の温度に基づき、バイパスバルブ53によりバイパスバルブポートBVを開いた状態に維持し、メインバルブ52により開口59を閉じるので、第3ポンプ23により温調回路42の閉ループ内を熱媒体が循環されることになる。図8中の実線矢印はこの状態を示しており、これを熱媒体回路4の第4経路状態とする。 At the beginning of the operation, the temperature of the heat medium circulating in the temperature control circuit 42 is also lower than the above-described predetermined value T2, so the heat medium discharged from the third pump 23 passes through the battery (temperature control target) 2 and reaches the reservoir 26. It reaches the temperature control storage chamber 63 , passes through the thermo valve 30 and is sucked into the third pump 23 again, and is circulated in the closed loop of the temperature control circuit 42 . That is, the thermo valve 30 keeps the bypass valve port BV open by the bypass valve 53 and closes the opening 59 by the main valve 52 based on the temperature of the heat medium flowing into the mixing chamber 58 from the bypass valve port BV. , the third pump 23 circulates the heat medium in the closed loop of the temperature control circuit 42 . A solid line arrow in FIG.

その後、バッテリ2の自己発熱により温調回路42の閉ループ内を循環される熱媒体の温度は上昇していく。そして、サーモバルブ30のバイパスバルブポートBVから混合室58内に流入する熱媒体の温度が前述した所定値T2(+40℃)以上になると、感温部54は係る混合室58内の熱媒体の温度に基づいてメインバルブ52を移動させ、開口59を開き始める。これにより、低温熱媒体回路43を流れる低温熱媒体の一部が、三方弁33で分流され、熱媒体配管C10を経て貯留部26の低温側貯留室61内に導入され、この低温側貯留室61内の低温熱媒体がメインバルブポートMVからサーモバルブ31内に入り、開口59から混合室58内に流入し始める(図8中に破線矢印で示す)。 Thereafter, the self-heating of the battery 2 increases the temperature of the heat medium circulating in the closed loop of the temperature control circuit 42 . When the temperature of the heat medium flowing into the mixing chamber 58 from the bypass valve port BV of the thermo valve 30 reaches or exceeds the predetermined value T2 (+40° C.), the temperature sensing part 54 detects that the heat medium in the mixing chamber 58 is Based on the temperature, the main valve 52 is moved to start opening the opening 59 . As a result, part of the low temperature heat medium flowing through the low temperature heat medium circuit 43 is split by the three-way valve 33 and introduced into the low temperature side reservoir 61 of the reservoir 26 through the heat medium pipe C10. The low-temperature heat medium in 61 enters the thermo-valve 31 through the main valve port MV and begins to flow into the mixing chamber 58 through the opening 59 (indicated by the dashed arrow in FIG. 8).

開口59から流入した熱媒体は、サーモバルブ30のバイパスバルブポートBVから流入した熱媒体と混合室58内で混合され、混合水ポートXVから熱媒体配管C41に流出する。そして、第3ポンプ23に吸い込まれ、バッテリ2に向けて吐出されるようになる。これにより、バッテリ2には温度が下がった熱媒体が循環されるので、バッテリ2は冷却されるようになる。 The heat medium flowing from the opening 59 is mixed with the heat medium flowing from the bypass valve port BV of the thermo valve 30 in the mixing chamber 58, and flows out from the mixed water port XV to the heat medium pipe C41. Then, it is sucked into the third pump 23 and discharged toward the battery 2 . As a result, the battery 2 is cooled because the heat medium whose temperature is lowered is circulated in the battery 2 .

バッテリ2を経て熱媒体配管C16に流出し、貯留部26の温調側貯留室63内に入った熱媒体からは、もともと温調回路42の閉ループ内を循環していた分の熱媒体が熱媒体配管C46から熱媒体配管C11に流れ、熱媒体配管C10を経て低温熱媒体回路43から導入された分の熱媒体は、熱媒体配管C12に分流され、逆止弁41、熱媒体配管C13を経て三方弁34に至り、低温熱媒体回路43に戻される(図8中破線矢印で示す)。即ち、熱媒体配管C46、熱媒体配管C12、逆止弁41、熱媒体配管C13が温調回路42から低温熱媒体回路43に熱媒体を戻す経路となり、貯留部26はこの経路上に設けられていることになる。これを熱媒体回路4の第5経路状態とする。 From the heat medium that has flowed out to the heat medium pipe C16 through the battery 2 and entered the temperature control side storage chamber 63 of the storage unit 26, the heat medium that originally circulated in the closed loop of the temperature control circuit 42 is heated. The heat medium flowing from the medium pipe C46 to the heat medium pipe C11 and introduced from the low-temperature heat medium circuit 43 through the heat medium pipe C10 is diverted to the heat medium pipe C12, and flows through the check valve 41 and the heat medium pipe C13. It reaches the three-way valve 34 and is returned to the low-temperature heat medium circuit 43 (indicated by the dashed arrow in FIG. 8). That is, the heat medium pipe C46, the heat medium pipe C12, the check valve 41, and the heat medium pipe C13 form a path for returning the heat medium from the temperature control circuit 42 to the low-temperature heat medium circuit 43, and the reservoir 26 is provided on this path. It means that This state is referred to as the fifth path state of the heat medium circuit 4 .

尚、上述の如く低温熱媒体回路43から導入された低温熱媒体によりバッテリ2が冷却され、サーモバルブ30の混合室58内の熱媒体(混合された熱媒体)の温度が前述した所定値T2より低くなると、サーモバルブ30の感温部54は係る混合室58内の熱媒体の温度に基づいてメインバルブ52により開口59を閉じる。これにより、再び第4経路状態に戻され、熱媒体は温調回路42の閉ループ内を循環するかたちに復帰する。以上により、冷房モードにおいても、バッテリ2は最適温度範囲(例えば、+10℃以上、+40℃以下の目標温度)に維持されるようになる。 The battery 2 is cooled by the low temperature heat medium introduced from the low temperature heat medium circuit 43 as described above, and the temperature of the heat medium (mixed heat medium) in the mixing chamber 58 of the thermo valve 30 rises to the predetermined value T2. When the temperature becomes lower, the temperature sensing part 54 of the thermo valve 30 closes the opening 59 by the main valve 52 based on the temperature of the heat medium in the mixing chamber 58 . As a result, the state is returned to the fourth path state, and the heat medium returns to the form of circulating in the closed loop of the temperature control circuit 42 . As described above, even in the cooling mode, the battery 2 is maintained within the optimum temperature range (for example, a target temperature of +10° C. or higher and +40° C. or lower).

この冷房モードでも、低温側貯留室61内の熱媒体が仕切壁71、72を超える量まで増えた場合は高温側貯留室66に流入することになるので、低温側貯留室61が満杯になってしまうこともなくなる。 Even in this cooling mode, when the amount of heat medium in the low-temperature storage chamber 61 exceeds the partition walls 71 and 72, it flows into the high-temperature storage chamber 66, so that the low-temperature storage chamber 61 becomes full. You won't get lost.

次に、図9と図10を参照しながら貯留部26の他の実施例について説明する。尚、各図において図3、図4と同一符号で示すものは、同一若しくは同様の機能を奏するものとする。
(6)貯留部26の構成(その2)
この実施例の場合、温調側貯留室63が貯留部26内に収納されたタンク73内に構成される。このタンク73は熱伝導率の高い素材(金属等)にて構成されており、このタンク73の構成壁が、高温側貯留室65の熱交換用高温側貯留室64内の熱媒体と温調側貯留室63内の熱媒体とが熱交換関係を有した状態で熱交換用高温側貯留室64と温調側貯留室63を区画する本発明の区画壁を構成することになる。この場合も同様に熱交換用高温側貯留室64と温調側貯留室63との間は熱媒体の流通はない。
Next, another embodiment of the reservoir 26 will be described with reference to FIGS. 9 and 10. FIG. 3 and 4 have the same or similar functions.
(6) Configuration of Storage Unit 26 (Part 2)
In the case of this embodiment, the temperature control side storage chamber 63 is constructed within the tank 73 accommodated in the storage section 26 . The tank 73 is made of a material (metal or the like) with high thermal conductivity, and the walls forming the tank 73 are in contact with the heat medium in the high temperature side storage chamber 64 for heat exchange of the high temperature side storage chamber 65 for temperature control. This constitutes the partition wall of the present invention that partitions the heat exchange high temperature side storage chamber 64 and the temperature control side storage chamber 63 in a state of having a heat exchange relationship with the heat medium in the side storage chamber 63 . In this case as well, no heat medium flows between the heat exchange high temperature side storage chamber 64 and the temperature control side storage chamber 63 .

また、この実施例の場合、同様に略円筒状の貯留部26内は、同心円筒状を呈して貯留部26の底部から起立した仕切壁74により内側と外側とに仕切られ、仕切壁74の内側が熱交換用高温側貯留室64とされ、この熱交換用高温側貯留室64内にタンク73は配設されている(図10)。更に、仕切壁74の外側は仕切壁76、77により二つの室に仕切られており、一方がバイパス用高温側貯留室66、他方が低温側貯留室61とされる。 In the case of this embodiment, similarly, the interior of the substantially cylindrical storing portion 26 is partitioned into an inner side and an outer side by a partition wall 74 having a concentric cylindrical shape and rising from the bottom portion of the storing portion 26. The inner side serves as a high-temperature side storage chamber 64 for heat exchange, and the tank 73 is arranged in this high-temperature side storage chamber 64 for heat exchange (FIG. 10). Further, the outside of the partition wall 74 is partitioned into two chambers by partition walls 76 and 77, one of which is a bypass high temperature side storage chamber 66 and the other of which is a low temperature side storage chamber 61 .

このような構成により、熱交換用高温側貯留室64はタンク73(区画壁)に面し、内部の熱媒体はタンク73(区画壁)に接するが、バイパス用高温側貯留室66はタンク73(区画壁)には面しておらず、内部の熱媒体はタンク73(区画壁)に接しないことになる。また、低温側貯留室61と温調側貯留室63との間も熱媒体の流通はない。 With such a configuration, the heat exchange high temperature side storage chamber 64 faces the tank 73 (partition wall), and the internal heat medium is in contact with the tank 73 (partition wall). (partition wall), and the internal heat medium does not come into contact with the tank 73 (partition wall). Also, no heat medium flows between the low-temperature side storage chamber 61 and the temperature control side storage chamber 63 .

また、仕切壁74、76、77は断熱素材(硬質樹脂等)にて構成されており、貯留部26の底部から起立しているが、天井部までは至っていない。これにより、熱交換用高温側貯留室64とバイパス用高温側貯留室66は断熱されているが、それらの上部では連通している。また、低温側貯留室61と高温側貯留室65(熱交換用高温側貯留室64、バイパス用高温側貯留室66)は相互に断熱されているが、それらの上部では連通している。また、熱媒体配管C16は貯留部26内に進入してタンク73の上端部に連通接続され、熱媒体配管C46も貯留部26内に進入してタンク73の下端部に連通接続される。その他の構成は図3、図4の場合と同様である。 The partition walls 74, 76, and 77 are made of a heat insulating material (hard resin, etc.) and stand up from the bottom of the reservoir 26, but do not reach the ceiling. As a result, the heat exchange high temperature side storage chamber 64 and the bypass high temperature side storage chamber 66 are insulated, but are communicated at their upper portions. The low temperature storage chamber 61 and the high temperature storage chamber 65 (the high temperature storage chamber 64 for heat exchange and the high temperature storage chamber 66 for bypass) are insulated from each other, but are communicated at their upper portions. The heat medium pipe C16 enters the reservoir 26 and is connected to the upper end of the tank 73 , and the heat medium pipe C46 also enters the reservoir 26 and is connected to the lower end of the tank 73 . Other configurations are the same as those in FIGS.

このような貯留部26によっても、貯留部26の熱交換用高温側貯留室64内の熱媒体は、タンク73(区画壁)の構成壁を介して当該タンク73内の温調側貯留室63の熱媒体と熱交換するので、当該温調側貯留室63内の熱媒体は加熱される。そして、この加熱された熱媒体は、前述同様に熱媒体配管C46、熱媒体配管C11、サーモバルブ30、熱媒体配管C41を経て第3ポンプ23に吸い込まれ、熱媒体配管C15からバッテリ2に循環されるので、バッテリ2を加熱し、暖機を行うことができる。 With such a reservoir 26 as well, the heat medium in the heat exchange high temperature side reservoir 64 of the reservoir 26 flows through the constituent wall of the tank 73 (partition wall) to the temperature control side reservoir 63 in the tank 73 . , the heat medium in the temperature control storage chamber 63 is heated. Then, the heated heat medium is sucked into the third pump 23 through the heat medium pipe C46, the heat medium pipe C11, the thermo valve 30, and the heat medium pipe C41 in the same manner as described above, and is circulated from the heat medium pipe C15 to the battery 2. Therefore, the battery 2 can be heated and warmed up.

また、バイパス用高温側貯留室66内の熱媒体についても、タンク73(区画壁)には接していないので、バイパス用高温側貯留室66に高温熱媒体回路44の熱媒体が流入する状態では、温調側貯留室63内の熱媒体の加熱は停止され、バッテリ2の過剰な加熱が防止される。 In addition, since the heat medium in the bypass high temperature side storage chamber 66 is not in contact with the tank 73 (partition wall), the heat medium in the high temperature heat medium circuit 44 flows into the bypass high temperature side storage chamber 66. , the heating of the heat medium in the temperature control side storage chamber 63 is stopped, and excessive heating of the battery 2 is prevented.

更に、貯留部26内の低温側貯留室61と高温側貯留室65(熱交換用高温側貯留室64とバイパス用高温側貯留室66)の上部は連通されているので、低温側貯留室61と高温側貯留室65のうちの何れかの熱媒体が仕切壁74、76、77を超えた場合は、超えた方の室から他方の室に熱媒体が流入するので、低温側貯留室61と高温側貯留室65において、高温熱媒体回路44と低温熱媒体回路43Aの熱媒体の量は調整されることになる。また、低温側貯留室61と高温側貯留室65の何れかが満杯になってしまうこともなくなる。 Furthermore, since the upper portions of the low temperature side storage chamber 61 and the high temperature side storage chamber 65 (the heat exchange high temperature side storage chamber 64 and the bypass high temperature side storage chamber 66) are communicated with each other, the low temperature side storage chamber 61 and the high-temperature side storage chamber 65, the heat medium flows from the partition wall 74, 76, or 77 into the other chamber. and in the high-temperature storage chamber 65, the amounts of heat medium in the high-temperature heat-medium circuit 44 and the low-temperature heat-medium circuit 43A are adjusted. Also, either the low temperature storage chamber 61 or the high temperature storage chamber 65 will not become full.

更にまた、熱交換用高温側貯留室64とバイパス用高温側貯留室66も上部で連通されており、熱交換用高温側貯留室64とバイパス用高温側貯留室66のうちの何れか一方の熱媒体が増加して、仕切壁74を超えた場合は、他方に流入するので、何れかの室が満杯になってしまうこともない。 Furthermore, the heat exchange high temperature side storage chamber 64 and the bypass high temperature side storage chamber 66 are also communicated at the top, and either the heat exchange high temperature side storage chamber 64 or the bypass high temperature side storage chamber 66 is connected. When the heat medium increases and exceeds the partition wall 74, it flows into the other chamber, so that either chamber is not filled.

以上のように本発明によれば、温調回路42から低温熱媒体回路43、43Aに熱媒体を戻す経路上に、熱媒体を貯留する貯留部26を設け、この貯留部26が、高温熱媒体回路44を流れる熱媒体が導入されて当該熱媒体を貯留すると共に、高温熱媒体回路44に熱媒体を戻す高温側出口64A、66Aを有する高温側貯留室65と、温調回路42を循環する熱媒体が導入されて当該熱媒体を貯留する温調側貯留室63と、高温側貯留室65内の熱媒体と温調側貯留室63内の熱媒体とが熱交換関係を有した状態で高温側貯留室65と温調側貯留室63を区画する区画壁67(タンク73)を有する構成としたので、貯留部26の高温側貯留室65内の熱媒体により温調側貯留室63内の熱媒体を加熱してバッテリ2の暖機を行うことができるようになる。また、低温熱媒体回路43、43Aの熱媒体を温調回路42に導入することで、バッテリ2の冷却も行うことができ、これらにより、バッテリ2を効果的に温調することが可能となる。 As described above, according to the present invention, the storage portion 26 for storing the heat medium is provided on the path for returning the heat medium from the temperature control circuit 42 to the low-temperature heat medium circuits 43 and 43A. A high temperature side storage chamber 65 having high temperature side outlets 64A and 66A for receiving and storing the heat medium flowing through the medium circuit 44 and returning the heat medium to the high temperature heat medium circuit 44, and the temperature control circuit 42. A state in which the heat medium in the high temperature side storage chamber 65 and the heat medium in the temperature control side storage chamber 63 have a heat exchange relationship. , the partition wall 67 (tank 73) that separates the high temperature side storage chamber 65 and the temperature adjustment side storage chamber 63 is provided. By heating the heat medium inside, the battery 2 can be warmed up. Also, by introducing the heat medium of the low-temperature heat medium circuits 43 and 43A into the temperature control circuit 42, the battery 2 can also be cooled, whereby the temperature of the battery 2 can be effectively controlled. .

この場合、高温熱媒体回路44から温調回路42に熱媒体を導入するものではないので、高温熱媒体回路44と低温熱媒体回路43、43Aの間で熱媒体の偏りが生じることもない。特に、温調回路42から低温熱媒体回路43、43Aに熱媒体を戻す経路上に貯留部26を設け、この貯留部26にて高温熱媒体回路44の熱媒体と温調回路42の熱媒体を熱交換させる構造であるので、コストの上昇も最小限に抑えることもできる。 In this case, since the heat medium is not introduced from the high-temperature heat-medium circuit 44 to the temperature control circuit 42, the heat medium is not biased between the high-temperature heat-medium circuit 44 and the low-temperature heat-medium circuits 43, 43A. In particular, a reservoir 26 is provided on the path for returning the heat medium from the temperature control circuit 42 to the low-temperature heat medium circuits 43 and 43A. Since it is a structure in which heat is exchanged between , it is possible to minimize the increase in cost.

また、実施例では高温側貯留室65を、熱媒体が区画壁67(タンク73)に接する熱交換用高温側貯留室64と、熱媒体が区画壁67(タンク73)とは接しないバイパス用高温側貯留室66から構成し、高温熱媒体回路44を流れる熱媒体を熱交換用高温側貯留室64に導入するか、バイパス用高温側貯留室66に導入するかを切り替えるサーモバルブ31を設けたので、バッテリ22の加熱が必要な場合には、サーモバルブ31により熱交換用高温側貯留室64に高温熱媒体回路44の熱媒体を流してバッテリ2を暖機し、加熱の必要が無い場合にはバイパス用高温側貯留室66に高温熱媒体回路44の熱媒体を流して、バッテリ2の過剰な加熱を防止することができるようになる。 In the embodiment, the high temperature side storage chamber 65 is divided into a heat exchange high temperature side storage chamber 64 in which the heat medium is in contact with the partition wall 67 (tank 73) and a bypass high temperature side storage chamber 64 in which the heat medium is not in contact with the partition wall 67 (tank 73). A thermo valve 31 is provided for switching between introducing the heat medium flowing through the high temperature heat medium circuit 44 into the high temperature side storage chamber 64 for heat exchange and introducing it into the high temperature side storage chamber 66 for bypass. Therefore, when it is necessary to heat the battery 22, the heat medium of the high temperature heat medium circuit 44 is caused to flow into the high temperature side storage chamber 64 for heat exchange by the thermo valve 31 to warm up the battery 2, thereby eliminating the need for heating. In this case, the heat medium of the high-temperature heat-medium circuit 44 is allowed to flow through the bypass high-temperature side storage chamber 66 to prevent excessive heating of the battery 2 .

この場合、実施例ではサーモバルブ31が、高温熱媒体回路44を流れる熱媒体の温度が所定値T1より低い場合に、当該熱媒体を熱交換用高温側貯留室64に導入するようにしている。ここで、高温熱媒体回路44の熱媒体の温度が低い場合、温調回路42の熱媒体の温度も低いので、実施例の如く高温熱媒体回路44を流れる熱媒体の温度が所定値T1より低い場合、当該熱媒体を熱交換用高温側貯留室64に導入するようにすれば、バッテリ2の暖機を迅速に行うことができるようになる。 In this case, in this embodiment, the thermo valve 31 introduces the heat medium into the heat exchange high temperature side storage chamber 64 when the temperature of the heat medium flowing through the high temperature heat medium circuit 44 is lower than the predetermined value T1. . Here, when the temperature of the heat medium in the high-temperature heat medium circuit 44 is low, the temperature of the heat medium in the temperature control circuit 42 is also low. If it is low, the battery 2 can be quickly warmed up by introducing the heat medium into the heat exchange high temperature side storage chamber 64 .

また、実施例では貯留部26に、低温熱媒体回路43、43Aを流れる熱媒体が導入されて当該熱媒体を貯留すると共に、温調回路42に熱媒体を流入させる低温側出口61Aを有する低温側貯留室61を設け、この低温側貯留室61と高温側貯留室65を、それらの上部において相互に連通させているので、低温熱媒体回路43、43Aと高温熱媒体回路44で熱媒体の量に偏りが生じた場合にも、貯留部26の低温側貯留室61と高温側貯留室65の間で熱媒体の量を調整することができるようになる。 In the embodiment, the heat medium flowing through the low-temperature heat medium circuits 43 and 43A is introduced into the reservoir 26 to store the heat medium. A side storage chamber 61 is provided, and the low temperature side storage chamber 61 and the high temperature side storage chamber 65 are communicated with each other at their upper portions. Even if the amount is uneven, the amount of the heat medium can be adjusted between the low temperature side storage chamber 61 and the high temperature side storage chamber 65 of the storage section 26 .

また、実施例では低温側貯留室61内の熱媒体を温調回路42に導入するか否かを切り替えるサーモバルブ30を設けているので、バッテリ2の冷却を的確に行うことが可能となる。 Further, in the embodiment, the thermo valve 30 is provided to switch whether the heat medium in the low-temperature storage chamber 61 is introduced to the temperature control circuit 42 or not, so that the battery 2 can be cooled appropriately.

この場合、実施例ではサーモバルブ30が、温調回路42を流れる熱媒体の温度が所定値T2以上となった場合に、低温側貯留室61から温調回路42に熱媒体を導入するようにしているので、バッテリ2の過熱を確実に防止することができるようになる。 In this case, in this embodiment, the thermo valve 30 introduces the heat medium from the low-temperature storage chamber 61 into the temperature control circuit 42 when the temperature of the heat medium flowing through the temperature control circuit 42 reaches or exceeds a predetermined value T2. Therefore, overheating of the battery 2 can be reliably prevented.

また、実施例では温度調整部を、内部を流れる流体の温度を感知する感温部54を有して当該流体の流路を切り替える流路切替弁であるサーモバルブ30、31で構成しているので、電子的な制御も不要となり、システムのコストを削減することが可能となる。 Further, in the embodiment, the temperature control unit is composed of thermo valves 30 and 31, which are channel switching valves that have a temperature sensing part 54 that senses the temperature of the fluid flowing inside and switch the channel of the fluid. Therefore, electronic control becomes unnecessary, and the cost of the system can be reduced.

尚、温調対象としては前述した電動車両に搭載されたバッテリ2や、電動車両の走行用電動モータ、当該走行用電動モータを駆動するインバータが考えられる。 It should be noted that the object of temperature control can be the battery 2 mounted on the electric vehicle, the electric motor for running the electric vehicle, and the inverter for driving the electric motor for running.

また、実施例では高温熱媒体回路44を、加熱部14により加熱された熱媒体が循環されて車両の車室内を暖房するためのヒータコア17を有するものとした。また、低温熱媒体回路43を、冷却部13により冷却された熱媒体が循環されて車両の車室内を冷房するためのクーラコア16を有するものとした。そして、圧縮機7と、放熱器8と、膨張弁9と、吸熱器11を有するヒートポンプ回路3を設け、放熱器8と高温熱媒体回路44の加熱部14とを熱交換関係に設けると共に、吸熱器11と低温熱媒体回路43、43Aの冷却部13とを熱交換関係に設けた。 In the embodiment, the high-temperature heat medium circuit 44 has a heater core 17 for circulating the heat medium heated by the heating unit 14 to heat the interior of the vehicle. Further, the low-temperature heat medium circuit 43 has a cooler core 16 for circulating the heat medium cooled by the cooling unit 13 to cool the interior of the vehicle. A heat pump circuit 3 having a compressor 7, a radiator 8, an expansion valve 9, and a heat absorber 11 is provided, and the radiator 8 and the heating section 14 of the high-temperature heat medium circuit 44 are provided in a heat exchange relationship, The heat absorber 11 and the cooling part 13 of the low-temperature heat medium circuit 43, 43A are provided in a heat exchange relationship.

これにより、電動車両の車室内を空調するためのヒートポンプ回路3や高温熱媒体回路44、低温熱媒体回路43、43Aを利用してバッテリ2の温調を行うことができるようになる。また、バッテリ2を加熱する必要が無い場合には、高温熱媒体回路44を流れる熱媒体は温調回路42に流れなくなるので、ヒータコア17にはより高温の熱媒体が循環されるようになり、車室内の暖房も支障無く行えるようになる。更に、バッテリ2を冷却する必要が無い場合には、低温熱媒体回路43を流れる熱媒体はバッテリ42に流れなくなるので、クーラコア16にはより低温の熱媒体が循環されるようになり、車室内の冷房も支障無く行えるようになる。 As a result, the temperature of the battery 2 can be controlled using the heat pump circuit 3, the high-temperature heat medium circuit 44, and the low-temperature heat medium circuits 43 and 43A for air-conditioning the interior of the electric vehicle. Further, when the battery 2 does not need to be heated, the heat medium flowing through the high-temperature heat medium circuit 44 does not flow into the temperature control circuit 42, so that the heat medium with a higher temperature is circulated through the heater core 17. Heating of the passenger compartment can also be performed without any trouble. Furthermore, when the battery 2 does not need to be cooled, the heat medium flowing through the low-temperature heat medium circuit 43 does not flow to the battery 42, so that a heat medium with a lower temperature is circulated through the cooler core 16. cooling can be performed without any trouble.

尚、実施例で示した数値や構成は、それらに限定されるものでは無く、本発明の趣旨を逸脱しない範囲で変更可能であることは云うまでもない。特に、実施例ではサーモバルブが熱媒体の流路を切り替えるようにしているが、本出願においては完全に切り替えずに、少量は双方に流れる場合も含む概念とする。また、実施例では電動車両の車両用空気調和装置を例に取り上げて説明したが、請求項8~請求項10以外の発明ではそれに限らず、熱媒体を循環させて温調対象を温調する各種熱マネジメントシステムに本発明は適用可能である。 It goes without saying that the numerical values and configurations shown in the examples are not limited to them, and can be changed without departing from the scope of the present invention. In particular, in the embodiments, the thermo valve switches the flow path of the heat medium, but in the present application, the concept includes the case where a small amount flows in both directions without completely switching. Further, in the embodiment, the vehicle air conditioner for an electric vehicle was taken as an example, but the inventions other than claims 8 to 10 are not limited to this, and the heat medium is circulated to adjust the temperature of the object to be temperature controlled. The present invention can be applied to various heat management systems.

1 熱マネジメントシステム
2 バッテリ(温調対象)
3 ヒートポンプ回路
4 熱媒体回路
7 圧縮機
8 放熱器
9 膨張弁(減圧部)
11 吸熱器
13 冷却部
14 加熱部
16 クーラコア
17 ヒータコア
21 第1ポンプ
22 第2ポンプ
23 第3ポンプ(循環部)
26 貯留部
30、31 サーモバルブ(温度調整部)
32~39 三方弁
42 温調回路
43、43A 低温熱媒体回路
44 高温熱媒体回路
61 低温側貯留室
61A 低温側出口
63 温調側貯留室
64 熱交換用高温側貯留室
64A、66A 高温側出口
65 高温側貯留室
66 バイパス用高温側貯留室
67 区画壁
68、69、71、72、74、76、77 仕切壁
73 タンク(区画壁)
1 Thermal management system 2 Battery (temperature control target)
3 heat pump circuit 4 heat medium circuit 7 compressor 8 radiator 9 expansion valve (decompression part)
11 heat absorber 13 cooling unit 14 heating unit 16 cooler core 17 heater core 21 first pump 22 second pump 23 third pump (circulation unit)
26 storage section 30, 31 thermo valve (temperature control section)
32 to 39 three-way valve 42 temperature control circuit 43, 43A low temperature heat medium circuit 44 high temperature heat medium circuit 61 low temperature side storage chamber 61A low temperature side outlet 63 temperature control side storage chamber 64 high temperature side storage chamber for heat exchange 64A, 66A high temperature side outlet 65 high temperature side storage chamber 66 bypass high temperature side storage chamber 67 partition wall 68, 69, 71, 72, 74, 76, 77 partition wall 73 tank (partition wall)

Claims (10)

温調対象に熱媒体を循環させて温調する熱媒体回路を備えた熱マネジメントシステムであって、
前記熱媒体を前記温調対象に循環させる循環部を有する温調回路と、
前記熱媒体を加熱する加熱部を有して、当該加熱部により加熱された前記熱媒体が循環される高温熱媒体回路と、
前記温調回路に接続されると共に、前記熱媒体を冷却する冷却部を有し、当該冷却部により冷却された前記熱媒体が循環される低温熱媒体回路と、
前記温調回路から前記低温熱媒体回路に前記熱媒体を戻す経路上に設けられ、前記熱媒体を貯留する貯留部を備え、
該貯留部は、
前記高温熱媒体回路を流れる前記熱媒体が導入されて当該熱媒体を貯留すると共に、前記高温熱媒体回路に前記熱媒体を戻す高温側出口を有する高温側貯留室と、
前記温調回路を循環する前記熱媒体が導入されて当該熱媒体を貯留する温調側貯留室と、
前記高温側貯留室内の前記熱媒体と前記温調側貯留室内の前記熱媒体とが熱交換関係を有した状態で前記高温側貯留室と前記温調側貯留室を区画する区画壁を有することを特徴とする熱マネジメントシステム。
A heat management system comprising a heat medium circuit that regulates temperature by circulating a heat medium to a temperature control target,
a temperature control circuit having a circulation unit that circulates the heat medium to the temperature control target;
a high-temperature heat medium circuit having a heating unit for heating the heat medium and circulating the heat medium heated by the heating unit;
a low-temperature heat medium circuit connected to the temperature control circuit and having a cooling unit for cooling the heat medium, through which the heat medium cooled by the cooling unit is circulated;
a storage unit provided on a path for returning the heat medium from the temperature control circuit to the low-temperature heat medium circuit and storing the heat medium;
The reservoir is
a high temperature side storage chamber into which the heat medium flowing through the high temperature heat medium circuit is introduced to store the heat medium and having a high temperature side outlet for returning the heat medium to the high temperature heat medium circuit;
a temperature control side storage chamber into which the heat medium circulating in the temperature control circuit is introduced and the heat medium is stored;
A partition wall partitions the high temperature side storage chamber and the temperature control side storage chamber in a state in which the heat medium in the high temperature side storage chamber and the heat medium in the temperature control side storage chamber have a heat exchange relationship. A heat management system characterized by:
前記高温側貯留室は、前記熱媒体が前記区画壁に接する熱交換用高温側貯留室と、前記熱媒体が前記区画壁とは接しないバイパス用高温側貯留室から構成されており、
前記高温熱媒体回路を流れる前記熱媒体を前記熱交換用高温側貯留室に導入するか、前記バイパス用高温側貯留室に導入するかを切り替える温度調整部を備えたことを特徴とする請求項1に記載の熱マネジメントシステム。
The high-temperature side storage chamber is composed of a heat exchange high-temperature side storage chamber in which the heat medium is in contact with the partition wall, and a bypass high-temperature side storage chamber in which the heat medium is not in contact with the partition wall,
2. A temperature control unit for switching between introducing the heat medium flowing through the high temperature heat medium circuit into the heat exchange high temperature side storage chamber and introducing it into the bypass high temperature side storage chamber. 2. The thermal management system according to 1.
前記温度調整部は、前記高温熱媒体回路を流れる前記熱媒体の温度が所定値より低い場合に、当該熱媒体を前記熱交換用高温側貯留室に導入することを特徴とする請求項2に記載の熱マネジメントシステム。 3. The temperature adjustment unit introduces the heat medium into the heat exchange high temperature side storage chamber when the temperature of the heat medium flowing through the high temperature heat medium circuit is lower than a predetermined value. Thermal management system as described. 前記貯留部は、前記低温熱媒体回路を流れる前記熱媒体が導入されて当該熱媒体を貯留すると共に、前記温調回路に前記熱媒体を流入させる低温側出口を有する低温側貯留室を有し、
該低温側貯留室と前記高温側貯留室は、それらの上部において相互に連通されていることを特徴とする請求項1乃至請求項3のうちの何れかに記載の熱マネジメントシステム。
The storage unit stores the heat medium flowing through the low temperature heat medium circuit and has a low temperature side storage chamber having a low temperature side outlet for flowing the heat medium into the temperature control circuit. ,
4. The heat management system according to claim 1, wherein the low temperature side storage chamber and the high temperature side storage chamber communicate with each other at their upper portions.
前記低温側貯留室内の前記熱媒体を前記温調回路に導入するか否かを切り替えるもう一つの温度調整部を備えたことを特徴とする請求項4に記載の熱マネジメントシステム。 5. The heat management system according to claim 4, further comprising another temperature control unit for switching whether to introduce the heat medium in the low temperature storage chamber into the temperature control circuit. 前記もう一つの温度調整部は、前記温調回路を流れる前記熱媒体の温度が、所定値以上となった場合に、前記低温側貯留室から前記温調回路に前記熱媒体を導入することを特徴とする請求項5に記載の熱マネジメントシステム。 The other temperature control unit introduces the heat medium from the low-temperature storage chamber into the temperature control circuit when the temperature of the heat medium flowing through the temperature control circuit reaches or exceeds a predetermined value. 6. A thermal management system according to claim 5. 前記温度調整部は、内部を流れる流体の温度を感知する感温部を有して当該流体の流路を切り替える流路切替弁であることを特徴とする請求項2乃至請求項6のうちの何れかに記載の熱マネジメントシステム。 7. The temperature control unit is a channel switching valve that has a temperature sensing part that senses the temperature of the fluid flowing therein and switches the channel of the fluid. A thermal management system according to any one of the preceding claims. 前記温調対象は車両に搭載されたバッテリ、前記車両の走行用モータ、若しくは、当該モータを駆動するインバータであることを特徴とする請求項1乃至請求項7のうちの何れかに記載の熱マネジメントシステム。 8. The heat according to any one of claims 1 to 7, wherein the temperature control target is a battery mounted on a vehicle, a motor for driving the vehicle, or an inverter for driving the motor. management system. 前記高温熱媒体回路は、前記加熱部により加熱された前記熱媒体が循環されて車両の車室内を暖房するためのヒータコアを有し、
前記低温熱媒体回路は、前記冷却部により冷却された前記熱媒体が循環されて車両の車室内を冷房するためのクーラコアを有することを特徴とする請求項1乃至請求項8のうちの何れかに記載の熱マネジメントシステム。
The high-temperature heat medium circuit has a heater core for circulating the heat medium heated by the heating unit to heat the interior of the vehicle,
9. The low-temperature heat medium circuit has a cooler core for circulating the heat medium cooled by the cooling unit to cool the interior of the vehicle. The thermal management system described in .
冷媒を圧縮する圧縮機と、該圧縮機から吐出された前記冷媒を放熱させる放熱器と、該放熱器で放熱した前記冷媒を減圧する減圧部と、該減圧部で減圧された前記冷媒を吸熱させる吸熱器を有するヒートポンプ回路を備え、
前記放熱器と前記高温熱媒体回路の前記加熱部とが熱交換関係に設けられ、
前記吸熱器と前記低温熱媒体回路の前記冷却部とが熱交換関係に設けられていることを特徴とする請求項1乃至請求項9のうちの何れかに記載の熱マネジメントシステム。
A compressor that compresses a refrigerant, a radiator that dissipates heat from the refrigerant discharged from the compressor, a decompression section that decompresses the refrigerant that has dissipated heat from the radiator, and a heat absorption of the refrigerant decompressed by the decompression section. a heat pump circuit having a heat absorber that causes
the radiator and the heating portion of the high-temperature heat medium circuit are provided in a heat exchange relationship,
10. The heat management system according to claim 1, wherein said heat absorber and said cooling portion of said low-temperature heat medium circuit are provided in a heat exchange relationship.
JP2022025531A 2022-02-22 2022-02-22 heat management system Pending JP2023122101A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022025531A JP2023122101A (en) 2022-02-22 2022-02-22 heat management system
CN202380020263.6A CN118647518A (en) 2022-02-22 2023-01-24 Thermal management system
PCT/JP2023/002095 WO2023162548A1 (en) 2022-02-22 2023-01-24 Heat management system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022025531A JP2023122101A (en) 2022-02-22 2022-02-22 heat management system

Publications (1)

Publication Number Publication Date
JP2023122101A true JP2023122101A (en) 2023-09-01

Family

ID=87765531

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022025531A Pending JP2023122101A (en) 2022-02-22 2022-02-22 heat management system

Country Status (3)

Country Link
JP (1) JP2023122101A (en)
CN (1) CN118647518A (en)
WO (1) WO2023162548A1 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7502878B2 (en) * 2020-03-27 2024-06-19 サンデン株式会社 Vehicle air conditioning system
JP7435308B2 (en) * 2020-06-29 2024-02-21 株式会社デンソー Refrigeration cycle equipment

Also Published As

Publication number Publication date
CN118647518A (en) 2024-09-13
WO2023162548A1 (en) 2023-08-31

Similar Documents

Publication Publication Date Title
CN108284725B (en) Intelligent heat management system of new energy automobile distributed drive
JP6692845B2 (en) Vehicle heat circulation system
US8915091B2 (en) Thermoelectric-based thermal management system
JP2009190687A (en) Air conditioning system for vehicle
JP2002352867A (en) Battery temperature controller for electric vehicle
WO2014087645A1 (en) Vehicle heat pump device, and vehicle air-conditioning device
US20130145790A1 (en) Heating and cooling device and heating and cooling module for a heating and cooling device
CN111231770A (en) Vehicle thermal management system and vehicle
JP2009190579A (en) Air conditioning system
CN105835653A (en) Centralized multi-operating-condition thermal management system of new energy vehicle
JP6590321B2 (en) Air conditioner for vehicles
JP2000161721A (en) Air conditioner
JP2019124393A (en) Heat storage device
EP3666565B1 (en) Automotive air conditioning system
JP2020003173A (en) Apparatus temperature regulating device
WO2023162548A1 (en) Heat management system
WO2023162549A1 (en) Heat management system
KR20140102492A (en) Heat exchange system for vehicles
WO2023162550A1 (en) Heat management system
JPH04218424A (en) Car airconditioner
WO2023161985A1 (en) Heat management system
JP2000203247A (en) Heat accumulating unit, and heating system with same
JP5874580B2 (en) Thermal storage device and vehicle thermal management system
WO2023203942A1 (en) Heat medium circuit
CN216401111U (en) Vehicle thermal management system and vehicle