JP2021100004A - レドックスフロー電池用電極、およびレドックスフロー電池 - Google Patents
レドックスフロー電池用電極、およびレドックスフロー電池 Download PDFInfo
- Publication number
- JP2021100004A JP2021100004A JP2021044533A JP2021044533A JP2021100004A JP 2021100004 A JP2021100004 A JP 2021100004A JP 2021044533 A JP2021044533 A JP 2021044533A JP 2021044533 A JP2021044533 A JP 2021044533A JP 2021100004 A JP2021100004 A JP 2021100004A
- Authority
- JP
- Japan
- Prior art keywords
- carbon
- paper
- electrode
- pan
- binder resin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Fuel Cell (AREA)
- Inert Electrodes (AREA)
Abstract
Description
レドックスフロー電池は、水素イオンが透過する隔膜により内部が正極室と負極室に分離された電解槽、正極電解液を貯留する正極タンク、負極電解液を貯留する負極タンク、電解液をタンクと電解槽との間で循環させるポンプなどで構成される。そして、正極タンクと正極室との間で正極電解液を循環させ、負極タンクと負極室との間で負極電解液を循環させ、正極室および負極室に設置された各電極上で酸化還元反応を進行させることで充放電が行われる。
レドックスフロー電池に用いられる電極としては、カーボンフェルトやカーボンペーパー等の炭素繊維集合体が用いられている(例えば特許文献1、2参照)。
しかしながら、カーボンペーパーを用いた電極の場合、電池性能が必ずしも充分に高くはなかった。
[1] ポリアクリロニトリル系炭素繊維とバインダ樹脂の炭化物とを含むカーボンペーパーからなり、水銀圧入法により測定される比表面積が0.5〜1.5m2/gである、レドックスフロー電池用電極。
[2] 前記カーボンペーパーは水銀圧入法により測定される細孔分布において少なくとも2つのピークを有する、[1]に記載のレドックスフロー電池用電極。
[3] 前記カーボンペーパーは炭素フィラーをさらに含む、[1]または[2]に記載のレドックスフロー電池用電極。
[4] 前記カーボンペーパーはポリアクリロニトリル系炭素繊維以外の炭素繊維をさらに含む、[1]〜[3]のいずれか1つに記載のレドックスフロー電池用電極。
(A1)工程:ポリアクリロニトリル系炭素繊維を用いて抄紙し、炭素繊維紙を作製する工程。
(A2)工程:(A1)工程で得られた炭素繊維紙に、炭素化後の残炭率が20質量%以上であるバインダ樹脂と、炭素フィラーとを含むバインダ樹脂組成物を含浸させ、前駆体シートを作製する工程。
(A3)工程:(A2)工程で得られた前駆体シートを加熱し、バインダ樹脂を硬化させる工程。
(A4)工程:(A3)工程後の前駆体シートを炭素化し、カーボンペーパーを作製する工程。
(B1)工程:ポリアクリロニトリル系炭素繊維と、ポリアクリロニトリル系炭素繊維以外の炭素繊維とを用いて抄紙し、炭素繊維紙を作製する工程。
(B2)工程:(B1)工程で得られた炭素繊維紙に、炭素化後の残炭率が20質量%以上であるバインダ樹脂を含浸させ、前駆体シートを作製する工程。
(B3)工程:(B2)工程で得られた前駆体シートを加熱し、バインダ樹脂を硬化させる工程。
(B4)工程:(B3)工程後の前駆体シートを炭素化し、カーボンペーパーを作製する工程。
本発明のレドックスフロー電池用電極(以下、「RFB用電極」ともいう。)は、ポリアクリロニトリル系炭素繊維(以下、「PAN系炭素繊維」ともいう。)とバインダ樹脂の炭化物とを含むカーボンペーパーからなる。このカーボンペーパーは、炭素フィラーやPAN系炭素繊維以外の炭素繊維(以下、「非PAN系炭素繊維」ともいう。)をさらに含んでいてもよい。
なお、「カーボンペーパー」とは、概ね平面内においてランダムな方向に炭素繊維を分散させ、ペーパー状としたものである。また、「ランダムな方向に分散」とは、炭素繊維が概ね一つの面を形成するように横たわっていることを意味する。
PAN系炭素繊維は、耐酸性に優れる炭素繊維である。
レドックスフロー電池(以下、「RFB」ともいう。)の電解液としては、通常、酸性水溶液が用いられることから、RFB用電極には耐酸性が求められる。PAN系炭素繊維を含むカーボンペーパーからなる本発明のRFB用電極は、耐酸性に優れるので電解液と接触しても腐食しにくい。
PAN系炭素繊維の平均繊維長は、例えば走査型電子顕微鏡などの顕微鏡で、炭素繊維を50倍以上に拡大して写真撮影を行い、無作為に異なる50本の単繊維を選び、その長さを計測し、これらの値を平均したものである。
PAN系炭素繊維の平均繊維径は、例えば走査型電子顕微鏡などの顕微鏡で、炭素繊維を50倍以上に拡大して写真撮影を行い、無作為に異なる50本の単繊維を選び、その繊維径を計測し、これらの値を平均したものである。
PAN系炭素繊維の引張弾性率は、JIS R 7601:1986に準じて測定される値である。
PAN系炭素繊維の引張強度は、JIS R 7601:1986に準じて測定される値である。
PAN系炭素繊維の目付は、10〜200g/m2とすることが好ましい。
バインダ樹脂の炭化物は、バインダ樹脂を炭素化して得られるものである。バインダ樹脂の炭化物により、PAN系炭素繊維同士が結着する。
これらは、1種を単独で用いてもよいし、2種以上を併用してもよい。
ここで、「残炭率」とは、バインダ樹脂を1200℃以上の温度で炭素化したときの質量を炭素化前の質量で割って100を乗じた値である。
また、レゾールタイプのフェノール樹脂に公知の方法によって酸性触媒下においてフェノール類とアルデヒド類の反応によって生成する、固体の熱融着性を示すノボラックタイプのフェノール樹脂を溶解混入させることもできるが、この場合は硬化剤、例えばヘキサメチレンジアミンを含有した、自己架橋タイプのものが好ましい。
フェノール類としては、例えばフェノール、レゾルシン、クレゾール、キシロールなどが挙げられる。アルデヒド類としては、例えばホルマリン、パラホルムアルデヒド、フルフラールなどが用いられる。また、これらを混合物として用いることができる。これらはフェノール樹脂として市販品を利用することも可能である。
炭素フィラーとしては、例えばカーボンブラック、黒鉛、カーボンナノチューブ、カーボンナノファイバー、コークス、活性炭、非晶質炭素、ミルド炭素繊維、チョップド炭素繊維などが挙げられる。
これらの中でも、カーボンペーパーの比表面積を制御しやすい、あるいは電極の反応活性をより高めるなどの観点から、カーボンブラック、黒鉛、活性炭、非晶質炭素が好ましい。
これらは、1種を単独で用いてもよいし、2種以上を併用してもよい。
非PAN系炭素繊維としては、ピッチ系炭素繊維、レーヨン系炭素繊維、活性炭繊維などが挙げられる。
これらの中でも、電極の反応活性をより高める観点ではピッチ系炭素繊維が好ましく、詳しくは後述するがカーボンペーパーの比表面積を制御しやすい観点では活性炭繊維が好ましい。
非PAN系炭素繊維の平均繊維長は、例えば走査型電子顕微鏡などの顕微鏡で、炭素繊維を50倍以上に拡大して写真撮影を行い、無作為に異なる50本の単繊維を選び、その長さを計測し、これらの値を平均したものである。
非PAN系炭素繊維の平均繊維径は、例えば走査型電子顕微鏡などの顕微鏡で、炭素繊維を50倍以上に拡大して写真撮影を行い、無作為に異なる50本の単繊維を選び、その繊維径を計測し、これらの値を平均したものである。
カーボンペーパーの水銀圧入法により測定される比表面積は、0.5〜1.5m2/gであり、0.6〜1.3m2/gが好ましい。比表面積が0.5m2/g以上であれば、カーボンペーパーは充分な微細構造を有する。すなわち、カーボンペーパーは多孔質であり、このカーボンペーパーからなるRFB用電極の反応活性が向上する。よって、本発明のRFB用電極を備えたRFBは充電時の電圧が高く、電池性能に優れる。一方、比表面積が1.5m2/gを超えると、カーボンペーパーの表面の水接触角が大きくなりすぎる。その結果、電解液を弾きやすくなり、電池性能が低下する。
以上説明した本発明のRFB用電極はカーボンペーパーからなるので、カーボンフェルトに比べて安価であり、薄く、繊維が毛羽立ちにくい。そのため、本発明のRFB用電極は、カーボンフェルトを用いた電極に比べて安価であり、薄膜化が容易であることから、電池の低コスト化や小型化が可能であり、しかも電流短絡が起こりにくい。
しかも、本発明のRFB用電極は、比表面積が0.5〜1.5m2/gであるカーボンペーパーからなるので、反応活性が高い。
よって、本発明のRFB用電極を用いれば、低コスト化および小型化を実現でき、短絡しにくく、電池性能に優れたRFBが得られる。
<第一の実施形態>
本発明の第一の実施形態のRFB用電極の製造方法は、以下の(A1)工程、(A2)工程、(A3)工程および(A4)工程を有する。
(A1)工程:PAN系炭素繊維を用いて抄紙し、炭素繊維紙を作製する工程。
(A2)工程:(A1)工程で得られた炭素繊維紙に、炭素化後の残炭率が20質量%以上であるバインダ樹脂と、炭素フィラーとを含むバインダ樹脂組成物を含浸させ、前駆体シートを作製する工程。
(A3)工程:(A2)工程で得られた前駆体シートを加熱し、バインダ樹脂を硬化させる工程。
(A4)工程:(A3)工程後の前駆体シートを炭素化し、カーボンペーパーを作製する工程。
(A1)工程は、PAN系炭素繊維を用いて抄紙し、炭素繊維紙を作製する工程である。
抄紙方法としては、液体の媒体中にPAN系炭素繊維を分散させて抄造する湿式法、空気中にPAN系炭素繊維を分散させて降り積もらせる乾式法などが適用できる。これらの中でも、PAN系炭素繊維が単繊維に分散するのを助け、分散した単繊維が再び収束するのを防止できる観点から、湿式法が好ましい。
なお、炭素繊維紙は、PAN系炭素繊維とともに、後述するバインダ短繊維を抄紙して作製してもよい。
(A2)工程は、(A1)工程で得られた炭素繊維紙に、炭素化後の残炭率が20質量%以上であるバインダ樹脂と、炭素フィラーとを含むバインダ樹脂組成物(以下、「樹脂組成物(A)」ともいう。)を含浸させ、前駆体シートを作製する工程である。
樹脂組成物(A)における炭素フィラーの割合は、炭素化前のバインダ樹脂100質量部に対して、1〜300質量部が好ましく、1〜100質量部がより好ましい。
樹脂組成物(A)における炭素化後の残炭率が15質量%以下である樹脂からなる粒子の割合は、炭素化前のバインダ樹脂100質量部に対して、100〜500質量部が好ましく、200〜400質量部がより好ましい。
炭素繊維紙への樹脂組成物(A)の含浸量は、炭素繊維紙100質量部に対して50〜200質量部が好ましく、60〜150質量部がより好ましい。
(A3)工程は、(A2)工程で得られた前駆体シートを加熱し、バインダ樹脂を硬化させる工程である。
(A4)工程の前に(A3)工程を行うことで、PAN系炭素繊維を樹脂組成物(A)中のバインダ樹脂で融着させ、かつ得られるカーボンペーパーの厚みムラを低減できる。
連続製造による前駆体シートを加熱加圧する場合は、連続ベルトプレス装置を用いて行う方法が、長尺のカーボンペーパー(RFB用電極)を製造できるという点で好ましい。RFB用電極が長尺であれば、RFB用電極の生産性が高くなり、RFBのコスト低減化に大きく寄与することができる。また、本発明のRFB用電極は、連続的に巻き取ることも可能で、RFB用電極やRFBの生産性、コストの観点から好ましい。連続ベルト装置におけるプレス方法としては、ロールプレスによりベルトに線圧で圧力を加える方法と液圧ヘッドプレスにより面圧でプレスする方法があるが、後者の方がより平滑なRFB用電極が得られるという点で好ましい。
前駆体シートが加圧される圧力は特に限定されないが、樹脂組成物(A)の比率が多い場合は、圧力が低くても前駆体シートの表面を平滑にすることが容易である。このとき必要以上にプレス圧を高くすることは、加圧時にPAN系炭素繊維を破壊する、RFB用電極としたときその組織が緻密になりすぎるなどの問題が生じる場合がある。よって、例えば20kPa〜10MPaの圧力で加圧することが好ましい。
加熱加圧の時間は、例えば30秒〜10分とすることができる。
(A4)工程は、(A3)工程後の前駆体シートを炭素化し、カーボンペーパーを作製する工程である。
前駆体シートの炭素化は、PAN系炭素繊維を(A)中のバインダ樹脂で融着させ、かつバインダ樹脂を炭素化することより、カーボンペーパー(RFB用電極)の機械的強度と導電性を発現させることを目的に行う。
炭素化は、1000℃以上の温度で行うことが好ましく、より好ましくは1000〜3000℃であり、さらに好ましくは1000〜2500℃である。炭素化の温度が1000℃以上であれば、充分な導電性を有するRFB用電極が得られる。
炭素化の時間は、例えば10分〜1時間とすることができる。
なお、樹脂組成物(A)が、炭素化後の残炭率が15質量%以下である樹脂からなる粒子を含む場合、この粒子は(A4)工程により消失する。この消失した部分が空隙となることから、カーボンペーパーの比表面積を0.5〜1.5m2/gに制御しやすくなる。
こうして得られたカーボンペーパーをRFB用電極として用いる。
本発明の第一の実施形態のRFB用電極の製造方法は、(A3)工程と(A4)工程との間に、前処理工程および酸化処理工程の少なくとも一方を有していてもよい。
(A4)工程の前に酸化処理工程を行えば、PAN系炭素繊維をバインダ樹脂でより融着させ、かつバインダ樹脂の炭素化率をより向上させることができる。
酸化処理は、200℃以上300℃未満の温度範囲で行うことが好ましく、より好ましくは240〜270℃である。
酸化処理は、大気雰囲気下で行うことが好ましい。
酸化処理の時間は、例えば30分〜2時間とすることができる。
本発明の第二の実施形態のRFB用電極の製造方法は、以下の(B1)工程、(B2)工程、(B3)工程および(B4)工程を有する。
(B1)工程:PAN系炭素繊維と非PAN系炭素繊維とを用いて抄紙し、炭素繊維紙を作製する工程。
(B2)工程:(B1)工程で得られた炭素繊維紙に、炭素化後の残炭率が20質量%以上であるバインダ樹脂を含浸させ、前駆体シートを作製する工程。
(B3)工程:(B2)工程で得られた前駆体シートを加熱し、バインダ樹脂を硬化させる工程。
(B4)工程:(B3)工程後の前駆体シートを炭素化し、カーボンペーパーを作製する工程。
(B1)工程は、PAN系炭素繊維と非PAN系炭素繊維とを用いて抄紙し、炭素繊維紙を作製する工程である。
非PAN系炭素繊維の割合は、PAN系炭素繊維100質量部に対して、1〜100質量部が好ましく、1〜50質量部がより好ましい。
なお、炭素繊維紙は、PAN系炭素繊維および非PAN系炭素繊維とともに、後述するバインダ短繊維を抄紙して作製してもよい。
(B2)工程は、(B1)工程で得られた炭素繊維紙に、炭素化後の残炭率が20質量%以上であるバインダ樹脂を含浸させ、前駆体シートを作製する工程である。
バインダ樹脂の含浸方法は、第一の実施形態において説明した(A2)工程と同じである。
なお、バインダ樹脂と炭素フィラーとを混合してバインダ樹脂組成物(以下、「樹脂組成物(B)」ともいう。)を炭素繊維紙に含浸させてもよい。また、樹脂組成物(B)に、後述する、炭素化後の残炭率が15質量%以下である樹脂からなる粒子を配合してもよい。
(B3)工程は、(B2)工程で得られた前駆体シートを加熱し、バインダ樹脂を硬化させる工程である。
前駆体シートを加熱する方法および条件は、第一の実施形態において説明した(A3)工程と同じである。
(B4)工程は、(B3)工程後の前駆体シートを炭素化し、カーボンペーパーを作製する工程である。
前駆体シートを炭素化する方法および条件は、第一の実施形態において説明した(A4)工程と同じである。
一方、炭素繊維紙に、炭素化後の残炭率が15質量%以下である樹脂からなる粒子を含浸させた場合、この粒子は炭素化後に消失する。この消失した部分が空隙となることから、カーボンペーパーの比表面積を0.5〜1.5m2/gにより制御しやすくなる。
こうして得られたカーボンペーパーをRFB用電極として用いる。
本発明の第二の実施形態のRFB用電極の製造方法は、(B3)工程と(B4)工程との間に、前処理工程および酸化処理工程の少なくとも一方を有していてもよい。
前処理工程および酸化処理工程は、第一の実施形態において説明した前処理工程および酸化処理工程と同様である。
本発明の第三の実施形態のRFB用電極の製造方法は、以下の(C1)工程、(C2)工程、(C3)工程および(C4)工程を有する。
(C1)工程:PAN系炭素繊維を用いて抄紙し、炭素繊維紙を作製する工程。
(C2)工程:(C1)工程で得られた炭素繊維紙に、炭素化後の残炭率が20質量%以上であるバインダ樹脂と、炭素化後の残炭率が15質量%以下である樹脂からなる粒子とを含むバインダ樹脂組成物を含浸させ、前駆体シートを作製する工程。
(C3)工程:(C2)工程で得られた前駆体シートを加熱し、バインダ樹脂を硬化させる工程。
(C4)工程:(C3)工程後の前駆体シートを炭素化し、カーボンペーパーを作製する工程。
(C1)工程は、PAN系炭素繊維を用いて抄紙し、炭素繊維紙を作製する工程である。
抄紙方法としては、第一の実施形態において説明した(A1)工程と同じである。
バインダ短繊維としては、ポリビニルアルコール(PVA)、ポリ酢酸ビニル、ポリエチレンテレフタレート(PET)からなる繊維などを用いることができる。これらの中でも、結着力に優れ、PAN系炭素繊維の脱落をより効果的に抑制できる観点で、PVAからなるバインダ短繊維が好ましい。
これらは、1種を単独で用いてもよいし、2種以上を併用してもよい。PETからなるバインダ短繊維が好ましい。
(C2)工程は、(C1)工程で得られた炭素繊維紙に、炭素化後の残炭率が20質量%以上であるバインダ樹脂と、炭素化後の残炭率が15質量%以下である樹脂からなる粒子とを含むバインダ樹脂組成物(以下、「樹脂組成物(C)」ともいう。)を含浸させ、前駆体シートを作製する工程である。
ここで、「残炭率」とは、樹脂を1200℃以上の温度で炭素化したときの質量を炭素化前の質量で割って100を乗じた値である。
これらは、1種を単独で用いてもよいし、2種以上を併用してもよい。
粒子の平均粒子径は、炭素繊維紙中の空隙に包含させる点において、2μm以下であることが好ましい。また形成させる空隙によって保水性、排水性が向上する点において10nm以上であることが好ましい。粒子の平均粒子径は、30nm以上、1μm以下がより好ましく、50〜600nmがさらに好ましい。
粒子径の分布の分散性は高くても低くてもよいが、より精密に空隙サイズを制御できるという点から単分散性が高いほうが好ましい。また、単分散性が高い粒子径を持つ炭素化後の残炭率が15質量%以下の樹脂からなる粒子単体を用いてもよいが、単分散性が高い粒子径を持つ炭素化後の残炭率が15質量%以下の樹脂からなる粒子が複数からなる混合物を用いてもよい。
炭素化後の残炭率が15質量%以下の樹脂からなる粒子の製造方法は、例えば、シード乳化重合法が挙げられる。分散媒は、粒子が溶解せず、取り扱い良好な水系溶媒が好ましい。
樹脂組成物(C)の含浸方法は、第一の実施形態において説明した(A2)工程と同じである。
(C3)工程は、(C2)工程で得られた前駆体シートを加熱し、バインダ樹脂を硬化させる工程である。
前駆体シートを加熱する方法および条件は、第一の実施形態において説明した(A3)工程と同じである。
(C4)工程は、(C3)工程後の前駆体シートを炭素化し、カーボンペーパーを作製する工程である。
前駆体シートを炭素化する方法および条件は、第一の実施形態において説明した(A4)工程と同じである。
こうして得られたカーボンペーパーをRFB用電極として用いる。
本発明の第三の実施形態のRFB用電極の製造方法は、(C3)工程と(C4)工程との間に、前処理工程および酸化処理工程の少なくとも一方を有していてもよい。
前処理工程および酸化処理工程は、第一の実施形態において説明した前処理工程および酸化処理工程と同様である。
本発明の第四の実施形態のRFB用電極の製造方法は、以下の(D1)工程、(D2)工程、(D3)工程、(D4)工程、(D5)工程および(D6)工程を有する。
(D1)工程:PAN系炭素繊維を用いて抄紙し、炭素繊維紙を作製する工程。
(D2)工程:(D1)工程で得られた炭素繊維紙に、炭素化後の残炭率が20質量%以上であるバインダ樹脂を含浸させ、前駆体シートを作製する工程。
(D3)工程:前記前駆体シートを前記バインダ樹脂の貧溶媒に浸漬させて、前駆体シート中のバインダ樹脂を凝固させる工程。
(D4)工程:(D3)工程後の前駆体シートから前記貧溶媒を除去する工程。
(D5)工程:(D4)工程後の前駆体シートを加熱し、前駆体シート中のバインダ樹脂を硬化させる工程。
(D6)工程:(D5)工程後の前駆体シートを炭素化し、カーボンペーパーを作製する工程。
(D1)工程は、PAN系炭素繊維を用いて抄紙し、炭素繊維紙を作製する工程である。
抄紙方法としては、第一の実施形態において説明した(A1)工程と同じである。
炭素繊維紙は、PAN系炭素繊維とともにバインダ短繊維や非PAN系炭素繊維を抄紙して作製してもよい。
(D2)工程は、(D1)工程で得られた炭素繊維紙に、炭素化後の残炭率が20質量%以上であるバインダ樹脂を含浸させ、前駆体シートを作製する工程である。
バインダ樹脂の含浸方法は、第一の実施形態において説明した(A2)工程と同じである。
なお、バインダ樹脂と炭素フィラーとを混合してバインダ樹脂組成物(以下、「樹脂組成物(D)」ともいう。)を炭素繊維紙に含浸させてもよい。また、樹脂組成物(D)に、炭素化後の残炭率が15質量%以下である樹脂からなる粒子を配合してもよい。
(D3)工程は、前記前駆体シートを前記バインダ樹脂の貧溶媒に浸漬させて、前駆体シート中のバインダ樹脂を凝固させる工程である。
バインダ樹脂の貧溶媒としては、一般的には水系溶媒を用いることができるが、バインダ樹脂に対して貧溶媒となるものであれば特に限定されない。例えば、バインダ樹脂としてポリアクリロニトリルを用いた場合は、水、水とジメチルアセトアミドとの混合溶媒などを用いることができる。また、バインダ樹脂としてフェノール樹脂を用いた場合は、水、水とアルコールとの混合溶媒を用いることができる。
貧溶媒は、1種を単独で用いてもよいし、2種以上を併用してもよい。
空隙形成は、凝固浴中での凝固速度に依存する。凝固速度が比較的速い方が空隙を形成しやすいため、炭素繊維紙に炭素繊維紙を含浸させた際の樹脂溶液濃度、凝固浴組成、凝固浴温度によって精密に制御できる。
樹脂溶液濃度としては、含浸時の作業性の点で5〜40質量%とすることが好ましい。
また、例えば、バインダ樹脂としてポリアクリロニトリルまたはフェノール樹脂を用い、貧溶媒となる凝固浴として水を用いた場合、好ましい凝固浴温度10℃〜80℃である。
(D4)工程は、(D3)工程後の前駆体シートから前記貧溶媒を除去する工程である。
貧溶媒の除去方法としては、加熱乾燥や真空乾燥などが挙げられる。
乾燥温度は、貧溶媒の沸点近傍であり、かつ樹脂硬化に影響しにくい温度域が好ましい。例えば、貧溶媒が水である場合、乾燥温度は80〜120℃が好ましい。
(D5)工程は、(D4)工程後の前駆体シートを加熱し、前駆体シート中のバインダ樹脂を硬化させる工程である。
前駆体シートを加熱する方法および条件は、第一の実施形態において説明した(A3)工程と同じである。
(D6)工程は、(D5)工程後の前駆体シートを炭素化し、カーボンペーパーを作製する工程である。
前駆体シートを炭素化する方法および条件は、第一の実施形態において説明した(A4)工程と同じである。
こうして得られたカーボンペーパーをRFB用電極として用いる。
本発明の第四の実施形態のRFB用電極の製造方法は、(D5)工程と(D6)工程との間に、前処理工程および酸化処理工程の少なくとも一方を有していてもよい。
前処理工程および酸化処理工程は、第一の実施形態において説明した前処理工程および酸化処理工程と同様である。
本発明の第五の実施形態のRFB用電極の製造方法は、以下の(E1)工程、(E2)工程、(E3)工程、(E4)工程、(E5)工程、(E6)工程および(E7)工程を有する。
(E1)工程:PAN系炭素繊維を用いて抄紙し、炭素繊維紙を作製する工程。
(E2)工程:(E1)工程で得られた炭素繊維紙に、炭素化後の残炭率が20質量%以上であるバインダ樹脂と、ポリビニルピロリドンとを含むバインダ樹脂組成物を含浸させ、前駆体シートを作製する工程。
(E3)工程:前記前駆体シート中のバインダ樹脂とポリビニルピロリドンとを相分離させる工程。
(E4)工程:(E3)工程後の前駆体シートを前記バインダ樹脂の貧溶媒に浸漬させて、前駆体シート中のバインダ樹脂を凝固させる工程。
(E5)工程:(E4)工程後の前駆体シートから前記貧溶媒を除去する工程。
(E6)工程:(E5)工程後の前駆体シートを加熱し、前駆体シート中のバインダ樹脂を硬化させる工程。
(E7)工程:(E6)工程後の前駆体シートを炭素化し、カーボンペーパーを作製する工程。
(E1)工程は、PAN系炭素繊維を用いて抄紙し、炭素繊維紙を作製する工程である。
抄紙方法としては、第一の実施形態において説明した(A1)工程と同じである。
炭素繊維紙は、PAN系炭素繊維とともにバインダ短繊維や非PAN系炭素繊維を抄紙して作製してもよい。
(E2)工程は、(E1)工程で得られた炭素繊維紙に、炭素化後の残炭率が20質量%以上であるバインダ樹脂と、ポリビニルピロリドンとを含むバインダ樹脂組成物(以下、「樹脂組成物(E)」ともいう。)を含浸させ、前駆体シートを作製する工程である。
ポリビニルピロリドンは、バインダ樹脂と相分離可能であり、しかも炭素化時に導電性物質としてほとんど残存しない樹脂である。また、ポリビニルピロリドンは相分離構造を形成した後、洗浄によって容易に除去できる。
樹脂組成物(E)の含浸方法は、第一の実施形態において説明した(A2)工程と同じである。
なお、樹脂組成物(E)に、炭素フィラーや炭素化後の残炭率が15質量%以下である樹脂からなる粒子を配合してもよい。
(E3)工程は、前記前駆体シート中のバインダ樹脂とポリビニルピロリドンとを相分離させる工程である。
バインダ樹脂とポリビニルピロリドンの相分離は、前駆体シートを静置または吸湿させればよく、こうすることで相分離構造を形成することができる。
例えば、バインダ樹脂とフェノール樹脂を用い、雰囲気を相対湿度90%、温度60℃で吸湿させた場合、好ましい相分離時間は5秒〜2分である。
バインダ樹脂とポリビニルピロリドンとの相分離構造のサイズは、静置時間、吸湿時間、吸湿量に依存する。前駆体シートに含浸させる際のバインダ樹脂とポリビニルピロリドンの混合溶液濃度、混合比、相分離時間、相分離時の雰囲気湿度等によって精密に制御できる。樹脂溶液濃度としては、含浸時の作業性の点で5〜40質量%とすることが好ましい。
(E4)工程は、(E3)工程後の前駆体シートを前記バインダ樹脂の貧溶媒に浸漬させて、前駆体シート中のバインダ樹脂を凝固させる工程である。
バインダ樹脂の貧溶媒としては、第四の実施形態において説明した(D3)工程で用いる貧溶媒と同じである。
バインダ樹脂とポリビニルピロリドンとの相分離構造のサイズは、凝固浴中での凝固速度にも依存するため、凝固浴組成や凝固浴温度によっても精密に制御できる。
(E5)工程は、(E4)工程後の前駆体シートから前記貧溶媒を除去する工程である。
貧溶媒の除去方法としては、加熱乾燥や真空乾燥などが挙げられる。
乾燥温度は、貧溶媒の沸点近傍であり、かつ樹脂硬化に影響しにくい温度域が好ましい。例えば、貧溶媒が水である場合、乾燥温度は80〜120℃が好ましい。
(E6)工程は、(E5)工程後の前駆体シートを加熱し、前駆体シート中のバインダ樹脂を硬化させる工程である。
前駆体シートを加熱する方法および条件は、第一の実施形態において説明した(A3)工程と同じである。
(E7)工程は、(E6)工程後の前駆体シートを炭素化し、カーボンペーパーを作製する工程である。
前駆体シートを炭素化する方法および条件は、第一の実施形態において説明した(A4)工程と同じである。
こうして得られたカーボンペーパーをRFB用電極として用いる。
本発明の第五の実施形態のRFB用電極の製造方法は、(E6)工程と(E7)工程との間に、前処理工程および酸化処理工程の少なくとも一方を有していてもよい。
前処理工程および酸化処理工程は、第一の実施形態において説明した前処理工程および酸化処理工程と同様である。
本発明の第六の実施形態のRFB用電極の製造方法は、以下の(F1)工程、(F2)工程、(F3)工程および(F4)工程を有する。
(F1)工程:PAN系炭素繊維と、炭素繊維以外の繊維からなり、濾水度が400〜900mLであるフィブリル状物とを用いて抄紙し、炭素繊維紙を作製する工程。
(F2)工程:(F1)工程で得られた炭素繊維紙に、炭素化後の残炭率が20質量%以上であるバインダ樹脂を含浸させ、前駆体シートを作製する工程。
(F3)工程:(F2)工程で得られた前駆体シートを加熱し、バインダ樹脂を硬化させる工程。
(F4)工程:(F3)工程後の前駆体シートを炭素化し、カーボンペーパーを作製する工程。
(F1)工程は、PAN系炭素繊維と、炭素繊維以外の繊維からなり、濾水度が400〜900mLであるフィブリル状物とを用いて抄紙し、炭素繊維紙を作製する工程である。
フィブリル状物は、炭素化により消失するが、フィブリル状物の周りに付着したバインダ樹脂が炭化物として残り、炭化物の網状構造形成に寄与する。
架橋構造を効率的に形成するという点からフィブリル状物を構成する繊維の表面自由エネルギーが、PAN系炭素繊維の表面自由エネルギーより大きいものが好ましい。フィブリル状物を構成する繊維の表面自由エネルギーがPAN系炭素繊維より大きいことで、バインダ樹脂が繊維に優先的に付着し、炭素化後、網状の架橋構造が形成されやすくなる。
なお、炭素繊維紙は、PAN系炭素繊維およびフィブリル状物とともに、非PAN系炭素繊維やバインダ短繊維を抄紙して作製してもよい。
(F2)工程は、(F1)工程で得られた炭素繊維紙に、炭素化後の残炭率が20質量%以上であるバインダ樹脂を含浸させ、前駆体シートを作製する工程である。
バインダ樹脂の含浸方法は、第一の実施形態において説明した(A2)工程と同じである。
なお、バインダ樹脂と炭素フィラーとを混合してバインダ樹脂組成物(以下、「樹脂組成物(F)」ともいう。)を炭素繊維紙に含浸させてもよい。また、樹脂組成物(F)に、炭素化後の残炭率が15質量%以下である樹脂からなる粒子を配合してもよい。
(F3)工程は、(F2)工程で得られた前駆体シートを加熱し、バインダ樹脂を硬化させる工程である。
前駆体シートを加熱する方法および条件は、第一の実施形態において説明した(A3)工程と同じである。
(F4)工程は、(F3)工程後の前駆体シートを炭素化し、カーボンペーパーを作製する工程である。
前駆体シートを炭素化する方法および条件は、第一の実施形態において説明した(A4)工程と同じである。
こうして得られたカーボンペーパーをRFB用電極として用いる。
本発明の第六の実施形態のRFB用電極の製造方法は、(F3)工程と(F4)工程との間に、前処理工程および酸化処理工程の少なくとも一方を有していてもよい。
前処理工程および酸化処理工程は、第一の実施形態において説明した前処理工程および酸化処理工程と同様である。
以上説明した本発明のRFB用電極の製造方法によれば、比表面積が0.5〜1.5m2/gであるカーボンペーパーを製造できる。本発明のRFB用電極の製造方法により得られるRFB用電極を用いれば、低コスト化および小型化を実現でき、短絡しにくく、電池性能に優れたRFBが得られる。
本発明のRFB用電極の製造方法は、上述した製造方法に限定されない。
例えば、第一の実施形態や第二の実施形態において、前駆体シート中のバインダ樹脂を硬化する前に、前駆体シートをバインダ樹脂の貧溶媒に浸漬させてバインダ樹脂を凝固させてもよい。また、第一の実施形態や第二の実施形態において、炭素繊維紙にバインダ樹脂を含浸させる際にポリビニルピロリドンも含浸させ、前駆体シート中のバインダ樹脂とポリビニルピロリドンとを相分離させた後、バインダ樹脂を凝固させてもよい。さらに、第一の実施形態や第二の実施形態において、PAN系炭素繊維とフィブリル状物とを用いて抄紙し、炭素繊維紙を作製してもよい。
図1は、本発明のRFBの一例を示す概略構成図である。
この例のRFB10は、水素イオンが透過する隔膜11により内部が正極室12aと負極室12bに分離された電解槽12と、正極室12aに設置された正極電極13aと、負極室12bに設置された負極電極13bと、正極電解液を貯留する正極タンク14aと、負極電解液を貯留する負極タンク14bとを備える。
負極室12bと負極タンク14bは接続配管15b、16bを介して接続され、負極電解液はポンプ17bにより負極タンク14bと負極室12bとの間で循環される。
正極電極13aおよび負極電極13bのいずれか一方が本発明のRFB用電極である場合、他方の電極としては公知の電極を用いることができる。
本実施形態のRFB10は、正極電極13aおよび負極電極13bの両方が、本発明のRFB用電極であることが好ましい。
正極電極13aおよび負極電極13b以外の構成は、従来のRFBと同じものを採用できる。
<厚さの測定>
カーボンペーパーの厚さは、厚み測定装置(株式会社ミツトヨ製、「ダイヤルシックネスゲージ7321」)を使用して測定した。測定子の大きさは直径10mmで、測定圧力は1.5kPaとした。
カーボンペーパーの比表面積は、水銀ポロシメーター(Quantachrome社製、「Pore Master−60」)を用い、水銀圧入法により測定した。
マッフル炉にてカーボンペーパーを600℃、30分間大気雰囲気中で加熱し、これを5cm四方にカットしたものを、アノード用とカソード用に2枚準備した。陽イオン交換膜(DuPont社製、「Nafion NRE−212」)を、アノード用、カソード用のカーボンペーパーで挟持し、さらにそれらを蛇行型の電解液流路を有する2枚のカーボンセパレーターによって挟み、単セルを形成した。
正極電解液および負極電解液としては硫酸バナジウム水溶液(バナジウムイオン濃度2M,硫酸イオン濃度4M)を用いた。25℃にて正極電解液および負極電解液を20mL/minで循環供給しながら、電流密度40mA/cm2における電圧を測定した。
PAN系炭素繊維(平均繊維径:7μm、平均繊維長:3mm)100質量部を水中に均一に分散して単繊維に解繊し、十分に分散したところに、バインダ短繊維としてポリビニルアルコール短繊維(株式会社クラレ製、「VBP105−1」、平均繊維長:3mm)40質量部、およびポリエチレンテレフタレート短繊維30質量部を均一に分散し、分散液を調製した。
次いで、標準角型シートマシン(熊谷理機工業株式会社製、「No.2555」)を用いてJIS P 8209法に準拠して手動により分散液を抄紙した後、乾燥させて、目付が40g/m2の炭素繊維紙を得た。炭素繊維の分散状態は良好であった。
別途、炭素化後の残炭率が15質量%以下の樹脂からなる粒子として、真球状のポリメタクリル酸メチル(PMMA)粒子(平均粒子径:233nm)を20質量%含む水分散液(PMMA粒子水分散液)を用意した。
先に得られた炭素繊維紙をPMMA粒子水分散液に含浸させ、室温にて8時間乾燥させることによって、目付が98g/m2であり、PMMA粒が付与された炭素繊維紙を得た。
次いで、PMMA粒が付与された炭素繊維紙をフェノール樹脂(DIC株式会社製、「フェノライトJ−325」)を13質量%含むメタノール溶液に含浸させ、熱風乾燥機にて80℃で1時間乾燥させることによって、目付が115g/m2であり、フェノール樹脂およびPMMA粒が付与された前駆体シートを得た。これは、PAN系炭素繊維100質量部に対し、フェノール樹脂を72質量部付着させたことになる。また、フェノール樹脂100質量部に対し、PMMA粒子を340質量部混合させたことになる。
次いで、得られた前駆体シートを2枚重ね合わせ、これを2枚のシリコーン系離型剤をコートした紙に挟んだ後、バッチプレス装置で180℃、30kPaの条件下で3分間加熱加圧した。
次いで、加熱加圧した前駆体シートをバッチ炭素化炉にて、窒素ガス雰囲気中、2000℃の条件下で1時間炭素化し、厚さ220μmのカーボンペーパーを得た。
得られたカーボンペーパーについて、比表面積を求めた。結果を表1に示す。また、得られたカーボンペーパーの表面を走査型電子顕微鏡により観察したところ、分散したPAN系炭素繊維同士が炭素化したフェノール樹脂により結着していた。また、PMMA粒子は消失しており、この消失したPMMA粒子の平均粒子径に依存した大きさの空隙が形成されていた。
炭素繊維として、平均繊維長6mmにカットしたPAN系炭素繊維(三菱レイヨン株式会社製、「TR50S」、平均繊維径:7μm)20質量部と平均繊維長6mmにカットした非PAN系炭素繊維(三菱レイヨン株式会社製、「K223SE」)80質量部を用いた以外は、実施例1と同様にして厚さ200μmのカーボンペーパーを作製し、比表面積を求めた。
また、得られたカーボンペーパーを用いた以外は、実施例1と同様にしてRFBを製造し、電池性能を評価した。結果を表1に示す。
PMMA粒子水分散液の代わりに、炭素フィラーとして熱分解黒鉛(伊藤黒鉛工業株式会社製、「PC−H」)を20質量%含む水分散液を用いた以外は、実施例1と同様にして厚さ195μmのカーボンペーパーを作製し、比表面積を求めた。結果を表1に示す。
また、得られたカーボンペーパーを用いた以外は、実施例1と同様にしてRFBを製造し、電池性能を評価した。結果を表1に示す。
PAN系炭素繊維(平均繊維径:7μm、平均繊維長:3mm)100質量部を湿式短網連続抄紙装置のスラリータンクで水中に均一に分散解繊し、十分に分散したところに、バインダ短繊維としてポリビニルアルコール短繊維(株式会社クラレ製、「VBP105−1」、平均繊維長:3mm)20質量部、およびフィブリル状物としてポリエチレンパルプ(三井化学株式会社製、「SWP」、濾水度:450mL(JIS P 8121のパルプ濾水度試験法(1)カナダ標準型で測定))100質量部を均一に分散し、送り出した。
送り出されたウェブを短網板に通し、ドライヤー乾燥後、目付40g/m2、長さ100mの炭素繊維紙を得た。
得られた炭素繊維紙をフェノール樹脂(DIC株式会社製、「フェノライトJ−325」)を13質量%含むメタノール溶液に含浸させ、熱風乾燥炉にて120℃で10分乾燥させることによって、目付が58g/m2であり、フェノール樹脂が付与された前駆体シートを得た。これは、PAN系炭素繊維100質量部に対し、フェノール樹脂を100質量部付着させたことになる。
次いで、得られた前駆体シートを2枚貼り合せて一対のエンドレスベルトを備えた連続式加熱プレス装置(ダブルベルトプレス装置:DBP)にて連続的に加熱し、表面が平滑化されたシート(幅:30cm、長さ:100m)を得た。このときの予熱ゾーンでの予熱温度は150℃、予熱時間は5分であり、加熱加圧ゾーンでの温度は250℃、プレス圧力は線圧8.0×104N/mであった。なお、シートがベルトに貼り付かないように2枚の離型紙の間に挟んでDBPを通した。
次いで、このシートを窒素ガス雰囲気中、500℃の連続焼成炉にて5分間フェノール樹脂の硬化処理および前炭素化した後、窒素ガス雰囲気中、2000℃の連続焼成炉において5分間加熱し、炭素化することで厚さ200μmのカーボンペーパーを得た。
得られたカーボンペーパーについて、比表面積を求めた。結果を表1に示す。
また、得られたカーボンペーパーを用いた以外は、実施例1と同様にしてRFBを製造し、電池性能を評価した。結果を表1に示す。
炭素繊維紙をPMMA粒子水分散液に含浸させなかった以外は、実施例1と同様にして厚さ190μmのカーボンペーパーを作製し、比表面積を求めた。結果を表1に示す。
また、得られたカーボンペーパーを用いた以外は、実施例1と同様にしてRFBを製造し、電池性能を評価した。結果を表1に示す。
一方、比表面積が0.5m2/g未満であるカーボンペーパーをRFB用電極として用いた比較例1のRFBは、各実施例のRFBに比べて電池性能に劣っていた。
11 隔膜
12 電解槽
12a 正極室
12b 負極室
13a 正極電極
13b 負極電極
14a 正極タンク
14b 負極タンク
15a 接続配管
15b 接続配管
16a 接続配管
16b 接続配管
17a ポンプ
17b ポンプ
Claims (7)
- ポリアクリロニトリル系炭素繊維とバインダ樹脂の炭化物とを含むカーボンペーパーからなり、水銀圧入法により測定される比表面積が0.5〜1.5m2/gである、レドックスフロー電池用電極。
- 前記カーボンペーパーは水銀圧入法により測定される細孔分布において少なくとも2つのピークを有する、請求項1に記載のレドックスフロー電池用電極。
- 前記カーボンペーパーは炭素フィラーをさらに含む、請求項1または2に記載のレドックスフロー電池用電極。
- 前記炭素フィラーが黒鉛である、請求項3に記載のレドックスフロー電池用電極。
- 前記カーボンペーパーはポリアクリロニトリル系炭素繊維以外の炭素繊維をさらに含む、請求項1〜4のいずれか一項に記載のレドックスフロー電池用電極。
- 請求項1〜5のいずれか一項に記載のレドックスフロー電池用電極の製造方法であって、 ポリアクリロニトリル系炭素繊維と、炭素繊維以外の繊維からなるフィブリル状物とを含む炭素繊維紙を用いて前記カーボンペーパーを製造する、レドックスフロー電池用電極の製造方法。
- 請求項1〜5のいずれか一項に記載のレドックスフロー電池用電極を備えた、レドックスフロー電池。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021044533A JP7136252B2 (ja) | 2017-03-01 | 2021-03-18 | レドックスフロー電池用電極、およびレドックスフロー電池 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017038549A JP6855843B2 (ja) | 2017-03-01 | 2017-03-01 | レドックスフロー電池用電極とその製造方法、およびレドックスフロー電池 |
JP2021044533A JP7136252B2 (ja) | 2017-03-01 | 2021-03-18 | レドックスフロー電池用電極、およびレドックスフロー電池 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017038549A Division JP6855843B2 (ja) | 2017-03-01 | 2017-03-01 | レドックスフロー電池用電極とその製造方法、およびレドックスフロー電池 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2021100004A true JP2021100004A (ja) | 2021-07-01 |
JP7136252B2 JP7136252B2 (ja) | 2022-09-13 |
Family
ID=63592258
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017038549A Active JP6855843B2 (ja) | 2017-03-01 | 2017-03-01 | レドックスフロー電池用電極とその製造方法、およびレドックスフロー電池 |
JP2021044533A Active JP7136252B2 (ja) | 2017-03-01 | 2021-03-18 | レドックスフロー電池用電極、およびレドックスフロー電池 |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017038549A Active JP6855843B2 (ja) | 2017-03-01 | 2017-03-01 | レドックスフロー電池用電極とその製造方法、およびレドックスフロー電池 |
Country Status (1)
Country | Link |
---|---|
JP (2) | JP6855843B2 (ja) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6855843B2 (ja) * | 2017-03-01 | 2021-04-07 | 三菱ケミカル株式会社 | レドックスフロー電池用電極とその製造方法、およびレドックスフロー電池 |
CN113544887A (zh) * | 2019-03-13 | 2021-10-22 | 东洋纺株式会社 | 氧化还原液流电池用碳电极材料及具备其的氧化还原液流电池 |
CN110994000B (zh) * | 2019-12-18 | 2021-06-29 | 中盐金坛盐化有限责任公司 | 钙钛矿修饰的碳素电极的应用以及有机水相液流电池 |
JP2023513820A (ja) * | 2020-02-14 | 2023-04-03 | マサチューセッツ インスティテュート オブ テクノロジー | 相反転を用いて多孔質電極を製造する方法、およびそれから得られる装置 |
CN113258081B (zh) * | 2021-06-15 | 2021-11-19 | 长沙理工大学 | 一种液流电池用改性电极及其制备方法和液流电池 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0992321A (ja) * | 1995-09-27 | 1997-04-04 | Kashimakita Kyodo Hatsuden Kk | レドックス電池 |
JPH09324390A (ja) * | 1996-06-07 | 1997-12-16 | Toray Ind Inc | 炭素繊維紙および多孔質炭素板 |
JP2004031326A (ja) * | 2002-04-12 | 2004-01-29 | Sgl Carbon Ag | 電気化学的電池用の炭素繊維電極基板 |
JP2006265093A (ja) * | 2005-02-28 | 2006-10-05 | Toray Ind Inc | 炭化シートの製造方法 |
JP2016532274A (ja) * | 2013-09-06 | 2016-10-13 | エスジーエル・カーボン・エスイー | 炭素繊維製電極基体 |
JP2018147595A (ja) * | 2017-03-01 | 2018-09-20 | 三菱ケミカル株式会社 | レドックスフロー電池用電極とその製造方法、およびレドックスフロー電池 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS632261A (ja) * | 1986-06-21 | 1988-01-07 | Toho Rayon Co Ltd | レドツクスフロ−型2次電池用電極材 |
JP3555303B2 (ja) * | 1996-03-04 | 2004-08-18 | 住友電気工業株式会社 | レドックス電池 |
JP2001057217A (ja) * | 1999-06-07 | 2001-02-27 | Matsushita Electric Ind Co Ltd | 高分子電解質型燃料電池 |
WO2001056103A1 (fr) * | 2000-01-27 | 2001-08-02 | Mitsubishi Rayon Co., Ltd. | Materiau d'electrode a base de carbone poreux, son procede de fabrication, et papier a fibres de carbone |
JP4389535B2 (ja) * | 2003-09-26 | 2009-12-24 | 東レ株式会社 | 多孔質炭素基材ならびに該基材を用いてなるガス拡散体、膜−電極接合体および燃料電池 |
JP5055682B2 (ja) * | 2003-03-27 | 2012-10-24 | 東レ株式会社 | 多孔質炭素板およびその製造方法 |
JP5322213B2 (ja) * | 2008-10-17 | 2013-10-23 | 三菱レイヨン株式会社 | 多孔質電極基材、その製造方法、膜−電極接合体、および固体高分子型燃料電池 |
JP2011009129A (ja) * | 2009-06-29 | 2011-01-13 | Panasonic Corp | 触媒ナノ粒子を分散した触媒電極 |
JP5987484B2 (ja) * | 2011-06-09 | 2016-09-07 | 東レ株式会社 | ガス拡散電極基材およびその製造方法 |
DE102015212234A1 (de) * | 2015-06-30 | 2017-01-26 | Sgl Carbon Se | Verfahren zur Herstellung von Kohlenstofffilzelektroden für Redox Flow Batterien |
-
2017
- 2017-03-01 JP JP2017038549A patent/JP6855843B2/ja active Active
-
2021
- 2021-03-18 JP JP2021044533A patent/JP7136252B2/ja active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0992321A (ja) * | 1995-09-27 | 1997-04-04 | Kashimakita Kyodo Hatsuden Kk | レドックス電池 |
JPH09324390A (ja) * | 1996-06-07 | 1997-12-16 | Toray Ind Inc | 炭素繊維紙および多孔質炭素板 |
JP2004031326A (ja) * | 2002-04-12 | 2004-01-29 | Sgl Carbon Ag | 電気化学的電池用の炭素繊維電極基板 |
JP2006265093A (ja) * | 2005-02-28 | 2006-10-05 | Toray Ind Inc | 炭化シートの製造方法 |
JP2016532274A (ja) * | 2013-09-06 | 2016-10-13 | エスジーエル・カーボン・エスイー | 炭素繊維製電極基体 |
JP2018147595A (ja) * | 2017-03-01 | 2018-09-20 | 三菱ケミカル株式会社 | レドックスフロー電池用電極とその製造方法、およびレドックスフロー電池 |
Also Published As
Publication number | Publication date |
---|---|
JP7136252B2 (ja) | 2022-09-13 |
JP6855843B2 (ja) | 2021-04-07 |
JP2018147595A (ja) | 2018-09-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7136252B2 (ja) | レドックスフロー電池用電極、およびレドックスフロー電池 | |
JP5844760B2 (ja) | 多孔質電極基材 | |
JP5702218B2 (ja) | 固体高分子型燃料電池用の多孔質電極基材 | |
KR102339301B1 (ko) | 다공질 기재, 다공질 전극, 탄소 섬유지, 탄소 섬유지의 제조 방법, 다공질 기재의 제조 방법 | |
CA2965802C (en) | Porous electrode substrate, membrane-electrode assembly using same, and polymer electrolyte fuel cell using same | |
JP2009283259A (ja) | 多孔質炭素電極基材 | |
JP2018018665A (ja) | ガス拡散層基材及びその製造方法 | |
WO2005124907A1 (ja) | 多孔質電極基材およびその製造方法 | |
JP2006040886A (ja) | 多孔質電極基材およびその製造方法 | |
JP6750192B2 (ja) | 固体高分子形燃料電池用ガス拡散層 | |
JP2004235134A (ja) | 固体高分子型燃料電池用多孔質電極基材及びその製造方法 | |
JP4187683B2 (ja) | 燃料電池用多孔質炭素電極基材 | |
JP4409211B2 (ja) | 固体高分子型燃料電池用多孔質電極基材の製造方法 | |
JP6288263B2 (ja) | 多孔質電極基材、膜−電極接合体及び固体高分子型燃料電池 | |
JP4730888B2 (ja) | 多孔質電極基材およびその製造方法 | |
JP6183065B2 (ja) | 多孔質炭素電極とその製造方法 | |
JP5590419B2 (ja) | 多孔質電極基材前駆体シートの製造方法、多孔質電極基材の製造方法、多孔質電極基材、膜−電極接合体、および固体高分子型燃料電池 | |
JP2006004858A (ja) | 多孔質電極基材およびその製造方法 | |
JP2018014275A (ja) | 多孔質電極基材 | |
JP2006004858A5 (ja) | ||
JP2010031419A (ja) | 炭素質電極基材の製造方法 | |
JP6212966B2 (ja) | 多孔質炭素電極 | |
JP2018055969A (ja) | 多孔質電極基材およびその製造方法 | |
JP2010182682A (ja) | 多孔質電極基材の製造方法 | |
JP6115756B2 (ja) | 多孔質電極基材前駆体シート、その製造方法、多孔質電極基材、膜−電極接合体、および固体高分子型燃料電池 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210413 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20210413 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220510 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220708 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20220802 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20220815 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 7136252 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |