JP2021001382A - Cathode unit for magnetron sputtering apparatus - Google Patents

Cathode unit for magnetron sputtering apparatus Download PDF

Info

Publication number
JP2021001382A
JP2021001382A JP2019116781A JP2019116781A JP2021001382A JP 2021001382 A JP2021001382 A JP 2021001382A JP 2019116781 A JP2019116781 A JP 2019116781A JP 2019116781 A JP2019116781 A JP 2019116781A JP 2021001382 A JP2021001382 A JP 2021001382A
Authority
JP
Japan
Prior art keywords
magnet
target
sputtering apparatus
unit
electrons
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019116781A
Other languages
Japanese (ja)
Inventor
太平 水野
Taihei Mizuno
太平 水野
裕夫 大久保
Hiroo Okubo
裕夫 大久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2019116781A priority Critical patent/JP2021001382A/en
Publication of JP2021001382A publication Critical patent/JP2021001382A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

To provide a simply-structured cathode unit for a magnetron sputtering apparatus capable of suppressing an emission of an electron accompanied by an inertia movement of the electron as quickly as possible.SOLUTION: A magnet unit 5 is arranged in a backside of a sputtering surface 41 of a target 4 arranged in a vacuum chamber 1, and has a center magnet 52 and a peripheral magnet 53 of which polarities are different in a target side. A cathode unit Cu generates a stray magnetic field Mf such that a line passing a position in which a perpendicular component of a magnetic field in front of the sputtering surface is zero is closed in a race-track shape. When the cathode unit is installed in the vacuum chamber and a race-track shaped plasma is generated in front of the sputtering surface, a first corner part C1 is a position where an electron in the plasma moving along the plasm clockwise or counterclockwise changes a direction in an electromagnetic field, and a second corner part C2 is a position where the electron changes the direction at a second time, meander means 6 to meander the electron before reaching the first corner is further provided.SELECTED DRAWING: Figure 2

Description

本発明は、マグネトロンスパッタリング装置用のカソードユニットに関する。 The present invention relates to a cathode unit for a magnetron sputtering apparatus.

この種のマグネトロンスパッタリング装置用のカソードユニットは例えば特許文献1で知られている。このものは、真空チャンバ内に設置されるターゲットのスパッタ面と背向する側に配置される磁石ユニットを備える。磁石ユニットは、例えば平面視矩形のターゲットと平行に配置される支持板(ヨーク)を備え、その中央には中央磁石が線状に配置され、この中央磁石の周囲を間隔を存して囲うようにして支持板の外周縁部には周辺磁石が中央磁石とターゲット側の極性を変えて配置されている。中央磁石の同磁化に換算したときの体積は、周辺磁石の同磁化に換算したときの体積の和と同等に設定され、中央磁石の長手方向に沿ってのびてレーストラック状に閉じるようにターゲットのスパッタ面前方に漏洩磁場が作用するようにしている。 A cathode unit for this type of magnetron sputtering apparatus is known, for example, in Patent Document 1. It comprises a magnet unit located on the back side of the sputtered surface of the target installed in the vacuum chamber. The magnet unit includes, for example, a support plate (yoke) arranged in parallel with a target having a rectangular shape in a plan view, and a central magnet is linearly arranged in the center thereof so as to surround the central magnet with a gap. Peripheral magnets are arranged on the outer peripheral edge of the support plate with different polarities on the target side and the central magnet. The volume when converted to the same magnetization of the central magnet is set to be equivalent to the sum of the volumes when converted to the same magnetization of the peripheral magnets, and the target extends along the longitudinal direction of the central magnet and closes like a race track. The leakage magnetic field acts in front of the sputtered surface.

上記カソードユニットをスパッタリング装置の真空チャンバに取り付け、基板が設置されている真空雰囲気の真空チャンバ内にアルゴンガス等のスパッタガスを導入し、ターゲットに所定電力を投入すると、磁石ユニットによりスパッタ面の前方にレーストラック状のプラズマが発生する。プラズマ中の電子は、中央磁石と周辺磁石とのターゲット側の極性に応じて、レーストラックに沿って時計周り又は反時計周りに運動している。このとき、ターゲットの長手方向両端側では電子が電磁場によって曲げられて2回向きを変えるが、2回目に向きを変える際に、1回目に向きを変えたときの電子の加速に伴う電子の惰性的な運動が残り、ターゲットの短手方向先端側に電子が飛び出すことが一般に知られている。このような惰性的な運動による電子の飛び出しは、放電を不安定にする等の不具合を招来するため、これを可及的に抑制する必要がある。 When the cathode unit is attached to the vacuum chamber of the sputtering apparatus, sputter gas such as argon gas is introduced into the vacuum chamber in the vacuum atmosphere where the substrate is installed, and a predetermined power is applied to the target, the magnet unit moves forward of the sputter surface. A racetrack-like vacuum is generated in. The electrons in the plasma are moving clockwise or counterclockwise along the race track, depending on the polarity of the central magnet and the peripheral magnet on the target side. At this time, the electrons are bent by the electromagnetic field on both ends in the longitudinal direction of the target and change their directions twice. However, when the second change of direction, the inertia of the electrons due to the acceleration of the electrons when the direction is changed the first time. It is generally known that an electron is ejected to the tip side in the lateral direction of the target while the motion remains. The ejection of electrons due to such inertial motion causes problems such as unstable discharge, and it is necessary to suppress this as much as possible.

上記従来例のものでは、磁石ユニットを長手方向中央部分とその両側の分割部分とに分割し、固定の中央部分に対する両分割部分の位置を変更することで、惰性的な運動に伴う電子の飛び出しを防止している。然し、このような構成を採用すると、磁石ユニット自体の構造が複雑化すると共に、製作コスト高を招くという問題が生じる。 In the above conventional example, the magnet unit is divided into a central portion in the longitudinal direction and divided portions on both sides thereof, and the positions of both divided portions are changed with respect to the fixed central portion, so that electrons are ejected due to inertial motion. Is being prevented. However, if such a configuration is adopted, there arises a problem that the structure of the magnet unit itself becomes complicated and the manufacturing cost increases.

特開2007−154291号公報JP-A-2007-154291

本発明は、以上の点に鑑み、電子の惰性的な運動に伴う電子の飛び出しを可及的に抑制できるようにした簡単な構造のマグネトロンスパッタリング装置用のカソードユニットを提供することをその課題とするものである。 In view of the above points, it is an object of the present invention to provide a cathode unit for a magnetron sputtering apparatus having a simple structure capable of suppressing the ejection of electrons due to the inertial movement of electrons as much as possible. To do.

上記課題を解決するために、真空チャンバ内に設置されるターゲットのスパッタ面と背向する側に配置されて、ターゲットのスパッタ面側に漏洩磁場を作用させる磁石ユニットを備え、磁石ユニットが、線状の中央磁石と、この中央磁石の周囲を間隔を存して囲う周辺磁石とをターゲット側の極性を変えて有して、スパッタ面の前方に、磁場の垂直成分がゼロとなる位置を通る線が中央磁石の長手方向に沿ってのびてレーストラック状に閉じるように漏洩磁場を作用させる本発明のマグネトロンスパッタリング装置用のカソードユニットは、上記カソードユニットをスパッタリング装置の真空チャンバに取り付け、真空雰囲気の真空チャンバ内に希ガスを含むスパッタガスを導入し、ターゲットに所定電力を投入してスパッタ面の前方にレーストラック状のプラズマを発生させた場合に、これに沿って時計周りまたは反時計周りに運動しているプラズマ中の電子が電磁場で向きを変える位置を第1コーナー部、次に向きを変える位置を第2コーナー部とし、第1コーナー部に到達する前に、電子を蛇行させる蛇行手段を更に備えることを特徴とする。この場合、前記蛇行手段は、ターゲット側に位置する中央磁石上面の所定位置に、ターゲット側の極性を一致させて配置した第1磁石片と、ターゲット側に位置する周辺磁石上面の所定位置に、ターゲット側の極性を一致させて配置した第2磁石片とを備え、第1磁石片と第2磁石片とが長手方向で互いにオフセットされている構成を採用すればよい。 In order to solve the above problem, a magnet unit is provided on the side facing the sputter surface of the target installed in the vacuum chamber and applying a leakage magnetic field on the sputter surface side of the target, and the magnet unit is a wire. A central magnet in the shape of a shape and a peripheral magnet that surrounds the central magnet at intervals are provided with different polarities on the target side, and pass through a position in front of the sputtering surface where the vertical component of the magnetic field becomes zero. In the cathode unit for the magnetron sputtering apparatus of the present invention in which a leakage magnetic field is applied so that a wire extends along the longitudinal direction of the central magnet and closes in a racetrack shape, the cathode unit is attached to the vacuum chamber of the sputtering apparatus to create a vacuum atmosphere. When a sputter gas containing a rare gas is introduced into the vacuum chamber of the above and a predetermined power is applied to the target to generate a racetrack-like plasma in front of the sputter surface, clockwise or counterclockwise along this. The position where the electrons in the plasma moving in the direction change in the electromagnetic field is the first corner part, the position where the electrons change direction next is the second corner part, and the electrons meander before reaching the first corner part. It is characterized by further providing means. In this case, the meandering means is provided at a predetermined position on the upper surface of the central magnet located on the target side, at a predetermined position on the upper surface of the peripheral magnet located on the target side, and a first magnet piece arranged with the same polarity on the target side. A configuration may be adopted in which a second magnet piece arranged so that the polarities on the target side are matched is provided, and the first magnet piece and the second magnet piece are offset from each other in the longitudinal direction.

本発明によれば、中央磁石と周辺磁石とに、蛇行手段としての第1磁石片と第2磁石片とを長手方向で互いにオフセットさせて配置、言い換えると、中央磁石とこれに平行な周辺磁石の部分とに長手方向で千鳥状に第1磁石片と第2磁石片とを夫々設けて、長手方向にて中央磁石側に磁場強度の強い箇所と周辺磁石側の磁場強度の強い箇所とを交互につくることで、このような第1磁石片と第2磁石片とが存する区間を運動する電子が、中央磁石側と周辺磁石側とに交互に反発するように蛇行しながら運動するようになる。これにより、第1コーナー部で向きを変えたときの電子の加速が抑制され、電子の惰性的な運動に伴う、ターゲット端からの電子の飛び出しが可及的に抑制される。この場合、上記従来例のように磁石ユニットを長手方向中央部分とその両側の分割部分とに分割するといったことは不要にできる一方で、既存の磁石ユニットに磁石片を設置するといった極めて簡単な構成で、ターゲット端からの電子の飛び出しが可及的に抑制できる。 According to the present invention, the first magnet piece and the second magnet piece as meandering means are arranged offset from each other in the longitudinal direction on the central magnet and the peripheral magnet, in other words, the central magnet and the peripheral magnet parallel thereto are arranged. The first magnet piece and the second magnet piece are provided in a staggered manner in the longitudinal direction, respectively, and a portion having a strong magnetic field strength on the central magnet side and a portion having a strong magnetic field strength on the peripheral magnet side in the longitudinal direction are provided. By making them alternately, the electrons moving in the section where the first magnet piece and the second magnet piece exist so as to move while meandering so as to alternately repel the central magnet side and the peripheral magnet side. Become. As a result, the acceleration of the electrons when the direction is changed at the first corner portion is suppressed, and the ejection of electrons from the target end due to the inertial movement of the electrons is suppressed as much as possible. In this case, it is not necessary to divide the magnet unit into the central portion in the longitudinal direction and the divided portions on both sides as in the conventional example, but it is an extremely simple configuration in which the magnet piece is installed in the existing magnet unit. Therefore, the ejection of electrons from the target end can be suppressed as much as possible.

ところで、中央磁石と周辺磁石に局所的に第1磁石片と第2磁石片とを配置すると、プラズマ中の電子密度が局所的に高くなり、基板面内の膜厚分布が却って悪化する虞がある。そこで、本発明においては、前記中央磁石にその全長に亘って所定間隔で第1磁石片が配置されると共に、中央磁石の長さに一致する周辺磁石の部分にその全長に亘って所定間隔で第2磁石片が配置されることが好ましい。これによれば、プラズマ中の電子密度を均一にできるため、基板面内で膜厚分布良く成膜でき、有利である。 By the way, if the first magnet piece and the second magnet piece are locally arranged on the central magnet and the peripheral magnet, the electron density in the plasma becomes locally high, and the film thickness distribution in the substrate surface may be deteriorated. is there. Therefore, in the present invention, the first magnet pieces are arranged at predetermined intervals over the entire length of the central magnet, and at predetermined intervals over the entire length of the peripheral magnets that match the length of the central magnet. It is preferable that the second magnet piece is arranged. According to this, since the electron density in the plasma can be made uniform, it is possible to form a film with a good film thickness distribution in the substrate surface, which is advantageous.

本発明の実施形態のマグネトロンスパッタリング装置用のカソードユニットが組み込まれたスパッタリング装置を示す模式図。The schematic diagram which shows the sputtering apparatus which incorporated the cathode unit for the magnetron sputtering apparatus of embodiment of this invention. 図1に示した蛇行手段6を示す模式的平面図。The schematic plan view which shows the meandering means 6 shown in FIG. 変形例に係る蛇行手段60Aを示す模式的平面図。The schematic plan view which shows the meandering means 60A which concerns on the modification. 変形例に係る蛇行手段60Bを示す模式的平面図。The schematic plan view which shows the meandering means 60B which concerns on a modification. 変形例に係る蛇行手段70Aを示す模式的平面図。The schematic plan view which shows the meandering means 70A which concerns on the modification. 変形例に係る蛇行手段70Bを示す模式的平面図。The schematic plan view which shows the meandering means 70B which concerns on a modification.

以下、図面を参照して、本発明の実施形態のマグネトロンスパッタリング装置用のカソードユニットを備えるスパッタリング装置について説明する。 Hereinafter, a sputtering apparatus including a cathode unit for the magnetron sputtering apparatus according to the embodiment of the present invention will be described with reference to the drawings.

図1及び図2を参照して、SMは、スパッタリング装置であり、スパッタリング装置SMは、成膜室10を画成する真空チャンバ1を備える。以下において、上、下といった方向を示す用語は、スパッタリング装置SMの設置姿勢である図1を基準にする。 With reference to FIGS. 1 and 2, the SM is a sputtering apparatus, and the sputtering apparatus SM includes a vacuum chamber 1 defining a film forming chamber 10. In the following, the terms indicating the directions such as up and down are based on FIG. 1, which is the installation posture of the sputtering apparatus SM.

真空チャンバ1には、特に図示して説明しないが、排気管を介して真空ポンプが接続され、成膜室10を所定圧力(例えば1×10−5Pa)に真空排気できるようになっている。また、真空チャンバ1の上部には、基板搬送装置2が設けられている。基板搬送装置2は、成膜面としての下面を開放した状態で基板Swを保持するキャリア21を有し、図外の駆動装置によってキャリア21ひいては基板Swを後述するターゲット4と対向する位置に搬送できるようになっている。基板搬送装置2としては公知のものが利用できるため、これ以上の説明は省略する。 Although not particularly illustrated, a vacuum pump is connected to the vacuum chamber 1 via an exhaust pipe so that the film forming chamber 10 can be evacuated to a predetermined pressure (for example, 1 × 10-5 Pa). .. A substrate transfer device 2 is provided above the vacuum chamber 1. The substrate transfer device 2 has a carrier 21 that holds the substrate Sw in a state where the lower surface as a film forming surface is open, and conveys the carrier 21 and thus the substrate Sw to a position facing the target 4, which will be described later, by a drive device (not shown). You can do it. Since a known substrate transfer device 2 can be used, further description thereof will be omitted.

真空チャンバ1にはガス導入手段3が設けられている。ガス導入手段3は、マスフローコントローラ31を介設したガス管32を通じてガス源33に連通し、成膜室10にスパッタガスを所定流量で導入できるようになっている。スパッタガスとしては、プラズマ雰囲気を形成するためのアルゴンガス等の希ガスだけでなく、反応性スパッタリングの際に用いられる酸素ガスや窒素ガス等の反応性ガスが含まれる。 The vacuum chamber 1 is provided with gas introduction means 3. The gas introducing means 3 communicates with the gas source 33 through the gas pipe 32 provided with the mass flow controller 31, so that the sputter gas can be introduced into the film forming chamber 10 at a predetermined flow rate. The sputtering gas includes not only a rare gas such as argon gas for forming a plasma atmosphere, but also a reactive gas such as oxygen gas and nitrogen gas used in reactive sputtering.

真空チャンバ1の下部には、本発明のマグネトロンスパッタリング装置用のカソードユニットCuが設けられている。カソードユニットCuは、成膜室10を臨むように設けた略直方体(矩形の輪郭)のターゲット4と、ターゲット4の下方(スパッタ面41と反対側)に設けられる磁石ユニット5とを有する。ターゲット4は、Al合金、銅、MoやITO等、基板Swの成膜面(下面)に成膜しようとする薄膜の組成に応じて作製され、ターゲット4のスパッタ面41の面積が基板Swの外形寸法より大きく設定されている。ターゲット4はまた、スパッタリング中、ターゲット4を冷却するバッキングプレート42にインジウムやスズなどのボンディング材を介して接合された状態で、スパッタ面41が基板Swと対向するように絶縁体43を介して真空チャンバ1の下壁に装着される。ターゲット4にはスパッタ電源Eからの出力が接続され、ターゲット4に負の電位を持つ直流電力や交流電力(高周波電力)を投入できるようになっている。 A cathode unit Cu for the magnetron sputtering apparatus of the present invention is provided in the lower part of the vacuum chamber 1. The cathode unit Cu has a substantially rectangular parallelepiped (rectangular contour) target 4 provided so as to face the film forming chamber 10 and a magnet unit 5 provided below the target 4 (opposite the sputtering surface 41). The target 4 is manufactured according to the composition of a thin film to be formed on the film-forming surface (lower surface) of the substrate Sw, such as Al alloy, copper, Mo or ITO, and the area of the sputtered surface 41 of the target 4 is the substrate Sw. It is set larger than the external dimensions. The target 4 is also bonded to the backing plate 42 that cools the target 4 via a bonding material such as indium or tin during sputtering, and the sputter surface 41 faces the substrate Sw through an insulator 43. It is mounted on the lower wall of the vacuum chamber 1. The output from the sputter power source E is connected to the target 4, so that DC power or AC power (high frequency power) having a negative potential can be input to the target 4.

磁石ユニット5は、ターゲット4と平行に配置される磁性材料製の平板からなる支持板(ヨーク)51と、この支持板51上の中央に例えばターゲット側の極性がSとなるように設けられる線状の中央磁石52と、この中央磁石52の周囲を間隔を存して囲うように、ターゲット側の極性を変えて(ターゲット側の極性がNとなるように)支持板51の外周縁部に沿って設けられる環状の周辺磁石53とを備える。この場合、中央磁石52の同磁化に換算したときの体積は、周辺磁石53の同磁化に換算したときの体積の和(周辺磁石:中心磁石:周辺磁石=1:2:1)と同等に設定されて、ターゲット4の上方(スパッタ面41側)に、漏洩磁場Mfの垂直成分がゼロとなる位置を通る線がレーストラック状に閉じる閉ループの漏洩磁場Mfが作用するようにしている。そして、上記スパッタリング装置SMにより基板Sw表面に成膜する場合には、基板Swをターゲット4と対向する位置(成膜位置)に搬送し、ガス導入手段3により成膜室10内にスパッタガスを所定流量で導入し、ターゲット4に所定電力を投入する。すると、磁石ユニット5によりターゲット4のスパッタ面41上方にレーストラック状のプラズマが発生し、プラズマ中の希ガスのイオンによりターゲット4がスパッタリングされ、ターゲット4から飛散したスパッタ粒子が基板Sw表面に付着、堆積することで、基板Sw表面に薄膜が成膜される。 The magnet unit 5 has a support plate (yoke) 51 made of a flat plate made of a magnetic material arranged in parallel with the target 4, and a wire provided at the center of the support plate 51 so that the polarity on the target side is S, for example. On the outer peripheral edge of the support plate 51, the polarity on the target side is changed (so that the polarity on the target side is N) so as to surround the central magnet 52 and the center magnet 52 with a gap. It is provided with an annular peripheral magnet 53 provided along the line. In this case, the volume when converted to the same magnetization of the central magnet 52 is equivalent to the sum of the volumes when converted to the same magnetization of the peripheral magnet 53 (peripheral magnet: central magnet: peripheral magnet = 1: 2: 1). It is set so that a closed-loop leakage magnetic field Mf in which a line passing through a position where the vertical component of the leakage magnetic field Mf becomes zero acts like a racetrack above the target 4 (spatter surface 41 side). Then, when a film is formed on the surface of the substrate Sw by the sputtering apparatus SM, the substrate Sw is conveyed to a position facing the target 4 (deposition position), and the sputtering gas is introduced into the film forming chamber 10 by the gas introducing means 3. It is introduced at a predetermined flow rate, and a predetermined power is applied to the target 4. Then, a racetrack-shaped plasma is generated above the sputtered surface 41 of the target 4 by the magnet unit 5, the target 4 is sputtered by the ions of the rare gas in the plasma, and the sputtered particles scattered from the target 4 adhere to the surface of the substrate Sw. By depositing, a thin film is formed on the surface of the substrate Sw.

ここで、上記のようにしてプラズマを発生させたとき、図2に二点鎖線で示すように、プラズマ中の電子がレーストラックに沿って反時計周りに運動する。そして、ターゲット4の長手方向両端側では、第1コーナー部C1と第2コーナー部C2で電子が電磁場によって曲げられて2回向きを変えるが、このとき、第2コーナー部C2で2回目に向きを変える際に、第1コーナー部C1で1回目に向きを変えたときの電子の加速に伴う電子の惰性的な運動が残って、ターゲット4の幅方向先端側に電子が飛び出してしまう。 Here, when the plasma is generated as described above, the electrons in the plasma move counterclockwise along the race track as shown by the alternate long and short dash line in FIG. Then, on both ends in the longitudinal direction of the target 4, the electrons are bent by the electromagnetic field at the first corner portion C1 and the second corner portion C2 to change the direction twice. At this time, the second corner portion C2 faces the second time. When changing the direction, the inertial motion of the electrons due to the acceleration of the electrons when the direction is changed for the first time at the first corner portion C1 remains, and the electrons jump out to the tip side in the width direction of the target 4.

本実施形態では、中央磁石52上面にターゲット側の極性を一致させて配置される単一の第1磁石片61と、第1コーナーC1側に位置する、中央磁石52に沿ってのびる周辺磁石53の直線部531上面にターゲット側の極性を一致させて配置される2個の第2磁石片62aとで構成される蛇行手段6を設けることとした。この場合、一方の第2磁石片62aは、直線部531の長手方向端部に配置され、一方の第2磁石片62aを起点として、長手方向にオフセットされるように第1磁石片61と、他の第2磁石片62aとが千鳥状に配置される。これにより、中央磁石52側に磁場強度の強い箇所と周辺磁石53側に磁場強度の強い箇所とが長手方向で交互に作られるため、第1磁石片61と第2磁石片62aとが存する区間を運動する電子(即ち、第1コーナー部C1に到達する前の電子)は、図2中、一点鎖線で示すように、中央磁石52側と周辺磁石53側とに交互に反発するように蛇行しながら運動し、その結果、第1コーナー部C1で1回目に向きを変えたときの電子の加速が抑制される。 In the present embodiment, a single first magnet piece 61 arranged on the upper surface of the central magnet 52 so as to match the polarity on the target side, and a peripheral magnet 53 located on the first corner C1 side and extending along the central magnet 52. It was decided to provide the meandering means 6 composed of two second magnet pieces 62a arranged so as to match the polarities on the target side on the upper surface of the straight portion 531 of the above. In this case, one second magnet piece 62a is arranged at the longitudinal end of the straight line portion 531 and is offset from the first second magnet piece 62a in the longitudinal direction with the first magnet piece 61. The other second magnet piece 62a is arranged in a staggered pattern. As a result, a portion having a strong magnetic field strength on the central magnet 52 side and a portion having a strong magnetic field strength on the peripheral magnet 53 side are alternately formed in the longitudinal direction, so that the section where the first magnet piece 61 and the second magnet piece 62a exist. (That is, the electrons before reaching the first corner portion C1) meander so as to alternately repel the central magnet 52 side and the peripheral magnet 53 side as shown by the alternate long and short dash line in FIG. As a result, the acceleration of the electrons when the direction is changed for the first time at the first corner portion C1 is suppressed.

第1磁石片61、第2磁石片62aとしては、夫々が所定の磁力を持つ永久磁石が利用できるが、1回目に向きを変えたときの電子の加速が抑制できるものであれば、第1磁石片61、第2磁石片62aの磁力や、中央磁石52と周辺磁石53への設置位置や設置個数は上記のものに限定されるものではない。また、図2中、点線で示すように、第2コーナー部C2側に位置する周辺磁石53の直線部531上面にターゲット側の極性を一致させ、且つ、一方の第2磁石片62aに正対させて第3磁石片62bを設け、第2コーナー部C2で2回目に向きを変えたときの電子が中央磁石52側に反発するようにしてもよい。 As the first magnet piece 61 and the second magnet piece 62a, permanent magnets having a predetermined magnetic force can be used, but if the acceleration of electrons at the first change of direction can be suppressed, the first magnet piece 61 The magnetic force of the magnet piece 61 and the second magnet piece 62a, the installation position and the number of installations on the central magnet 52 and the peripheral magnets 53 are not limited to those described above. Further, as shown by the dotted line in FIG. 2, the polarity of the target side is made to match the upper surface of the straight line portion 531 of the peripheral magnet 53 located on the second corner portion C2 side, and the polarity of the target side is directly opposed to one of the second magnet pieces 62a. The third magnet piece 62b may be provided so that the electrons when the direction is changed for the second time at the second corner portion C2 repels the central magnet 52 side.

以上の実施形態によれば、既存の磁石ユニット5に第1磁石片61、第2磁石片62aを配置するといった簡単な構成で、第1コーナー部C1で向きを変えたときの電子の加速を抑制して、電子の惰性的な運動に伴う、ターゲット端からの電子の飛び出しが可及的に抑制される。 According to the above embodiment, with a simple configuration in which the first magnet piece 61 and the second magnet piece 62a are arranged in the existing magnet unit 5, the acceleration of electrons when the direction is changed at the first corner portion C1 can be accelerated. By suppressing it, the ejection of electrons from the target end due to the inertial movement of the electrons is suppressed as much as possible.

以上、本発明の実施形態について説明したが、本発明は上記実施形態のものに限定されるものではなく、本発明の趣旨を逸脱しない限り、種々の変形が可能である。上記実施形態では、蛇行手段6として中央磁石52に第1磁石片61、周辺磁石53に第2磁石片62aを夫々配置したものを例に説明したが、第1コーナー部C1に到達する前の電子を蛇行させて、第1コーナー部C1で向きを変えたときの電子の加速が抑制できるものであれば、これに限定されるものではなく、ターゲット4と磁石ユニット5との間の空間に永久磁石や電磁石を適宜配置して、電子を蛇行させることもできる。 Although the embodiments of the present invention have been described above, the present invention is not limited to those of the above embodiments, and various modifications can be made as long as the gist of the present invention is not deviated. In the above embodiment, the meandering means 6 in which the first magnet piece 61 is arranged on the central magnet 52 and the second magnet piece 62a is arranged on the peripheral magnet 53 has been described as an example, but before reaching the first corner portion C1. As long as the electrons can be meandered and the acceleration of the electrons when the direction is changed at the first corner portion C1 can be suppressed, the present invention is not limited to this, and the space between the target 4 and the magnet unit 5 is limited. Permanent magnets and electromagnets can be arranged as appropriate to meander the electrons.

ところで、上記実施形態の如く中央磁石52と周辺磁石53に局所的に第1磁石片61と第2磁石片62aを配置すると、プラズマ中の電子密度が局所的に高くなり、基板面内の膜厚分布が却って悪化する虞がある。そこで、図3に示す蛇行手段60Aのように、中央磁石52にその全長に亘って所定間隔で第1磁石片61を配置すると共に、中央磁石52の長さに一致する第1コーナー部C1側に位置する周辺磁石53の直線部531にその全長に亘って所定間隔で第2磁石片62aを配置することが好ましい。これによれば、プラズマ中の電子密度を均一にできるため、基板面内で膜厚分布良く成膜でき、有利である。この場合も、第2コーナー部C2側に位置する周辺磁石53の直線部531にその全長に亘って所定間隔で第3磁石片62bを設けることができる。 By the way, when the first magnet piece 61 and the second magnet piece 62a are locally arranged on the central magnet 52 and the peripheral magnet 53 as in the above embodiment, the electron density in the plasma is locally increased, and the film in the substrate surface is formed. The thickness distribution may worsen on the contrary. Therefore, as in the meandering means 60A shown in FIG. 3, the first magnet pieces 61 are arranged on the central magnet 52 at predetermined intervals over the entire length thereof, and the first corner portion C1 side that matches the length of the central magnet 52 is arranged. It is preferable that the second magnet pieces 62a are arranged at predetermined intervals over the entire length of the straight portion 531 of the peripheral magnet 53 located at. According to this, since the electron density in the plasma can be made uniform, it is possible to form a film with a good film thickness distribution in the substrate surface, which is advantageous. In this case as well, the third magnet pieces 62b can be provided at predetermined intervals over the entire length of the straight portion 531 of the peripheral magnet 53 located on the second corner portion C2 side.

ここで、図3において仮想線の円で示す部分では、レーストラックの幅、つまり、逆方向に運動する電子の距離が短くなるため、電子の衝突によりプラズマ放電が不安定になる虞がある。そこで、図4に示す蛇行手段60Bのように、長手方向に直交する中央磁石52の幅方向一側(図4中、右側)に配置される第1磁石片61aと、幅方向他側(図4中、左側)に配置される第1磁石片61bとが長手方向でオフセットされるように、中央磁石52上面に配置される第1磁石片61a,61bを千鳥状に配置してもよい。この場合も第1磁石片61a,61bと第2磁石片62aとが存する区間を運動する電子が蛇行しながら運動するため、第1コーナー部C1で向きを変えたときの電子の加速を抑制して、電子の惰性的な運動に伴う、ターゲット端からの電子の飛び出しが可及的に抑制される。 Here, in the portion indicated by the circle of the virtual line in FIG. 3, the width of the race track, that is, the distance of the electrons moving in the opposite direction is shortened, so that the plasma discharge may become unstable due to the collision of the electrons. Therefore, like the meandering means 60B shown in FIG. 4, the first magnet piece 61a arranged on one side (right side in FIG. 4) of the central magnet 52 orthogonal to the longitudinal direction and the other side in the width direction (FIG. 4). The first magnet pieces 61a and 61b arranged on the upper surface of the central magnet 52 may be arranged in a staggered manner so that the first magnet pieces 61b arranged on the left side of 4) are offset in the longitudinal direction. In this case as well, the electrons moving in the section where the first magnet pieces 61a and 61b and the second magnet pieces 62a exist move while meandering, so that the acceleration of the electrons when the direction is changed at the first corner portion C1 is suppressed. Therefore, the ejection of electrons from the target end due to the inertial motion of the electrons is suppressed as much as possible.

また、上記実施形態及び変形例では、磁石片により蛇行手段を構成する場合を例に説明したが、図5に示すように、中央磁石52と周辺磁石53との側面に、長手方向でオフセットするように(つまり、千鳥状に)設けた第1磁気シャント片71と第2磁気シャント片72とにより蛇行手段70Aを構成することもできる。この場合も、図5中、一点鎖線で示すように、中央磁石52側と周辺磁石53側とに交互に引き寄せられるように蛇行しながら電子が運動するようになる。このため、第1コーナー部C1で向きを変えたときの電子の加速を抑制して、電子の惰性的な運動に伴う、ターゲット端からの電子の飛び出しが可及的に抑制されるという上記実施形態の効果が得られる。また、図4に示す蛇行手段60Bと同様に、図6に示す蛇行手段70Bのように、中央磁石52の幅方向一側(図6中、左側)の側面に配置される第1磁気シャント片71と、幅方向他側(図6中、右側)の側面に配置される第1磁気シャント片71とが長手方向でオフセットされるように、中央磁石52の両側面に配置される第1磁気シャント片71を千鳥状に配置してもよい。これによれば、逆方向に運動する電子が衝突することによりプラズマ放電が不安定になることを防止することができ、有利である。尚、磁気シャント片71,72としては公知のものを用いることができるため、ここでは詳細な説明を省略する。 Further, in the above embodiment and the modified example, the case where the meandering means is formed by the magnet pieces has been described as an example, but as shown in FIG. 5, the central magnet 52 and the peripheral magnets 53 are offset in the longitudinal direction. The meandering means 70A can also be configured by the first magnetic shunt piece 71 and the second magnetic shunt piece 72 provided in this way (that is, in a staggered pattern). Also in this case, as shown by the alternate long and short dash line in FIG. 5, the electrons move while meandering so as to be alternately attracted to the central magnet 52 side and the peripheral magnet 53 side. Therefore, the acceleration of the electrons when the direction is changed at the first corner portion C1 is suppressed, and the ejection of electrons from the target end due to the inertial movement of the electrons is suppressed as much as possible. The effect of morphology is obtained. Further, like the meandering means 60B shown in FIG. 4, the first magnetic shunt piece arranged on the side surface of the central magnet 52 on one side in the width direction (left side in FIG. 6) like the meandering means 70B shown in FIG. The first magnetism arranged on both side surfaces of the central magnet 52 so that the 71 and the first magnetic shunt piece 71 arranged on the side surface on the other side (right side in FIG. 6) in the width direction are offset in the longitudinal direction. The shunt pieces 71 may be arranged in a staggered pattern. According to this, it is possible to prevent the plasma discharge from becoming unstable due to collision of electrons moving in the opposite direction, which is advantageous. Since known magnetic shunt pieces 71 and 72 can be used, detailed description thereof will be omitted here.

また、上記実施形態では、真空チャンバ1内に1枚のターゲット4が設置される場合を例に説明したが、複数枚のターゲット4をその幅方向に間隔を存して並設する場合にも本発明は適用できる。この場合、各ターゲット4のスパッタ面41の下方に磁石ユニット5を設け、上記と同様に中央磁石52と周辺磁石53に第1磁石片61と第2磁石片62a(及び第3磁石片62b)を夫々配置すれば、大型の基板Swに対して成膜する場合に対応させることができ、有利である。 Further, in the above embodiment, the case where one target 4 is installed in the vacuum chamber 1 has been described as an example, but there is also a case where a plurality of targets 4 are arranged side by side with an interval in the width direction. The present invention is applicable. In this case, a magnet unit 5 is provided below the sputter surface 41 of each target 4, and the first magnet piece 61 and the second magnet piece 62a (and the third magnet piece 62b) are attached to the central magnet 52 and the peripheral magnet 53 in the same manner as described above. If each of the above is arranged, it is possible to cope with the case of forming a film on a large substrate Sw, which is advantageous.

Cu…カソードユニット、C1…第1コーナー部、C2…第2コーナー部、Mf…漏洩磁場、SM…スパッタリング装置、1…真空チャンバ、4…ターゲット、5…磁石ユニット、52…中央磁石、53…周辺磁石、6,60A,60B,70A,70B…蛇行手段、61…第1磁石片、62a…第2磁石片。 Cu ... Cathode unit, C1 ... 1st corner, C2 ... 2nd corner, Mf ... Leakage magnetic field, SM ... Sputtering device, 1 ... Vacuum chamber, 4 ... Target, 5 ... Magnet unit, 52 ... Central magnet, 53 ... Peripheral magnets, 6,60A, 60B, 70A, 70B ... Serpentine means, 61 ... 1st magnet piece, 62a ... 2nd magnet piece.

Claims (3)

真空チャンバ内に設置されるターゲットのスパッタ面と背向する側に配置されて、ターゲットのスパッタ面側に漏洩磁場を作用させる磁石ユニットを備え、
磁石ユニットが、線状の中央磁石と、この中央磁石の周囲を間隔を存して囲う周辺磁石とをターゲット側の極性を変えて有して、スパッタ面の前方に、磁場の垂直成分がゼロとなる位置を通る線が中央磁石の長手方向に沿ってのびてレーストラック状に閉じるように漏洩磁場を作用させるマグネトロンスパッタリング装置用のカソードユニットにおいて、
上記カソードユニットをスパッタリング装置の真空チャンバに取り付け、真空雰囲気の真空チャンバ内に希ガスを含むスパッタガスを導入し、ターゲットに所定電力を投入してスパッタ面の前方にレーストラック状のプラズマを発生させた場合に、これに沿って時計周りまたは反時計周りに運動しているプラズマ中の電子が電磁場で向きを変える位置を第1コーナー部、次に向きを変える位置を第2コーナー部とし、第1コーナー部に到達する前に、電子を蛇行させる蛇行手段を更に備えることを特徴とするマグネトロンスパッタリング装置用のカソードユニット。
A magnet unit is provided on the side facing the sputter surface of the target installed in the vacuum chamber and applying a leakage magnetic field to the sputter surface side of the target.
The magnet unit has a linear central magnet and a peripheral magnet that surrounds the central magnet at intervals with different polarities on the target side, and the vertical component of the magnetic field is zero in front of the sputtering surface. In a cathode unit for a magnetron sputtering apparatus, a leakage magnetic field is applied so that a line passing through a position thereof extends along the longitudinal direction of a central magnet and closes in a racetrack shape.
The cathode unit is attached to the vacuum chamber of the sputtering apparatus, sputter gas containing a rare gas is introduced into the vacuum chamber in a vacuum atmosphere, and a predetermined power is applied to the target to generate a racetrack-shaped plasma in front of the sputtering surface. In this case, the position where the electrons in the plasma moving clockwise or counterclockwise along this turn in the electromagnetic field is the first corner, and the position where the electron turns next is the second corner. A cathode unit for a magnetron sputtering apparatus, further comprising a meandering means for causing electrons to meander before reaching the first corner portion.
前記蛇行手段は、ターゲット側に位置する中央磁石上面の所定位置に、ターゲット側の極性を一致させて配置した第1磁石片と、ターゲット側に位置する周辺磁石上面の所定位置に、ターゲット側の極性を一致させて配置した第2磁石片とを備え、第1磁石片と第2磁石片とが長手方向で互いにオフセットされていることを特徴とする請求項1記載のマグネトロンスパッタリング装置用のカソードユニット。 The meandering means has a first magnet piece arranged at a predetermined position on the upper surface of the central magnet located on the target side with the same polarity on the target side, and a predetermined position on the upper surface of the peripheral magnet located on the target side on the target side. The cathode for a magnetron sputtering apparatus according to claim 1, further comprising a second magnet piece arranged so as to have the same polarity, and the first magnet piece and the second magnet piece are offset from each other in the longitudinal direction. unit. 前記中央磁石にその全長に亘って所定間隔で第1磁石片が配置されると共に、中央磁石の長さに一致する周辺磁石の部分にその全長に亘って所定間隔で第2磁石片が配置されることを特徴とする請求項2記載のマグネトロンスパッタリング装置用のカソードユニット。 The first magnet pieces are arranged at predetermined intervals over the entire length of the central magnet, and the second magnet pieces are arranged at predetermined intervals over the entire length of the peripheral magnets that match the length of the central magnet. 2. The cathode unit for a magnetron sputtering apparatus according to claim 2.
JP2019116781A 2019-06-24 2019-06-24 Cathode unit for magnetron sputtering apparatus Pending JP2021001382A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019116781A JP2021001382A (en) 2019-06-24 2019-06-24 Cathode unit for magnetron sputtering apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019116781A JP2021001382A (en) 2019-06-24 2019-06-24 Cathode unit for magnetron sputtering apparatus

Publications (1)

Publication Number Publication Date
JP2021001382A true JP2021001382A (en) 2021-01-07

Family

ID=73993872

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019116781A Pending JP2021001382A (en) 2019-06-24 2019-06-24 Cathode unit for magnetron sputtering apparatus

Country Status (1)

Country Link
JP (1) JP2021001382A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4026756A1 (en) 2021-01-07 2022-07-13 Toyota Jidosha Kabushiki Kaisha Automated valet parking system, control method for an automated valet parking system, and autonomous driving vehicle
KR20240025473A (en) 2022-08-18 2024-02-27 가부시키가이샤 알박 Sputtering device and film formation method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006291357A (en) * 2005-04-05 2006-10-26 Applied Materials Gmbh & Co Kg Magnet apparatus for a planar magnetron
WO2018068833A1 (en) * 2016-10-11 2018-04-19 Applied Materials, Inc. Magnet arrangement for a sputter deposition source and magnetron sputter deposition source

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006291357A (en) * 2005-04-05 2006-10-26 Applied Materials Gmbh & Co Kg Magnet apparatus for a planar magnetron
WO2018068833A1 (en) * 2016-10-11 2018-04-19 Applied Materials, Inc. Magnet arrangement for a sputter deposition source and magnetron sputter deposition source

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4026756A1 (en) 2021-01-07 2022-07-13 Toyota Jidosha Kabushiki Kaisha Automated valet parking system, control method for an automated valet parking system, and autonomous driving vehicle
KR20240025473A (en) 2022-08-18 2024-02-27 가부시키가이샤 알박 Sputtering device and film formation method

Similar Documents

Publication Publication Date Title
US7347919B2 (en) Sputter source, sputtering device, and sputtering method
US8460522B2 (en) Method of forming thin film and apparatus for forming thin film
KR101083443B1 (en) Thin film forming method, and thin film forming apparatus
JP2009041115A (en) Sputtering source, sputtering apparatus and sputtering method
JP2006291357A (en) Magnet apparatus for a planar magnetron
WO2014010148A1 (en) Sputtering device and magnet unit
US9058962B2 (en) Magnet unit and magnetron sputtering apparatus
JP2021001382A (en) Cathode unit for magnetron sputtering apparatus
WO2008059814A1 (en) Magnetron sputter electrode, and sputtering device having the magnetron sputter electrode
JP3649933B2 (en) Magnetron sputtering equipment
JP6251588B2 (en) Deposition method
WO2012165385A1 (en) Racetrack-shape magnetic field generator for magnetron sputtering
JP2010248576A (en) Magnetron sputtering apparatus
US7638022B2 (en) Magnetron source for deposition on large substrates
JP2001348663A (en) Sputtering system
JP5477868B2 (en) Magnetron type sputtering equipment
JPS6217175A (en) Sputtering device
JP6985570B1 (en) Ion gun and vacuum processing equipment
JPH0578831A (en) Formation of thin film and device therefor
JPS6233764A (en) Sputtering device
JP6607251B2 (en) Magnetic field generator for magnetron sputtering
WO2022158034A1 (en) Cathode unit for magnetron sputtering device, and magnetron sputtering device
JP6090422B2 (en) Magnetic field generator for magnetron sputtering
JP2020176304A (en) Sputtering apparatus
KR20090087680A (en) Magnetron sputtering apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220512

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230221

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230815