JP2021152381A - Flow passage switching valve - Google Patents

Flow passage switching valve Download PDF

Info

Publication number
JP2021152381A
JP2021152381A JP2020052764A JP2020052764A JP2021152381A JP 2021152381 A JP2021152381 A JP 2021152381A JP 2020052764 A JP2020052764 A JP 2020052764A JP 2020052764 A JP2020052764 A JP 2020052764A JP 2021152381 A JP2021152381 A JP 2021152381A
Authority
JP
Japan
Prior art keywords
valve
valve body
port
shaft
valve port
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020052764A
Other languages
Japanese (ja)
Other versions
JP7129100B2 (en
Inventor
秀 柳澤
Hide Yanagisawa
秀 柳澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikoki Corp
Original Assignee
Fujikoki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikoki Corp filed Critical Fujikoki Corp
Priority to JP2020052764A priority Critical patent/JP7129100B2/en
Priority to CN202011592692.5A priority patent/CN113446414A/en
Publication of JP2021152381A publication Critical patent/JP2021152381A/en
Application granted granted Critical
Publication of JP7129100B2 publication Critical patent/JP7129100B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/06Actuating devices; Operating means; Releasing devices electric; magnetic using a magnet, e.g. diaphragm valves, cutting off by means of a liquid
    • F16K31/0603Multiple-way valves
    • F16K31/0624Lift valves
    • F16K31/0627Lift valves with movable valve member positioned between seats
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K11/00Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves
    • F16K11/02Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit
    • F16K11/04Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only lift valves
    • F16K11/044Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only lift valves with movable valve members positioned between valve seats

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Multiple-Way Valves (AREA)
  • Electrically Driven Valve-Operating Means (AREA)

Abstract

To provide a flow passage switching valve that has a simple structure, is easy to assemble, and can accurately control a flow rate of fluid.SOLUTION: A flow passage switching valve comprises: a valve body comprising a valve chest, a first connecting part for connecting a first pipe and the valve chest, a second connecting part for connecting a second pipe and the valve chest, a third connecting part for connecting a third pipe and the valve chest, a first valve port provided between the first connecting part and the second connecting part, and a second valve port provided between the second connecting part and the third connecting part; and a valve stem arranged movably in the valve chest, and inserted into the first valve port and the second valve port. The valve stem comprises a first valve element part for controlling a passage flow rate of fluid flowing through the first valve port, and a second valve element part for controlling a passage flow rate of the fluid flowing through the second valve port. The first valve element part and the second valve element part each comprises a taper part and a cylindrical part. A maximum outside diameter of the second valve element part is smaller than inside diameters of the first valve port and the second valve port.SELECTED DRAWING: Figure 3

Description

本発明は、流路切換弁に関する。 The present invention relates to a flow path switching valve.

従来から、第1流入口と、第2流入口と、第3流入口とに接続され、第1流入口から流入してきた流体を、第2流入口または第3流入口に分配して供給する各種の流路切換弁が提案されている。 Conventionally, the fluid that has been connected to the first inflow port, the second inflow port, and the third inflow port and has flowed in from the first inflow port is distributed and supplied to the second inflow port or the third inflow port. Various flow path switching valves have been proposed.

例えば特許文献1に開示された流路切換弁は、第1入出口と第2入出口と第3入出口に連通する弁室、上部弁座、及び下部弁座を備えた弁本体と、該弁本体内で移動する弁軸とを有している。かかる流路切換弁によれば、該弁軸の移動位置に応じて、第1流入口から流入してきた流体を、第2流入口または第3流入口に供給することができる。 For example, the flow path switching valve disclosed in Patent Document 1 includes a valve chamber, an upper valve seat, and a valve body having a lower valve seat that communicate with a first inlet / outlet, a second inlet / outlet, and a third inlet / outlet. It has a valve shaft that moves within the valve body. According to such a flow path switching valve, the fluid flowing in from the first inflow port can be supplied to the second inflow port or the third inflow port according to the moving position of the valve shaft.

特開2017−129240号公報JP-A-2017-129240

ところで、上記の流路切換弁は、弁軸に設けられた上部弁体および下部弁体が、弁本体の上部弁座および下部弁座に対して選択的に着座または離間することにより、流体の流れ方向を切り換えている。ここで、上部弁座と下部弁座は中空の弁座部材の両端に形成されており、上部弁体および下部弁体は弁座部材の内部に挿通された連結軸によって連結されている。したがって、流路切換弁の組み付け時には、弁座部材を挟んで軸線方向両側から上部弁体および下部弁体をそれぞれ組み付けなくてはならず、組立に手間取るという問題がある。さらに、組み付け誤差や動作時の位置決め誤差によって、第2流入口または第3流入口に流れる流体の量が変動しやすいという問題もある。 By the way, in the above-mentioned flow path switching valve, the upper valve body and the lower valve body provided on the valve shaft are selectively seated or separated from the upper valve seat and the lower valve seat of the valve body, so that the fluid is fluid. The flow direction is switched. Here, the upper valve seat and the lower valve seat are formed at both ends of the hollow valve seat member, and the upper valve body and the lower valve body are connected by a connecting shaft inserted inside the valve seat member. Therefore, when assembling the flow path switching valve, the upper valve body and the lower valve body must be assembled from both sides in the axial direction with the valve seat member sandwiched between them, which causes a problem that it takes time to assemble. Further, there is also a problem that the amount of fluid flowing to the second inflow port or the third inflow port tends to fluctuate due to an assembly error or a positioning error during operation.

本発明は、かかる課題に鑑みてなされたものであって、簡素な構造で組み立てが容易でありながら、流体の流量を精度よく制御可能な流路切換弁を提供することを目的とする。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a flow path switching valve capable of accurately controlling the flow rate of a fluid while having a simple structure and easy assembly.

本発明に係る流路切換弁は、
弁室、第1配管と前記弁室とを接続する第1接続部、第2配管と前記弁室とを接続する第2接続部、第3配管と前記弁室とを接続する第3接続部、前記第1接続部と前記第2接続部との間に設けられた第1弁口、および前記第2接続部と前記第3接続部との間に設けられた第2弁口、を有する弁本体と、
前記弁室に移動可能に配置され、前記第1弁口および前記第2弁口に挿通された弁軸と、
を有し、
前記弁軸は、前記第1弁口を流れる流体の通過流量を制御する第1弁体部と、前記第2弁口を流れる流体の通過流量を制御する第2弁体部とを有し、
前記第1弁体部および前記第2弁体部はそれぞれテーパ部および円筒部を備え、
前記第2弁体部の最大外径は前記第1弁口および前記第2弁口の内径より小さい、ことを特徴とする。
The flow path switching valve according to the present invention is
A valve chamber, a first connecting portion connecting the first pipe and the valve chamber, a second connecting portion connecting the second pipe and the valve chamber, and a third connecting portion connecting the third pipe and the valve chamber. It has a first valve port provided between the first connection portion and the second connection portion, and a second valve port provided between the second connection portion and the third connection portion. With the valve body
A valve shaft movably arranged in the valve chamber and inserted into the first valve port and the second valve port,
Have,
The valve shaft has a first valve body portion that controls the passing flow rate of the fluid flowing through the first valve port, and a second valve body portion that controls the passing flow rate of the fluid flowing through the second valve port.
The first valve body portion and the second valve body portion are provided with a tapered portion and a cylindrical portion, respectively.
The maximum outer diameter of the second valve body portion is smaller than the inner diameters of the first valve port and the second valve port.

本発明の流路切換弁によれば、簡素な構造で組み立てが容易でありながら、流体の流量を精度よく制御可能である。 According to the flow path switching valve of the present invention, the flow rate of the fluid can be controlled with high accuracy while being easy to assemble with a simple structure.

図1は、本実施形態の流路切換弁を示す縦断面図である。FIG. 1 is a vertical cross-sectional view showing a flow path switching valve of the present embodiment. 図2は、本実施形態の流路切換弁の流路特性を示す図であり、縦軸に流量比を示し、横軸に弁軸リフト量をとって示す。FIG. 2 is a diagram showing the flow path characteristics of the flow path switching valve of the present embodiment, in which the vertical axis represents the flow rate ratio and the horizontal axis represents the valve shaft lift amount. 図3は、流路切換弁の弁体部の周辺を拡大して示す拡大断面図である。FIG. 3 is an enlarged cross-sectional view showing the periphery of the valve body portion of the flow path switching valve in an enlarged manner. 図4は、流路切換弁の弁体部の周辺を拡大して示す拡大断面図である。FIG. 4 is an enlarged cross-sectional view showing the periphery of the valve body portion of the flow path switching valve in an enlarged manner. 図5は、流路切換弁の弁体部の周辺を拡大して示す拡大断面図である。FIG. 5 is an enlarged cross-sectional view showing the periphery of the valve body portion of the flow path switching valve in an enlarged manner. 図6は、流路切換弁の弁体部の周辺を拡大して示す拡大断面図である。FIG. 6 is an enlarged cross-sectional view showing the periphery of the valve body portion of the flow path switching valve in an enlarged manner. 図7は、流路切換弁の弁体部の周辺を拡大して示す拡大断面図である。FIG. 7 is an enlarged cross-sectional view showing the periphery of the valve body portion of the flow path switching valve in an enlarged manner. 図8は、流路切換弁の弁体部の周辺を拡大して示す拡大断面図である。FIG. 8 is an enlarged cross-sectional view showing the periphery of the valve body portion of the flow path switching valve in an enlarged manner. 図9は、比較例における弁体部の周辺を示す図3と同様な断面図である。FIG. 9 is a cross-sectional view similar to FIG. 3 showing the periphery of the valve body portion in the comparative example. 図10は、本実施形態の変形例にかかる弁軸の第1弁体部の近傍を側面視した拡大図である。FIG. 10 is an enlarged view of the vicinity of the first valve body portion of the valve shaft according to the modified example of the present embodiment as a side view. 図11は、本変形例の流路切換弁の流路特性を示す図である。FIG. 11 is a diagram showing the flow path characteristics of the flow path switching valve of this modified example.

以下、本発明に係る流路切換弁の実施形態を、図面を参照しながら説明する。なお、本明細書では、ロータから弁室に向かう方向を下方とし、その逆方向を上方とするが、流路切換弁の設置方向はそれに限られない。また、以下の実施形態の流体として冷凍サイクル用に用いられる冷媒を使用している。 Hereinafter, embodiments of the flow path switching valve according to the present invention will be described with reference to the drawings. In the present specification, the direction from the rotor to the valve chamber is downward, and the opposite direction is upward, but the installation direction of the flow path switching valve is not limited to this. Further, the refrigerant used for the refrigeration cycle is used as the fluid of the following embodiments.

図1は、本実施形態の流路切換弁10を示す縦断面図である。流路切換弁10は、弁本体20と、弁本体20に取り付けられて弁軸24を駆動させるロータ30を内蔵するキャン40と、キャン40に外嵌されロータ30を回転駆動するステータ50とを備えている。流路切換弁10の軸線をLとする。 FIG. 1 is a vertical cross-sectional view showing the flow path switching valve 10 of the present embodiment. The flow path switching valve 10 includes a valve main body 20, a can 40 having a rotor 30 attached to the valve main body 20 to drive the valve shaft 24, and a stator 50 externally fitted in the can 40 to drive the rotor 30 to rotate. I have. Let L be the axis of the flow path switching valve 10.

キャン40の円筒状部分の外周には、それぞれ一対のボビン52とステータコイル53およびこれらを囲うヨーク51が配置され、その外周を樹脂モールドカバー56によって覆うことによりステータ50が形成されている。ロータ30とステータ50とにより、ステッピングモータ(駆動部)を構成している。 A pair of bobbins 52, a stator coil 53, and a yoke 51 surrounding them are arranged on the outer circumference of the cylindrical portion of the can 40, and the stator 50 is formed by covering the outer circumference with a resin mold cover 56. The rotor 30 and the stator 50 form a stepping motor (driving unit).

キャン40はステンレスなどの非磁性の金属から形成され、有底円筒状をしている。キャン40の開放した下端は、ステンレス製の環状板41に溶接等により固着されている。 The can 40 is made of a non-magnetic metal such as stainless steel and has a bottomed cylindrical shape. The open lower end of the can 40 is fixed to a stainless steel annular plate 41 by welding or the like.

略円筒状の弁軸24は、弁室VCに移動可能に配置され、ステンレス又は真鍮などから形成され、上端側の小径軸部241と、大径軸部242と、下端側の弁体構造部243とを同軸に連設してなる。弁体構造部243の構成については、図3を参照して後述する。 The substantially cylindrical valve shaft 24 is movably arranged in the valve chamber VC, is made of stainless steel, brass, or the like, and has a small diameter shaft portion 241 on the upper end side, a large diameter shaft portion 242, and a valve body structure portion on the lower end side. It is connected to 243 coaxially. The configuration of the valve body structure portion 243 will be described later with reference to FIG.

略円筒状の弁軸ホルダ32は、キャン40内において、弁軸24の上端側を収容するように配置されている。弁軸ホルダ32の上端は、弁軸24の小径軸部241の上端が圧入固定されたプッシュナット33により接合されている。 The substantially cylindrical valve shaft holder 32 is arranged in the can 40 so as to accommodate the upper end side of the valve shaft 24. The upper end of the valve shaft holder 32 is joined by a push nut 33 in which the upper end of the small diameter shaft portion 241 of the valve shaft 24 is press-fitted and fixed.

プッシュナット33の外周に沿って、圧縮コイルばねで構成される復帰ばね35を取付けている。復帰ばね35は、詳細を後述するガイドブッシュ26の固定ねじ部25と弁軸ホルダ32の移動ねじ部31との螺合が外れたときに、キャン40の頂部内面に当接して固定ねじ部25と移動ねじ部31との螺合を復帰させるように付勢する機能を有する。 A return spring 35 composed of a compression coil spring is attached along the outer circumference of the push nut 33. When the fixing screw portion 25 of the guide bush 26 and the moving screw portion 31 of the valve shaft holder 32 are unscrewed, the return spring 35 comes into contact with the inner surface of the top of the can 40 and the fixing screw portion 25 It has a function of urging the screw with the moving screw portion 31 so as to restore the screwing.

キャン40に対して隙間を開けて配置されたロータ30と、弁軸ホルダ32とは、支持リング36を介して結合されている。より具体的に支持リング36は、ロータ30の成形時にインサートされた黄銅製の金属リングで構成されており、支持リング36の内周孔部に弁軸ホルダ32の上部突部が嵌合し、上部突部の外周をかしめ固定してロータ30、支持リング36及び弁軸ホルダ32を結合している。 The rotor 30 arranged with a gap with respect to the can 40 and the valve shaft holder 32 are connected via a support ring 36. More specifically, the support ring 36 is composed of a metal ring made of copper inserted at the time of molding the rotor 30, and the upper protrusion of the valve shaft holder 32 is fitted into the inner peripheral hole of the support ring 36, and the upper protrusion is formed. The outer circumference of the portion is caulked and fixed to connect the rotor 30, the support ring 36, and the valve shaft holder 32.

弁軸ホルダ32の外周には、ストッパ機構の一方を構成する上ストッパ体37が固着されている。上ストッパ体37は筒状の樹脂より構成され、下方に向けて板状の上ストッパ片37aが突設されている。 An upper stopper body 37 constituting one of the stopper mechanisms is fixed to the outer circumference of the valve shaft holder 32. The upper stopper body 37 is made of a tubular resin, and a plate-shaped upper stopper piece 37a is projected downward.

円筒状のガイドブッシュ26が、弁軸ホルダ32と弁軸24との間に配置されている。ガイドブッシュ26の下端は、弁本体20の上端開口201に圧入により嵌合している。ガイドブッシュ26の外周には、ストッパ機構の他方を構成する下ストッパ体27が固着されている。下ストッパ体27はリング状の樹脂より構成され、上方に板状の下ストッパ片27aが突設されており、前記した上ストッパ片37aと係合可能となっている。 A cylindrical guide bush 26 is arranged between the valve shaft holder 32 and the valve shaft 24. The lower end of the guide bush 26 is press-fitted into the upper end opening 201 of the valve body 20 by press fitting. A lower stopper body 27 constituting the other side of the stopper mechanism is fixed to the outer periphery of the guide bush 26. The lower stopper body 27 is made of a ring-shaped resin, and a plate-shaped lower stopper piece 27a is projected above, and can be engaged with the upper stopper piece 37a described above.

下ストッパ体27はガイドブッシュ26の外周に形成された螺旋溝部分26aに射出成形により固着され、上ストッパ体37は弁軸ホルダ32の外周に形成された螺旋溝部分32bに射出成形により固着されている。 The lower stopper body 27 is fixed to the spiral groove portion 26a formed on the outer periphery of the guide bush 26 by injection molding, and the upper stopper body 37 is fixed to the spiral groove portion 32b formed on the outer periphery of the valve shaft holder 32 by injection molding. ing.

弁軸ホルダ32の内面に移動ねじ部31が形成されており、ガイドブッシュ26の外周に形成された固定ねじ部25と螺合している。 A moving screw portion 31 is formed on the inner surface of the valve shaft holder 32, and is screwed with a fixing screw portion 25 formed on the outer periphery of the guide bush 26.

弁軸24は、弁軸ホルダ32に軸線Lに沿って上下動可能に嵌挿されており、弁軸ホルダ32内に縮装された圧縮コイルばね34によって下方に付勢されている。ガイドブッシュ26の側面には、弁室VCとキャン40内の圧力均衡を図る均圧孔32aが形成されている。 The valve shaft 24 is fitted into the valve shaft holder 32 so as to be vertically movable along the axis L, and is urged downward by a compression coil spring 34 compressed in the valve shaft holder 32. A pressure equalizing hole 32a for balancing the pressure in the valve chamber VC and the can 40 is formed on the side surface of the guide bush 26.

キャン40の環状板41の中央開口には、略中空円筒状の弁本体20の上端がロウ付けにより固着されている。 The upper end of a substantially hollow cylindrical valve body 20 is fixed to the central opening of the annular plate 41 of the can 40 by brazing.

有底筒状の弁本体20は、上端開口201に接続する上部拡大孔202と、下端側の下部拡大孔203と、上部拡大孔202と下部拡大孔203との間に形成された中間拡大孔204とを有する。上部拡大孔202と、下部拡大孔203と、中間拡大孔204とで弁室VCを形成する。 The bottomed cylindrical valve body 20 has an intermediate expansion hole 202 formed between the upper expansion hole 202 connected to the upper end opening 201, the lower expansion hole 203 on the lower end side, and the upper expansion hole 202 and the lower expansion hole 203. It has 204 and. The valve chamber VC is formed by the upper expansion hole 202, the lower expansion hole 203, and the intermediate expansion hole 204.

上部拡大孔202と中間拡大孔204とは、第1弁口205を介して連通しており、中間拡大孔204と下部拡大孔203は、第2弁口206を介して連通している。第1弁口205の内径は、大径軸部242の外径よりわずかに大きく、また第2弁口206の内径は、後述する端軸部247の外径よりわずかに大きくなっている。第1弁口205と第2弁口206は同径であると好ましい。本実施形態では、第1弁口205と第2弁口206はいずれも円筒状であるが、円錐台面状、若しくは円錐台面を有する円筒部としてもよい。 The upper expansion hole 202 and the intermediate expansion hole 204 communicate with each other via the first valve port 205, and the intermediate expansion hole 204 and the lower expansion hole 203 communicate with each other via the second valve port 206. The inner diameter of the first valve port 205 is slightly larger than the outer diameter of the large diameter shaft portion 242, and the inner diameter of the second valve port 206 is slightly larger than the outer diameter of the end shaft portion 247 described later. It is preferable that the first valve port 205 and the second valve port 206 have the same diameter. In the present embodiment, the first valve port 205 and the second valve port 206 are both cylindrical, but may be a conical pedestal surface or a cylindrical portion having a conical pedestal surface.

弁本体20は、上部拡大孔202から軸線Lに直交する方向に延在するように形成された上部連通孔(弁室VCと第1配管T1とを接続する第1接続部)207と、上部連通孔207より大径の上部接合孔208とを備えている。上部接合孔208には、第1配管T1がロウ付け等により接合されている。第1配管T1の軸線をO1とする。 The valve body 20 includes an upper communication hole (first connection portion connecting the valve chamber VC and the first pipe T1) 207 formed so as to extend from the upper expansion hole 202 in a direction orthogonal to the axis L, and an upper portion. It is provided with an upper joint hole 208 having a diameter larger than that of the communication hole 207. The first pipe T1 is joined to the upper joint hole 208 by brazing or the like. Let the axis of the first pipe T1 be O1.

また弁本体20は、中間拡大孔204から軸線Lに直交する方向に延在するように形成された中間連通孔(弁室VCと第2配管T2とを接続する第2接続部)209と、中間連通孔209より大径の中間接合孔210とを備えている。中間接合孔210には、第2配管T2がロウ付け等により接合されている。第2配管T2の軸線をO2とする。 Further, the valve body 20 includes an intermediate communication hole (second connection portion connecting the valve chamber VC and the second pipe T2) 209 formed so as to extend from the intermediate expansion hole 204 in a direction orthogonal to the axis L. It is provided with an intermediate joint hole 210 having a diameter larger than that of the intermediate communication hole 209. The second pipe T2 is joined to the intermediate joint hole 210 by brazing or the like. The axis of the second pipe T2 is O2.

さらに弁本体20は、下部拡大孔203から軸線Lに直交する方向に延在するように形成された下部連通孔(弁室VCと第3配管T3とを接続する第3接続部)211と、下部連通孔211より大径の下部接合孔212とを備えている。下部接合孔212には、第3配管T3がロウ付け等により接合されている。第3配管T3の軸線をO3とする。ここでは、軸線O1,O2,O3が、軸線Lを含む同一平面上に設けられているが、必ずしも同一面上に設けられている必要はない。 Further, the valve body 20 includes a lower communication hole (a third connection portion connecting the valve chamber VC and the third pipe T3) 211 formed so as to extend from the lower expansion hole 203 in a direction orthogonal to the axis L. It is provided with a lower joint hole 212 having a diameter larger than that of the lower communication hole 211. A third pipe T3 is joined to the lower joint hole 212 by brazing or the like. The axis of the third pipe T3 is O3. Here, the axes O1, O2, and O3 are provided on the same plane including the axis L, but they do not necessarily have to be provided on the same plane.

図2は、本実施形態の流路切換弁10の流路特性を示す図であり、図3〜8は、流路切換弁10の弁体構造部243の周辺を拡大して示す拡大断面図である。 FIG. 2 is a diagram showing the flow path characteristics of the flow path switching valve 10 of the present embodiment, and FIGS. 3 to 8 are enlarged cross-sectional views showing the periphery of the valve body structure portion 243 of the flow path switching valve 10. Is.

図3を参照するとわかるように、弁軸24の弁体構造部243は、第1弁体部244と、円筒状の連結軸部246と、第2弁体部245と、円筒状の端軸部247とを連結してなる。第1弁体部244と第2弁体部245は、連結軸部246より大径であり、本実施形態においては上下を逆にしても同じ形状を有する。 As can be seen with reference to FIG. 3, the valve body structure portion 243 of the valve shaft 24 includes a first valve body portion 244, a cylindrical connecting shaft portion 246, a second valve body portion 245, and a cylindrical end shaft. It is connected to the part 247. The first valve body portion 244 and the second valve body portion 245 have a larger diameter than the connecting shaft portion 246, and in the present embodiment, they have the same shape even if they are turned upside down.

第1弁口205を流れる冷媒の通過流量を制御する第1弁体部244は、大径軸部242に接続する第1大テーパ部244aと、第1大テーパ部244aに接続する第1円筒部244bと、第1円筒部244bと連結軸部246とに接続する第1小テーパ部244cとからなる。なお、大径軸部242及び連結軸部246も、円筒部として第1弁体部244の一部とすることがある。 The first valve body portion 244 that controls the passing flow rate of the refrigerant flowing through the first valve port 205 includes a first large taper portion 244a connected to the large diameter shaft portion 242 and a first cylinder connected to the first large taper portion 244a. The portion 244b is composed of a first small tapered portion 244c connected to the first cylindrical portion 244b and the connecting shaft portion 246. The large-diameter shaft portion 242 and the connecting shaft portion 246 may also be a part of the first valve body portion 244 as a cylindrical portion.

第2弁口206を流れる冷媒の通過流量を制御する第2弁体部245は、下端側の第2大テーパ部245aと、第2大テーパ部245aに接続する第2円筒部245bと、第2円筒部245bと連結軸部246とに接続する第2小テーパ部245cとからなる。なお、連結軸部246及び端軸部247も、円筒部として第2弁体部245の一部とすることがある。なお、本明細書で第1大テーパ部と第2大テーパ部の双方を指すときは大テーパ部と呼称する。同様に第1小テーパ部と第2小テーパ部の双方を指すときは小テーパ部と呼称する。 The second valve body portion 245 that controls the passing flow rate of the refrigerant flowing through the second valve port 206 includes a second large taper portion 245a on the lower end side, a second cylindrical portion 245b connected to the second large taper portion 245a, and a second cylinder portion 245b. It is composed of a second small taper portion 245c connected to the two cylindrical portions 245b and the connecting shaft portion 246. The connecting shaft portion 246 and the end shaft portion 247 may also be a part of the second valve body portion 245 as a cylindrical portion. In addition, when referring to both the 1st large taper part and the 2nd large taper part in this specification, it is referred to as a large taper part. Similarly, when referring to both the first small taper portion and the second small taper portion, it is referred to as a small taper portion.

本実施形態によれば、弁体構造部243の最大外径を、第1弁口205と第2弁口206より小径としている。このため、上端開口201側のみから弁軸24を組み付けることができ、製造容易性に優れる。 According to this embodiment, the maximum outer diameter of the valve body structure portion 243 is smaller than that of the first valve port 205 and the second valve port 206. Therefore, the valve shaft 24 can be assembled only from the upper end opening 201 side, which is excellent in ease of manufacture.

なお、本実施形態においては、各テーパ部(第1大テーパ部244a、第1小テーパ部244c、第2大テーパ部245aおよび第2小テーパ部245c)はいずれも円錐台面状の表面を有する部分であるが、他の形状にすることもできる。例えば、各テーパ部を、複数の斜度の異なる円錐台面を連続させた形状(多段テーパ形状)としてもよいし、軸線Lを含む断面形状を曲面状としてもよい。 In the present embodiment, each tapered portion (first large tapered portion 244a, first small tapered portion 244c, second large tapered portion 245a, and second small tapered portion 245c) has a conical pedestal-like surface. Although it is a part, it can have other shapes. For example, each tapered portion may have a shape in which a plurality of conical base surfaces having different slopes are continuous (multi-step tapered shape), or the cross-sectional shape including the axis L may be a curved surface shape.

(流路切換弁の動作)
次に、流路切換弁10の動作について説明する。図1において、外部から所定パルス数のパルス信号を印加することにより、ステータ50のステータコイル53に通電を行い励磁すると、それにより発生した磁力によりロータ30に所定角度分だけ回転力が生じるため、弁本体20に固着されたガイドブッシュ26に対しロータ30及び弁軸ホルダ32が回転駆動される。
(Operation of flow path switching valve)
Next, the operation of the flow path switching valve 10 will be described. In FIG. 1, when a pulse signal having a predetermined number of pulses is applied from the outside to energize and excite the stator coil 53 of the stator 50, the magnetic force generated by the energization causes the rotor 30 to generate a rotational force by a predetermined angle. The rotor 30 and the valve shaft holder 32 are rotationally driven with respect to the guide bush 26 fixed to the valve body 20.

これにより、ガイドブッシュ26の固定ねじ部25と、弁軸ホルダ32の移動ねじ部31とのねじ送り機構(駆動機構ともいう)により、弁軸ホルダ32がその軸線L方向に変位する。例えばステッピングモータの脱調などにより、弁軸24の下端が弁本体20の下部拡大孔203の底面に当接した場合でも、上ストッパ体37は未だ下ストッパ体27に当接しておらず、弁軸24が当接したままロータ30及び弁軸ホルダ32はさらに回転下降する。このとき、弁軸24に対する弁軸ホルダ32の相対的な下降変位は、圧縮コイルばね34が圧縮されることにより吸収される。 As a result, the valve shaft holder 32 is displaced in the axis L direction by the screw feed mechanism (also referred to as a drive mechanism) between the fixing screw portion 25 of the guide bush 26 and the moving screw portion 31 of the valve shaft holder 32. For example, even if the lower end of the valve shaft 24 comes into contact with the bottom surface of the lower expansion hole 203 of the valve body 20 due to stepping-out of the stepping motor, the upper stopper body 37 has not yet come into contact with the lower stopper body 27, and the valve. The rotor 30 and the valve shaft holder 32 further rotate and descend while the shaft 24 is in contact with the rotor 30. At this time, the relative downward displacement of the valve shaft holder 32 with respect to the valve shaft 24 is absorbed by the compression of the compression coil spring 34.

さらに、ロータ30が更に回転して弁軸ホルダ32が下降した場合、上ストッパ体37の上ストッパ片37aが下ストッパ体27の下ストッパ片27aに当接する。これらのストッパ片27a、37a同士の当接によって、ステータ50への通電が継続されても、弁軸ホルダ32の下降は強制的に停止される。 Further, when the rotor 30 further rotates and the valve shaft holder 32 is lowered, the upper stopper piece 37a of the upper stopper body 37 comes into contact with the lower stopper piece 27a of the lower stopper body 27. Due to the contact between the stopper pieces 27a and 37a, the lowering of the valve shaft holder 32 is forcibly stopped even if the stator 50 is continuously energized.

ステータ50に逆特性のパルス信号を印加すると、そのパルス数に応じてガイドブッシュ26に対しロータ30及び弁軸ホルダ32が上記と逆方向に、所定角度分だけ回転駆動され、上記のねじ送り機構により、弁軸ホルダ32および弁軸24が上方に移動する。 When a pulse signal having a reverse characteristic is applied to the stator 50, the rotor 30 and the valve shaft holder 32 are rotationally driven with respect to the guide bush 26 in the opposite direction to the above by a predetermined angle according to the number of pulses, and the screw feed mechanism is described above. As a result, the valve shaft holder 32 and the valve shaft 24 move upward.

本実施形態の流路切換弁10において、第2配管T2から弁本体20の中間拡大孔204に流入した冷媒を、第1配管T1または第3配管T3に振り分けて排出するものとする。 In the flow path switching valve 10 of the present embodiment, the refrigerant that has flowed from the second pipe T2 into the intermediate expansion hole 204 of the valve body 20 is distributed to the first pipe T1 or the third pipe T3 and discharged.

まず、図3に示すように、弁軸24の下端が下部拡大孔203の底面に当接した状態では、第1弁口205内に、弁軸24の大径軸部242が進入し、第2弁口206から第2弁体部245が離脱(すなわち連結軸部246が進入)する。このとき、第1弁口205に対する大径軸部242のオーバーラップ量をOV1とする。 First, as shown in FIG. 3, in a state where the lower end of the valve shaft 24 is in contact with the bottom surface of the lower expansion hole 203, the large diameter shaft portion 242 of the valve shaft 24 enters the first valve port 205, and the second valve shaft 24 is inserted. The second valve body portion 245 detaches from the two valve openings 206 (that is, the connecting shaft portion 246 enters). At this time, the amount of overlap of the large-diameter shaft portion 242 with respect to the first valve port 205 is set to OV1.

ここで、第2配管T2から弁本体20の中間拡大孔204内に流入した冷媒は、第1弁口205と大径軸部242との間の断面積αと、第2弁口206と連結軸部246との間の断面積βとの面積比に応じて、第1弁口205と第2弁口206とに振り分けられる。第1弁口205を通過した冷媒は、上部拡大孔202内を通過して第1配管T1へと流れ、第2弁口206を通過した冷媒は、下部拡大孔203内を通過して第3配管T3へと流れる。第1弁口205に流れる冷媒の量と、第2弁口206に流れる冷媒の量との比を流量比という。 Here, the refrigerant that has flowed from the second pipe T2 into the intermediate expansion hole 204 of the valve body 20 is connected to the cross-sectional area α between the first valve port 205 and the large-diameter shaft portion 242 and the second valve port 206. It is divided into the first valve port 205 and the second valve port 206 according to the area ratio with the cross-sectional area β between the shaft portion 246 and the shaft portion 246. The refrigerant that has passed through the first valve port 205 passes through the upper expansion hole 202 and flows to the first pipe T1, and the refrigerant that has passed through the second valve port 206 passes through the lower expansion hole 203 and is the third. It flows to the pipe T3. The ratio of the amount of the refrigerant flowing through the first valve port 205 and the amount of the refrigerant flowing through the second valve port 206 is called a flow rate ratio.

図2において、第1弁口205に流れる冷媒の量を実線Xで示し、第2弁口206に流れる冷媒の量を点線Yで示している。図3の状態では、図2の点Aで示す弁軸リフト量となり、第1弁口205に流れる冷媒の量が最小であり、第2弁口206に流れる冷媒の量が最大となる。 In FIG. 2, the amount of the refrigerant flowing through the first valve port 205 is shown by the solid line X, and the amount of the refrigerant flowing through the second valve port 206 is shown by the dotted line Y. In the state of FIG. 3, the valve shaft lift amount shown by the point A in FIG. 2 is obtained, the amount of the refrigerant flowing through the first valve port 205 is the minimum, and the amount of the refrigerant flowing through the second valve port 206 is the maximum.

点Aから弁軸24を上昇させてゆくと、第2小テーパ部245cの上端が第2弁口206の下端の径方向内側を通過し、また第1大テーパ部244aの上端が、第1弁口205の上端の径方向内側に位置するようになり、このとき弁軸24の移動量がオーバーラップ量OV1と等しくなる。かかる状態を図4に示す。第2小テーパ部245cの上端が第2弁口206の下端の径方向内側に位置するまで、第1弁口205に流れる冷媒の量が最小であり、さらに第1大テーパ部244aの上端が、第1弁口205の上端の径方向内側に位置するまで、第2弁口206に流れる冷媒の量が最大のままである。 When the valve shaft 24 is raised from the point A, the upper end of the second small taper portion 245c passes radially inside the lower end of the second valve port 206, and the upper end of the first large taper portion 244a is the first. The valve port 205 is located on the inner side in the radial direction of the upper end, and at this time, the movement amount of the valve shaft 24 becomes equal to the overlap amount OV1. Such a state is shown in FIG. Until the upper end of the second small taper portion 245c is located radially inside the lower end of the second valve port 206, the amount of refrigerant flowing through the first valve port 205 is the minimum, and the upper end of the first large taper portion 244a is further located. , The amount of refrigerant flowing through the second valve port 206 remains maximum until it is located radially inside the upper end of the first valve port 205.

なお、図2の例では、第2小テーパ部245cの上端が第2弁口206の下端の径方向内側を通過した後に、第1大テーパ部244aの上端が第1弁口205の上端の径方向内側に位置するようにしており、その時点での弁軸リフト量を図2に点Bで示している。このため、第2弁口206に流れる冷媒の量が最大値から減少した後も、第1弁口205に流れる冷媒の量が一定となる区間が生じる。ただし、本例とは逆の順序で両者を位置させてもよいし、両上端を同時に位置させてもよい。 In the example of FIG. 2, after the upper end of the second small taper portion 245c passes radially inside the lower end of the second valve port 206, the upper end of the first large taper portion 244a is the upper end of the first valve port 205. It is located on the inner side in the radial direction, and the valve shaft lift amount at that time is shown at point B in FIG. Therefore, even after the amount of the refrigerant flowing through the second valve port 206 is reduced from the maximum value, there is a section in which the amount of the refrigerant flowing through the first valve port 205 is constant. However, both may be positioned in the reverse order of this example, or both upper ends may be positioned at the same time.

点Bから弁軸24を上昇させてゆくと、第2小テーパ部245cが第2弁口206の下端の径方向内側を通過し、また第1大テーパ部244aが第1弁口205の上端の径方向内側を通過する。 When the valve shaft 24 is raised from the point B, the second small taper portion 245c passes radially inside the lower end of the second valve port 206, and the first large taper portion 244a passes through the upper end of the first valve port 205. Passes inside in the radial direction of.

このとき、弁軸24の位置に応じて、第1大テーパ部244aと第1弁口205との間の断面積α、及び第2小テーパ部245cと第2弁口206との間の断面積βが変化する。このため、図2における実線X及び点線Yに従って、第1弁口205に流れる冷媒の量を漸次増加させ、第2弁口206に流れる冷媒の量を漸次減少させることができる。 At this time, depending on the position of the valve shaft 24, the cross-sectional area α between the first large taper portion 244a and the first valve port 205, and the disconnection between the second small taper portion 245c and the second valve port 206. Area β changes. Therefore, according to the solid line X and the dotted line Y in FIG. 2, the amount of the refrigerant flowing through the first valve port 205 can be gradually increased, and the amount of the refrigerant flowing through the second valve port 206 can be gradually decreased.

さらに、弁軸24を上昇させてゆくと、第2円筒部245bの上端が第2弁口206の下端の径方向内側を通過し、また第1円筒部244bの上端が第1弁口205の上端の径方向内側に位置するようになる。かかる状態を図5に示す。 Further, as the valve shaft 24 is raised, the upper end of the second cylindrical portion 245b passes radially inside the lower end of the second valve port 206, and the upper end of the first cylindrical portion 244b passes through the first valve port 205. It will be located on the inner side of the upper end in the radial direction. Such a state is shown in FIG.

なお、図2の例では、第2円筒部245bの上端が第2弁口206の下端の径方向内側を通過した後に、第1円筒部244bの上端が第1弁口205の上端の径方向内側に位置するようにしており、その時点での弁軸リフト量を図2に点Cで示している。ただし、本例とは逆の順序で両者を位置させてもよいし、両上端を同時に位置させてもよい。 In the example of FIG. 2, after the upper end of the second cylindrical portion 245b passes the radial inside of the lower end of the second valve port 206, the upper end of the first cylindrical portion 244b passes in the radial direction of the upper end of the first valve port 205. It is located inside, and the valve shaft lift amount at that time is shown by point C in FIG. However, both may be positioned in the reverse order of this example, or both upper ends may be positioned at the same time.

第2円筒部245bが第2弁口206の下端の径方向内側に位置し、且つ第1円筒部244bが第1弁口205の上端の径方向内側に位置している間は、断面積αと断面積βとが等しくなるため、第1弁口205に流れる冷媒の量と、第2弁口206に流れる冷媒の量とは等量となり、すなわち流量比が1となる。 While the second cylindrical portion 245b is located radially inside the lower end of the second valve port 206 and the first cylindrical portion 244b is located radially inside the upper end of the first valve port 205, the cross-sectional area α And the cross-sectional area β are equal to each other, so that the amount of the refrigerant flowing through the first valve port 205 and the amount of the refrigerant flowing through the second valve port 206 are equal, that is, the flow rate ratio is 1.

点Cから弁軸24を上昇させてゆくと、弁軸24のストローク中間点に至る。この時の弁軸リフト量を図2の点Dで示す。ストローク中間点を通過し、さらに弁軸24を上昇させてゆくと、第2大テーパ部245aの上端が第2弁口206の下端の径方向内側を通過し、また第1小テーパ部244cの上端が第1弁口205の上端の径方向内側に位置するようになる。 When the valve shaft 24 is raised from the point C, the stroke intermediate point of the valve shaft 24 is reached. The valve shaft lift amount at this time is shown at point D in FIG. When the valve shaft 24 is further raised after passing through the midpoint of the stroke, the upper end of the second large taper portion 245a passes radially inside the lower end of the second valve port 206, and the first small taper portion 244c The upper end is located radially inside the upper end of the first valve port 205.

なお、図2の例では、第2大テーパ部245aの上端が第2弁口206の下端の径方向内側を通過した後に、第1小テーパ部244cの上端が第1弁口205の上端の径方向内側に位置するようにしている。第2大テーパ部245aの上端が第2弁口206の下端の径方向内側に位置した状態を図6に示し、その時点での弁軸リフト量を図2に点Eで示している。ただし、本例とは逆の順序で両者を位置させてもよいし、両上端を同時に位置させてもよい。 In the example of FIG. 2, after the upper end of the second large taper portion 245a passes radially inside the lower end of the second valve port 206, the upper end of the first small taper portion 244c is the upper end of the first valve port 205. It is designed to be located inward in the radial direction. FIG. 6 shows a state in which the upper end of the second large taper portion 245a is located radially inside the lower end of the second valve port 206, and the valve shaft lift amount at that time is shown by point E in FIG. However, both may be positioned in the reverse order of this example, or both upper ends may be positioned at the same time.

点C〜点Eの間は、第1円筒部244bが第1弁口205の上端の径方向内側に位置し、また第2円筒部245bが第2弁口206の下端の径方向内側に位置している。したがって、図2における実線X及び点線Yに示すように、第1弁口205に流れる冷媒の量と、第2弁口206に流れる冷媒の量とは、等量を維持することとなる。 Between points C and E, the first cylindrical portion 244b is located radially inside the upper end of the first valve port 205, and the second cylindrical portion 245b is located radially inside the lower end of the second valve port 206. doing. Therefore, as shown by the solid line X and the dotted line Y in FIG. 2, the amount of the refrigerant flowing through the first valve port 205 and the amount of the refrigerant flowing through the second valve port 206 are maintained at equal amounts.

点Eから弁軸24を上昇させてゆくと、端軸部247の上端が第2弁口206の下端の径方向内側を通過し、また連結軸部246の上端が第1弁口205の上端の径方向内側に位置するようになる。 When the valve shaft 24 is raised from the point E, the upper end of the end shaft portion 247 passes radially inside the lower end of the second valve port 206, and the upper end of the connecting shaft portion 246 is the upper end of the first valve port 205. Will be located inward in the radial direction of.

なお、図2の例では、端軸部247の上端が第2弁口206の下端の径方向内側を通過した後に、連結軸部246の上端が第1弁口205の上端の径方向内側に位置するようにしている。端軸部247の上端が第2弁口206の下端の径方向内側に位置した状態を図7に示し、その時点での弁軸リフト量を図2に点Fで示している。ただし、本例とは逆の順序で両者を位置させてもよいし、両上端を同時に位置させてもよい。 In the example of FIG. 2, after the upper end of the end shaft portion 247 passes radially inside the lower end of the second valve port 206, the upper end of the connecting shaft portion 246 is radially inside the upper end of the first valve port 205. I try to be located. The state in which the upper end of the end shaft portion 247 is located radially inside the lower end of the second valve port 206 is shown in FIG. 7, and the valve shaft lift amount at that time is shown by point F in FIG. However, both may be positioned in the reverse order of this example, or both upper ends may be positioned at the same time.

点Fに至るまで、弁軸24の位置に応じて、第1小テーパ部244cと第1弁口205との間の断面積α、及び第2大テーパ部245aと第2弁口206との間の断面積βが変化する。このため、図2における実線X及び点線Yに従って、第1弁口205に流れる冷媒の量を漸次増加させ、第2弁口206に流れる冷媒の量を漸次減少させることができる。 The cross-sectional area α between the first small taper portion 244c and the first valve port 205, and the second large taper portion 245a and the second valve port 206 reach the point F, depending on the position of the valve shaft 24. The cross-sectional area β between them changes. Therefore, according to the solid line X and the dotted line Y in FIG. 2, the amount of the refrigerant flowing through the first valve port 205 can be gradually increased, and the amount of the refrigerant flowing through the second valve port 206 can be gradually decreased.

点Fから弁軸24を上昇させたとき、連結軸部246の上端が第1弁口205の上端の径方向内側に位置するまで、第1弁口205に流れる冷媒の量は漸次増加するが、第2弁口206に流れる冷媒の量は一定である。その後、弁軸24をさらに上昇させ、連結軸部246が第1弁口205の上端の径方向内側に位置したとき、端軸部247が第2弁口206の下端の径方向内側に位置したままである。このとき、弁軸24はストロークエンド(移動端)に到達する。かかる状態を図8に示し、その時点での弁軸リフト量を図2に点Gで示している。 When the valve shaft 24 is raised from the point F, the amount of the refrigerant flowing through the first valve port 205 gradually increases until the upper end of the connecting shaft portion 246 is located radially inside the upper end of the first valve port 205. , The amount of the refrigerant flowing through the second valve port 206 is constant. After that, when the valve shaft 24 was further raised and the connecting shaft portion 246 was located radially inside the upper end of the first valve port 205, the end shaft portion 247 was located radially inside the lower end of the second valve port 206. There is up to. At this time, the valve shaft 24 reaches the stroke end (moving end). This state is shown in FIG. 8, and the valve shaft lift amount at that time is shown by a point G in FIG.

弁軸24がストロークエンドに到達するまで、連結軸部246が第1弁口205の上端の径方向内側に位置し、端軸部247が第2弁口206の下端の径方向内側に位置するため、第1弁口205に流れる冷媒の量が最大となり、第2弁口206に流れる冷媒の量が最小となる状態を維持する。
本実施形態で、第1弁口205の径方向内側に第1弁体部244の第1円筒部244bが位置するときに、第2弁口206の径方向内側に第2弁体部245の第2円筒部245bの少なくとも一部が位置するように設定されていると好ましい。
The connecting shaft portion 246 is located radially inside the upper end of the first valve port 205, and the end shaft portion 247 is located radially inside the lower end of the second valve port 206 until the valve shaft 24 reaches the stroke end. Therefore, the state in which the amount of the refrigerant flowing through the first valve port 205 is maximized and the amount of the refrigerant flowing through the second valve port 206 is minimized is maintained.
In the present embodiment, when the first cylindrical portion 244b of the first valve body portion 244 is located inside the first valve port 205 in the radial direction, the second valve body portion 245 is located inside the second valve port 206 in the radial direction. It is preferable that at least a part of the second cylindrical portion 245b is located.

(比較例)
図9は、比較例における弁体構造部243’の周辺を示す図3と同様な断面図である。本比較例において、弁軸24’の弁体構造部243’は、第1テーパ部244’と、第2テーパ部245’と、第1テーパ部244’と第2テーパ部245’とを連結する連結軸部246と、端軸部247とを有する。すなわち、比較例の弁体構造部243’は、第1円筒部及び第2円筒部を有していない。それ以外の構成は、上述した実施形態と同様であるため、同じ符号を付して説明を省略する。
(Comparison example)
FIG. 9 is a cross-sectional view similar to FIG. 3 showing the periphery of the valve body structure portion 243'in the comparative example. In this comparative example, the valve body structure portion 243'of the valve shaft 24'connects the first taper portion 244', the second taper portion 245', the first taper portion 244', and the second taper portion 245'. It has a connecting shaft portion 246 and an end shaft portion 247. That is, the valve body structure portion 243'of the comparative example does not have the first cylindrical portion and the second cylindrical portion. Since the other configurations are the same as those in the above-described embodiment, the same reference numerals are given and the description thereof will be omitted.

図2において、比較例の弁体構造部243’を用いた場合の第1配管T1に流れる冷媒の量を一点鎖線Wで示し、第3配管T3に流れる冷媒の量を二点鎖線Zで示す。ここで、比較例の流路切換弁を用いた場合、その流量比が1となるのは、一点鎖線Wと二点鎖線Zとが交差する点Dのみである。 In FIG. 2, the amount of the refrigerant flowing in the first pipe T1 when the valve body structure portion 243'of the comparative example is used is shown by the alternate long and short dash line W, and the amount of the refrigerant flowing in the third pipe T3 is indicated by the alternate long and short dash line Z. .. Here, when the flow path switching valve of the comparative example is used, the flow rate ratio is 1 only at the point D where the alternate long and short dash line W and the alternate long and short dash line Z intersect.

比較例において、弁本体20と弁軸24’とが理想的な形状で製造され、且つ組み付け誤差がゼロである場合、弁軸24’を点Dの位置に留めることで流量比を1とすることができる。しかしながら、実際には弁本体20と弁軸24’には製造誤差が存在し、また組み付け誤差も生じる。加えて、ステッピングモータの脱調等により、弁軸24’の制御位置にもずれが生じる恐れもある。かかる場合、一点鎖線Wと二点鎖線Zの位置が変化するため、点Dにおいて流量比1を得ることが困難である。 In the comparative example, when the valve body 20 and the valve shaft 24'are manufactured in an ideal shape and the assembly error is zero, the flow rate ratio is set to 1 by keeping the valve shaft 24'at the position of the point D. be able to. However, in reality, there is a manufacturing error between the valve body 20 and the valve shaft 24', and an assembly error also occurs. In addition, the control position of the valve shaft 24'may also shift due to stepping-out of the stepping motor or the like. In such a case, since the positions of the alternate long and short dash line W and the alternate long and short dash line Z change, it is difficult to obtain the flow rate ratio 1 at the point D.

これに対し本実施形態によれば、弁軸24の弁体構造部243が、第1円筒部244bと第2円筒部245bとを有するため、点C〜点Eの間の比較的広い範囲で流量比1を実現できる。したがって、たとえ弁本体20と弁軸24に製造誤差や組み付け誤差が生じたり、あるいはステッピングモータに脱調等が生じたような場合でも、それらの影響が点C〜点Eを超えて生じない限り、流量比1を確保することができる。このため、流路切換弁10には、厳格な製造誤差や組み付け誤差が要求されることがなく、製造容易性を確保できる。 On the other hand, according to the present embodiment, since the valve body structure portion 243 of the valve shaft 24 has the first cylindrical portion 244b and the second cylindrical portion 245b, it has a relatively wide range between points C and E. A flow rate ratio of 1 can be realized. Therefore, even if manufacturing errors or assembly errors occur in the valve body 20 and the valve shaft 24, or step-out occurs in the stepping motor, as long as those effects do not occur beyond points C to E. , The flow rate ratio 1 can be secured. Therefore, the flow path switching valve 10 is not required to have strict manufacturing error or assembly error, and manufacturing easiness can be ensured.

(変形例)
図10は、本実施形態の変形例にかかる弁軸24Aの第1弁体部244Aの近傍を側面視した拡大図である。本変形例の第1弁体部244Aは、大径軸部242に接続する第1大テーパ部244Aaと、第1大テーパ部244Aaに接続する第1円筒部244Abと、第1円筒部244Abと連結軸部246とに接続する第1小テーパ部244Acとからなる。それ以外の構成については、第2弁体部の形状を含めて上述した実施形態と同様であるため、同じ符号を付して重複説明を省略する。
(Modification example)
FIG. 10 is an enlarged view of the vicinity of the first valve body portion 244A of the valve shaft 24A according to the modified example of the present embodiment as viewed from the side. The first valve body portion 244A of this modification includes a first large taper portion 244Aa connected to the large diameter shaft portion 242, a first cylindrical portion 244Ab connected to the first large taper portion 244Aa, and a first cylindrical portion 244Ab. It is composed of a first small taper portion 244Ac connected to the connecting shaft portion 246. Since the other configurations are the same as those in the above-described embodiment including the shape of the second valve body portion, the same reference numerals are given and duplicate description will be omitted.

なお、上記実施形態の第1大テーパ部244aと、第1円筒部244bと、第1小テーパ部244cを、図10に点線で重ねて示す。明らかであるが、本変形例の第1円筒部244Abは、上記実施形態のものに対して外径が小さくなっており、それに応じて第1大テーパ部244Aaおよび第1小テーパ部244Acの形状も変化している。 The first large taper portion 244a, the first cylindrical portion 244b, and the first small taper portion 244c of the above embodiment are shown by overlapping with a dotted line in FIG. As is clear, the outer diameter of the first cylindrical portion 244Ab of this modification is smaller than that of the above embodiment, and the shapes of the first large taper portion 244Aa and the first small taper portion 244Ac are correspondingly smaller. Is also changing.

図11は、本変形例の流路切換弁の流路特性を示す図である。点線Yは、図2に示すものと同じであるが、実線XAは、第1弁体部244Aの形状に応じて変化している。より具体的には、点H〜点Iの間で、第1円筒部244Abが第1弁口205(図3参照)の上端の径方向内側に位置し、両者間の断面積がαであり、また第2円筒部245bが第2弁口206の下端の径方向内側に位置し、両者間の断面積がβである。 FIG. 11 is a diagram showing the flow path characteristics of the flow path switching valve of this modified example. The dotted line Y is the same as that shown in FIG. 2, but the solid line XA changes according to the shape of the first valve body portion 244A. More specifically, between points H and I, the first cylindrical portion 244Ab is located radially inside the upper end of the first valve port 205 (see FIG. 3), and the cross-sectional area between the two is α. Further, the second cylindrical portion 245b is located radially inside the lower end of the second valve port 206, and the cross-sectional area between the two is β.

このとき、第2配管T2から流入した冷媒の量をQとすると、点H〜点Iの間で第1配管T1に流れる冷媒の量をQ・α/(α+β)とし、第3配管T3に流れる冷媒の量をQ・β/(α+β)とすることができ、任意の量での振り分けが可能になる。 At this time, assuming that the amount of the refrigerant flowing in from the second pipe T2 is Q, the amount of the refrigerant flowing in the first pipe T1 between the points H and I is Q · α / (α + β), and the third pipe T3 The amount of the flowing refrigerant can be set to Q · β / (α + β), and distribution can be performed in an arbitrary amount.

なお、本発明は、上述の実施形態に限定されない。本発明の範囲内において、上述の実施形態の任意の構成要素の変形が可能である。また、上述の実施形態において任意の構成要素の追加または省略が可能である。例えば、ステッピングモータの代わりにソレノイドアクチュエータを用いてもよく、ロータの回転力を減速して伝達する遊星歯車機構を搭載してもよい。 The present invention is not limited to the above-described embodiment. Within the scope of the present invention, any component of the above-described embodiment can be modified. In addition, any component can be added or omitted in the above-described embodiment. For example, a solenoid actuator may be used instead of the stepping motor, or a planetary gear mechanism that decelerates and transmits the rotational force of the rotor may be mounted.

10 流路切換弁
20 弁本体
24、24A 弁軸
25 固定ねじ部(雄ねじ部)
26 ガイドブッシュ
27 下ストッパ体
30 ロータ
31 移動ねじ部(雌ねじ部)
32 弁軸ホルダ
33 プッシュナット
34 圧縮コイルばね
35 復帰ばね
36 支持リング
37 上ストッパ体
40 キャン
41 環状板
50 ステータ
VC 弁室

10 Flow path switching valve 20 Valve body 24, 24A Valve shaft 25 Fixed thread part (male thread part)
26 Guide bush 27 Lower stopper body 30 Rotor 31 Moving thread part (female thread part)
32 Valve shaft holder 33 Push nut 34 Compression coil spring 35 Return spring 36 Support ring 37 Upper stopper body 40 Can 41 Circular plate 50 Stator VC Valve chamber

本発明に係る流路切換弁は、
弁室、第1配管と前記弁室とを接続する第1接続部、第2配管と前記弁室とを接続する第2接続部、第3配管と前記弁室とを接続する第3接続部、前記第1接続部と前記第2接続部との間に設けられた第1弁口、および前記第2接続部と前記第3接続部との間に設けられた第2弁口、を有する弁本体と、
軸方向に移動可能に前記弁室に配置され、前記第1弁口および前記第2弁口に挿通された弁軸と、
を有し、
前記弁軸は、前記第1弁口を流れる流体の通過流量を制御する第1弁体部と、前記第2弁口を流れる流体の通過流量を制御する第2弁体部とを有し、
前記第1弁体部および前記第2弁体部はそれぞれテーパ部および円筒部を備え、
前記第2弁体部の最大外径は前記第1弁口および前記第2弁口の内径より小さい、ことを特徴とする。
The flow path switching valve according to the present invention is
A valve chamber, a first connecting portion connecting the first pipe and the valve chamber, a second connecting portion connecting the second pipe and the valve chamber, and a third connecting portion connecting the third pipe and the valve chamber. It has a first valve port provided between the first connection portion and the second connection portion, and a second valve port provided between the second connection portion and the third connection portion. With the valve body
A valve shaft arranged in the valve chamber so as to be movable in the axial direction and inserted through the first valve port and the second valve port,
Have,
The valve shaft has a first valve body portion that controls the passing flow rate of the fluid flowing through the first valve port, and a second valve body portion that controls the passing flow rate of the fluid flowing through the second valve port.
The first valve body portion and the second valve body portion are provided with a tapered portion and a cylindrical portion, respectively.
The maximum outer diameter of the second valve body portion is smaller than the inner diameters of the first valve port and the second valve port.

Claims (6)

弁室、第1配管と前記弁室とを接続する第1接続部、第2配管と前記弁室とを接続する第2接続部、第3配管と前記弁室とを接続する第3接続部、前記第1接続部と前記第2接続部との間に設けられた第1弁口、および前記第2接続部と前記第3接続部との間に設けられた第2弁口、を有する弁本体と、
前記弁室に移動可能に配置され、前記第1弁口および前記第2弁口に挿通された弁軸と、
を有し、
前記弁軸は、前記第1弁口を流れる流体の通過流量を制御する第1弁体部と、前記第2弁口を流れる流体の通過流量を制御する第2弁体部とを有し、
前記第1弁体部および前記第2弁体部はそれぞれテーパ部および円筒部を備え、
前記第2弁体部の最大外径は前記第1弁口および前記第2弁口の内径より小さい、
ことを特徴とする流路切換弁。
A valve chamber, a first connecting portion connecting the first pipe and the valve chamber, a second connecting portion connecting the second pipe and the valve chamber, and a third connecting portion connecting the third pipe and the valve chamber. It has a first valve port provided between the first connection portion and the second connection portion, and a second valve port provided between the second connection portion and the third connection portion. With the valve body
A valve shaft movably arranged in the valve chamber and inserted into the first valve port and the second valve port,
Have,
The valve shaft has a first valve body portion that controls the passing flow rate of the fluid flowing through the first valve port, and a second valve body portion that controls the passing flow rate of the fluid flowing through the second valve port.
The first valve body portion and the second valve body portion are provided with a tapered portion and a cylindrical portion, respectively.
The maximum outer diameter of the second valve body portion is smaller than the inner diameters of the first valve port and the second valve port.
A flow path switching valve characterized by this.
前記第1弁口の径方向内側に前記第1弁体部の円筒部が位置するときに、前記第2弁口の径方向内側に前記第2弁体部の円筒部の少なくとも一部が位置するように設定されている、
ことを特徴とする請求項1に記載の流路切換弁。
When the cylindrical portion of the first valve body portion is located inside the first valve port in the radial direction, at least a part of the cylindrical portion of the second valve body portion is located inside the radial direction of the second valve port. Is set to
The flow path switching valve according to claim 1.
前記第1弁体部および前記第2弁体部の前記テーパ部はいずれも、前記円筒部の一端に接続された大テーパ部と前記円筒部の他端に接続された小テーパ部を有している、ことを特徴とする請求項1又は2に記載の流路切換弁。 Both the first valve body portion and the tapered portion of the second valve body portion have a large tapered portion connected to one end of the cylindrical portion and a small tapered portion connected to the other end of the cylindrical portion. The flow path switching valve according to claim 1 or 2, wherein the flow path switching valve is provided. 前記弁軸の移動端で、前記弁軸の端部が前記弁本体の底面に当接する、
ことを特徴とする請求項1〜3のいずれか一項に記載の流路切換弁。
At the moving end of the valve shaft, the end of the valve shaft abuts on the bottom surface of the valve body.
The flow path switching valve according to any one of claims 1 to 3.
前記弁軸は、前記第1弁体部と前記第2弁体部と連結する連結軸部を有し、前記連結軸部は、前記第1弁体部及び前記第2弁体部より小径である、
ことを特徴とする請求項1〜4のいずれか一項に記載の流路切換弁。
The valve shaft has a connecting shaft portion that connects the first valve body portion and the second valve body portion, and the connecting shaft portion has a smaller diameter than the first valve body portion and the second valve body portion. be,
The flow path switching valve according to any one of claims 1 to 4, wherein the flow path switching valve is characterized in that.
前記第1弁体部と前記第2弁体部とは同じ形状を有する、
ことを特徴とする請求項1〜5のいずれか一項に記載の流路切換弁。

The first valve body portion and the second valve body portion have the same shape.
The flow path switching valve according to any one of claims 1 to 5, wherein the flow path switching valve is characterized in that.

JP2020052764A 2020-03-24 2020-03-24 Flow switching valve Active JP7129100B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020052764A JP7129100B2 (en) 2020-03-24 2020-03-24 Flow switching valve
CN202011592692.5A CN113446414A (en) 2020-03-24 2020-12-29 Flow path switching valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020052764A JP7129100B2 (en) 2020-03-24 2020-03-24 Flow switching valve

Publications (2)

Publication Number Publication Date
JP2021152381A true JP2021152381A (en) 2021-09-30
JP7129100B2 JP7129100B2 (en) 2022-09-01

Family

ID=77808679

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020052764A Active JP7129100B2 (en) 2020-03-24 2020-03-24 Flow switching valve

Country Status (2)

Country Link
JP (1) JP7129100B2 (en)
CN (1) CN113446414A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114413026A (en) * 2021-12-22 2022-04-29 北京中车赛德铁道电气科技有限公司 Pneumatic main power-off solenoid valve

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1151220A (en) * 1997-08-05 1999-02-26 Saginomiya Seisakusho Inc Two way solenoid valve
JP2013151968A (en) * 2012-01-24 2013-08-08 Honda Motor Co Ltd Flow rate control valve
CN205654909U (en) * 2016-04-11 2016-10-19 燕山大学 Proportion multiple unit valve case
JP2019167982A (en) * 2018-03-22 2019-10-03 株式会社不二工機 Electric valve
JP2020508212A (en) * 2017-02-24 2020-03-19 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツングMerck Patent Gesellschaft mit beschraenkter Haftung Water purification and distribution system and method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1151220A (en) * 1997-08-05 1999-02-26 Saginomiya Seisakusho Inc Two way solenoid valve
JP2013151968A (en) * 2012-01-24 2013-08-08 Honda Motor Co Ltd Flow rate control valve
CN205654909U (en) * 2016-04-11 2016-10-19 燕山大学 Proportion multiple unit valve case
JP2020508212A (en) * 2017-02-24 2020-03-19 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツングMerck Patent Gesellschaft mit beschraenkter Haftung Water purification and distribution system and method
JP2019167982A (en) * 2018-03-22 2019-10-03 株式会社不二工機 Electric valve

Also Published As

Publication number Publication date
CN113446414A (en) 2021-09-28
JP7129100B2 (en) 2022-09-01

Similar Documents

Publication Publication Date Title
CN108779871B (en) Motor-driven valve
CN111417807B (en) Electric valve and manufacturing method thereof
JP6721237B2 (en) Motorized valve
JP2021152381A (en) Flow passage switching valve
JP2021110450A (en) Motor-operated valve
JP7503819B2 (en) Motor-operated valve
JP7409982B2 (en) Electric valve and refrigeration cycle system
JP2023168434A (en) Motor-operated valve and refrigeration cycle system
JP7133880B2 (en) electric valve
CN111765251A (en) Electronic expansion valve
JP7105489B2 (en) Flow switching valve
JP7455410B2 (en) Motorized valves and how to assemble them
JP7545762B2 (en) Motor-operated valve
JP7271486B2 (en) Electric valve and refrigeration cycle system
JP7478881B2 (en) Motor-operated valve and refrigeration cycle system
JP7264975B2 (en) Electric valve and refrigeration cycle system
JP7097093B2 (en) Solenoid valve
JP2024093962A (en) Electric valve
JP7161515B2 (en) Electric valve and refrigeration cycle system
JP7585183B2 (en) Motor-operated valve and refrigeration cycle system
WO2020095591A1 (en) Flow path switching valve
JP7491734B2 (en) Motor-operated valve and refrigeration cycle system
CN110094524B (en) Electric valve
JP2023094136A (en) Motor valve and refrigeration cycle system
JP2020190332A (en) Motor-operated valve

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210322

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210322

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220622

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220719

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220815

R150 Certificate of patent or registration of utility model

Ref document number: 7129100

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150