JP2021115766A - Magnetism discrimination medium, and genuine-false discrimination method - Google Patents
Magnetism discrimination medium, and genuine-false discrimination method Download PDFInfo
- Publication number
- JP2021115766A JP2021115766A JP2020010463A JP2020010463A JP2021115766A JP 2021115766 A JP2021115766 A JP 2021115766A JP 2020010463 A JP2020010463 A JP 2020010463A JP 2020010463 A JP2020010463 A JP 2020010463A JP 2021115766 A JP2021115766 A JP 2021115766A
- Authority
- JP
- Japan
- Prior art keywords
- magnetic
- magnetic region
- region
- waveform
- base material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Credit Cards Or The Like (AREA)
- Printing Methods (AREA)
- Inspection Of Paper Currency And Valuable Securities (AREA)
Abstract
Description
本発明は、偽造防止及び改ざん防止が求められる銀行券、パスポ−ト、有価証券、身分証明書、カ−ド、通行券等の貴重印刷物において、基材の表裏で検出される磁気波形により真偽判別が可能な磁気判別媒体及び真偽判別方法に関する。 The present invention is true in valuable printed matter such as banknotes, passports, securities, identification cards, cards, toll tickets, etc., which are required to be anti-counterfeiting and anti-tampering, based on the magnetic waveforms detected on the front and back of the base material. The present invention relates to a magnetic discrimination medium capable of false discrimination and a true / false discrimination method.
銀行券、パスポ−ト、有価証券、身分証明書、カ−ド、通行券等の貴重印刷物は、社会生活に必要不可欠な存在であり、高度な偽造防止技術及び真偽判別技術による、金銭的価値や社会的価値の安定した維持が常時求められている。 Valuable printed materials such as banknotes, passports, securities, identification cards, cards, and toll tickets are indispensable to social life, and are financially based on advanced anti-counterfeiting technology and authenticity discrimination technology. Stable maintenance of value and social value is always required.
従来の貴重印刷物の偽造防止技術としては、目視や手触りによる確認が主流であったが、近年、光学特性や磁気特性を活用した機械読取技術が、自動販売機、POSレジ、券売機又はATMにおいて広く用いられている。 Conventionally, as the anti-counterfeiting technology for valuable printed matter, confirmation by visual inspection or touch has been the mainstream, but in recent years, machine reading technology utilizing optical characteristics and magnetic characteristics has been introduced in vending machines, POS cash registers, ticket vending machines or ATMs. Widely used.
とりわけ、磁気特性は、差動型センサ、単に磁気の変化を検出する磁気抵抗センサ(以下、「MRセンサ」という。)、近年発達した高周波電流を印加すると外部磁界に応じてインピーダンスが変化する磁気インピーダンスセンサ(MIセンサ)などの各種磁気センサにて得られた磁気波形を基準データと比較することで、真偽判別に用いられている。 In particular, the magnetic characteristics are a differential type sensor, a magnetic resistance sensor that simply detects changes in magnetism (hereinafter referred to as "MR sensor"), and magnetism whose impedance changes according to an external magnetic field when a high-frequency current developed in recent years is applied. It is used for authenticity discrimination by comparing magnetic waveforms obtained by various magnetic sensors such as impedance sensors (MI sensors) with reference data.
磁気特性の活用方法の一例として、基材の表裏面において少なくとも一部が重なるように光学及び磁気を含む印刷画線を形成し、表裏面に形成された印刷画線に含まれる表裏の重なる部分の光学及び磁気データの合計値を検出することで、低膜厚な印刷画線であっても機械読取可能な真偽判別印刷物が既知である(例えば、特許文献1参照)。 As an example of how to utilize the magnetic characteristics, a printed image line containing optics and magnetism is formed so that at least a part of the front and back surfaces of the base material overlaps, and the overlapping portion of the front and back surfaces included in the printed image lines formed on the front and back surfaces. By detecting the total value of the optical and magnetic data of the above, a true / false discriminant printed matter that can be machine-readable even with a low-thickness printed image is known (see, for example, Patent Document 1).
しかしながら、特許文献1は、検出される磁気波形が表裏で同じであるため、検出すべき磁気パターンを知ることができれば、基材の片面に磁気を含む材料を積層して、真正のものと類似した磁気波形を再現した偽造品であっても、真正のものと誤判別してしまう可能性があった。
However, in
本発明は、上記の課題を解決したものであり、偽造抵抗力を有し、かつ、簡単な構成の磁気判別方法により真偽判別ができる磁気判別媒体及び真偽判別方法を提供するものである。 The present invention solves the above-mentioned problems, and provides a magnetic discrimination medium and a truth discrimination method which have counterfeit resistance and can discriminate authenticity by a magnetic discrimination method having a simple configuration. ..
上述した課題を解決するために、本発明は、基材の表面に、第一の磁性材料を含有するインキにより形成された第一の磁気領域と、基材の裏面に、第二の磁性材料を含有するインキにより形成された第二の磁気領域を備えた磁気判別媒体であって、第一の磁気領域及び第二の磁気領域の少なくとも一部は、基材の表裏で隣接、重複又は近接する境界部を形成し、MRセンサで測定した境界部の磁気波形が基材の表面と裏面で反転している磁気判別媒体である。 In order to solve the above-mentioned problems, the present invention presents a first magnetic region formed on the surface of the base material by an ink containing the first magnetic material, and a second magnetic material on the back surface of the base material. A magnetic discrimination medium having a second magnetic region formed by an ink containing the above, wherein at least a part of the first magnetic region and the second magnetic region is adjacent, overlapping, or close to each other on the front and back of the base material. This is a magnetic discrimination medium in which a boundary portion is formed and the magnetic waveform of the boundary portion measured by the MR sensor is inverted on the front surface and the back surface of the base material.
また、本発明は、磁気判別媒体の真偽判別方法であって、基材の表面の磁気波形をMRセンサで測定する工程と、基材の裏面の磁気波形をMRセンサで測定する工程と、表面及び裏面で測定した磁気波形を比較する工程とを含み、MRセンサで測定した境界部の磁気波形が基材の表面と裏面で反転しているとき、磁気判別媒体を「真正」と判別する磁気判別媒体の真偽判別方法である。 Further, the present invention is a method for determining the authenticity of a magnetic discrimination medium, which comprises a step of measuring the magnetic waveform on the front surface of the base material with an MR sensor and a step of measuring the magnetic waveform on the back surface of the base material with an MR sensor. The magnetic discrimination medium is discriminated as "genuine" when the magnetic waveform at the boundary measured by the MR sensor is inverted between the front surface and the back surface of the base material, including the step of comparing the magnetic waveforms measured on the front surface and the back surface. This is a method for discriminating the authenticity of a magnetic discriminating medium.
本発明の磁気判別媒体は、MRセンサにて検出される境界部の磁気波形が、基材の表面と裏面で反転しているときに「真正」と判別できるので、表裏どちらか一方の面に磁気を含む材料を積層した偽造品については、磁気波形の反転の有無を確認することで確実に判別することができる。 In the magnetic discrimination medium of the present invention, when the magnetic waveform of the boundary portion detected by the MR sensor is inverted between the front surface and the back surface of the base material, it can be discriminated as "genuine". A counterfeit product in which a material containing magnetism is laminated can be reliably identified by checking the presence or absence of inversion of the magnetic waveform.
また、本発明の磁気判別媒体は、境界部における第一の磁気領域及び第二の磁気領域が、隣接、重複又は近接することで磁気波形が反転するが、第一の磁気領域及び第二の磁気領域の隣接、重複又は近接が僅かに異なると、基材の表面と裏面の磁気波形が反転しない。そのため、検出すべき磁気パターンを知っていたとしても、偽造が困難である。 Further, in the magnetic discrimination medium of the present invention, the magnetic waveform is inverted when the first magnetic region and the second magnetic region at the boundary are adjacent, overlapped or close to each other, but the first magnetic region and the second magnetic region are the same. If the adjacency, overlap, or proximity of the magnetic regions is slightly different, the magnetic waveforms on the front and back surfaces of the substrate will not be inverted. Therefore, even if the magnetic pattern to be detected is known, it is difficult to forge it.
また、本発明の真偽判別方法は、簡単な構成のMRセンサを使用して精度の高い真偽判別を行うことができる。 In addition, the authenticity determination method of the present invention can perform highly accurate authenticity determination using an MR sensor having a simple configuration.
本発明を実施するための形態について、図面を参照しながら説明する。しかしながら、本発明は以下に述べる発明を実施するための形態に限定されるものではなく、特許請求の範囲に記載されている技術の範疇であれば、その他いろいろな実施の形態が含まれる。 A mode for carrying out the present invention will be described with reference to the drawings. However, the present invention is not limited to the embodiments described below, and includes various other embodiments within the scope of the claims.
(第一の実施形態)
本発明の第一の実施形態について、図1及び図2を用いて説明する。
(First Embodiment)
The first embodiment of the present invention will be described with reference to FIGS. 1 and 2.
図1は、本発明の第一の実施形態における磁気判別媒体(A1)の一例であり、図1(a)は平面図、図1(b)はA−A’の断面図である。 FIG. 1 is an example of a magnetic discrimination medium (A1) according to the first embodiment of the present invention, FIG. 1A is a plan view, and FIG. 1B is a cross-sectional view taken along the line AA'.
図1(a)及び図1(b)に示すように、本発明の磁気判別媒体(A1)は、基材(1)の表面(U1)の少なくとも一部に、第一の磁性材料を含有した第一の磁気領域(2a)が形成され、かつ、基材(1)の裏面(U2)の少なくとも一部に、第二の磁性材料を含有した第二の磁気領域(2b)が形成されている。このとき、第一の磁気領域(2a)及び第二の磁気領域(2b)の一部は、所定の方向(S1)に対して基材(1)を介した平面上で接した境界部(T1)を有する。 As shown in FIGS. 1A and 1B, the magnetic discrimination medium (A1) of the present invention contains the first magnetic material in at least a part of the surface (U1) of the base material (1). The first magnetic region (2a) is formed, and the second magnetic region (2b) containing the second magnetic material is formed on at least a part of the back surface (U2) of the base material (1). ing. At this time, a part of the first magnetic region (2a) and the second magnetic region (2b) is in contact with the predetermined direction (S1) on a plane via the base material (1). It has T1).
ここで、本明細書における「境界部(T1)」とは、第一の磁気領域(2a)及び第二の磁気領域(2b)の磁気を同時に検出可能な程度に、各々の磁気領域の一部が基材(1)を介して接している領域を示し、本明細書における「接する」とは、第一の磁気領域(2a)及び第二の磁気領域(2b)の磁気を同時に検出可能な程度に隣接、重複又は近接した状態を示す。また、本明細書における「隣接」とは、第一の磁気領域(2a)及び第二の磁気領域(2b)が毛抜き合せに接している状態を示し、本明細書における「重複」とは、第一の磁気領域(2a)及び第二の磁気領域(2b)が後述するMRセンサ(S)の分解能より小さい距離(例えば、分解能1mmのMRセンサ(S)であれば、0〜1mm程度)で重なっている状態を示し、本明細書における「近接」とは、第一の磁気領域(2a)及び第二の磁気領域(2b)がMRセンサ(S)の分解能より小さい距離(例えば、分解能1mmのMRセンサ(S)であれば、0〜1mm程度)で離れている状態をそれぞれ示す。 Here, the "boundary portion (T1)" in the present specification is one of the respective magnetic regions to the extent that the magnetism of the first magnetic region (2a) and the second magnetic region (2b) can be detected at the same time. The part indicates a region in contact with the base material (1), and "contact" in the present specification means that the magnetism of the first magnetic region (2a) and the second magnetic region (2b) can be detected at the same time. Indicates a state of adjacency, overlap, or proximity to some extent. Further, "adjacent" in the present specification means a state in which the first magnetic region (2a) and the second magnetic region (2b) are in contact with the hair removal, and "overlapping" in the present specification means. The distance between the first magnetic region (2a) and the second magnetic region (2b) is smaller than the resolution of the MR sensor (S) described later (for example, if the MR sensor (S) has a resolution of 1 mm, it is about 0 to 1 mm). In the present specification, "proximity" means a distance (for example, a resolution) in which the first magnetic region (2a) and the second magnetic region (2b) are smaller than the resolution of the MR sensor (S). If it is a 1 mm MR sensor (S), the state of being separated by (about 0 to 1 mm) is shown.
なお、図1では、第一の磁気領域(2a)を縦線模様、第二の磁気領域(2b)を斜線模様で示し、かつ、第一の磁気領域(2a)の輪郭を実線、第二の磁気領域(2b)の輪郭を破線で示しているが、本発明を限定するものではなく、後述する「磁気波形」に影響を与えなければ、網点模様やベタ模様を含めた公知の印刷模様にて形成できる。また、境界部(T1)を隠ぺいする目的で、基材(1)の表面(U1)及び/又は裏面(U2)に、第一の磁気領域(2a)又は第二の磁気領域(2b)と等色、かつ、磁気波形に影響を与えないカモフラージュ領域をさらに有していてもよい。 In FIG. 1, the first magnetic region (2a) is shown by a vertical line pattern, the second magnetic region (2b) is shown by a diagonal line pattern, and the outline of the first magnetic region (2a) is shown by a solid line and the second. Although the outline of the magnetic region (2b) of the above is shown by a broken line, it does not limit the present invention and is known to print including a mesh pattern or a solid pattern as long as it does not affect the “magnetic waveform” described later. It can be formed with a pattern. Further, for the purpose of concealing the boundary portion (T1), the first magnetic region (2a) or the second magnetic region (2b) is formed on the front surface (U1) and / or the back surface (U2) of the base material (1). It may further have a camouflage region that is uniform in color and does not affect the magnetic waveform.
第一の磁気領域(2a)及び第二の磁気領域(2b)を形成する印刷方式は、インキを基材(1)に付与可能な方式であれば特に限定されることはなく、第一の磁気領域(2a)は第一の磁性材料、また、第二の磁気領域(2b)は第二の磁性材料を、それぞれビヒクル、添加剤と混合して、凹版印刷、スクリーン印刷、フレキソ印刷、インクジェット印刷等の公知の印刷方式で実施できる。 The printing method for forming the first magnetic region (2a) and the second magnetic region (2b) is not particularly limited as long as the ink can be applied to the base material (1). The magnetic region (2a) is a first magnetic material, and the second magnetic region (2b) is a second magnetic material mixed with a vehicle and an additive, respectively, in concave printing, screen printing, flexo printing, and inkjet. It can be carried out by a known printing method such as printing.
第一の磁性材料及び第二の磁性材料には、軟磁性材料及び/又は半硬磁性材料が使用できる。軟磁性材料の例としては、鉄−ケイ素、鉄−ニッケル、Mn−Znフェライト、パーマロイ、アモルファス磁性材料等の一般的な磁性材料が使用できる。半硬磁性材料の例としては、Baフェライト、Srフェライト、アルニコ、ネオジム磁石等の一般的な磁性材料を使用できる。なお、図1では第一の磁性材料及び第二の磁性材料に同じ材料を同じ含有率でインキ化して用いているが、本発明を限定するものではなく、磁気波形に影響を与えなければ、飽和磁化、残留磁化、透磁率及び保磁力を含めた公知の磁気特性が互いに異なる材料を用いてもよいし、同じ材料でも異なる含有率としてもよい。これらは、本発明の効果を得ることができれば任意に選択することができる。 As the first magnetic material and the second magnetic material, a soft magnetic material and / or a semi-hard magnetic material can be used. As an example of the soft magnetic material, general magnetic materials such as iron-silicon, iron-nickel, Mn-Zn ferrite, permalloy, and amorphous magnetic material can be used. As an example of the semi-hard magnetic material, a general magnetic material such as Ba ferrite, Sr ferrite, alnico, and neodymium magnet can be used. In FIG. 1, the same material is magnetized for the first magnetic material and the second magnetic material at the same content, but the present invention is not limited and the magnetic waveform is not affected. Materials having different known magnetic properties including saturation magnetization, residual magnetization, magnetic permeability and coercive force may be used, or the same material may have different contents. These can be arbitrarily selected as long as the effects of the present invention can be obtained.
本発明で使用可能なビヒクルは、磁気波形に影響を与えなければ特に限定されるものではなく、例えば、アマニ油、オリーブ油、ヒマシ油、ヒマワリ油などの油脂類、鯨ロウ、ミツロウ、ラノリン、カルナウバワックス等などの天然ワックス類、パラフィンワックス、エステルワックス、低分子量ポリエチレンなどの合成ワックス類、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸などの高級脂肪酸類、ステアリルアルコール、ヘベリルアルコールなどの高級アルコール類、ワセリン、グリセリン等の石鹸類、グルコース、エチレングルコース、アミロースなどの炭化水素類、脂肪酸エステルなどのエステル類、ステアリンアミド、オレインアミドなどのアミド類、ポリアミド系樹脂、ポリエステル系樹脂、エポキシ系樹脂、ポリウレタン系樹脂、アクリル系樹脂、塩化ビニル系樹脂、セルロース系樹脂、ポリビニル系樹脂、石油系樹脂、エチレン−酢酸ビニル共重合体樹脂、フェノール系樹脂、スチレン系樹脂、ロジン変性樹脂、テルビン樹脂などの樹脂類、天然ゴム、スチレンブタジエンゴム、イソプロピレンゴム、クロロプレンゴムなどのエラストラマー類、水添石油樹脂、シリコーン、流動パラフィン、フッ素樹脂などのタッキファイヤー類などを単独又は混合させたものから成る分散媒が使用できる。 The vehicle that can be used in the present invention is not particularly limited as long as it does not affect the magnetic waveform. Natural waxes such as Uva wax, paraffin wax, ester wax, synthetic waxes such as low molecular weight polyethylene, higher fatty acids such as lauric acid, myristic acid, palmitic acid, and stearic acid, and higher grades such as stearyl alcohol and heberyl alcohol. Alcohols, soaps such as vaseline and glycerin, hydrocarbons such as glucose, ethylene glucose and amylose, esters such as fatty acid esters, amides such as steaamide and oleinamide, polyamide resins, polyester resins and epoxys. Resin, polyurethane resin, acrylic resin, vinyl chloride resin, cellulose resin, polyvinyl resin, petroleum resin, ethylene-vinyl acetate copolymer resin, phenol resin, styrene resin, rosin modified resin, terbin resin Resins such as natural rubber, styrene butadiene rubber, isopropylene rubber, elastramers such as chloroprene rubber, waxed petroleum resin, silicone, liquid paraffin, tack fires such as fluororesin, etc. A dispersion medium consisting of can be used.
本発明で使用可能な添加剤は、磁気波形に影響を与えない範囲であれば、顔料、染料、界面活性剤、充填剤、酸化防止剤、乾燥剤などが使用できる。なお、顔料は、着色顔料の他に炭酸カルシウム、アルミナ、硫酸バリウム、酸化亜鉛、酸化チタンなどの公知の体質顔料が含まれるとともに、蛍光顔料、パール顔料、ガラスフレーク、コレステリック液晶顔料、蓄光顔料などの公知の機能性顔料が使用できる。 As the additive that can be used in the present invention, pigments, dyes, surfactants, fillers, antioxidants, desiccants and the like can be used as long as they do not affect the magnetic waveform. In addition to colored pigments, pigments include known extender pigments such as calcium carbonate, alumina, barium sulfate, zinc oxide, and titanium oxide, as well as fluorescent pigments, pearl pigments, glass flakes, cholesteric liquid crystal pigments, and phosphorescent pigments. Known functional pigments can be used.
本発明で使用可能な基材(1)は、磁気波形に影響しない材料であれば特に限定されず、紙、プラスチック、金属等を含めた公知の材料が使用できる。 The base material (1) that can be used in the present invention is not particularly limited as long as it is a material that does not affect the magnetic waveform, and known materials including paper, plastic, metal, and the like can be used.
次に、本発明の第一の実施形態の効果について、図2を用いて説明する。 Next, the effect of the first embodiment of the present invention will be described with reference to FIG.
図2は、磁気判別媒体(A1)と対向したMRセンサ(S)を所定の方向に搬送させて得られた磁気波形を示す図であり、図2(a)は、第一の磁気領域(2a)が配置された表面(U1)を所定の方向(S1’)に搬送した第一の磁気波形(P)、図2(b)は、図2(a)の磁気判別媒体(A1)をA−A’を軸に表裏反転して、第二の磁気領域(2b)が配置された裏面(U2)を所定の方向(S1’’)に搬送した第二の磁気波形(P’)である。 FIG. 2 is a diagram showing a magnetic waveform obtained by transporting an MR sensor (S) facing the magnetic discrimination medium (A1) in a predetermined direction, and FIG. 2A is a diagram showing a first magnetic region (a). The first magnetic waveform (P) obtained by transporting the surface (U1) on which 2a) is arranged in a predetermined direction (S1'), FIG. 2 (b) shows the magnetic discrimination medium (A1) of FIG. 2 (a). With the second magnetic waveform (P'), the back surface (U2) in which the second magnetic region (2b) is arranged is conveyed in a predetermined direction (S1 ″) by inverting the front and back around AA'. be.
MRセンサ(S)は、固体の電気抵抗が磁界によって変化する磁気抵抗効果を利用して、磁性が存在しない場合の中点電圧を基準として、磁性材料の出現を正の電圧の変化、磁性材料の消失を負の電圧の変化としてそれぞれ検出する磁気センサであり、磁気の検出感度は、MRセンサ(S)が磁性材料との距離が近くなるにしたがって強くなり、磁性材料との距離が離れるにしたがって低下する特徴を有する。すなわち、MRセンサ(S)における磁気の検出感度は、磁性材料との距離に依存する。 The MR sensor (S) utilizes the magnetic resistance effect in which the electrical resistance of a solid changes with a magnetic field, and the appearance of a magnetic material is a positive voltage change, based on the midpoint voltage in the absence of magnetism. It is a magnetic sensor that detects the disappearance of each as a change in negative voltage, and the magnetic detection sensitivity becomes stronger as the distance between the MR sensor (S) and the magnetic material increases, and the distance from the magnetic material increases. Therefore, it has the characteristic of decreasing. That is, the magnetic detection sensitivity of the MR sensor (S) depends on the distance from the magnetic material.
図2(a)において、第一の磁気波形(P)は、基材(1)と第一の磁気領域(2a)の境界で第1のピーク(P1)、第一の磁気領域(2a)と第二の磁気領域(2b)の境界部(T1)で第2のピーク(P2)、そして、第二の磁気領域(2b)と基材(1)の境界で第3のピーク(P3)が観察される。このとき、表面(U1)の境界部(T1)においては、第一の磁気領域(2a)の消失に伴うマイナスの電圧、第二の磁気領域(2b)の出現に伴うプラスの電圧が同時に生じるが、第一の磁気領域(2a)は、MRセンサ(S)との距離が近いので検出感度が大きくなり、第二の磁気領域(2b)は、MRセンサ(S)との距離が基材(1)の厚みによって第一の磁気領域(2a)より離れており検出感度が小さくなるので、第2のピーク(P2)は、相対的にマイナスの電圧として観察される。 In FIG. 2A, the first magnetic waveform (P) has a first peak (P1) and a first magnetic region (2a) at the boundary between the base material (1) and the first magnetic region (2a). The second peak (P2) at the boundary (T1) between the second magnetic region (2b) and the second magnetic region (2b), and the third peak (P3) at the boundary between the second magnetic region (2b) and the base material (1). Is observed. At this time, at the boundary portion (T1) of the surface (U1), a negative voltage due to the disappearance of the first magnetic region (2a) and a positive voltage due to the appearance of the second magnetic region (2b) are simultaneously generated. However, since the first magnetic region (2a) is close to the MR sensor (S), the detection sensitivity is high, and the second magnetic region (2b) is based on the distance from the MR sensor (S). The second peak (P2) is observed as a relatively negative voltage because it is separated from the first magnetic region (2a) by the thickness of (1) and the detection sensitivity is reduced.
一方、図2(b)において、第二の磁気波形(P’)は、基材(1)と第一の磁気領域(2a)の境界で第1’のピーク(P1’)、第一の磁気領域(2a)と第二の磁気領域(2b)の境界部(T1)で第2’のピーク(P2’)そして、第二の磁気領域(2b)と基材(1)の境界で第3’のピーク(P3’)が観察される。このとき、裏面(U2)の境界部(T1)においては、第一の磁気領域(2a)の消失に伴うマイナスの電圧、第二の磁気領域(2b)の出現に伴うプラスの電圧が同時に生じるが、第一の磁気領域(2a)は、MRセンサ(S)との距離が基材(1)の厚みによって第二の磁気領域(2b)より離れているので検出感度が小さくなり、第二の磁気領域(2b)は、MRセンサ(S)との距離が近く検出感度が大きくなるので、第2’のピーク(P2’)は、相対的にプラスの電圧として観察できる。 On the other hand, in FIG. 2B, the second magnetic waveform (P') is the first peak (P1') at the boundary between the base material (1) and the first magnetic region (2a), the first. The second peak (P2') at the boundary (T1) between the magnetic region (2a) and the second magnetic region (2b), and the second peak (P2') at the boundary between the second magnetic region (2b) and the base material (1). A peak of 3'(P3') is observed. At this time, at the boundary portion (T1) of the back surface (U2), a negative voltage due to the disappearance of the first magnetic region (2a) and a positive voltage due to the appearance of the second magnetic region (2b) are simultaneously generated. However, since the distance between the first magnetic region (2a) and the MR sensor (S) is larger than that of the second magnetic region (2b) due to the thickness of the base material (1), the detection sensitivity becomes smaller and the second magnetic region (2a) becomes smaller. Since the magnetic region (2b) of the above is close to the MR sensor (S) and the detection sensitivity is large, the second peak (P2') can be observed as a relatively positive voltage.
すなわち、境界部(T1)に相当する位置の第2のピーク(P2)と第2’のピーク(P2’)は、磁気判別媒体(A1)の表裏で反転して観察することができる。ここで、本明細書における「反転」とは、中点電圧に対する電圧の変化が「正」と「負」で逆転している状態を示す。 That is, the second peak (P2) and the second peak (P2') at the positions corresponding to the boundary portion (T1) can be observed inverted on the front and back sides of the magnetic discrimination medium (A1). Here, "reversal" in the present specification means a state in which the change in voltage with respect to the midpoint voltage is reversed between "positive" and "negative".
したがって、表面(U1)と裏面(U2)の境界部(T1)の表裏で磁気波形のピークが反転していれば、磁気判別媒体(A1)が「真正」であると判別できる。 Therefore, if the peaks of the magnetic waveform are inverted on the front and back of the boundary portion (T1) between the front surface (U1) and the back surface (U2), it can be determined that the magnetic discrimination medium (A1) is “genuine”.
図2では、磁気判別媒体(A1)を固定した状態でMRセンサ(S)を搬送しているが、磁気判別媒体(A1)とMRセンサ(S)が相対的に移動していれば、MRセンサ(S)を固定し、磁気判別媒体(A1)を搬送しても同様の磁気波形が得られる。また、MRセンサ(S)の搬送方向(S1’、S1’’)は、搬送の始点と終点が磁気判別媒体(A1)のA−A’を軸とした表裏で共通していれば、逆方向であっても同様の磁気波形が得られる。 In FIG. 2, the MR sensor (S) is conveyed with the magnetic discrimination medium (A1) fixed, but if the magnetic discrimination medium (A1) and the MR sensor (S) are relatively moving, MR is carried. A similar magnetic waveform can be obtained even if the sensor (S) is fixed and the magnetic discrimination medium (A1) is conveyed. Further, the transport directions (S1', S1'') of the MR sensor (S) are reversed if the start point and end point of the transport are common on the front and back sides of the magnetic discrimination medium (A1) centered on AA'. A similar magnetic waveform can be obtained in any direction.
また、図2では、表面(U1)及び裏面(U2)に対してMRセンサ(S)を個別に搬送しているが、MRセンサ(S)を磁気判別媒体(A1)の両面に配置して、MRセンサ(S)又は磁気判別媒体(A1)を搬送することで、第一の磁気波形(P)及び第二の磁気波形(P’)を同時に得ることも可能である。 Further, in FIG. 2, the MR sensor (S) is individually conveyed to the front surface (U1) and the back surface (U2), but the MR sensor (S) is arranged on both sides of the magnetic discrimination medium (A1). , The first magnetic waveform (P) and the second magnetic waveform (P') can be obtained at the same time by carrying the MR sensor (S) or the magnetic discrimination medium (A1).
また、図2では、第一の磁性材料及び第二の磁性材料は同じであり、第2のピーク(P2)と第2’のピーク(P2’)の強度はほぼ等しいが、第一の磁性材料及び第二の磁性材料の保磁力が異なる場合であっても、境界部(T1)のピークが表裏で反転していれば、ピークの強度が異なっていてもよい。 Further, in FIG. 2, the first magnetic material and the second magnetic material are the same, and the intensities of the second peak (P2) and the second peak (P2') are almost the same, but the first magnetism. Even when the coercive force of the material and the second magnetic material are different, the intensity of the peaks may be different as long as the peaks at the boundary portion (T1) are reversed on the front and back sides.
また、図2では、第一の磁気波形(P)と第二の磁気波形(P’)を目視で比較して、第2のピーク(P2)と第2’のピーク(P2’)の反転を確認しているが、MRセンサ(S)の測定データを機械処理部(図示せず)に送信し、図5に示すフロー図のように、Step1で基材(1)の表面(U1)の第一の磁気波形(P)を測定して、Step2で基材(1)の裏面(U2)の第二の磁気波形(P’)を測定して、Step3で境界部(T1)に相当する位置の第2のピーク(P2)と第2’のピーク(P2’)の比較を行い、ピークが反転している場合に磁気判別媒体(A1)を「真正」と判定する機械処理を行うことも可能である。
Further, in FIG. 2, the first magnetic waveform (P) and the second magnetic waveform (P') are visually compared, and the second peak (P2) and the second peak (P2') are inverted. However, the measurement data of the MR sensor (S) is transmitted to the mechanical processing unit (not shown), and as shown in the flow chart shown in FIG. 5, the surface (U1) of the base material (1) is set in
また、基材(1)が複数の層から成り、最外面の第一の磁気領域(2a)、第二の磁気領域(2b)のいずれか又は双方の磁気領域が基材(1)の少なくとも1つの中間層を介して接している第nの磁気領域(n>3)をさらに有していてもよい。 Further, the base material (1) is composed of a plurality of layers, and one or both of the first magnetic region (2a) and the second magnetic region (2b) on the outermost surface is at least the base material (1). It may further have an nth magnetic region (n> 3) in contact with each other via one intermediate layer.
また、図1及び図2における磁気判別媒体(A1)は、基材(1)の表裏に各々の磁気領域を個別に形成しているが、本発明を限定するものではなく、本発明の効果を示すように形成できれば、第一の磁気領域(2a)と第二の磁気領域(2b)との間に、インキ、フィルム、プラスチックシートなどを含めた基材(1)以外の少なくとも1つの層を形成してもよい。 Further, in the magnetic discrimination medium (A1) in FIGS. 1 and 2, each magnetic region is individually formed on the front and back surfaces of the base material (1), but this does not limit the present invention, and the effect of the present invention is not limited. If it can be formed as shown in the above, at least one layer other than the base material (1) including ink, film, plastic sheet and the like is formed between the first magnetic region (2a) and the second magnetic region (2b). May be formed.
また、第一の磁気領域(2a)及び/又は第二の磁気領域(2b)の上面には、本発明の効果に影響しない範囲で、インキ、フィルム、プラスチックシートなどを含めた層を有していてもよいし、当該層が第一の磁気領域(2a)及び/又は第二の磁気領域(2b)を視覚的に隠蔽する隠蔽層であってもよい。 Further, on the upper surface of the first magnetic region (2a) and / or the second magnetic region (2b), a layer including ink, film, plastic sheet, etc. is provided within a range that does not affect the effect of the present invention. The layer may be a concealing layer that visually conceals the first magnetic region (2a) and / or the second magnetic region (2b).
すなわち、本発明の磁気判別媒体(A1)の層構成は、本発明の効果を損なわない範囲で適宜調整することができる。 That is, the layer structure of the magnetic discrimination medium (A1) of the present invention can be appropriately adjusted as long as the effects of the present invention are not impaired.
なお、第一の磁気領域(2a)と第二の磁気領域(2b)がMRセンサ(S)の分解能より大きい距離で重複していると、第2のピーク(P2)と第2’のピーク(P2’)がいずれもマイナスの波形の後、プラスの波形を示し、反転を示さないので好ましくない。また、第一の磁気領域(2a)と第二の磁気領域(2b)がMRセンサ(S)の分解能より大きい距離で離れていると、第2のピーク(P2)と第2’のピーク(P2’)がいずれもプラスの波形の後、マイナスの波形を示し、反転を示さないので好ましくない。 If the first magnetic region (2a) and the second magnetic region (2b) overlap at a distance larger than the resolution of the MR sensor (S), the second peak (P2) and the second peak (P2) and the second peak (P2') shows a positive waveform after a negative waveform and does not show inversion, which is not preferable. Further, when the first magnetic region (2a) and the second magnetic region (2b) are separated by a distance larger than the resolution of the MR sensor (S), the second peak (P2) and the second peak (2') ( P2') shows a negative waveform after a positive waveform and does not show inversion, which is not preferable.
なお、MRセンサ(S)の分解能は、製造メーカや製品の種類によって異なるとともに、磁気判別媒体(A1)との相対的な移動速度によっても異なるので、インキ中の磁性材料の含有率、印刷時の膜厚、境界部(T1)における隣接、重複又は近接の範囲は、適宜調整することができる。 The resolution of the MR sensor (S) differs depending on the manufacturer and the type of product, and also depends on the relative moving speed with the magnetic discrimination medium (A1). Therefore, the content of the magnetic material in the ink and the printing time. The film thickness and the range of adjacency, overlap or proximity at the boundary (T1) can be adjusted as appropriate.
また、本発明に用いる基材(1)や、上述の基材(1)以外の層についても、本発明の効果を示すように、材質や厚みを適宜調整することができる。 Further, the material and thickness of the base material (1) used in the present invention and the layers other than the above-mentioned base material (1) can be appropriately adjusted so as to show the effect of the present invention.
また、境界部(T1)が形成される領域をMRセンサ(S)が磁気判別媒体(A1)の磁気波形を得る範囲に限定して配置し、その他の領域を第一の磁気領域(2a)と第二の磁気領域(2b)がMRセンサ(S)の分解能より大きい距離で重複及び/又は離して配置することで、磁気判別媒体(A1)でより精度の高い真偽判別を行うことも可能である。 Further, the region where the boundary portion (T1) is formed is limited to the range where the MR sensor (S) obtains the magnetic waveform of the magnetic discrimination medium (A1), and the other regions are arranged in the first magnetic region (2a). By arranging the second magnetic region (2b) at a distance larger than the resolution of the MR sensor (S) and / or separating them from each other, the magnetic discrimination medium (A1) can perform more accurate authenticity discrimination. It is possible.
(第二の実施形態)
本発明の第二の実施形態について、図3及び図4を用いて説明する。図3は、本発明の第二の実施形態における磁気判別媒体(A2)の一例であり、図3(a)は平面図、図3(b)は長辺方向におけるA−A’の断面図、図3(c)は短辺方向におけるB−B’の断面図である。
(Second embodiment)
A second embodiment of the present invention will be described with reference to FIGS. 3 and 4. FIG. 3 is an example of the magnetic discrimination medium (A2) according to the second embodiment of the present invention, FIG. 3 (a) is a plan view, and FIG. 3 (b) is a cross-sectional view of AA'in the long side direction. , FIG. 3 (c) is a cross-sectional view of BB'in the short side direction.
図3(a)及び図3(b)に示す磁気判別媒体(A2)は、基材(1)の表面(U1)に第一の磁気領域(2a)及び第一’の磁気領域(2a’)、基材(1)の裏面(U2)に第二の磁気領域(2b)及び第二’の磁気領域(2b’)が、それぞれマトリクス状に形成されている。このとき、図3(b)に示すように、第一の磁気領域(2a)及び第二の磁気領域(2b)は、磁気判別媒体(A2)の長辺方向(S1)に対して第一の境界部(T1)を有し、かつ、図3(c)に示すように、第一’の磁気領域(2a’)及び第二の磁気領域(2b)は、磁気判別媒体(A2)の短辺方向(S2)に対して第二の境界部(T2)を有する。 The magnetic discrimination medium (A2) shown in FIGS. 3 (a) and 3 (b) has a first magnetic region (2a) and a first'magnetic region (2a') on the surface (U1) of the base material (1). ), The second magnetic region (2b) and the second'magnetic region (2b') are formed in a matrix on the back surface (U2) of the base material (1). At this time, as shown in FIG. 3B, the first magnetic region (2a) and the second magnetic region (2b) are first with respect to the long side direction (S1) of the magnetic discrimination medium (A2). As shown in FIG. 3 (c), the first magnetic region (2a') and the second magnetic region (2b) are of the magnetic discrimination medium (A2). It has a second boundary portion (T2) with respect to the short side direction (S2).
なお、図3では、基材(1)の表面(U1)に2つの磁気領域(2a、2a’)、裏面(U2)に2つの磁気領域(2b、2b’)をそれぞれ形成しているが、本発明を限定するものではなく、後述する磁気波形に影響を与えなければ、各々の磁気領域の数が3つ以上であってもよい。また、図3では、長辺方向及び短辺方向の2つの方向に対して境界部を有しているが、本発明を限定するものではなく、後述する磁気波形に影響を与えなければ、斜め方向など3つ以上の方向に対して境界部を有していてもよい。 In FIG. 3, two magnetic regions (2a, 2a') are formed on the front surface (U1) of the base material (1), and two magnetic regions (2b, 2b') are formed on the back surface (U2). The present invention is not limited, and the number of each magnetic region may be three or more as long as it does not affect the magnetic waveform described later. Further, in FIG. 3, a boundary portion is provided in two directions, a long side direction and a short side direction, but this does not limit the present invention, and is oblique unless it affects the magnetic waveform described later. It may have a boundary portion with respect to three or more directions such as a direction.
次に、本発明の第二の実施形態の効果について、図4を用いて説明する。なお、本発明の第二の実施形態の原理については、第一の実施形態と同様であるので、説明を省略する。 Next, the effect of the second embodiment of the present invention will be described with reference to FIG. The principle of the second embodiment of the present invention is the same as that of the first embodiment, and thus the description thereof will be omitted.
図4は、磁気判別媒体(A2)と対向したMRセンサ(S)を長辺方向(S1’、S1’’)及び短辺方向(S2’、S2’’)にそれぞれ搬送させて得られた磁気波形を示す図である。 FIG. 4 is obtained by transporting the MR sensor (S) facing the magnetic discrimination medium (A2) in the long side direction (S1', S1'') and the short side direction (S2', S2''), respectively. It is a figure which shows the magnetic waveform.
図4(a)は、第一の磁気領域(2a)が配置された表面(U1)の長辺(U1A)をS1’方向に搬送した第一Aの磁気波形(PA)、図4(b)は、図4(a)をA−A’を軸に表裏反転して、第二の磁気領域(2b)が配置された裏面(U2)の長辺(U2A)をS1’’方向に搬送した第二Aの磁気波形(PA’)、図4(c)は、第一’の磁気領域(2a’)が配置された表面(U1)の短辺(U1B)をS2’方向に搬送した第一Bの磁気波形(PB)、そして、図4(d)は、図4(c)をB−B’を軸に表裏反転して、第二の磁気領域(2b)が配置された裏面(U2)の短辺(U2B)をS2’’方向に搬送した第二Bの磁気波形(PB’)をそれぞれ示す。 FIG. 4A shows the magnetic waveform (PA) of the first A in which the long side (U1A) of the surface (U1) on which the first magnetic region (2a) is arranged is conveyed in the S1'direction, and FIG. 4 (b). ) Inverts FIG. 4A with AA'as the axis, and conveys the long side (U2A) of the back surface (U2) in which the second magnetic region (2b) is arranged in the S1'' direction. In the second A magnetic waveform (PA') and FIG. 4 (c), the short side (U1B) of the surface (U1) on which the first'magnetic region (2a') is arranged is conveyed in the S2'direction. The magnetic waveform (PB) of the first B and FIG. 4 (d) show the back surface of FIG. 4 (c) in which the second magnetic region (2b) is arranged by inverting the front and back of FIG. 4 (c) with the BB'as the axis. The magnetic waveform (PB') of the second B in which the short side (U2B) of (U2) is conveyed in the S2 ″ direction is shown.
図4(a)において、第一Aの磁気波形(PA)は、基材(1)と第一の磁気領域(2a)の境界で第1Aのピーク(PA1)、第一の磁気領域(2a)と第二の磁気領域(2b)の第一の境界部(T1)で第2Aのピーク(PA2)、そして、第二の磁気領域(2b)と基材(1)の境界で第3Aのピーク(PA3)が観察される。このとき、表面(U1)の長辺(U1A)の第一の境界部(T1)においては、第2Aのピーク(PA2)が相対的にマイナスの電圧として観察される。 In FIG. 4A, the magnetic waveform (PA) of the first A has a peak (PA1) of the first A and a first magnetic region (2a) at the boundary between the base material (1) and the first magnetic region (2a). ) And the first boundary (T1) of the second magnetic region (2b), the second peak (PA2), and the boundary between the second magnetic region (2b) and the substrate (1) of the third A. A peak (PA3) is observed. At this time, at the first boundary portion (T1) of the long side (U1A) of the surface (U1), the peak (PA2) of the second A is observed as a relatively negative voltage.
一方、図4(b)において、第二Aの磁気波形(P’)は、基材(1)と第一の磁気領域(2a)の境界で第1A’のピーク(PA1’)、第一の磁気領域(2a)と第二の磁気領域(2b)の第一の境界部(T1)で第2A’のピーク(PA2’)、そして、第二の磁気領域(2b)と基材(1)の境界で第3A’のピーク(PA3’)が観察される。このとき、裏面(U2)の長辺(U2A)の第一の境界部(T1)においては、第2A’のピーク(PA2’)が相対的にプラスの電圧として観察できる。 On the other hand, in FIG. 4B, the magnetic waveform (P') of the second A is the peak (PA1') of the first A'at the boundary between the base material (1) and the first magnetic region (2a), the first. 2A'peak (PA2') at the first boundary (T1) of the magnetic region (2a) and the second magnetic region (2b), and the second magnetic region (2b) and the base material (1). The peak of the third A'(PA3') is observed at the boundary of). At this time, at the first boundary portion (T1) of the long side (U2A) of the back surface (U2), the peak (PA2') of the second A'can be observed as a relatively positive voltage.
次に、図4(c)において、第一Bの磁気波形(PB)は、基材(1)と第二の磁気領域(2b)の境界で第1Bのピーク(PB1)、第二の磁気領域(2b)と第一’の磁気領域(2a’)の第二の境界部(T2)で第2Bのピーク(PB2)、そして、第一’の磁気領域(2a’)と基材(1)の境界で第3Bのピーク(PB3)が観察される。このとき、表面(U1)の短辺(U1B)の第二の境界部(T2)においては、第2Bのピーク(PB2)が相対的にプラスの電圧として観察できる。 Next, in FIG. 4 (c), the magnetic waveform (P B ) of the first B is the peak (P B 1) of the first B at the boundary between the base material (1) and the second magnetic region (2 b). The second peak (PB2) at the second boundary (T2) between the second magnetic region (2b) and the first'magnetic region (2a'), and the first'magnetic region (2a'). A third B peak (PB3) is observed at the boundary of the material (1). At this time, at the second boundary portion (T2) of the short side (U1B) of the surface (U1), the peak (PB2) of the second B can be observed as a relatively positive voltage.
一方、図4(d)において、第二Bの磁気波形(PB’)は、基材(1)と第二の磁気領域(2b)の境界で第1B’のピーク(PB1’)、第二の磁気領域(2b)と第一’の磁気領域(2a’)の第二の境界部(T2)で第2B’のピーク(PB2’)、そして、第一’の磁気領域(2a’)と基材(1)の境界で第3B’のピーク(PB3’)が観察される。このとき、裏面(U2)の短辺(U2B)の第二の境界部(T2)においては、第2B’のピーク(PB2’)が相対的にマイナスの電圧として観察できる。 On the other hand, in FIG. 4D, the magnetic waveform (PB') of the second B is the peak (PB1') of the first B'and the second at the boundary between the base material (1) and the second magnetic region (2b). At the second boundary (T2) between the magnetic region (2b) and the first'magnetic region (2a'), the second B'peak (PB2'), and the first'magnetic region (2a'). A third B'peak (PB3') is observed at the boundary of the substrate (1). At this time, at the second boundary portion (T2) of the short side (U2B) of the back surface (U2), the peak (PB2') of the second B'can be observed as a relatively negative voltage.
このとき、図4(a)の第一Aの磁気波形(PA)及び図4(b)の第二Aの磁気波形(PA’)を比較すると、第一の境界部(T1)に相当する位置の第2Aのピーク(PA2)及び第2A’のピーク(PA2’)は、磁気判別媒体(A2)の表裏で反転して観察できる。 At this time, comparing the magnetic waveform (PA) of the first A in FIG. 4 (a) and the magnetic waveform (PA') of the second A in FIG. 4 (b), it corresponds to the first boundary portion (T1). The second A peak (PA2) and the second A'peak (PA2') at the position can be observed inverted on the front and back of the magnetic discrimination medium (A2).
また、図4(c)の第一Bの磁気波形(PB)及び図4(d)の第二Bの磁気波形(PB’)を比較すると、第二の境界部(T2)に相当する位置の第2Bのピーク(PB2)及び第2B’のピーク(PB2’)は、磁気判別媒体(A2)の表裏で反転して観察できる。 Further, when comparing the magnetic waveform (PB) of the first B in FIG. 4 (c) and the magnetic waveform (PB') of the second B in FIG. 4 (d), the position corresponding to the second boundary portion (T2) is compared. The second B peak (PB2) and the second B'peak (PB2') can be observed inverted on the front and back of the magnetic discrimination medium (A2).
すなわち、磁気判別媒体(A2)では、長辺方向における第一の境界部(T1)及び短辺方向における第二の境界部(T2)の表裏で、磁気波形のピークがそれぞれ反転して観察できる。したがって、磁気判別媒体(A2)に対するMRセンサ(S)の搬送方向が複数であっても、各々の搬送方向に対して、境界部の表裏で磁気波形のピークが反転していれば、磁気判別媒体(A2)が「真正」であると判別できる。 That is, in the magnetic discrimination medium (A2), the peaks of the magnetic waveform can be observed inverted on the front and back of the first boundary portion (T1) in the long side direction and the second boundary portion (T2) in the short side direction. .. Therefore, even if the MR sensor (S) has a plurality of transport directions with respect to the magnetic discrimination medium (A2), if the peaks of the magnetic waveform are inverted on the front and back of the boundary portion for each transport direction, the magnetic discrimination is performed. It can be determined that the medium (A2) is "genuine".
本発明の実施例について、図1及び図2を用いて説明する。本発明の実施例では、基材(1)としてコピー用紙(厚さ0.09mm)を用い、磁性材料として磁性フェライト2.5%及び鉄黒2.5%を配合したインキを用いた。 Examples of the present invention will be described with reference to FIGS. 1 and 2. In the examples of the present invention, copy paper (thickness 0.09 mm) was used as the base material (1), and an ink containing 2.5% magnetic ferrite and 2.5% iron black was used as the magnetic material.
磁性材料を配合した同じインキを用いて、基材(1)の一方の面(U1)及び他方の面(U2)に、膜厚5μmで5mm角のベタ模様を印刷した。このとき、境界部(T1)が1mm重複するように印刷した。 Using the same ink containing a magnetic material, a solid pattern of 5 mm square with a film thickness of 5 μm was printed on one side (U1) and the other side (U2) of the base material (1). At this time, printing was performed so that the boundary portion (T1) overlapped by 1 mm.
印刷により、図1に示す第一の磁気領域(2a)及び第二の磁気領域(2b)をそれぞれ形成した磁気判別媒体(A1)を得た。 By printing, a magnetic discrimination medium (A1) in which the first magnetic region (2a) and the second magnetic region (2b) shown in FIG. 1 were formed was obtained.
作成した磁気判別媒体(A1)について、第一の磁気領域(2a)が配置された表面(U1)に分解能1mmのMRセンサ(S)を対向させ、図2(a)に示す所定の方向(S1’)に搬送した結果、図2(a)に示す第一の磁気波形(P)が得られた。その後、磁気判別媒体(A1)をA−A’を軸に表裏反転して、第二の磁気領域(2b)が配置された裏面(U2)にMRセンサ(S)を対向させ、図2(b)に示す所定の方向(S1’’)に搬送した結果、図2(b)に示す第二の磁気波形(P’)が得られた。 With respect to the created magnetic discrimination medium (A1), an MR sensor (S) having a resolution of 1 mm is opposed to the surface (U1) on which the first magnetic region (2a) is arranged, and the direction (A) shown in FIG. As a result of transporting to S1'), the first magnetic waveform (P) shown in FIG. 2 (a) was obtained. After that, the magnetic discrimination medium (A1) is turned upside down about AA', and the MR sensor (S) is opposed to the back surface (U2) where the second magnetic region (2b) is arranged. As a result of transporting in the predetermined direction (S1 ″) shown in b), the second magnetic waveform (P') shown in FIG. 2 (b) was obtained.
図2(a)において、第一の磁気波形(P)は、基材(1)と第一の磁気領域(2a)の境界で第1のピーク(P1)、第一の磁気領域(2a)と第二の磁気領域(2b)の境界部(T1)で第2のピーク(P2)、そして、第二の磁気領域(2b)と基材(1)の境界で第3のピーク(P3)が観察された。このとき、表面(U1)の境界部(T1)における第2のピーク(P2)は、MRセンサ(S)と対向する第一の磁気領域(2a)の消失に伴い、マイナスの電圧として観察された。 In FIG. 2A, the first magnetic waveform (P) has a first peak (P1) and a first magnetic region (2a) at the boundary between the base material (1) and the first magnetic region (2a). The second peak (P2) at the boundary (T1) between the second magnetic region (2b) and the second magnetic region (2b), and the third peak (P3) at the boundary between the second magnetic region (2b) and the base material (1). Was observed. At this time, the second peak (P2) at the boundary portion (T1) of the surface (U1) is observed as a negative voltage due to the disappearance of the first magnetic region (2a) facing the MR sensor (S). rice field.
一方、図2(b)において、第二の磁気波形(P’)は、基材(1)と第一の磁気領域(2a)の境界で第1’のピーク(P1’)、第一の磁気領域(2a)と第二の磁気領域(2b)の境界部(T1)で第2’のピーク(P2’)、そして、第二の磁気領域(2b)と基材(1)の境界で第3’のピーク(P3’)が観察された。このとき、裏面(U2)の境界部(T1)における第2’のピーク(P2’)は、MRセンサ(S)と対向する第二の磁気領域(2b)の出現に伴い、プラスの電圧として観察できた。 On the other hand, in FIG. 2B, the second magnetic waveform (P') is the first peak (P1') at the boundary between the base material (1) and the first magnetic region (2a), the first. At the boundary (T1) between the magnetic region (2a) and the second magnetic region (2b), the second peak (P2'), and at the boundary between the second magnetic region (2b) and the base material (1). A third peak (P3') was observed. At this time, the second peak (P2') at the boundary portion (T1) of the back surface (U2) becomes a positive voltage with the appearance of the second magnetic region (2b) facing the MR sensor (S). I was able to observe it.
すなわち、境界部(T1)に相当する位置の第2のピーク(P2)及び第2’のピーク(P2’)は、磁気判別媒体(A1)の表裏で反転して観察できた。したがって、表面(U1)と裏面(U2)の境界部(T1)の表裏で磁気波形のピークが反転していれば、磁気判別媒体(A1)が「真正」であると判別できることがわかった。 That is, the second peak (P2) and the second peak (P2') at the positions corresponding to the boundary portion (T1) could be observed inverted on the front and back of the magnetic discrimination medium (A1). Therefore, it was found that if the peaks of the magnetic waveform are inverted on the front and back sides of the boundary portion (T1) between the front surface (U1) and the back surface (U2), the magnetic discrimination medium (A1) can be determined to be “genuine”.
A1、A2 磁気判別媒体
1 基材
2 磁気領域
2a 第一の磁気領域
2a’ 第一’の磁気領域
2b 第二の磁気領域
2b’ 第二’の磁気領域
T1、T2 境界部
U1 表面
U2 裏面
U1A 表面の長辺
U2A 裏面の長辺
U1B 表面の短辺
U2B 裏面の短辺
P 第一の磁気波形
P’ 第二の磁気波形
PA 第一Aの磁気波形
PA’ 第二Aの磁気波形
PB 第一Bの磁気波形
PB’ 第二Bの磁気波形
S1、S1’、S1’’ 移動方向
S MRセンサ
A1, A2
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020010463A JP2021115766A (en) | 2020-01-27 | 2020-01-27 | Magnetism discrimination medium, and genuine-false discrimination method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020010463A JP2021115766A (en) | 2020-01-27 | 2020-01-27 | Magnetism discrimination medium, and genuine-false discrimination method |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2021115766A true JP2021115766A (en) | 2021-08-10 |
Family
ID=77173684
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020010463A Pending JP2021115766A (en) | 2020-01-27 | 2020-01-27 | Magnetism discrimination medium, and genuine-false discrimination method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2021115766A (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5966795A (en) * | 1982-10-08 | 1984-04-16 | 株式会社村田製作所 | Magnetic reading with semiconductor magnetic sensor |
US6217405B1 (en) * | 1999-03-03 | 2001-04-17 | Sandvik Publishing Ltd. | Magnetically interactive substrate for a book |
-
2020
- 2020-01-27 JP JP2020010463A patent/JP2021115766A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5966795A (en) * | 1982-10-08 | 1984-04-16 | 株式会社村田製作所 | Magnetic reading with semiconductor magnetic sensor |
US6217405B1 (en) * | 1999-03-03 | 2001-04-17 | Sandvik Publishing Ltd. | Magnetically interactive substrate for a book |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104021411B (en) | A kind of magnetic anti-counterfeiting mark and its identifying system | |
JP4759568B2 (en) | Security element | |
CA2187080C (en) | Security threads having at least two security detection features and security papers employing same | |
WO2000033263A1 (en) | Genuine/counterfeit discriminating method, genuine/counterfeit discrimination object, and genuine/counterfeit discriminating device | |
US8970943B2 (en) | Composite film for preventing forgery, and composite method for preventing forgery | |
US20100213698A1 (en) | Improvements in security elements | |
US20130062416A1 (en) | Security Substrates for Security Documents | |
WO2004023402A1 (en) | Paper sheets characteristic detection device and paper sheets characteristic detection method | |
JPH08101942A (en) | Decision method of truth or falsehood of document | |
JP2006268469A (en) | Authentication method for metameric image forming body, and metameric image forming body | |
JP2014104637A (en) | Forgery prevention printed matter | |
JP2021115766A (en) | Magnetism discrimination medium, and genuine-false discrimination method | |
JP3799448B2 (en) | Printed matter, authenticity determination method thereof, and authenticity determination device | |
US20060202469A1 (en) | Financial instrument having indicia related to a security feature thereon | |
TW302461B (en) | ||
JP4296311B2 (en) | Anti-counterfeit paper, authenticity determination method and authenticity determination device | |
JP2004090387A (en) | Precious printed matter | |
JP4021570B2 (en) | Authenticity determination method and authenticity determination device | |
JP2018134842A (en) | Forgery-preventive printed matter | |
JP2021047760A (en) | Method of determining authenticity of security printed matter | |
JP2004199460A (en) | Printed matter, authenticity determining method thereof, and authenticity determining device thereof | |
Jagielinski et al. | Magnetic imaging of currencies and secure documents | |
RU2748106C1 (en) | Protective element based on hidden magnetic microstructural formations and method for protecting products from counterfeiting | |
JP3009546B2 (en) | Method for detecting optical information and magnetic information of a detected object | |
JP2006293574A (en) | Paper sheet discrimination device and magnetic characteristic detection device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20220106 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20221128 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20221212 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20230601 |