JP2022025300A - Transmission coil used for non-contact power supply - Google Patents

Transmission coil used for non-contact power supply Download PDF

Info

Publication number
JP2022025300A
JP2022025300A JP2020128041A JP2020128041A JP2022025300A JP 2022025300 A JP2022025300 A JP 2022025300A JP 2020128041 A JP2020128041 A JP 2020128041A JP 2020128041 A JP2020128041 A JP 2020128041A JP 2022025300 A JP2022025300 A JP 2022025300A
Authority
JP
Japan
Prior art keywords
coil
magnetic material
transmission coil
magnetic
height
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020128041A
Other languages
Japanese (ja)
Other versions
JP2022025300A5 (en
JP7552119B2 (en
Inventor
将也 ▲高▼橋
Masaya Takahashi
英介 高橋
Eisuke Takahashi
和弘 宇田
Kazuhiro Uda
宜久 山口
Yoshihisa Yamaguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2020128041A priority Critical patent/JP7552119B2/en
Priority to PCT/JP2021/023350 priority patent/WO2022024585A1/en
Publication of JP2022025300A publication Critical patent/JP2022025300A/en
Publication of JP2022025300A5 publication Critical patent/JP2022025300A5/ja
Application granted granted Critical
Publication of JP7552119B2 publication Critical patent/JP7552119B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/14Inductive couplings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F5/00Coils
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/70Circuit arrangements or systems for wireless supply or distribution of electric power involving the reduction of electric, magnetic or electromagnetic leakage fields
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Current-Collector Devices For Electrically Propelled Vehicles (AREA)

Abstract

To suppress an increase in AC resistance due to an eddy current generated in a coil.SOLUTION: A transmission coil 10 used for non-contact power supply includes a coil 20 composed of a wound coil conductor 21 having one surface 23 intersecting with magnetic flux and the other surface 24 opposite to the one surface 23, a first magnetic material 30 arranged on the one surface 23, and a second magnetic material 40 arranged on the inner peripheral side surface 25 and the outer peripheral side surface 26 of the coil 20 intersecting the one surface 23 and the other surface 24, and the second magnetic material 40 is configured such that a magnetic material portion 44 in which the magnetic flux entering and exiting between the second magnetic material 40 and the external space is concentrated is separated from the other surface 24.SELECTED DRAWING: Figure 3

Description

本開示は、非接触給電に用いられる伝送コイルに関する。 The present disclosure relates to a transmission coil used for non-contact power feeding.

特許文献1には、非接触給電に用いられる伝送コイルの例が開示されている。この伝送コイルは、基板と、基板上に配置され渦巻状に巻回されたコイルとを備え、コイルのコイル導体断面の両側面および両端部上に磁性体を設けることにより、表皮効果や近接効果による高周波損失を低減して交流抵抗の増大を抑制している。 Patent Document 1 discloses an example of a transmission coil used for non-contact power feeding. This transmission coil includes a substrate and a coil arranged on the substrate and wound in a spiral shape, and by providing magnetic materials on both side surfaces and both ends of the coil conductor cross section of the coil, a skin effect and a proximity effect can be obtained. The high frequency loss due to the above is reduced and the increase of AC resistance is suppressed.

特開2019-110252号公報Japanese Unexamined Patent Publication No. 2019-110252

しかしながら、上記構造の伝送コイルでは、コイル導体断面の両側面及び両端部上に設けられた磁性体の磁路における磁性体の内側の角部分から発生する磁界によって、交流抵抗が増加するという課題がある。 However, the transmission coil having the above structure has a problem that the AC resistance is increased by the magnetic field generated from the inner corner portion of the magnetic material in the magnetic path of the magnetic material provided on both side surfaces and both ends of the coil conductor cross section. be.

本開示の一形態によれば、非接触給電に用いられる伝送コイル10が提供される。この伝送コイル(10)は、巻回されたコイル導体(21)で構成され、磁束と交わる一方の表面(23)と前記一方の表面と反対向きの他方の表面(24)とを有するコイル(20,20C)と、前記一方の表面(23)に配置された第1磁性体(30)と、前記一方の表面及び前記他方の表面と交わる前記コイルの内周の側面(25)及び外周側の側面(26)に配置された第2磁性体(40)と、備え、前記第2磁性体は、前記第2磁性体と外部空間との間を出入りする磁束の集中する磁性体部分(44)が、前記他方の表面(24)から離れるように構成される。
この形態の非接触給電用の伝送コイルによれば、第2磁性体と外部空間との間を出入りする磁束の集中する磁性体部分が、外部空間に接する他方の表面から離れるように設けられるので、第2磁性体と外部空間との間を出入りする磁束の集中する磁性体部分とコイルとの間で出入りする磁束を低減することができ、コイルに発生する渦電流による交流抵抗の増加を抑制することができる。
According to one embodiment of the present disclosure, a transmission coil 10 used for non-contact power feeding is provided. The transmission coil (10) is a coil (24) composed of a wound coil conductor (21) and having one surface (23) intersecting with magnetic flux and the other surface (24) opposite to the one surface. 20, 20C), the first magnetic material (30) arranged on the one surface (23), the inner peripheral side surface (25) and the outer peripheral side of the coil intersecting the one surface and the other surface. The second magnetic material (40) is provided on the side surface (26) of the above, and the second magnetic material is a magnetic material portion (44) in which magnetic flux entering and exiting between the second magnetic material and the external space is concentrated. ) Is configured to be separated from the other surface (24).
According to this form of the transmission coil for non-contact power feeding, the magnetic material portion where the magnetic flux entering and exiting between the second magnetic material and the external space is concentrated is provided so as to be separated from the other surface in contact with the external space. , It is possible to reduce the magnetic flux that flows in and out between the coil and the magnetic material part where the magnetic flux that flows in and out between the second magnetic material and the external space is concentrated, and suppresses the increase in AC resistance due to the eddy current generated in the coil. can do.

第1実施形態の伝送コイルの構成を示す概略平面図。The schematic plan view which shows the structure of the transmission coil of 1st Embodiment. 図1の伝送コイルの2-2断面を示す概略断面図。FIG. 2 is a schematic cross-sectional view showing a 2-2 cross section of the transmission coil of FIG. 図2の伝送コイルの一部を拡大した概略断面図。FIG. 2 is an enlarged schematic cross-sectional view of a part of the transmission coil of FIG. 第2磁性体無しの構成の問題点を示す説明図。Explanatory drawing which shows the problem of the structure without the 2nd magnetic material. 第2磁性体とコイルの高さが等しい場合の問題点を示す説明図。An explanatory diagram showing a problem when the heights of the second magnetic material and the coil are equal. 実施形態の構成の効果について示す説明図。An explanatory diagram showing the effect of the configuration of the embodiment. 図6の構成の効果を図4及び図5の構成と比較して示す説明図。Explanatory drawing which shows the effect of the structure of FIG. 6 in comparison with the structure of FIGS. 4 and 5. 第2磁性体の形状の変形例について示す説明図。Explanatory drawing which shows the modification of the shape of the 2nd magnetic material. 第2磁性体の形状の別の変形例について示す説明図。Explanatory drawing which shows another modification of the shape of the 2nd magnetic material. 第2磁性体の太さと交流抵抗との関係を示すグラフ。The graph which shows the relationship between the thickness of the 2nd magnetic material and the AC resistance. 第2磁性体の高さと交流抵抗との関係を示すグラフ。The graph which shows the relationship between the height of the 2nd magnetic material and the AC resistance. 第2磁性体の比透磁率と交流抵抗との関係を示すグラフ。The graph which shows the relationship between the relative magnetic permeability of the 2nd magnetic material, and the AC resistance. 第2実施形態の伝送コイルの構成を示す概略断面図。The schematic sectional drawing which shows the structure of the transmission coil of 2nd Embodiment. 第2磁性体とコイルとの間の間隔と交流抵抗との関係を示すグラフ。The graph which shows the relationship between the space between a 2nd magnetic material and a coil, and AC resistance. 第3実施形態の伝送コイルの構成を示す概略断面図。The schematic sectional drawing which shows the structure of the transmission coil of 3rd Embodiment. 車両用の非接触給電装置に伝送コイルを適用した例を示す説明図。Explanatory drawing which shows the example which applied the transmission coil to the non-contact power supply device for a vehicle.

A.第1実施形態:
図1の概略平面図及び図2の概略断面図に示す第1実施形態としての非接触給電用の伝送コイル10は、コイル20と、コイル20の磁束と交わる一方の表面23及び他方の表面24のうちの一方の表面23に配置された第1磁性体30と、コイル20の内周の側面25及び外周の側面26に配置された第2磁性体40と、備える。なお、内周の第2磁性体40を「第2磁性体40i」とし、外周の第2磁性体40を「第2磁性体40o」として、区別して示す場合もある。
A. First Embodiment:
The transmission coil 10 for non-contact power feeding as the first embodiment shown in the schematic plan view of FIG. 1 and the schematic cross-sectional view of FIG. 2 has the coil 20 and one surface 23 and the other surface 24 intersecting with the magnetic flux of the coil 20. A first magnetic body 30 arranged on one surface 23 of the coil 20 and a second magnetic body 40 arranged on the inner peripheral side surface 25 and the outer peripheral side surface 26 of the coil 20 are provided. The second magnetic body 40 on the inner circumference may be referred to as a "second magnetic body 40i", and the second magnetic body 40 on the outer circumference may be referred to as a "second magnetic body 40o".

コイル20は、図3の概略断面図に示すように、アルミニウムや銅等のプリント配線が樹脂22で構成される各基板の層に形成されることにより、コイル導体21がヘリカル状に形成されるプリント基板で構成される。一方の表面23と、一方の表面23とは反対向きの他方の表面24と、一方の表面23及び他方の表面24とコイル20の内周の側面25及び外周の側面26は、樹脂22で覆われている。 As shown in the schematic cross-sectional view of FIG. 3, the coil 20 has a coil conductor 21 formed in a helical shape by forming printed wiring such as aluminum or copper in a layer of each substrate made of a resin 22. It consists of a printed circuit board. One surface 23, the other surface 24 opposite to one surface 23, one surface 23, the other surface 24, the inner peripheral side surface 25 of the coil 20, and the outer peripheral side surface 26 are covered with the resin 22. It has been done.

コイル20の一方の表面23は巻回されたコイル導体21の一方端側の表面であり、他方の他方の表面24は巻回されたコイル導体21の他方端側の表面である。なお、一方端側の表面及び他方端側の表面には、コイル導体21を覆う樹脂22が介在されている。コイル20の内周の側面25及び外周の側面26は、積層されたコイル導体21の内周の側面及び外周の側面である。なお、コイル導体21の内周の側面及び外周の側面には、コイル導体21を覆う樹脂22が介在されている。 One surface 23 of the coil 20 is the surface on one end side of the wound coil conductor 21, and the other surface 24 on the other side is the surface on the other end side of the wound coil conductor 21. A resin 22 covering the coil conductor 21 is interposed on the surface on one end side and the surface on the other end side. The inner peripheral side surface 25 and the outer peripheral side surface 26 of the coil 20 are the inner peripheral side surface and the outer peripheral side surface of the laminated coil conductor 21. A resin 22 covering the coil conductor 21 is interposed on the inner peripheral side surface and the outer peripheral side surface of the coil conductor 21.

なお、コイル20は、上述のようなプリント基板で構成されたコイルに限定されるものではなく、リッツ線を巻回したコイルや、平角線をエッジワイズ巻きしたエッジワイズコイル等の種々のコイルを用いることができる。 The coil 20 is not limited to the coil composed of the printed circuit board as described above, and various coils such as a coil wound with a litz wire and an edgewise coil obtained by winding a flat wire edgewise can be used. Can be used.

第1磁性体30及び第2磁性体40には、透磁率の高い磁性材料、例えば、Mn―Zn系のフェライトであるPC95(TDK社)を用いることができる。但し、これに限定されるものではなく、種々の磁性材料を用いることができる。なお、第2磁性体40の透磁率については、後述する。 As the first magnetic material 30 and the second magnetic material 40, a magnetic material having a high magnetic permeability, for example, PC95 (TDK), which is a Mn—Zn-based ferrite, can be used. However, the present invention is not limited to this, and various magnetic materials can be used. The magnetic permeability of the second magnetic material 40 will be described later.

第1磁性体30は、図1及び図2に示すように、一方の表面23側のコイル20の全体を覆い、一方の表面23に接するように設けられている。 As shown in FIGS. 1 and 2, the first magnetic body 30 is provided so as to cover the entire coil 20 on the one surface 23 side and to be in contact with the one surface 23.

第2磁性体40は、図2及び図3に示すように、第2磁性体40iがコイル20の内周の側面25及び第1磁性体30に接するように設けられ、第2磁性体40oがコイル20の外周の側面26及び第1磁性体30に接するように設けられている。 As shown in FIGS. 2 and 3, the second magnetic body 40 is provided so that the second magnetic body 40i is in contact with the side surface 25 and the first magnetic body 30 on the inner circumference of the coil 20, and the second magnetic body 40o is provided. It is provided so as to be in contact with the side surface 26 of the outer periphery of the coil 20 and the first magnetic body 30.

また、第2磁性体40は、図3に示すように、コイル20側を向く端縁部分44がコイル20の他方の表面24から距離dh(dhは0よりも大きい)だけ離れるように、第2磁性体40の高さhmがコイル20の高さhcよりも高くなる構造を有している。なお、第2磁性体40の高さhm及び幅wmについては、後述する。 Further, as shown in FIG. 3, the second magnetic body 40 has a second so that the end edge portion 44 facing the coil 20 side is separated from the other surface 24 of the coil 20 by a distance dh (dh is larger than 0). 2 It has a structure in which the height hm of the magnetic body 40 is higher than the height hc of the coil 20. The height hm and width wm of the second magnetic material 40 will be described later.

第2磁性体40の高さhmがコイル20の高さhcよりも高くなる構造を有することにより、伝送コイル10は、以下で説明するように、課題で説明した交流抵抗の増加を抑制することができる。 By having a structure in which the height hm of the second magnetic body 40 is higher than the height hc of the coil 20, the transmission coil 10 suppresses the increase in AC resistance described in the problem as described below. Can be done.

図4に示す第2磁性体40が無い構成の場合、図7の左上欄に示すように、コイル20の端部の磁束密度が高くなり、コイル20を鎖交する磁束は、図4に示すように、コイル20の側端部を貫く。コイル20の側端部を鎖交する磁束は渦電流を発生し、図7の左下欄に示すように、コイル20の側端部の電流密度の上昇を招く。この電流密度の増加は損失(渦電流損失)の増加、すなわち、コイル20の交流抵抗の増加を招く。 In the case of the configuration without the second magnetic body 40 shown in FIG. 4, as shown in the upper left column of FIG. 7, the magnetic flux density at the end of the coil 20 becomes high, and the magnetic flux interlinking the coil 20 is shown in FIG. It penetrates the side end portion of the coil 20 so as to. The magnetic flux interlinking the side end of the coil 20 generates an eddy current, which causes an increase in the current density of the side end of the coil 20, as shown in the lower left column of FIG. This increase in current density leads to an increase in loss (eddy current loss), that is, an increase in AC resistance of the coil 20.

また、図5に示す第2磁性体40(40i,40o)が設けられた構成の場合、図7の中央上欄に示すように、第2磁性体40の磁束密度が高くなり、コイル20を鎖交する磁束(図4参照)を、図5に示すように第2磁性体40に誘導することができる。このため、第2磁性体40が設けられた構成の場合、コイル20の側端部を鎖交する磁束により発生するコイル20の交流抵抗の増加を低減することができる。しかしながら、図5に示すように、第2磁性体40の端縁部分44は、図7の中央上欄に示すように、第2磁性体40と外部空間との間を出入りする磁束が集中し、磁束密度が高くなる磁性体部分となる。このため、図5に示すように、磁束密度が高くなる端縁部分44が、コイル20の他方の表面24に近接している場合、図7の中央下欄に示すように、端縁部分44と他方の表面24の側端部との間の空間の磁束密度が高くなり、他方の表面24を鎖交する漏れ磁束が発生する。他方の表面24を鎖交する漏れ磁束はコイル20の側端部の他方の表面24側の部分で渦電流を発生し、図7の中央下欄に示すように、他方の表面24側のコイル20の側端部の電流密度の上昇を招き、損失(渦電流損失)の増加、すなわち、コイル20の交流抵抗の増加を招く。 Further, in the case of the configuration in which the second magnetic body 40 (40i, 40o) shown in FIG. 5 is provided, the magnetic flux density of the second magnetic body 40 becomes high as shown in the upper center column of FIG. 7, and the coil 20 is formed. The interlinking magnetic flux (see FIG. 4) can be induced in the second magnetic body 40 as shown in FIG. Therefore, in the case of the configuration provided with the second magnetic body 40, it is possible to reduce the increase in the AC resistance of the coil 20 generated by the magnetic flux interlinking the side end portions of the coil 20. However, as shown in FIG. 5, in the edge portion 44 of the second magnetic body 40, as shown in the upper center column of FIG. 7, the magnetic flux entering and exiting between the second magnetic body 40 and the external space is concentrated. , It becomes a magnetic material part where the magnetic flux density becomes high. Therefore, as shown in FIG. 5, when the edge portion 44 having a high magnetic flux density is close to the other surface 24 of the coil 20, as shown in the lower center column of FIG. 7, the edge portion 44 The magnetic flux density in the space between the surface 24 and the side end portion of the other surface 24 becomes high, and a leakage flux interlinking the other surface 24 is generated. The leakage current interlinking the other surface 24 generates an eddy current at the portion of the side end of the coil 20 on the other surface 24 side, and as shown in the lower center column of FIG. 7, the coil on the other surface 24 side. It causes an increase in the current density at the side end of the 20 and causes an increase in loss (eddy current loss), that is, an increase in the AC resistance of the coil 20.

図6に示す実施形態の構成(図3参照)の場合、端縁部分44が他方の表面24から離れている。端縁部分44と他方の表面24との間の磁束は、距離(間隔)の2乗で減衰するため、端縁部分44が他方の表面24に近接している構成(図5参照)の場合に比べて、図7の右上欄に示すように、端縁部分44と他方の表面24の端部との間の空間の磁束密度の上昇を大幅に低くすることができ、漏れ磁束を大幅に低減することが可能である。この結果、図7の右下欄に示すように、他方の表面24側のコイル20の側端部の電流密度の上昇を大幅に低くして、損失(渦電流損失)の大幅な低減、すなわち、コイル20の交流抵抗の大幅な低減を図ることができる。 In the case of the configuration of the embodiment shown in FIG. 6 (see FIG. 3), the edge portion 44 is separated from the other surface 24. Since the magnetic flux between the edge portion 44 and the other surface 24 is attenuated by the square of the distance (interval), the case where the edge portion 44 is close to the other surface 24 (see FIG. 5). As shown in the upper right column of FIG. 7, the increase in the magnetic flux density in the space between the edge portion 44 and the end portion of the other surface 24 can be significantly reduced, and the leakage flux can be significantly reduced. It is possible to reduce. As a result, as shown in the lower right column of FIG. 7, the increase in the current density at the side end of the coil 20 on the other surface 24 side is significantly reduced, and the loss (eddy current loss) is significantly reduced, that is, , The AC resistance of the coil 20 can be significantly reduced.

なお、第2磁性体40は、図8に示すように、端縁部分44が面取りされた形状であってもよい。また、第2磁性体40は、図9に示すように、端縁部分44がコイル20側に折れ曲がった形状であってもよい。第2磁性体40は、外部空間との間で出入りする磁束が集中する端縁部分44がコイル20の他方の表面24から離れるように構成された形状であればよい。 As shown in FIG. 8, the second magnetic material 40 may have a chamfered edge portion 44. Further, as shown in FIG. 9, the second magnetic body 40 may have a shape in which the end edge portion 44 is bent toward the coil 20 side. The second magnetic body 40 may have a shape such that the edge portion 44 where the magnetic flux entering and exiting from the external space is concentrated is separated from the other surface 24 of the coil 20.

以下では、図10のグラフを用いて、第2磁性体40の太さwm(図3参照)と交流抵抗Racとの関係について説明する。横軸の第2磁性体40の太さwmは、設定の太さwrに対する相対値wm/wrで表されており、縦軸の交流抵抗Racは、設定の太さwrにおける交流抵抗Rwrに対する相対値Rac/Rwrで表されている。 In the following, the relationship between the thickness wm of the second magnetic material 40 (see FIG. 3) and the AC resistance Rac will be described with reference to the graph of FIG. The thickness wm of the second magnetic body 40 on the horizontal axis is represented by a relative value wm / wr with respect to the set thickness wr, and the AC resistance Rac on the vertical axis is relative to the AC resistance Rwr at the set thickness wr. It is represented by the value Rac / Rwr.

図10からわかるように、第2磁性体40の太さWmは、交流抵抗Racにほとんど影響を与えない。このため、第2磁性体40の太さwmは、磁気飽和しないような大きさに設定されればよい。例えば、磁気飽和しない範囲で最小の大きさに設定されればよい。 As can be seen from FIG. 10, the thickness Wm of the second magnetic material 40 has almost no effect on the AC resistance Rac. Therefore, the thickness wm of the second magnetic body 40 may be set to a size that does not cause magnetic saturation. For example, it may be set to the minimum size within a range where magnetic saturation does not occur.

次に、図11のグラフを用いて、第2磁性体40の高さhm(図3参照)と交流抵抗Racとの関係について説明する。横軸の第2磁性体40の高さhmは、コイル20の高さhcに対する比hm/hcで表されており、縦軸の交流抵抗Racは、基準のコイル高さ比hm/hc=1.00における交流抵抗Rhrに対する相対値Rac/Rhrで表されている。 Next, the relationship between the height hm of the second magnetic material 40 (see FIG. 3) and the AC resistance Rac will be described with reference to the graph of FIG. The height hm of the second magnetic body 40 on the horizontal axis is represented by the ratio hm / hc to the height hc of the coil 20, and the AC resistance Rac on the vertical axis is the reference coil height ratio hm / hc = 1. It is represented by the relative value Rac / Rhr with respect to the AC resistance Rhr at .00.

図11からわかるように、第2磁性体40の高さhmがコイル20の高さhcよりも高く、第2磁性体40の端縁部分44がコイル20の他方の表面24から距離dh(=hm-hc,図3参照)だけ離すことができるので、交流抵抗Racを低くすることができる。特に、hm/hc≧1.75であれば、hm/hc=1の場合に比べて交流抵抗Racを1/2以下に小さくすることができる。なお、hm/hc>3の場合には、交流抵抗Racは1/3~1/4程度の値に収束し、交流抵抗Racの低減効果は変わらなくなる。従って、1<hm/hc≦3の範囲で第2磁性体40の高さhmを設定すれば、伝送コイル全体の高さ方向の体格の増加を抑制しつつ、十分な交流抵抗の低減効果を得ることができる。 As can be seen from FIG. 11, the height hm of the second magnetic body 40 is higher than the height hc of the coil 20, and the edge portion 44 of the second magnetic body 40 is a distance dh (=) from the other surface 24 of the coil 20. Since it can be separated by hm-hc (see FIG. 3), the AC resistance Rac can be lowered. In particular, when hm / hc ≧ 1.75, the AC resistance Rac can be reduced to 1/2 or less as compared with the case of hm / hc = 1. When hm / hc> 3, the AC resistance Rac converges to a value of about 1/3 to 1/4, and the effect of reducing the AC resistance Rac does not change. Therefore, if the height hm of the second magnetic body 40 is set in the range of 1 <hm / hc ≦ 3, the effect of sufficiently reducing the AC resistance can be obtained while suppressing the increase in the physique of the entire transmission coil in the height direction. Obtainable.

次に、図12を用いて、第2磁性体40の比透磁率μrと交流抵抗Racとの関係について説明する。図12は、第2磁性体40の比透磁率μrが、μr=1、すなわち、第2磁性体無しの場合、μr=10の場合、μr=20の場合、μr=50の場合、μr=100の場合、μr=200の場合、及び、μr>1000の磁性材料PC95(TDK社)の場合のそれぞれ交流抵抗Racを示している。なお、交流抵抗Racは、磁性体無しの場合の交流抵抗Rrに対する相対値Rac/Rrで表されている。 Next, the relationship between the relative magnetic permeability μr of the second magnetic material 40 and the AC resistance Rac will be described with reference to FIG. FIG. 12 shows that when the specific magnetic permeability μr of the second magnetic material 40 is μr = 1, that is, when there is no second magnetic material, μr = 10, when μr = 20, and μr = 50, μr = 1. In the case of 100, the AC resistance Rac is shown in the case of μr = 200 and in the case of the magnetic material PC95 (TDK) with μr> 1000, respectively. The AC resistance Rac is represented by a relative value Rac / Rr with respect to the AC resistance Rr when there is no magnetic material.

図12からわかるように、10≦μr≦200の磁性体であれば、交流抵抗Racを30%以上の十分な低減効果を得ることができる。従って、上述の説明では、第2磁性体40として第1磁性体30と同じ磁性材料PC95を用いた磁性体を例として説明したが、例えば、フレキシブル磁性体シートのように、柔軟性があり設置の容易性が高いが、比透磁率μrが低い磁性体を第2磁性体として利用することができる。また、比透磁率が低い磁性塗布材料を用いて、コイルをプリント基板にて製造する際に、一体製造することも可能である。従って、10≦μr≦200の磁性体を第2磁性体40とすれば、第2磁性体を備える伝送コイル10の製造が容易である。 As can be seen from FIG. 12, if the magnetic material has 10 ≦ μr ≦ 200, a sufficient effect of reducing the AC resistance Rac by 30% or more can be obtained. Therefore, in the above description, a magnetic material using the same magnetic material PC95 as the first magnetic material 30 as the second magnetic material 40 has been described as an example, but it is flexible and installed like, for example, a flexible magnetic material sheet. However, a magnetic material having a low relative magnetic permeability μr can be used as the second magnetic material. Further, it is also possible to integrally manufacture the coil when the coil is manufactured on the printed circuit board by using the magnetic coating material having a low relative magnetic permeability. Therefore, if the magnetic material of 10 ≦ μr ≦ 200 is the second magnetic material 40, it is easy to manufacture the transmission coil 10 including the second magnetic material.

B.第2実施形態:
図13の概略断面図に示す第2実施形態の伝送コイル10Bは、第1実施形態の伝送コイル10(図3参照)と同様に、コイル20と、第1磁性体30と、第2磁性体40(40i,40o)と、を備える。但し、伝送コイル10の第2磁性体40の高さhmがコイル20の高さhcよりも高いのに対して、伝送コイル10Bの第2磁性体40の高さhmはコイル20の高さhcに等しい構成となっている点が異なっている。また、伝送コイル10Bの第2磁性体40が、コイル20の内周側の側面25及び外周側の側面26から、間隔dsで側方に離間して配置されている点が異なっている。なお、間隔dsは、厳密には、コイル導体21の端部との間の距離であるが、コイル20の高さhc(厳密には、積層されたコイル導体21の高さ)に比べて樹脂22の厚さが十分に薄い場合には、コイル20の側面との間の距離としても差し支えない。
B. Second embodiment:
The transmission coil 10B of the second embodiment shown in the schematic cross-sectional view of FIG. 13 has a coil 20, a first magnetic body 30, and a second magnetic body, similarly to the transmission coil 10 of the first embodiment (see FIG. 3). 40 (40i, 40o) and the like. However, the height hm of the second magnetic body 40 of the transmission coil 10 is higher than the height hc of the coil 20, whereas the height hm of the second magnetic body 40 of the transmission coil 10B is the height hc of the coil 20. The difference is that the configuration is equal to. Further, the second magnetic body 40 of the transmission coil 10B is different from the side surface 25 on the inner peripheral side and the side surface 26 on the outer peripheral side of the coil 20 so as to be laterally separated by an interval ds. Strictly speaking, the interval ds is the distance between the end of the coil conductor 21 and the height of the coil 20 (strictly speaking, the height of the laminated coil conductors 21). If the thickness of 22 is sufficiently thin, the distance from the side surface of the coil 20 may be used.

以上説明したように、第2磁性体40がコイル20の側面から側方に離間して配置されることにより、端縁部分44がコイル20の他方の表面24から離れるようにすることができるので、第1実施形態と同様に、交流抵抗の増加を抑制することができる。 As described above, by arranging the second magnetic body 40 laterally away from the side surface of the coil 20, the edge portion 44 can be separated from the other surface 24 of the coil 20. , The increase in AC resistance can be suppressed as in the first embodiment.

以下では、図14のグラフを用いて、第2磁性体40とコイル20の間隔dsと交流抵抗Racとの関係について説明する。横軸の間隔dsは、コイル20の高さhcに対する比ds/hcで表され、縦軸の交流抵抗Racは、コイル高さ比ds/hc=0における交流抵抗Rdrに対する相対値Rac/Rdrで表されている。 In the following, the relationship between the distance ds between the second magnetic body 40 and the coil 20 and the AC resistance Rac will be described with reference to the graph of FIG. The interval ds on the horizontal axis is represented by the ratio ds / hc to the height hc of the coil 20, and the AC resistance Rac on the vertical axis is the relative value Rac / Rdr to the AC resistance Rdr at the coil height ratio ds / hc = 0. It is represented.

図14からわかるように、ds/hc>0として、第2磁性体40をコイル20から離して配置することにより、交流抵抗Racを低くすることができる。特に、0.25≦ds/hc≦0.5とすれば、交流抵抗Racの低減効果を最も高めることができる。なお、ds>hc>2として、第2磁性体40をコイル20から離しすぎた場合には、交流抵抗Racの低減効果を得られなくなる。これは、第2磁性体40による磁束の誘導効果を得ることができなくなり、第2磁性体40が無い構成(図4参照)と同様となるからである。 As can be seen from FIG. 14, the AC resistance Rac can be lowered by arranging the second magnetic body 40 away from the coil 20 with ds / hc> 0. In particular, if 0.25 ≦ ds / hc ≦ 0.5, the effect of reducing the AC resistance Rac can be maximized. If ds> hc> 2 and the second magnetic material 40 is too far from the coil 20, the effect of reducing the AC resistance Rac cannot be obtained. This is because the effect of inducing the magnetic flux by the second magnetic body 40 cannot be obtained, and the configuration is the same as that without the second magnetic body 40 (see FIG. 4).

なお、上述した伝送コイル10Bは、第2磁性体40の高さhmがコイル20の高さhcに等しい構成を例に示したが、第1実施形態と同様に、第2磁性体40の高さhmをコイル20の高さhcよりも高くした構成としてもよい。この構成の場合には、第2磁性体40の高さhmをコイル20の高さhcよりも高くすることによる交流抵抗Racの低減効果に加えて、第2磁性体40をコイル20から離して配置することによる交流抵抗Racの低減効果を得ることができる。 Although the above-mentioned transmission coil 10B has a configuration in which the height hm of the second magnetic body 40 is equal to the height hc of the coil 20 as an example, the height of the second magnetic body 40 is the same as in the first embodiment. The hm may be higher than the height hc of the coil 20. In the case of this configuration, in addition to the effect of reducing the AC resistance Rac by making the height hm of the second magnetic body 40 higher than the height hc of the coil 20, the second magnetic body 40 is separated from the coil 20. By arranging the AC resistance Rac, the effect of reducing the AC resistance Rac can be obtained.

また、第1実施形態で説明した第2磁性体40の高さhmに関する限定や、第2磁性体40の比透磁率μrに関する限定は、伝送コイル10Bにおいても同様に適用可能である。 Further, the limitation regarding the height hm of the second magnetic body 40 and the limitation regarding the specific magnetic permeability μr of the second magnetic body 40 described in the first embodiment can be similarly applied to the transmission coil 10B.

C.第3実施形態:
図15に示す第3実施形態の伝送コイル10Cは、第1実施形態の伝送コイル10(図3参照)のコイル20に換えて、コイル導体21が渦巻状に巻回されたコイル20Cが用いられ、各コイル導体21の内周と外周の側面に第2磁性体40が配置されている点が異なっている。
C. Third embodiment:
As the transmission coil 10C of the third embodiment shown in FIG. 15, a coil 20C in which the coil conductor 21 is spirally wound is used instead of the coil 20 of the transmission coil 10 (see FIG. 3) of the first embodiment. The difference is that the second magnetic material 40 is arranged on the inner peripheral and outer peripheral side surfaces of each coil conductor 21.

伝送コイル10Cにおいても、コイル導体21の両端部を通過する磁束を第2磁性体40に誘導するとともに、磁束が集中する端縁部分44を各コイル導体21の表面、すなわち、コイル20Cの他方の表面24から離すことにより、第1実施形態と同様に交流抵抗の増加を抑制することができる。但し、伝送コイル10Cの場合は、各コイル導体21の側面に第2磁性体を配置することが求められる。従って、第1実施形態の伝送コイル10のように、ヘリカル状に巻回されたコイル20を用いる構成の方が、コイルの内周及び外周の側面に配置する第2磁性体の数を低減できる点で有利である。 Also in the transmission coil 10C, the magnetic flux passing through both ends of the coil conductor 21 is guided to the second magnetic body 40, and the edge portion 44 where the magnetic flux is concentrated is on the surface of each coil conductor 21, that is, on the other side of the coil 20C. By moving away from the surface 24, an increase in AC resistance can be suppressed as in the first embodiment. However, in the case of the transmission coil 10C, it is required to arrange the second magnetic material on the side surface of each coil conductor 21. Therefore, the configuration using the coil 20 wound in a helical shape as in the transmission coil 10 of the first embodiment can reduce the number of the second magnetic materials arranged on the inner peripheral and outer peripheral side surfaces of the coil. It is advantageous in that.

D.伝送コイルの適用形態:
上記各実施形態で説明した伝送コイルは、非接触給電用の送電コイルあるいは受電コイルとして利用可能である。例えば、図16に示すように、車両に搭載された受電装置200に対して、車両走行路RSに設置された給電装置100から非接触で給電を行なう車両用非接触給電システムにおいて、給電装置100の送電コイル110に適用可能である。
D. Application form of transmission coil:
The transmission coil described in each of the above embodiments can be used as a power transmission coil or a power receiving coil for non-contact power feeding. For example, as shown in FIG. 16, in a vehicle non-contact power feeding system in which power is supplied to a power receiving device 200 mounted on a vehicle from a power feeding device 100 installed in a vehicle travel path RS in a non-contact manner, the power feeding device 100 It is applicable to the power transmission coil 110 of.

給電装置100では、電源回路130から供給される直流電力が送電回路120によって交流電力に変換され、変換された交流電力は送電コイル110に供給される。車両に搭載された受電装置200では、送電コイル110を含む送電共振回路と、受電コイル210を含む受電共振回路との間の磁界結合によって、受電コイル210に誘導された交流電力が、受電回路220によって直流電力に変換されて、バッテリ230に充電される。これにより、給電装置100から受電装置200に対して非接触での給電が実行される。 In the power feeding device 100, the DC power supplied from the power supply circuit 130 is converted into AC power by the power transmission circuit 120, and the converted AC power is supplied to the power transmission coil 110. In the power receiving device 200 mounted on the vehicle, the AC power induced in the power receiving coil 210 by the magnetic field coupling between the power transmitting resonance circuit including the power transmitting coil 110 and the power receiving resonance circuit including the power receiving coil 210 is generated by the power receiving circuit 220. Is converted into DC power and charged in the battery 230. As a result, power is supplied from the power feeding device 100 to the power receiving device 200 in a non-contact manner.

なお、図16では、送電コイル110に第1実施形態の伝送コイル10を適用した例が示されている。送電コイル110は、車両走行路RSのアスファルト等で舗装された表層ALの下側の層PLで、樹脂等に覆われて設置されている。 Note that FIG. 16 shows an example in which the transmission coil 10 of the first embodiment is applied to the transmission coil 110. The power transmission coil 110 is a layer PL below the surface layer AL paved with asphalt or the like of the vehicle travel path RS, and is covered with resin or the like and installed.

なお、以上の説明では、給電装置100の送電コイル110に第1実施形態の伝送コイル10を適用した構成を例に説明したが、他の実施形態の伝送コイルを送電コイル110に適用してもよい。また、受電コイル210に上記実施形態の伝送コイルを適用することも可能である。 In the above description, the configuration in which the transmission coil 10 of the first embodiment is applied to the power transmission coil 110 of the power feeding device 100 has been described as an example, but the transmission coil of another embodiment may be applied to the power transmission coil 110. good. It is also possible to apply the transmission coil of the above embodiment to the power receiving coil 210.

本開示は、上述の実施形態に限られるものではなく、その趣旨を逸脱しない範囲において種々の構成で実現することができる。例えば、発明の概要の欄に記載した各形態中の技術的特徴に対応する実施形態中の技術的特徴は、上述の課題の一部又は全部を解決するために、あるいは、上述の効果の一部又は全部を達成するために、適宜、差し替えや、組み合わせを行うことが可能である。また、その技術的特徴が本明細書中に必須なものとして説明されていなければ、適宜、削除することが可能である。 The present disclosure is not limited to the above-described embodiment, and can be realized by various configurations within a range not deviating from the gist thereof. For example, the technical features in the embodiments corresponding to the technical features in each embodiment described in the column of the outline of the invention are for solving a part or all of the above-mentioned problems, or one of the above-mentioned effects. It is possible to replace or combine as appropriate to achieve the part or all. Further, if the technical feature is not described as essential in the present specification, it can be appropriately deleted.

10,10B,10C…伝送コイル、20,20C…コイル、21…コイル導体、22…樹脂、23,24…表面、25,26…側面、30…第1磁性体、40…第2磁性体、44…端縁部分(磁性体部分) 10,10B, 10C ... transmission coil, 20,20C ... coil, 21 ... coil conductor, 22 ... resin, 23,24 ... surface, 25,26 ... side surface, 30 ... first magnetic material, 40 ... second magnetic material, 44 ... Edge part (magnetic material part)

Claims (7)

非接触給電に用いられる伝送コイル(10,10B,10C)であって、
巻回されたコイル導体(21)で構成され、磁束と交わる一方の表面(23)と前記一方の表面と反対向きの他方の表面(24)とを有するコイル(20,20C)と、
前記一方の表面(23)に配置された第1磁性体(30)と、
前記一方の表面及び前記他方の表面と交わる前記コイルの内周の側面(25)及び外周の側面(26)に配置された第2磁性体(40)と、備え、
前記第2磁性体は、前記第2磁性体と外部空間との間を出入りする磁束の集中する磁性体部分(44)が、前記他方の表面(24)から離れるように構成される、伝送コイル。
A transmission coil (10, 10B, 10C) used for non-contact power supply.
A coil (20, 20C) composed of a wound coil conductor (21) and having one surface (23) intersecting with magnetic flux and the other surface (24) opposite to the one surface.
The first magnetic material (30) arranged on one of the surfaces (23) and
A second magnetic material (40) arranged on the inner peripheral side surface (25) and the outer peripheral side surface (26) of the coil intersecting the one surface and the other surface is provided.
The second magnetic material is a transmission coil configured such that the magnetic material portion (44) where the magnetic flux entering and exiting between the second magnetic material and the external space is concentrated is separated from the other surface (24). ..
請求項1に記載の伝送コイルであって、
前記第2磁性体の高さは前記コイルの高さより高い、伝送コイル。
The transmission coil according to claim 1.
A transmission coil in which the height of the second magnetic material is higher than the height of the coil.
請求項2に記載の伝送コイルであって、
前記第2磁性体は前記コイルの高さの3倍以下の高さである、伝送コイル。
The transmission coil according to claim 2.
The second magnetic material is a transmission coil having a height of three times or less the height of the coil.
請求項1から請求項3のいずれか一項に記載の伝送コイルであって、
前記第2磁性体は前記コイルの側面から側方に離間して配置される、伝送コイル。
The transmission coil according to any one of claims 1 to 3.
The second magnetic material is a transmission coil arranged laterally away from the side surface of the coil.
請求項4に記載の伝送コイルであって、
前記第2磁性体と前記コイルの側面との間隔は前記コイルの高さの2倍以下である、伝送コイル。
The transmission coil according to claim 4.
A transmission coil in which the distance between the second magnetic material and the side surface of the coil is not more than twice the height of the coil.
請求項1から請求項5のいずれか一項に記載の伝送コイルであって、
前記第2磁性体は10以上200以下の比透磁率の磁性体である、伝送コイル。
The transmission coil according to any one of claims 1 to 5.
The second magnetic material is a transmission coil which is a magnetic material having a relative magnetic permeability of 10 or more and 200 or less.
請求項1から請求項6のいずれか一項に記載の伝送コイルであって、
前記コイルは前記コイル導体がヘリカル状に積層された構造を有するコイルである、伝送コイル。
The transmission coil according to any one of claims 1 to 6.
The coil is a transmission coil having a structure in which the coil conductors are laminated in a helical shape.
JP2020128041A 2020-07-29 2020-07-29 Transmission coil used in non-contact power supply Active JP7552119B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020128041A JP7552119B2 (en) 2020-07-29 2020-07-29 Transmission coil used in non-contact power supply
PCT/JP2021/023350 WO2022024585A1 (en) 2020-07-29 2021-06-21 Transmission coil used in contactless power supply

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020128041A JP7552119B2 (en) 2020-07-29 2020-07-29 Transmission coil used in non-contact power supply

Publications (3)

Publication Number Publication Date
JP2022025300A true JP2022025300A (en) 2022-02-10
JP2022025300A5 JP2022025300A5 (en) 2022-04-19
JP7552119B2 JP7552119B2 (en) 2024-09-18

Family

ID=80035386

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020128041A Active JP7552119B2 (en) 2020-07-29 2020-07-29 Transmission coil used in non-contact power supply

Country Status (2)

Country Link
JP (1) JP7552119B2 (en)
WO (1) WO2022024585A1 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5549818B2 (en) 2011-06-15 2014-07-16 Tdk株式会社 Non-contact transmission device, and battery unit and battery lid unit including the same
US10692640B2 (en) 2015-09-24 2020-06-23 Fuji Corporation Non-contact power feeding coil and non-contact power feeding system
JP6468395B2 (en) 2016-02-26 2019-02-13 株式会社村田製作所 ANTENNA DEVICE AND ELECTRONIC DEVICE
JPWO2019189138A1 (en) 2018-03-29 2021-04-01 パナソニックIpマネジメント株式会社 Transmission module and wireless power data transmission device
JP7131815B2 (en) 2018-09-14 2022-09-06 国立大学法人信州大学 Wireless power transmission coil unit
JP6897645B2 (en) 2018-09-19 2021-07-07 株式会社豊田中央研究所 Transformers, battery chargers and connectors
WO2020174864A1 (en) 2019-02-28 2020-09-03 富士フイルム株式会社 Power feeding member, magnetic sheet used for coil arrangement, and production method for magnetic sheet used for coil arrangement

Also Published As

Publication number Publication date
WO2022024585A1 (en) 2022-02-03
JP7552119B2 (en) 2024-09-18

Similar Documents

Publication Publication Date Title
US20220199305A1 (en) Inductor and emi filter including the same
US20210241960A1 (en) Inductor component
US6525638B2 (en) Choke coil
JP2011082463A (en) Coil component and manufacturing method thereof
US11990271B2 (en) Soft magnetic ribbon for magnetic core, magnetic core, coil unit, and wireless power transmission unit
JP2012099739A (en) Core segment, annular coil core and annular coil
JPH08181018A (en) Coil device
US6642828B2 (en) Airgapped magnetic component
WO2022024585A1 (en) Transmission coil used in contactless power supply
TWI640022B (en) Induction type power supply system and coil module thereof
WO2019193917A1 (en) Magnetic core, coil component, circuit substrate, and power supply device
JP2009021325A (en) Winding type common mode choke coil
JP4987506B2 (en) Inductance element and noise filter using the same
JPH09199347A (en) Sheet transformer
WO2018180313A1 (en) Coil apparatus
JP2016207811A (en) Surface-mounting transformer
JP3316008B2 (en) Transformers and power supplies
US20190006079A1 (en) Inductive element and lc filter
US20240212921A1 (en) Inductor and dc-dc converter using the same
US20240212920A1 (en) Inductor and dc-dc converter using the same
CN219202923U (en) Self-adhesive runway type flat coil
JP7288651B2 (en) planar transformer
CN216818059U (en) Inductance device
JP5516923B2 (en) Reactor and converter
CN211929254U (en) Winding assembly and magnetic assembly

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220411

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240423

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240613

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240806

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240819

R150 Certificate of patent or registration of utility model

Ref document number: 7552119

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150