図面では、同じ参照番号は、すべての図面を通して同一の部分または対応する部分を指定する。さらに、本明細書で使用されるとき、「1つの(a)」、「1つの」などの単語は、一般に、別段に記載されていない限り、「1つまたは複数の」という意味をもつ。次に、図面を参照する。図面では、同じ参照番号がすべての図面を通して同一の部分または対応する部分を指定する。
図1は、一例による、コンピューティングネットワーク環境とさまざまなシステムおよびデバイス間の接続とを含む交通管理システム(TMS)101を示す。コンピューティングネットワーク環境は、物理的ロケーションにおいて集中されてもよいし、クラウドコンピューティング環境300および/またはフォグコンピューティング環境などによって分散されてもよい。一実施形態では、ユーザおよびデバイスは、システム、モバイルデバイス320、および、インターネットや他のネットワークに接続された固定デバイス、あるいは、たとえば、クラウドコンピューティング環境300、交通制御デバイス(TCD)制御装置340、もしくは検出デバイス360と直接的に接続された固定デバイスを通して、クラウドコンピューティング環境300にアクセスすることがある。インターネットへの接続としては、ワイヤレス接続とワイヤード接続の両方があり得る。
例示的なモバイルデバイス320は、携帯電話322と、スマートフォン324と、タブレットコンピュータ326と、テレマティックスデバイス、ナビゲーションおよび情報エンターテインメントデバイス、ならびに車両332に搭載された、内蔵された、または据え付けられた車両追跡デバイスなどのさまざまな接続された車両システム328とを含むことがある。追加のモバイルデバイス320は、識別デバイス、バイオメトリックデバイス、ヘルスデバイス、医療デバイス、および生理学的モニタリングデバイス、またはモバイルデバイスもしくはネットワークにデータを提供し得る任意のデバイスを含むことがある。モバイルデバイス320は、インターネット、モバイルネットワーク、または他のワイヤレスネットワークと通信するためにワイヤレス通信またはモバイル通信を使用することがあるラップトップコンピュータおよびノートブックコンピュータなどのデバイスも含むことがある。
モバイルデバイス320は、モバイルネットワークサービス380を通してクラウドおよびTCD制御装置340に接続することがあり、信号は、基地局382(たとえば、3G、4G、5G、EDGE、またはLTE(登録商標)ネットワーク)、アクセスポイント384(たとえば、フェムトセルまたはWi−Fi(登録商標)ネットワーク)、衛星接続386、または知られている他の任意のワイヤレス形式の通信、などのワイヤレス通信チャネルを介して、モバイルネットワークサービス380(たとえば、EnodeB、HeNB、または無線ネットワーク制御装置)に送信される。TCD制御装置340は、図2A〜図2Dによってさらに示されるように、交通信号システム(TSS)348の一部であってもよい。
さらに、ワイヤレス通信は、5.9GHzスペクトル上で動作し得る専用狭域通信(DSRC)、近距離通信(NFC)、無線周波数識別(RFID)、赤外線、モバイルデバイス320、および別のモバイルデバイスの使用、または検出デバイス360もしくはTCD制御装置340が、モバイルデバイス320と通信する、もしくは別の方法で車両332もしくはモバイルデバイス320を検出するように構成される場合、知られている他の任意の形式のワイヤレス通信もしくは検出を含む、車車間(V2V)プロトコル、路車間(V2I)プロトコル、車人間(V2P)プロトコル、およびビークルツーエブリシング(V2X)プロトコルなどを通して、モバイルデバイス320とTCD制御装置340または検出デバイス360との間で行われてもよい。一例では、TCD制御装置340は、たとえば、交通カメラからの画像をストリーミングする、道路状態もしくは走行状態を送信する、またはクラウドコンピューティング環境300、TCD制御装置340、もしくは検出デバイス360に、これから、もしくはこれについての、情報を通信する、またはモバイルデバイス320から情報を受信するために、クラウドコンピューティング環境300(および/または、クラウドコンピューティング環境300の一部と考慮されており)、インターネット、および/またはモバイルデバイス320と直接的に通信することがある。いくつかのケースでは、検出デバイス360は、(道路脇のDSRC受信機/送信機ユニットを介して、またはローカルフォグコンピューティングネットワークを介して、など)インターネットおよび/またはモバイルデバイス320に直接的に接続することがある。
一例では、モバイルデバイス320のワイヤレスインターフェースおよびワイヤレス通信チャネルからの信号が、モバイルネットワークサービス380に送信される。モバイルネットワークサービス380の中央処理装置390は、1つまたは複数のモバイルデバイス320からの信号を介して要求と情報とを受信し得る。中央処理装置390は、サーバ392およびデータベース394に接続されることがあり、モバイルネットワークサービス380は、たとえば、データベース394内に記憶されたデータに基づいてモバイルネットワークサービス380および/またはモバイルデバイス320と通信するさまざまなデバイスおよびシステムへのアクセスのための認証または認可を提供することがある。次いで、モバイルデバイス情報または要求は、インターネットおよび別の接続のうちの少なくとも1つを通して、クラウドコンピューティング環境300に配信されることがある。
クラウドコンピューティング環境300はまた、ワイヤードネットワーク接続またはワイヤレスネットワーク接続を介してインターネットに接続されたデスクトップ端末330、TCD制御装置340、または検出デバイス360などの固定デバイスを通して、アクセスされることがある。
ネットワークは、ローカルエリアネットワーク(LAN)またはワイドエリアネットワーク(WAN)などの、パブリックネットワークまたはプライベートネットワークであってよい。さらに、TCD制御装置340は、同じくワイヤードネットワーク接続またはワイヤレスネットワーク接続のどちらかを介して、クラウドコンピューティング環境300に直接的に接続されることがある。ネットワークは、セルラーネットワーク(3G、4G、5G、EDGE、およびLTEシステムを含む)などのワイヤレスであってよい。ワイヤレスネットワークはまた、Wi−Fi、ブルートゥース(登録商標)、または知られている他の任意のワイヤレス形式の通信によって接続されることがある。モバイルデバイス320および固定デバイスは、クラウドコンピューティング環境300、TCD制御装置340、検出デバイス360、または他の固定デバイスもしくはモバイルデバイスのうちの1つまたは複数に入力を送り、これから出力を受信するために、インターネットを介して、または別の接続を通してクラウドコンピューティング環境300に接続することがある。各モバイルデバイス320は、任意の形式のワイヤレス通信のうちの少なくとも1つを通して、クラウドコンピューティング環境300、TCD制御装置340、別のモバイルデバイス320、および検出デバイス360のうちの少なくとも1つと通信することがある。
いくつかの例では、TCD制御装置340は、競合モニタリングユニット(CMU)342に接続されることがあり、CMU342は、CMU342が、TCD制御装置340によってTCD344に提供された命令が有効であり、実行するのが安全であることを検証するように、交通制御デバイス(TCD)344に接続されることがある。別の例では、TCD制御装置340は、TCD344に接続され、これを直接的に制御する。TCD344の例としては、交通信号、動的メッセージ標識、速度制限標識、ゲート、鉄道踏切、および動的車線インジケータがあり得る。
一例では、クラウドコンピューティング環境300は、対応するクラウドサービスをデバイスに提供するように要求を処理するために、クラウド制御装置302を含むことがある。これらのサービスは、サービス指向アーキテクチャ(SOA)、ユーティリティコンピューティング、および仮想化の使用を通して、提供されることがある。
一例では、クラウドコンピューティング環境300は、セキュアゲートウェイ304などのアクセスインターフェースを介してアクセスされることになる。セキュアゲートウェイ304は、たとえば、クラウドベースリソースがアクセスされると、エンタープライズセキュリティポリシーを適用するために、クラウドサービス消費者とクラウドサービスプロバイダとの間に置かれたセキュリティポリシー執行ポイントを提供する。さらに、セキュアゲートウェイ304は、たとえば、認証、認可、シングルサインオン、トークン化、セキュリティトークンマッピング、暗号化、ロギング、アラート生成、およびAPI制御を含む、複数のタイプのセキュリティポリシー執行を統合する。
クラウドコンピューティング環境300は、仮想化のシステムを使用する演算リソースを提供することがあり、処理要件およびメモリ要件は、利用可能なリソースを効率的に利用するために、仮想マシンを作成するプロセッサとメモリの組合せの間で動的に割り振られ、分散されることがある。仮想化は、効果的に、たとえ複数の演算リソースおよびメモリが需要の変動に応じて利用されることがあっても、単一のシームレスコンピュータを使用することの出現をもたらし得る。
一例では、仮想化は、クラウドコンピューティング環境300に接続されたデバイスにサービスを提供するためにデータ記憶装置308および処理センタ310などのクラウドリソースを準備および装備するプロビジョニングツール306の使用によって達成される。処理センタ310は、メインフレームコンピュータ、データセンタ、コンピュータクラスタ、またはサーバファームであってよい。一例では、データ記憶装置308と処理センタ310は、同じ場所に配置される。
先行する説明は、本明細書において説明される機能を実行するための対応する構造の非限定的な例である。当業者は、TCDが、さまざまな手段においてモバイルデバイスまたは他の検出ソースもしくは情報入力ソースからのデータに応じて、コンピューティングデバイスおよび/またはTCD制御装置によって調整または制御され得ることを認識するであろう。
図2A〜図2Dは、交通信号システム348(348a、348bなど)の例示的な構成を示すブロック図である。各交通信号システム348は、交通制御デバイスおよび/またはシステムを適応的に管理するために、少なくとも1つのモバイルデバイス320、クラウドコンピューティング環境300、少なくとも1つのTCD制御装置340、および少なくとも1つの検出デバイス360との間の通信と検出とを提供するように構成され得る。
1つまたは複数のモバイルデバイス320は、クラウドコンピューティング環境300、TCD制御装置340、および検出デバイス360のうちの少なくとも1つと通信するように構成されることがある。TCD制御装置340は、クラウドコンピューティング環境300、検出デバイス360、およびモバイルデバイス320に接続されることがある。
クラウドコンピューティング環境300は、いくつかのモバイルシステム、制御システム、検出システム、モバイルデバイス320、TCD制御装置340、および検出デバイス360と通信するように構成されることがある。互いに通信するように構成されたデバイスまたはシステムは、少なくとも1つの方向に、たとえば、検出デバイス360からTCD制御装置340に、データを送り受信することが可能であることがある。さらに、通信は、複数の方向に、たとえば、同じくTCD制御装置340から検出デバイス360に、発生することがあり、複数のデバイス間の複数の方向に発生することがある。
TCD制御装置340は、クラウドコンピューティング環境300、1つまたは複数のCMU342(342’など)、1つまたは複数の検出デバイス360(360’、360’’など)、1つまたは複数のモバイルデバイス320、および1つまたは複数のTCD344(344’など)のうちの少なくとも1つと通信するように構成されることがある。さらに、各TCD344(344’など)は、少なくとも1つのCMU342またはTCD制御装置340に接続され、これによって制御されることがある。
交通信号システム348a(図2Aによって示される)の一例では、少なくとも1つのモバイルデバイス320は、クラウドコンピューティング環境300、TCD制御装置340、および1つまたは複数の検出デバイス360のうちの少なくとも1つと通信することがある。TCD344は、TCD制御装置340によって制御されることがあり、TCD制御装置340は、TCD制御装置340とTCD344との間の中間接続としてCMU342も有することがある。TCD制御装置340は、クラウドコンピューティング環境300、少なくとも1つの検出デバイス360、および1つまたは複数のモバイルデバイス320のうちの少なくとも1つに接続されることがある。
別の例(図2Bによって示される)では、交通信号システム348bは、少なくとも1つの検出デバイス360が、クラウドコンピューティング環境300とも直接的に通信し得、TCD制御装置340が、CMU342を通しての代わりにTCD344と直接的に通信し得ることを除いて、図2Aによって示される交通信号システムと同一であってよい。さらに、いくつかのケースでは、CMU342の機能は、TCD制御装置340および/またはTCD344に組み込まれることがある。
別の例(図2Cによって示される)では、交通信号システム348cは、TCD制御装置340が、1つまたは複数のCMU342(たとえば342、342’など)および/または対応するTCD344(たとえば344、344’など)とそれぞれ通信するように構成され得、TCD制御装置340が、1つまたは複数の検出デバイス360(たとえば360、360’など)とも通信し得ることを除いて、図2Aによって示される交通信号システムと同一であってよい。
別の例(図2Dによって示される)では、交通信号システム348dが、たとえば、追加の検出デバイス360’および360’’ならびに第2のCMU342’に接続された第2のTCD制御装置340’の追加を有する図2Aによって示される交通信号システムと同一であり得、第2のCMU342’は、第2のTCD344’にさらに接続される。
さらに、例示的な構成のいずれかの検出デバイス360は、複数のTCD制御装置340にも接続されることがあり、TCD344のいずれかは、CMU342なしでTCD制御装置340に直接的に接続されることがある。先行する説明は、本明細書において説明される機能を実行するための対応する構造の非限定的な例示的な実装形態である。
交差点AのTCD制御装置340は、タイミングプランによる交差点AのTCD344の各々を制御することがある。各TCD344は、動的表示、たとえば、同じディスプレイまたはハウジング内で順方向の許容可能な移動を示すための順もしくは上向きに指す矢印または左方向の許容可能な移動を示すための左を指す矢印にも変化し得る順方向に前進する許可を示す青色ランプも有することがある。
各TCD344は、青色ランプもしくは赤色ランプが提供されるまでのカウントダウン、別の条件が満たされるまでのカウントダウン、または歩行者、自転車に乗っている人(cyclist)、車両、およびいくつかのモードの輸送(たとえば、乗り合いバス、鉄道など)が停止するもしくは前進するためのインジケータなどの追加情報を提供するために標識または表示を含んでもよいしこれによって補完されてもよい。
図3は、一例による、TCD制御装置340のブロック図を示す。TCD制御装置340は、検出器カード(DC)504に接続された入力/出力ボード502を含むシステムまたはアセンブリであってよく、制御装置506は、DC504に接続されてよい。制御装置506は、制御装置506もしくは1つもしくは複数のTCD344を制御するように構成された少なくとも1つのスイッチ508に接続され、たとえば、制御装置506もしくは1つもしくは複数のTCD344を制御するように構成された少なくとも1つのスイッチ508のためのデータを受信するおよび/もしくは制御装置506のステータスもしくは1つもしくは複数のTCD344を制御するように構成された少なくとも1つのスイッチ508のステータスを送信するように、または、図2A〜図2Dによって説明されるなどの1つまたは複数のTCD344に接続されたCMU342に通信するように構成されてよい。
一例では、DC504は、少なくとも1つの検出デバイス360および/またはクラウドコンピューティング環境300からの信号などの、入力/出力ボード502によって受信された信号を、制御装置506が処理し得る少なくとも1つのフォーマットへと変換することがある。制御装置506は、少なくとも1つのTCD344にさらに接続されたCMU342のどちらかに接続された少なくとも1つのスイッチ508に接続されてよく、またはスイッチ508は、少なくとも1つのTCD344に直接的に接続されてよい。
別の例では、制御装置506は、図2A〜図2Dによって説明されるなど、クラウドコンピューティング環境300、検出デバイス360、および/またはモバイルデバイス320に信号を直接的に送ることがあり、または、これらから信号を直接的に受信することがある。そのような信号は、デジタルであってよく、制御装置506内または他の場所にあるソフトウェアアプリケーション層を介して送信または受信されるコマンドの形をとってよい。
さらに、いくつかの例では、制御装置506によって送信または受信されるデジタルコマンドは、後で実行するために送信の前または後の時間遅延のための提供を含むことがある。これは、1つまたは複数の信号タイミングプランなどのデジタルコマンドが前もって演算され、実行の前に1回または複数回改定されるまたは上書きされることを可能にし得る。
さらに、いくつかの例では、スイッチ508は、制御装置506に組み込まれるまたは仮想化され、制御装置506および/または任意のデバイス内で動作するソフトウェアアプリケーション層から発するデジタルコマンド、または、制御装置506が接続されるネットワークを介してTCD344を効果的に動作させてよい。
図4A〜図4Cは、モバイルデバイス320といくつかの交通信号システム348(348a、348b、348c)との間の例示的な通信構成を示す。
一例では、第1の交通信号システム348aは、たとえば、モバイルデバイス320のロケーションおよび/または方位を識別するために、モバイルデバイス320(図4Aによって示される)と通信することがある。いくつかのケースでは、第1の交通信号システム348aは、第2の交通信号システム348bおよび/または第3の交通信号システム348cのうちの少なくとも1つとさらに通信することがあり、モバイルデバイス320についての情報も提供することがある。
別の例では、交通信号システム348a、348b、および348cの各々が、モバイルデバイス320(図4Bによって示される)と通信することがある。いくつかのケースでは、第1の交通信号システム348aは、第2の交通信号システム348bおよび/または第3の交通信号システム348cのうちの少なくとも1つとさらに通信することがあり、モバイルデバイス320についての情報を提供することがある。
別の例では、モバイルデバイス320は、図1によって説明されるなどの、中央とも呼ばれることがある、クラウドコンピューティング環境300(図4Cによって示される)と通信することがある。いくつかのケースでは、第1の交通信号システム348aは、第2の交通信号システム348bおよび第3の交通信号システム348cのうちの少なくとも1つとさらに通信することがあり、モバイルデバイス320についての情報も提供することがある。
各例では、クラウドコンピューティング環境300および/または交通信号システム348a、348b、348cのうちの少なくとも1つは、識別情報、ロケーション、方位、速度、ステータス、および時間情報のうちの少なくとも1つを明らかにするモバイルデバイス320からデータを受信することがあり、または、それから、そのような情報が得られるまたは決定されることがある。他の情報も、モバイルデバイス320によってクラウドコンピューティング環境300に提供されることがあり、その逆も同様である。モバイルデバイス320からのデータは、クラウドコンピューティング環境300または各交通信号システム348のそれぞれのTCD制御装置340に提供されることがある。
クラウドコンピューティング環境300、交通信号システム348、およびTCD制御装置340のうちの少なくとも1つは、信号機が設置された交差点のための交通信号フェーズおよびタイミング(SPaT)を調整するために、モバイルデバイス320を含むいくつかのソースから受信されたデータを処理するように構成されることがある。SPaT調整は、現在または将来の青色信号フェーズ、赤色信号フェーズ、および黄色(琥珀色)信号フェーズ、持続時間、ならびに1つまたは複数の信号機が設置された交差点の1つまたは複数のTCD344の動作モード、のうちの少なくとも1つを含むことがある。SPaT調整は、いくつかのケースでは交差点に対してローカルである検出デバイスまたは以前に説明されたようにTCD制御装置340によって受信されるさまざまなデータソースからなどの外部入力によって影響される、TCD制御装置340内で動作するアルゴリズム(図8A〜図8Bによって説明されるアルゴリズムなどの)によってTCD制御装置340においてなされることがある。別のケースでは、SPaT調整は、TMS101内であるがTCD制御装置340の外部で動作するアルゴリズムによってなされることがある。データソースとしては、道路脇の検出システム(たとえば、誘導ループ、ビデオカメラまたはサーマルカメラ、レーダなど)からの入力、モバイルデバイスおよび/または車両からの検出ブロードキャスト、車両、自転車に乗っている人、歩行者、およびドローン、または存在およびロケーション情報をTMS101に通信するように構成されたデバイスからの検出情報、ならびに交通/ナビゲーションプロバイダからの(たとえば、クラウド、アプリ、および/またはインターネットを通して)集約データフィードがあり得る。
外部入力は、TCD制御装置340およびTCD制御装置340が動作するために接続され得るまたは構成され得る任意のTCD344の現在または将来のSPaT動作を調整する、影響する、上書きする、または別の方法で変更するために使用されることがある。
図5A〜図5Fは、信号機が設置された4方向交差点Aの平面図における例示的な対立しない交通移動を表す図であり、コンパスは、北(N)方向と、東(E)方向と、西(W)方向と、南(S)方向とを表す。道路の交差点は、3方向交差点、4方向交差点、および5方向交差点、別の2車線道路と交差する2車線道路、一方通行道路と交差する2車線道路、または一方通行道路と交差する一方通行道路などの方向のさまざまな組合せなどの、任意の数の方向を含んでよい。この開示に示されているすべての例は、米国、ドイツ、およびカナダ内などの、道路の右側を車両が前進する道路システムを示しているが、当業者は、英国、日本、およびオーストラリア内などの車両が道路の左側を前進する道路システムも、本明細書において説明される内容に適用可能であることを認識するであろう。
矢印は、車両交通が交差点Aを通過し得る可能な方向のうちのいくつかを示す。中実矢印は、進行中で優先権青色ランプの信号をもつ方向を示し、点線矢印は、交通または歩行者を横切るために生じた後で前進し得る方向を示す。交差点Aを通る交通流量は、時間期間中に交差点Aの各方向に入り、これを出る車両の数を総計する式のシステムによって説明されることがある。時間期間中、たとえば、駐車、交通渋滞、衝突、または他の不動化により、車両のサブセットSが交差点A内にあるままでない限り、交差点Aに入る車両の数が、交差点Aを出る車両の数に等しい。例示的な4方向交差点Aを通る交通流量は、以下などの式のセットによって表され得る。
AOE=AIW+rt(AIS)+lt(AIN)+ut(AIE)−lt(AIW)−rt(AIW)−ut(AIW)−SE
AOW=AIE+rt(AIN)+lt(AIS)+ut(AIW)−lt(AIE)−rt(AIE)−ut(AIE)−SW
AON=AIS+rt(AIE)+lt(AIW)+ut(AIN)−lt(AIS)−rt(AIS)−ut(AIS)−SN
AOS=AIN+rt(AIW)+lt(AIE)+ut(AIS)−lt(AIN)−rt(AIN)−ut(AIN)−SS
時間期間中に、AOEが、東行き方向に交差点Aを出る車両の数、AOWが、西行き方向に交差点Aを出る車両の数、AONが、北行き方向に交差点Aを出る車両の数、AOSが、南行き方向に交差点Aを出る車両の数、AIEが、東行き方向から交差点Aへ入る車両の数、AIWが、西行き方向から交差点Aへ入る車両の数、AINが、北行き方向から交差点Aへ入る車両の数、AISが、南行き方向から交差点Aへ入る車両の数である場合、Sは、各方向からそれぞれ交差点Aに入り、交差点A内にあるままである車両数を表す、SE、SW、SN、およびSSの合計であってよい。さらに、関数rt( )、lt( )、およびut( )それぞれは、交差点A内で、示される方向からの、右に曲がる車両の数、左に曲がる車両の数、およびUターンを実行する車両の数を表す(たとえばrt(AIS)は、南行き方向から交差点Aに入り、右に曲がり、次いで、東行き方向に交差点Aを出る車両の数を決定する関数を示す)。図6A〜図6Cによって説明される3方向交差点Cは、ゼロに等しい1つまたは複数の項をもつ、上記の例示的な4方向交差点Aのための式として、流量を有することがある。
AOE=AIW+rt(AIS)+ut(AIE)−rt(AIW)−ut(AIW)−SE
AOW=AIE+lt(AIS)+ut(AIW)−lt(AIE)−ut(AIE)−SW
AOS=rt(AIW)+lt(AIE)+ut(AIS)−SS
5方向交差点、6方向交差点、および7方向交差点などのより多くの道路を有する交差点のための式は、同じ原理を使用し、代わりに追加された追加の項を有することがある。さらに、式は、交差点Aを通る少なくとも1つの走行方向に複数の車線がある場合、車線によって式を設定するためにより固有であってよい。一般に、式の数は、道路区間によってであろうと、各道路区間の個々の車線の数によってであろうと、交差点への接近の数に比例する。
TMS101および/または交通信号システム348は、交差点Aに接近する少なくとも1つの検出された車両が、交通信号システム348が適応型でなかったまたは車両を認識していなかった場合よりも高い、遅延なしに、またはより少ない遅延で、通過する確率を有することを可能にする、交差点Aにおけるさまざまな交通フェーズ、移動、および/またはサイクルを切り換えることがある。交差点Aを通る移動および各移動の時間持続時間の任意の対立しない組合せは、たとえば、車両スループットを最大にする、総走行時間を最小にする、平均走行時間を最小にする、少なくとも1つの車両に対する停止の数を減少させる、緊急車両に対応する、歩行者の移動に対応する、または何らかの他の目標もしくは目標の組合せのために、交通制御のためにTMS101によって交通信号システム348に適用されることがある。時間持続時間は、必要とされる最小青色時間と許容される最大青色時間との間で変化することがある。さらに、交差点Aを通る対立しない移動の組合せにおける第1の移動は、少なくとも交差点Aを通る対立しない移動の以前のまたはその後の組合せはまた、移動のシーケンスにおけるギャップまたは不連続性がないように、第1の移動または第2の移動のうちの1つを含むならば、第2の移動とは異なる時間持続時間を有することがある。
たとえば、図5Aによって説明される移動は、図5Cによって説明される移動によって続かれることがある。東行き移動は図5Aには含まれていないが、図5Cには含まれており、西行き移動は、図5Aと図5Cの両方に含まれている。このようにして、西行き移動(西行きから南行きへ左に曲がる移動を無視する)における青色時間の合計は、南行き移動の合計持続時間と異なる連続的な合計持続時間を有することがある。
信号機が設置されたインターセクションにおける1つまたは複数のTCD344を一方向から別の方向に変更する時間tcは、たとえば、最小青色信号時間、黄色(または琥珀色)信号時間、全赤色時間(交差点Aのすべての方向におけるすべての信号が赤色である時間の持続時間)、および待ち時間、のうちの少なくとも1つを含むことがあり、待ち時間としては、たとえば、車両とTMS101の間およびTMS101とTCD344の間の通信および信号伝送における既知の遅延がある。TMS101または交通信号システム348などによる車両R1の検出は、本明細書において説明されるまたは別の方法で知られている任意の様式(モバイルデバイス、誘導ループ、ビデオカメラ、サーマルカメラ、レーダ、ソナーを介した検出など)を介してよい。
一例では、車両R1が、西行き方向から交差点Aに接近している。図5A〜図5Hによって説明される交通移動の1つをもつ交通信号システム348の制御アルゴリズムによる青色ランプの信号の使用は、もしあれば、車両R1が最小遅延で交差点Aを通過することを可能にすることがある。
別の例では、車両R2が、北方向から交差点Aに接近している。図5Bおよび図5D〜図5Fによって説明される交通移動をもつ青色ランプの信号の使用は、もしあれば、車両R2が最小遅延で交差点Aを通過することを可能にすることがある。基礎をなす概念は、青色ランプの信号が、運転手がランプのために減速しなくてもよい十分な余白の分、交差点Aにおける車両R2の到着の前に、車両R2の走行の方向に表示されることがあることである。青色ランプの信号は、適切な時間に、具体的には、たとえば、接近する車両R2について提供される信号とともに車両R2の識別情報を知ることにより、車両R2に、青色ランプの信号を提供するために偶然によるものではなく、少なくとも1つの信号を受信するTCD制御装置340またはTSS348により、提供される。
別の例では、車両R3が、東へ向かう方向から交差点Aに接近している。図5C〜図5Hによって説明される交通移動をもつ青色ランプの信号の使用は、もしあれば、車両が最小遅延で交差点Aを通過することを可能にすることがある。
別の例では、車両R4が、南方向から交差点Aに接近している。図5D〜図5Fによって説明される交通移動をもつ青色ランプの信号の使用は、もしあれば、車両が最小遅延で交差点Aを通過することを可能にすることがある。
交差点Aは、交差点Aに至る1つまたは複数の進入路を有することがある。この進入路は、車両、自転車、または歩行者などの交通の検出が発生し得るロケーションまたはエリアであってよい。いくつかのケースでは、任意の方向から交差点Aへの進入路は、交差点Aへの他の任意の進入路のロケーションとは無関係に、交差点Aから任意の距離のところに配置されてよい。
図5Gは、一例による、信号機が設置された4方向交差点A2の平面図の図である。交通移動は、図5A〜図5Fによって説明される交通移動を含んでよい。しかしながら、交差点A2は、少なくとも1つの方向に1つまたは複数の中央分離帯918(918a、918b)を含むことがあり、第1の横断歩道10cと第2の横断歩道12cとを含むことがある。
一例では、中央分離帯918は、西行き方向における交通が前進することが可能にされ得る間、東行き方向に走行する車両交通が停止し得るように、第1の横断歩道10cまたは第2の横断歩道12cのどちらかを使用する歩行者に中継点を提供することがある(たとえば、東行き交通が前進し得る場合でも、西行き車両交通が停止している場合、横断歩道10c上で北行きに走行するために中央分離帯918b上で待機している歩行者は、前進し得る)、またはその逆である。これは、歩行者が横断歩道10cまたは12cのどちらかの少なくとも一部分を使用し得る前に交差点A2の東行き方向と西行き方向の両方における車両交通が同時に停止することを必要とする代わりに、横断歩道10cおよび12cの各区間を特定の他の歩行者および車両移動から分離する。
図5Hは、一例による、信号機が設置された4方向交差点A3の平面図の図である。交通移動は、図5A〜図5Fによって説明される交通移動を含んでよい。しかしながら、交差点A3は、第1の横断歩道10cと、第2の横断歩道12cと、第3の横断歩道9cと、第4の横断歩道11cとを含むことがある。交差点A3の交通移動は、前述の横断歩道9c〜12cを使用する歩行者のためのさまざまな移動をさらに含むことがある。
図6A〜図6Cは、3方向に信号機が設置された交差点Bの平面図における例示的な対立しない交通移動を表す図であり、コンパスは、北(N)方向と、東(E)方向と、西(W)方向と、南(S)方向とを表す。矢印は、車両交通が交差点Bを通過し得る可能な方向のうちのいくつかを示す。中実矢印は、進行中で優先権青ランプの信号をもつ方向を示し、点線矢印は、交通または歩行者を横切るために生じた後で前進し得る方向を示す。
TMS101および/または交通信号システム348は、交差点Bに接近する検出された車両が、交通信号が適応型でなかったまたは車両を認識していなかった場合よりも、遅延なしに、またはより少ない遅延で、通過する確率可能性が高いことを可能にするために、交差点Bにおけるさまざまな交通移動を切り換えることがある。
一例では、車両R1が、西行き方向から交差点Bに接近している。図6A〜図6Bによって説明される交通移動をもつ青色ランプの信号の使用は、車両R1が、遅延なしに交差点Bを通過することを可能にし得る。
別の例では、車両R2が、東行き方向から交差点Bに接近している。図6B〜図6Cによって説明される交通移動をもつ青色ランプの信号の使用は、車両R2が、遅延なしに右に曲がることによって交差点Bを通過することを可能にし得る。
別の例では、車両R3が、南方向から交差点Bに接近している。図6A、図6Cによって説明される交通移動をもつ青色ランプの信号の使用は、車両R3が、遅延なしに右に曲がることによって交差点Bを通過することを可能にし得る。
3方向交差点の他の変形形態は、図5G〜図5Hによって説明されるように、少なくとも1つの中央分離帯および/または少なくとも1つの歩行者横断歩道を含むことがある。
図7Aは、一例による、少なくとも1つの交通信号システムを有するいくつかの道路交差点を含むエリアB100を示す。エリアB100は、交差点、たとえば、交差点A1と、A2と、A3と、B1と、B2と、B3と、C1と、C2と、C3とを含むことがある。エリアB100は、いくつかの道路と、交差点と、歩行者横断歩道とを含むことがある。道路の交差点は、任意の数の方向、たとえば、3方向交差点、4方向交差点、および5方向交差点、別の2車線道路と交差する2車線道路、一方通行道路と交差する2車線道路、または一方通行道路と交差する一方通行道路などの方向のさまざまな組合せを含んでよい。さらに、TCD制御装置340、CMU342、検出デバイス360、および/またはTCD340などの交通信号システム(TSS)348またはTMS101の部分は、エリアB100のさまざまなロケーションに位置決めされることがある。
交差点の各方向における各道路車線(たとえば、図5Aに示される各方向における車線L1およびL2)は、左折および右折、右折のみ、左折のみ、またはターン禁止などの組合せを含むように変化することがある。交差点を通る走行の許容方向の組合せは、交通信号サイクル内の各車線に対しても変化させることがある。たとえば、交通信号サイクルのフェーズ中、前方および右折方向は許容可能であるが、対向車線に対する左折方向は許可されない。別のフェーズ中、交差点を通る走行の反対方向に対する順方向のみが許容方向である。交差点は、最大交通スループットを提供することが同時に可能にされ得る走行の方向の数および組合せにおける最大柔軟性を提供することがある。他のタイプの交差点は、メーター制(metered)合流車線および非メーター制(non−metered)合流車線または入り口車線と、Uターン車線を含むことがある。
各道路の各車線の方向制限は、条件、たとえば、時刻、曜日、特別なイベント、交通量、または特定の他の条件に基づいて変化してもよい。道路の各セクションは、速度制限を有することがある。速度制限は、固定であってもよいし、動的で、時刻、道路のセクション上で走行する車両タイプ、リアルタイム交通量、および他の基準を含み得る変数とともに変化してもよい。
TMS101は、1つまたは複数の交通信号システム348と通信するいくつかのTCD344を装備するいくつかの制御された信号機が設置された交差点を含むことがある。交通信号システム348は、そのように装備された各交差点におけるTCD344の動作を監視および/または制御もしくは遂行するように構成されることがある。TMS101は、たとえば車両、自転車に乗っている人、および歩行者、動作条件、周囲条件、およびTMS101の動作に関連のあり得る条件の存在、移動、またはステータスを検出するための、いくつかのセンサ、たとえば、検出デバイス360をさらに含むことがある。
交通信号システム348は、交差点A1とB1とC1とを含むゾーン内の1つまたは複数のTCDと標識を制御することがある。交通システム348’は、交差点A2、A3、B2、およびB3のうちの少なくとも1つによって配置される1つまたは複数のTCDを制御することがある。交通システム348’’は、交差点C2のうちの少なくとも1つによって配置される1つまたは複数のTCDを制御することがある。
交通システム348’’’は、アクティビティ、たとえば、交通アクティビティ、歩行者もしくは自転車に乗っている人のアクティビティ、環境条件、または他のアクティビティを検出するために、道路上、またはその近くで、道路の区間上の2つの交差点の間に配置されることがある。同じく、交通システム348’’’は、車両332上の車載デバイス328に、モバイルデバイス320に、または動的メッセージ標識に、メッセージを通信することがある。交通システム348’’’は、必ずしも交通信号、たとえば、TCD344を有するとは限らないことがあり、検出デバイス360(図1および図2A〜図2Dによって示される)、TCD制御装置340、または2つ以上のゾーンまたは交通システム間の通信を可能にするための、動的メッセージ標識355A、動的速度制限標識355B、動的交通制御デバイス355C(動的停止または譲れ(yield)標識、鉄道踏切標識、ゲート、移動可能な障壁など)、もしくは通信中継デバイス355Dなどのメッセージ機器を有することがある(図7B)。
交通信号システム348、348’、および348’’の各々は、図1および図2A〜図2Dによって示される交通システムのいずれかと同一であってもよいし、これに類似してもよい。交通信号システム348、348’、348’’、および348’’’の各々は、互いと通信するように構成されることがある。たとえば、通信は、交通信号システム348と交通信号システム348’’との間、交通信号システム348’と交通信号システム348’’との間、交通信号システム348’と交通信号システム348との間、または交通信号システム348と交通信号システム348’、348’’、および348’’’のうちの少なくとも1つとの間で、行われることがある。実際には、交通信号システム348、348’、348’’、および348’’’によって表されるゾーンは各々、交通制御デバイスの動作を適応させ、さまざまな接続システムおよびデバイス(たとえば、図1および図2A〜図2Dによって示されるような)間で交通関連情報を通信するために、クラウドコンピューティング環境300、モバイルデバイス320、および第2の交通信号システム348(たとえば348、348’、348’’、および348’’’)のうちの少なくとも1つと通信することがある。
図7Bは、動的メッセージ標識355A、動的速度制限標識355B、動的交通制御デバイス355C(この場合、ゲート)、および通信中継デバイス355Dなどの、例示的なデバイスを示す。これらのいずれも、TCD344をもつまたはもたない交通信号システム348の一部として構成され、図7Aによって説明されるゾーンなどのゾーン内に配置されてよい。
動的メッセージ標識355Aは、時間の期間後に変更され得るメッセージを観察者(運転手、乗客、自転車に乗っている人、歩行者など)に提供するために使用される道路脇のデバイスであってよい。表示されるメッセージは、テキスト形式またはグラフィカルな形式であってよく、淡色であってもよいし、複数の色であってもよい。動的速度制限標識355Bは、道路区間に対する速度制限の値を表示するために使用される道路脇のデバイスであってよい。速度制限の値は、時間またはロケーション、たとえば、道路区間に対するまたは速度制限の車線に対する速度制限に基づいて調整されてよい。1つのケースでは、道路区間の第1の車線は、第2の車線の速度制限と異なる、速度制限のための値を有することがある。動的速度制限標識355Bは、標識355Bおよび/または隣接する車線の真下の車線などに適用される車線速度制限を示すために、1つまたは複数の固定矢印または動的矢印または他のインジケータを有することがある。さらに、標識355Bは、同時に、異なる車線に対する、または対応する1つもしくは複数の車線に対する速度制限値およびインジケータの回転による、のどちらかで、複数の速度制限値を表示することを可能にすることがある。
動的交通制御デバイス355Cは、交通を制御するためのゲートであることがある。デバイス355Cは、交通がデバイス355Cのロケーションを越えて前進するのを防止するまたは可能にするために、上昇位置と下降位置との間で変化することがある。
通信中継デバイス355Dは、少なくとも1つの他の通信デバイスおよびまたはシステム間の通信を可能にするためのワイヤードまたはワイヤレスの受信機および送信機または中継デバイスであってよい。たとえば、第1の信号機が設置された交差点Aに配置された第1の通信中継デバイス355Dは、少なくとも2つの信号機が設置された交差点AとBとの間の検出および/またはSPaT情報の通信を可能にするために、第2の信号機が設置された交差点Bに配置された第2の通信中継デバイス355Dと通信することがある。他の例としては、図7Aに示されるような、少なくとも第3の信号機が設置された交差点C1との、交差点A1、B1間の通信などの通信があり得る。
さらに、交通信号システム間で行われ得る通信は、TCD制御装置と第1の交通信号システムの検出デバイスのうちの少なくとも1つと、TCD制御装置と第2の交通信号システムの検出デバイスのうちの少なくとも1つとの間など、別個の交通信号システムのさまざまな構成要素またはサブシステム間の接続を通して行われてよい。
別の例では、1つの交通信号システム348は、交通信号、動的メッセージ標識、およびエリアB100内に配置された関連付けられた交通管理および通信システムのうちの1つ、いくつか、またはすべてを制御することがある。
図8A〜図8Bは、タイミングプランとも呼ばれる、例示的な交通信号制御プロセスのフローチャートである。例示的なタイミングプランとしては、時間があらかじめ定められたプラン、半作動プラン、作動(またはフリーモード)プラン、ホールドプラン、および作動協調プランがあり得る。選択されるタイミングプランは、現在または来たるべきシステムまたはTMS101の信号動作モード、必要に応じてさまざまなタイミングプラン間でシフト可能なTCD制御装置340に基づいて選定されることがある。
時間があらかじめ定められたプランでは、TCD制御装置340は、設定された順序で、交差点のフェーズまたは交通移動の固定セット(たとえば図5A〜図5H、図6A〜図6C、図7A、および図8C1〜図8C2)を通して回転することがある。各フェーズは、設定された時間持続時間を有することがある。TCD制御装置340が、セットのフェーズの各々を通して回転すると、TCD制御装置340は、セットの第1のフェーズで始まる同じ順序でプロセスを再度繰り返す。
半作動プランでは、TCD制御装置340は、設定された順序で、交差点Aのフェーズまたは交通移動の固定セットを通して回転することがある。各フェーズは、可変の時間持続時間を有することがある。したがって、交通需要が交差点Aの特定の方向に検出された場合、現在のフェーズの時間持続時間は、必要とされる特定の方向にかなうために、時間持続時間を増加させるかまたは減少させるかのどちらかによって、変更されることがある。次のフェーズは、時間持続時間がゼロであることが可能にされる場合、スキップされてもよい。TCD制御装置340が、セットのフェーズの各々を通して回転すると、TCD制御装置340は、セットの第1のフェーズで始まる同じ順序でプロセスを再度繰り返すことがある。
作動プランでは、TCD制御装置340は、フェーズをいつ変更すべきか、どのフェーズに変更するべきか、およびフェーズ内の各移動の持続時間を決定するために、1つまたは複数のアルゴリズム(図8B1によって説明されるなど)を使用することがある。フェーズは、独立して選択されてもよいし、フェーズのセットから選択されてもよく、フェーズの特定のシーケンスに依存する必要はなく、時間持続時間が変更されてよい。
ホールドプランでは、TCD制御装置340は、固定時間期間の間または条件が満たされるまで赤色ランプまたは停止信号を提供するように、交差点AのTCD344のうちのいくつかまたはすべてを制御することがある。ホールドプランのいくつかの使用は、他の交通を停止させること(対立する方向から交通のための青色信号なしで交差点Aを通る緊急車両の通過を可能にすることなど)、交差点Aの1つもしくは複数の方向を一時的に閉鎖すること、迂回路を提供すること、および/またはフラッシュルートの一部を提供することであることがある(本文書においてさらに説明される)。クリアランスフェーズ中、TCD制御装置340は、交差点のすべての方向における移動を停止させることがある。これは、時間的に赤色ランプで停止することがない車両の説明となるためにフェーズ変更中の衝突を防止する助けとなるために使用されることがある。
作動協調プランでは、TCD制御装置340の動作は、交差点Aおよび交差点Bのフェーズが交通需要に応答するようにアクティブに協調されるように、第2の交差点Bの第2のTCD制御装置340’の動作に少なくとも部分的に依存することがある。たとえば、いくつかの車両が、交差点Aに向かう方向に交差点Bを通過することが予想または検出されるとき、TCD制御装置340は、図8C1および図8C2によって説明されるように、交差点Bの第2の制御装置340’のフェーズもしくはタイミングシーケンスおよび時間持続時間、ならびに/または交差点Bからの交通の検出された流量に少なくとも一部は基づいて交差点Aの現在または来たるべきフェーズを調整することがある。
各フェーズまたは移動における変数としては、どの交通移動が含まれるか、各移動に対する最小青色持続時間(適用可能な場合)、各移動に対する最大青色持続時間(適用可能な場合)、移動が青色から黄色そして赤色へと変化するときの黄色(または琥珀色)持続時間、すべてのTCD344がフェーズ間で赤色であり得るクリアランス時間、および青色持続時間を短縮または延長させるためのなどの少なくとも1つの時間増分があり得る。他の最小制限および最大制限も、最小青色時間持続時間および最大青色時間持続時間が満たされることを保証するため、または特定のアクションをトリガするために、図8A〜図8Bのプロセスなどのプロセス内で適用されてよい。
図8Aは、TMS101によって交差点Aに適用され得る例示的な半作動交通信号タイミングプロセス860(半作動プロセス860)の図である。
サブプロセスS861を通して、半作動プロセス860は、最小フェーズ時間(適用可能な場合)たとえば青色最小フェーズ時間が、交差点Aの第1の(または現在の)フェーズの間に到達したかどうかを決定する。そうでない場合、サブプロセスS861は繰り返す。そうである場合、半作動プロセス860は、交差点Aの第1のフェーズの少なくとも1つの交通需要を、次のフェーズの少なくとも1つの交通需要などの交差点Aの少なくとも1つの他のフェーズの少なくとも1つの交通需要と比較するサブプロセスS862に進み、この比較は、少なくとも1つの来たるべき時間期間の間に行われることがある。次のフェーズは、TMS101がリアルタイム条件に合わせて適応的に動作している場合、必ずしも動作の固定順序またはシーケンスによってあらかじめ決定されるとは限らない。
交差点Aの次のフェーズのうちの少なくとも1つの交通需要が第1のフェーズの交通需要よりも十分に大きい場合、半作動プロセス860は、最大時間たとえば交差点Aの第1のフェーズに対する最大フェーズ時間が到達されたかどうかを決定するサブプロセスS864に進んでよい。
そうである場合、半作動プロセス860は、交差点Aのための次のフェーズを選択するサブプロセスS866に進み、次いで、サブプロセスS860に戻る。そうでない場合、半作動プロセス860は、時間増分の分だけ現在のフェーズを延長するサブプロセスS868に進み、この時間増分は、約3秒、5秒、もしくは10秒などの範囲内である、計算された持続時間などの所定の固定間隔、または約5秒もしくは10秒などの範囲内である、計算された持続時間のどちらかであってよく、そのような時間間隔内に、既知の交通または予想交通のほとんどの量が交差点Aを通過することを可能にする。次いで、半作動プロセス860は、サブプロセスS862に戻る。
サブプロセスS862の1つのケースでは、次のフェーズの交通需要は、次のフェーズを選択するために、第1のフェーズの交通需要をデルタ量よりも大きく超えなければならない(最大青色時間などの別の制限が到達されない限り)。サブプロセスS862の別のケースでは、次のフェーズの予期交通需要は、1つまたは複数の来たるべき時間期間にわたって、第1のフェーズの交通需要を超えなければならない。
図8B1は、TMS101によって交差点Aに適用され得る例示的な作動交通信号タイミングプロセス880(作動プロセス880)の図である。
サブプロセスS881を通して、半作動プロセス880は、最小時間たとえば青色最小フェーズ時間が適用可能であるか、および交差点Aの第1の(または現在の)フェーズの間に到達したかどうかを計算する。そうでない場合、サブプロセスS881は繰り返す。そうである場合、作動プロセス880は、サブプロセスS882に進む。最小時間が指定されない場合、プロセス880はサブプロセスS882を開始し、サブプロセスS881に対してループするすべてのサブプロセスは、代わりに、サブプロセスS882にループするであろう。
サブプロセスS882は、交差点の別のフェーズ内で時間制限たとえば最大赤色時間または最大待機時間が到達されたかどうかを計算する。最大待機時間は、最大待機時間が到達された場合に、作動プロセス880がサブプロセスS886に進むように、各移動および/またはフェーズに対して設定されることがある。最大待機時間が交差点Aの別のフェーズ内に到達されない場合、作動プロセス880は、サブプロセスS884に進む。
サブプロセスS886は、最大待機時間に到達したフェーズを選択し、現在のフェーズ方向における青色ランプの信号から、最大待機時間に到達した移動および/またはフェーズに変化する。複数のフェーズが最大待機時間に到達した場合、サブプロセスS886は、上記で説明されたように、最大待機時間が到達された順序で、現在の青色ランプの信号移動および/またはフェーズを、最大待機時間に到達したものに変更する。次いで、作動プロセス880は、サブプロセスS881に進む。
サブプロセスS884は、交差点Aの第1のフェーズの少なくとも1つの時間期間の交通需要を、交差点Aの少なくとも1つの他のフェーズの少なくとも1つの時間期間の交通需要と比較する。比較される1つまたは複数の時間期間中、第1のフェーズの交通需要が、別のフェーズの交通需要よりも十分小さい場合(たとえば上記で図8Aにおいて説明される潜在的な比較など)、プロセス880は、サブプロセスS890に進む。第1のフェーズの交通需要が別のフェーズの交通需要よりも小さくない場合、プロセス880は、サブプロセスS888に進む。
サブプロセスS888は、最大時間たとえば最大青色時間が第1のフェーズの間に到達されたかどうかを計算する。そうでない場合、次いで、作動プロセス880は、所定の時間増分または可変の時間増分のどちらかの分だけ現在のフェーズを延長させるサブプロセスS892に進み、次いで、サブプロセスS882に戻る。「はい」の場合、作動プロセス880は、サブプロセスS890に進む。サブプロセスS890は、より高い要求フェーズを選択し、次いで、作動プロセス880は、サブプロセスS881に戻る。
本明細書において説明される各タイミングプロセスでは、プロセス860および880のサブプロセスS862およびS882によって説明され、考慮または比較される交通需要はそれぞれ、1つまたは複数の時間期間にまたがることがある。
図8B2は、一例による、各方向から交差点Aに接近する交通需要の大きさを示す図である。各方向に接近する交通需要は、時間期間t1、t2、t3、t4、およびt5などによって、交差点における現在の到着の時間または到着の推定時間(ETA)に基づいて時間期間に分割されることがある。交通需要は、時間期間中に交差点を通るすべての対立しない移動に対して全体で考慮されることがある。この単純な例は、交差点Aにおいてターンが許可されていないケースである。次いで、交差点Aに対する交通需要が、2つのフェーズ、すなわち、東行き方向および西行き方向における交通移動である第1のフェーズと、北行き方向および南行き方向における交通移動である第2のフェーズとを有する移動の1つのセットに対して考慮されることがある。
第1の時間期間t1中の交差点Aの第1のフェーズの交通需要は、第1の時間期間t1中の交差点Aの第2のフェーズの交通需要と比較されることがある。次いで、第1の時間期間t1の後の第2の時間期間t2中の交差点Aの第1のフェーズの交通需要が、第2の時間期間t2中の交差点Aの第2のフェーズの交通需要と比較されることがある。
第1の時間期間t1中に第1のフェーズの交通需要が第2のフェーズの交通需要よりも大きく、第2の時間期間t2中に第1のフェーズの交通需要が第2のフェーズの交通よりも大きい場合、第1のフェーズは、第1の交通フェーズの持続時間を現在の時間期間t1を超えて延長させることによって、第1の時間期間t1、および第2の時間期間t2のうちの少なくとも1つに対してより高い交通スループットを提供することがある。
代替的に、第1のフェーズの交通需要が、第1の時間期間t1中に少なくとも等しいまたはこれよりも大きい量の分だけ、第2の時間期間t2中の第2のフェーズの交通需要よりも大きい場合、第1のフェーズと第2のフェーズとの間の交通需要の相対的差は上昇の傾向にあり、第1のフェーズは、第1の交通フェーズの持続時間を現在の時間期間t1を超えて延長させ、交通フェーズの交通変更の数を減少させることによって、第1の時間期間t1、および第2の時間期間t2のうちの少なくとも1つに対するより高い交通スループットを提供することがある。このプロセスは、第1の時間期間からn時間期間までの第1のフェーズと第2のフェーズの交通需要を比較するために繰り返されることがある。第1のフェーズは、青色ランプの信号を表示する現在のフェーズであってよく、第2の時間期間t2は、第1の時間期間t1にすぐ続く時間期間であってもなくてもよい。代替的に、第1の時間期間t1は以前の時間期間であってよく、第2の時間期間t2は、現在の時間期間または来たるべき時間期間であってよい。複数の時間期間を比較する目的は、フェーズ間の切り換えを最小にするために需要傾向を検出することであり、これは、交通流量に混乱を生じさせることができる。
別のケースでは、第1の時間期間t1中に第1のフェーズの交通需要が第2のフェーズの交通需要よりも小さく、第2の時間期間t2中に第1のフェーズの交通需要が第2のフェーズの交通需要よりも小さい場合、第2のフェーズは、第1の時間期間t1、および第2の時間期間t2のうちの少なくとも1つに対してより高い交通スループットを提供することがある。しかしながら、第1のフェーズが、青色ランプの信号を表示する現在のフェーズである場合、変更時間とクリアランス時間とを含み得るフェーズを変更する混乱は、第1の時間期間t1、および第2の時間期間t2に対する交差点Aにおける交通スループットの全体的な増加をもたらさないことがある。したがって、変更時間およびクリアランス時間は、交差点Aに接近する各方向から満たされ得る推定交通需要と比較する際に考慮されることがある。
このセクションでは、交通需要は、車両のカウントまたは数値的量と定義される。すなわち、交通需要は、各時間期間中に交差点Aの各方向に接近する車両の数に関して考慮される。後の例は、これら以外に基づく、またはこれらに加えた、尺度も含むことがある。さまざまな例では、需要は、エネルギー消費もしくは車両排気、交差点の優先度のレベル(交差点重み)、交差点方向、車両もしくは乗客、交差点からの距離および/もしくは時間、ならびに/またはルート、道程、もしくはタイムスケジュールを走行する固守に基づいて、考慮されることがある。これらの例示的な基準は、各既知の交差点または識別可能な車両、乗客、または歩行者の重みの一部と考慮されることがあり、図16、図17、および図19によって説明されるように、交通需要計算において考慮されることがある。
表1は、表形式のタイミングプランを含み、このタイミングプランは、一例による、交差点Aに対する、現在のおよび来たるべきフェーズおよび時間持続時間のシリーズを有する。タイミングプランは、およそ数秒ごとの、たとえばゼロから約60秒の、検出された交通需要および交通需要履歴に応答して、TMS101内で周期的に生成されてよい。
タイミングプランの各項目は、SPaT識別子(#)、フェーズおよび時間持続時間が開始する予定である時刻、時間持続時間、および交差点AのTCD制御装置340によって提供されるフェーズが割り当てられる。時間表示フォーマットとしては、hh:mm:ss、またはhh:mm:ss.xxxフォーマットなどのさらに小さい増分があることがあり、.xxxは、1000分の1秒を表す。
例の表では、TCD制御装置340の第1のSPaT項目は、12:00:00に始まり、45秒の持続時間を有し、交差点AにフェーズCを提供する。これに続いて、12:00:45から12:01:00までの各々5秒の時間増分にわたってフェーズCを延長させる、第2のSPaT項目、第3のSPaT項目、および第4のSPaT項目がある。これらに続いて、12:01:00に始まり、15秒の持続時間にわたってフェーズDなどを提供する第5のSPaT項目(#2として示される)から、12:03:00に始まり、1分の持続時間にわたってフェーズCを提供するSPaT項目(#5として示される)がある。
タイミングプランのフェーズおよび時間は、それがTCD制御装置340によって現在使用中であり、時間の増分の分だけフェーズ持続時間を減少させることまたは増加させることのどちらかによって、時間持続時間を変更することによって青色ランプの信号を表示している場合でも改定されることがある。フェーズの時間持続時間に対する変更は、ゼロよりも小さい時間持続時間をもたらさないことがあり(適用可能な最小時間がゼロよりも大きい場合、最小時間よりも小さくないことがある)、緊急モードまたは障害検出モードなどの特定の信号動作モードでない限り、交差点Aに対する最大青色時間を超えないことがある。現在のフェーズの延長または減少およびタイミングプランの時間は、表1に示されるように、たとえば、同一の項目数値をもつ項目を表に追加し、その後のコード(たとえば、A、B、Cなど)を項目数値に付加し、同じフェーズに対する時間と持続時間とを指定することによって注記されることがある。
使用中の動作のシグナリングモード(たとえば、時間があらかじめ定められた、半作動、作動など)に応じて、現在のフェーズの後のフェーズおよび時間持続時間などの時間の特定の区間に対するフェーズおよび時間持続時間の選択は、交差点Aの各方向における交通需要に基づくことがある。
動作のシグナリングモードは、TCD制御装置340が、時間があらかじめ定められたモードなどの回転の固定順序でフェーズを通して回転することを可能にすることがあり、フェーズ回転の固定順序に従うが、たとえば半作動モードでフェーズの時間持続時間がゼロ(t=0)である、いくつかのフェーズをスキップすることがあり、または、可能なフェーズのセットまたはサブセットから任意のフェーズを選択する(作動モード)ことを可能にすることがある。
タイミングプランは、1つまたは複数の交差点に関して協調されることがある。第2の交差点の信号タイミングプランは、少なくとも1つの車両R1の到着の推定時間(ETA)に基づいて第1の交差点から到着するまたはこれにつながる交通流量を協調させるように調整されることがある。ETAは、第1の交差点と第2の交差点との間に配置された道路区間の現在のまたは来たるべき速度制限、第1の交差点と第2の交差点との間に配置された道路区間の少なくとも1つの方向に走行する検出される1つまたは複数の車両の現在の速度、および前記道路区間の少なくとも1つの方向に走行する1つまたは複数の車両の過去の速度のうちの少なくとも1つに依存することがある。たとえば、TMS101は、次いで車両R1が、車両R1が走行していることがある方向にTMS101が第1の交差点における青色信号を提供する時間期間中に第1の交差点におけるETAを有することがあるように、車両R1が第1の交差点の方向に第2の交差点を通過することを可能にするために方向における青色信号時間の量を調整することがある。
第1の交差点を出て、第2の交差点へと向かう交通は、第1の交差点の方向からの第2の交差点の交通需要の少なくとも一部であってよい。第1の交差点および第2の交差点の信号タイミングおよび信号タイミングプランは各々、少なくとも1つの他の交差点の出口流量に基づいて調整されることがある。
1つのケースでは、少なくとも1つの他の交差点の出口流量は、同じ道路区間上に入ることがある。別のケースでは、交差点に入る交通需要は、複数の到着道路区間(たとえば、それらのシリーズ)からであってもよいし、信号機が設置されてもされなくてもよい到着道路区間と交差する他の方向からであってもよい。さらに、確率は、中央ブロック交差点、ターン、および車両、自転車に乗っている人、または歩行者が現在の時間期間または来たるべき時間期間中に交差点に到着しないことがある他の理由を説明するために、それらの到着方向の各々に対して推定されることがある。車両または旅行者が交差点に到着するのが近くなるにつれて、車両または旅行者が交差点に接近し、交差点に入る確率が高くなることがある。
図8C1は、一例による、道路区間3002の東端に配置された信号機が設置された交差点Aと西端に配置された信号機が設置された交差点Bとをそれぞれ接続する道路区間3002の図である。この例では、道路区間3002は、交差点Aから交差点Bへの西行き交通に対する2つの車線と、交差点Bから交差点Aへの東行き交通に対する2つの車線とを有する。他の例では、道路区間3002は、交差点Aから交差点Bへの西行き交通に対するゼロ、1つ、またはより多くの車線を有することがあり、交差点Bから交差点Aへの東行き交通に対するゼロ、1つ、またはより多くの車線を有することがある。
道路区間3002は、別の道路区間3003に至る、交差点Aと交差点Bとの間に配置された中央ブロック交差点MB1を有する。交通は、道路区間3002の少なくとも1つの方向から道路区間3003上へと曲がることが可能であり、交通は、道路区間3003の少なくとも1つの方向から道路区間3002上へと曲がることが可能である。道路区間3002は、2つの区間D1およびD2から形成された長さDtotalを有する。区間D1は、中央ブロック交差点MB1までの交差点Bからのおおよその距離を表し、区間D2は、交差点Aから中央ブロック交差点MB1までのおおよその距離を表す。
進入路BA1は、東行き交通に対して、道路区間3002上で交差点Bと中央ブロック交差点MB1との間に配置される。進入路BA2は、東行き交通に対して、道路区間3002上で中央ブロック交差点MB1と交差点Aとの間に配置される。進入路AB1は、西行き交通に対して、道路区間3002上で交差点Aと中央ブロック交差点MB1との間に配置される。進入路AB2は、西行き交通に対して、道路区間3002上で中央ブロック交差点MB1と交差点Bとの間に配置される。進入路MB1Aおよび進入路MB1Bは、道路区間3003上に配置され、中央ブロック交差点MB1に接続される。進入路MB1Aは、道路区間3002上へ曲がる南行き交通に対するものであることがあり、進入路MB1Bは、道路区間3002から下りる北行き交通に対するものがある。
交差点Aと交差点Bとの間の走行の各方向は、信号機が設置された交差点Aまたは信号機が設置された交差点Bにつながる少なくとも1つの進入路を有する。各進入路は、少なくとも1つの車線を含むことがある。1つの車線を有し、同じ方向に走行する交通に対する第2の進入路とほぼ平行な第1の進入路は、第2の進入路のターン確率とは異なるターン確率を有することがある。たとえば、車両は、右車線からよりも、左車線から右折を行う可能性がより低いので、交通が交差点において右に曲がることがある場合、左走行車線内に配置された進入路は、右走行車線内に配置された隣接する進入路のターン確率に等しいターン確率を有さない可能性がある。
交通需要は、少なくとも1つの道路区間からの検出された交通需要および/または推定交通需要を含めて、時間に基づいて、および/または距離に基づいて決定されることがある。時間に基づいた交通需要は、1つまたは複数の時間期間以内に、たとえば、次の5から20秒以内に、特定のロケーションまたはエリアにおいてまたはその中に到着するまたは配置されることがある交通の尺度であることがある。別の例では、時間期間は、20から60秒であることがある。別の例では、時間期間は、1から30分であってもよいし、ゼロから10分までの時間増分のいくつかの組合せであってもよい。距離に基づいた交通需要は、エリア内または特定のロケーションの距離内にある交通の尺度であることがある。
一例では、交通需要は、交差点に向かう各方向における車両移動の数に基づいて決定されることがある。別の例では、交通需要は、量に基づいた、車両、自転車に乗っている人、または歩行者の数である。別の例では、交通需要が、検出された、既知の、または推定された、車両、自転車に乗っている人、および/または歩行者の重み付けされた量の合計および/または積であり、より低い優先度に対してはゼロから1の間であり、より高い優先度に対しては1よりも大きいなどの、1という数値とは異なるカウント値を有することがある。
図8C1および図8C2に示される交通の例では、車両R1は、道路区間3002上で交差点Aから交差点Bに向かって西に走行していることが知られている。交差点Aと交差点Bの間でターンがなかった場合、車両R1は、車両R1が時間期間t1以内に交差点Bの進入路AB2内に到着する確率X1を表す期待値(EV)を有する可能性がある。時間に基づいて(すなわち、時間期間t1中に)、交差点Aからに到着する交差点Bに対する交通需要は、EVに関してEV=(X1)(重みR1)と表現されることがあり、ここで、重みR1は車両R1の重みであり、交差点Aから到着する交差点Bに対する交通需要は、交通需要に対する数値に基づいて1に等しいことがある(すなわち、車両R1は、1つの車両としてカウントする)。車両R1は、高い優先度および低い優先度の重みの場合などの、単なる数値ベースの代わりに、交通需要に対する重み付けされたベースが使用される場合、1よりも大きいまたは1よりも小さい値を有することがある。一般に、重みRはまた、車両スコアスタックVSS(以下で説明される、図16Aの説明を参照されたい)に等しくされることがあり、動的に変化することがある。さらに、重みRは、条件付きであることがある。たとえば、緊急車両が緊急モードで動作し始める場合、緊急車両の重みRは、最大値になどの、何らかの量増加されることがあるが、緊急車両の特定の範囲(時間、距離など)内の他の車両の重みRも、応答して調整されることがある。
別のケースでは、交差点AとBとの間に配置されることがある中央ブロックターンMB1の間で、ターンが許可されることがある。次いで、車両R1は、交差点Bに向かって継続する代わりに中央ブロックターンMB1においてターンする確率Y1も有することがあるので、車両R1は、以前のケースの確率X1よりも小さい、交差点Bに到着する確率X2を有することがある。次いで、交差点Bの進入路AB2内に到着する車両R1のEVが、(X2)(重みR1)と表現されることがある。X2+Y1の合計は、最大約1(100%)に等しいことがある。
交差点Aの方向から交差点Bに接近する交通需要は、時間期間t1内の交差点Bに向かって走行するすべての既知の車両、推定された車両、または検出された車両のEVの合計によって表されることがある。時間および/または距離的に近いほど、および可能なターンまたは車両R1が交差点Bに接近したとき車両R1を停止させる潜在的な理由が少ないほど(および車両R1が時間期間t1以内に交差点Bに到着する信頼度が大きいほど)、車両R1による交差点Aの方向から交差点Bに対するEVが高くなる。さらに、車両R1の重み付けされた優先度も、適用可能な場合、EVに影響することがある。
履歴データは、車両が一般に特定の交差点で曲がることがある可能性がどの程度かを示すことがある。たとえば、一般に、交差点Aから交差点Bに向かって運転する全体的な車両交通の10パーセントは、中央ブロックターンMB1で右折することがある。さらに、確率は、時刻(TOD)および/または曜日(DOW)、特別なイベント、または他の条件に基づいて、各交差点に対して一般に変化することがある。より大きい粒度が、特定の車両に対して得られることがある。例示的な条件の範囲は、確率Y1に影響することがある時間の前に、運転手、ユーザ、または車両によって示されることがある。1つのケースでは、中央ブロックターンMB1が、車両R1(または車両R1の運転手もしくは乗客)が頻繁にまたは日常的に運転するロケーションにつながる場合、確率Y1は、平均よりも高いことがある。別のケースでは、中央ブロックターンMB1がガソリンスタンドのためのものであり、車両R1が、搭載された低レベルの燃料を有することが推定されるまたは知られている場合、確率Y1は、車両R1がMB1へと曲がることを増加させることがある。別のケースでは、大型トラックが中央ブロックターンMB1へと曲がり、車両R1が大型トラックである場合、車両R1が中央ブロックターンMB1でターンする確率Y1は、平均よりも低いことがある。別のケースでは、TMS101に知られている車両R1によるターン信号の使用、たとえば、道路区間上、進入路上、またはロケーションのある範囲内にある間の、次いで情報をTMS101に送信するTMS101およびモバイルデバイス320のうちの少なくとも1つへの車両R1の外面上での点滅するターン信号のビデオ検出によるまたはデータバスブロードキャストもしくはダウンロードによるターン信号の使用は、車両R1が中央ブロックターンMB1で曲がる確率Y1に影響することがある。
車両R1が進入路AB1内にあることが検出されたケースでは、確率X1は、割り当てられる、または車両R1が進入路AB1から進入路AB2に前進することがTMS101によって推定されることがある。さらに、代わりに車両R1が進入路MB1B上へとターンするために前進する確率Y1も、ならびに、車両R1が進入路AB1からUターンを実行し、次いで、進入路BA2上で反対方向に継続することがある確率U1も、割り当てられる、導出される、または推定されることがある。したがって、X1+Y1+U1の合計は、最大1(100%)に等しいことがある。
道路区間3002が、信号機が設置された交差点AとBとの間に複数の中央ブロック交差点(図8C2)を有するケースでは、車両R1が交差点Aから交差点Bに前進する全体的な確率は、車両R1が交差点Aから交差点Bに至る進入路の各々から交差点Bに向かって前進する合成確率によって推定されることがある。同じことは、1つまたは複数の交差点を有する、信号機が設置されたまたは設置されていない、第1の交差点と第2の交差点との間の、車両のルートが知られていない、道路区間または道路区間のセットにも当てはまることがある。
進入路MB1A内に配置された車両R2が道路区間3003から道路区間3002に入ろうとしているケースでは、車両R2が進入路AB2に入る確率Z1および車両R2が進入路BA2に入る確率W1が推定されることがある。車両R2が入るどの進入路でも、交通需要の対応する増加を有することがあり、および/または時間間隔tnが、需要の増加を有することがある。
一例では、各進入路に対する各確率は、一般に交通に関する特定のDOWに対する特定のTODにおけるその特定の進入路に対する履歴データに基づいて推定または決定されることがある。別の例では、各確率は、過去の旅行(trip)からの車両Rのデータに基づいて、特定の車両Rに対して決定されることがある。別の例では、各確率は、あるタイプまたはクラスの車両Rの車両の過去の旅行からのデータに基づいて、特定の車両Rに対して決定されることがある。別の例では、各確率は、道路区間の各特定の進入路に対する履歴データ、車両Rの過去の旅行からのデータ、現在の道路、交通、または気象条件、および車両Rのタイプまたはクラスに類似したあるタイプまたはクラスの車両の過去の旅行からのデータのうちの少なくとも1つの組合せに基づいて、特定の車両Rに対して決定されることがある。
さらに、さまざまな時間区間は各々、交差点Aと交差点Bとの間の方向に、ある速度(たとえば、速度制限、平均速度など)で走行する車両に対する時間間隔を表すことがある。
一例では、40mph(約59ft/s)の速度制限を有する道路区間上の5秒の時間間隔tnにわたって、時間間隔tnによってカバーされる距離は、約295フィートであることが推定されることがある。時間間隔tnは、固定であってもよいし、動的であってもよく、検出された車両または既知の車両が、交差点またはある地点、進入路、もしくは道路区間上のエリアなどの他のロケーションに到着すると予想されるとき、時間に基づいて決定するために使用されることがある。
これは、方向ごとおよび/または時間間隔ごとの交差点に接近する車両の数の推定を可能にする。さらに、車両カウントを推定したことに加えて、重みおよび/または確率は、少なくとも1つの時間間隔のタイムスパン中の交差点の方向または道路区間に対する交通需要の尺度を推定するためにも適用されることがある。
次いで、交差点に接近する各方向の交通需要が、TMS101のシステム動作モードにとって最適なルート指定を提供し得る交通信号フェーズまたはサイクルを選択するために比較されることがある。たとえば、TMS101システム動作モードが、交差点に対するスループットを最大にすることであるケースでは、TMS101は、最も大きい総交通需要または組み合わされた交通需要を有し、何らかの制限が到達され得るまで少なくとも1つの方向における青色交通信号フェーズ時間を引き続き延長する対立しない移動の組合せにおいて青色交通信号を提供し、第2の、対立する方向において、この時間の間の赤色交通信号で待機していることがある他の交通を無視することがある。これは、交差点を通る交通の量を最大にすることがあるが、それが、他の交通の遅延を引き起こすことがある。別のケースでは、TMS101システム動作モードは、待機時間を最小にすることであることがあり、TMS101は、最大青色時間の一部分のみが任意のフェーズにおいて到達されるように、青色交通信号フェーズ時間を延長させることを制限するように、交差点において交通信号を動作させることがある。これは、より短い最大待機時間をもたらすが、交差点を通る交通の量を減少させることがある。図8Eおよび図8Fの説明が、さらに説明する。
図8C2は、一例による、図8C1に示されるものの変形形態を示す図である。追加の中央ブロックターンMB2が、中央ブロックターンMB1と交差点Bとの間に配置される。進入路AB3およびBA3がそれぞれ、交差点AとBとの間で、西行き方向および東行き方向に追加されることがある。さらに、上記で説明された確率Y1と同様に、車両R1が進入路AB2内にあると、確率Y2は、中央ブロックターンMB2で車両R1が曲がり得る確率と、車両R1が交差点Bに向かって前進する確率X2とを示すことがある。車両R1と交差点Bとの間に配置された複数の交差点がある場合、EVは、時間期間t1内の交差点Bにおける到着の前に曲がる車両R1のさまざまな確率の積であることがある。1つのケースでは、車両R1は、中央ブロックターンMB1と中央ブロックターンMB2との間に配置され、交差点Bの方向に走行している。確率Y2と確率X2の合計は、約1に等しいことがあり、車両R1が交差点Bに到着し得るEVは、少なくとも部分的に、EV=(X2)(重みR1)または(1−Y2)(重みR1)などの、確率の関数であることがある。
別のケースでは、車両R1は、交差点Aと中央ブロックターンMB1との間に配置され、交差点Aの方向に走行している。確率の合計Y1+Y2+X1+X2は、最大で約1に等しいことがあり、車両R1が交差点Bの進入路AB3に到着し得るEVは、少なくとも部分的に、EV=(X1)(X2)(重みR1)などの、確率X1およびX2の関数であることがある。車両R1が交差点Bへの進入路AB3に到着する確率の合計は、車両R1の現在のロケーションとともに変化する。たとえば、車両R1が進入路AB1内にある場合、確率の合計X1+Y1は、最大1に等しいことがある。車両R1が進入路AB2内にある場合、確率の合計X2+Y2は、最大1に等しいことがある。
車両R1の目的地がTMS101によって知られているが、具体的なルートはTMS101によって知られていないケースでは、より高いEVをもたらし得る車両R1が目的地に到着するためにとる可能性の高いルートのセットがあるので、ルート上の各交差点に対する車両R1のEVは、目的地が知られていないケースよりも高い信頼度で推定または決定されることがある。TMS101は、運転手が特定のルートをとる可能性に影響するガイダンスまたは推奨事項も提供することがある。
車両R1のルートが、たとえば、ナビゲーションシステムまたはアルゴリズムを通して、TMS101によって知られているケースでは、ルート上の各信号機が設置された交差点のロケーションが知られていることがあり、信号機が設置された交差点のうちの少なくとも1つのロケーションの各々におけるETAは、車両R1ロケーションおよび移動、他の既知のもしくは検出された交通、ならびに交通量、道路工事、天候、特別なイベント、または事故ステータスなどの道路網の現在の条件のうちの少なくとも1つに基づいて、推定されることがある。したがって、実際には、車両R1は、最初は宣言されたそのルートを有し、次いで、ルートをたどっている(または、たどっていない)ことを周期的または継続的に示すので、ルート上の各交差点に対する車両R1のEVは、車両R1のルートが知られていないケースよりも高い信頼度をもつTMS101によって決定されることがある。
いくつかの車両または車両タイプは、固定ルート、または乗り合いバスまたは小荷物配達トラックのためなどのあり得るルート上で運転されることがある。これらのルートは、固定されていないとき、既知のルートまたは可能性のあるルートのセットから選択されることがある。そのようなルートの使用は、確率計算を単純化し、いくつかの車両に対するルートおよびタイミング予測における信頼区間を増加させることがある。
いずれのケースでも、追加の時間期間が、車両R1の走行の方向をもつまたはこれに隣接した道路区間上に配置された交通の列を解消するために必要とされる時間を説明するため、または車両R1が交差点のために減速(または同程度減速する)または停止するように、車両R1の到着の前にアクティブな鉄道、自転車に乗っている人、および歩行者の移動などの他の遅延を説明するために、信号機が設置された交差点の交通信号フェーズをいつ変更するべきかという計算に追加されることがある。
交差点Bから交差点Aに向かう道路区間3002上の進入路BA1上に配置された車両Rの交通需要は、交差点Aに対してEVと表現されることがある。
ある時間間隔にわたって道路区間上である方向に走行するすべての既知の車両または検出された車両に対するEVの合計は、
Σ車両EV=EV1+EV2+...+EVn
と表現されることがある。車両が、時間または距離のどちらかにおいて、交差点に近づくほど、車両が交差点に到着する可能性がますます高くなるので、車両のEVは大きくなる傾向がある。データソース1からの時間期間t1からtnにわたる道路区間上の交通需要は、
ソース1=(Σt1に対する車両EV)+(Σt2に対する車両EV)+...+(Σtnに対する車両EV)
と表現されることがある。さらに、交差点の方向に対する複数のデータソースからの総交通需要は、
総交通需要=(JW)[(W1)ソース1+(W2)ソース2+...+(Wn)ソースn]
と表現されることがあり、ここで、W1は、対応する第1のソース1の総交通需要に対する重み、W2は第2のソースソース2の総交通需要に対する重みであり、以下同様である。JWは、交差点の方向に対する交差点重みであり、1つまたは複数の時間期間中の方向の相対的重要性のインジケータとして働くことがある。JWの調整は、隣接する、信号機が設置された交差点との協調を可能にすることがある。既知の車両が道路区間上で検出され、スマートフォンアプリを介してTMS101と通信することも知られているケースなどの、交通のソースが効果的に複数回カウントされ得るケースでは、少なくとも1つのデータソースは、既知の車両に対する車両カウントを減少させるように調整されることがある。
先行する式および計算の使用などによって、交差点の方向性交通需要を決定することは、プロセスS3020(図22)に対応することがあり、TMS101が、異なる道路区間間の交通需要を比較し、交差点に接近し、次いで、システム動作モードおよび信号動作モードのうちの少なくとも1つを最適化するように交差点のための信号タイミングプランを選択することを可能にする。
図8C3は、一例による、各方向から交差点Aに接近する交通需要の大きさを示す図である。図8B2において説明されるものと同様に、車両は、交通需要を計算するように交差点Aに接近する各方向からカウントされることがあるので、次いで、交通需要は、時間期間(または距離)によって重み付けされることがある。時間期間tnが交差点に近いほど、交通需要は、その後の時間期間の交通需要と比較して、高くなることがある。これは、上記で図8C1〜図8C2を参照しながら説明されたように、EVの使用によるものである。交差点Aに接近する道路区間に沿ってターンがない場合でも、車両が(事故、故障、停車などにより)停止し、したがって、次の時間期間中に交差点Aを通過しない確率があり、これは、交差点Aに近づくほど低くなり、そのため、車両が交差点Aに接近するにつれて、より低い割合にもかかわらず、車両が通過する確率が高いほど、重みまたはEVが依然として上昇するべきであることを意味する。時間期間n内に一方向から交差点Aに接近する車両のEVの合計は、時間期間n中のその方向に関して交差点Aに対する交通需要を形成することがある。
車両が交差点Aから遠く離れるにつれて、そのEVは、車両が現在の道路から脇道へそれて交差点Aに到着しない確率が高くなること、車両が現在の時間期間内に交差点Aに到着する確率が低くなることにより、低くなる。これは、特に、車両ルートが定義されていないまたはTMS101に利用可能でないケースに当てはまる。車両が交差点Aに向かってより近く移動するにつれて、車両が交差点Aを通る確率は増加し、または、確率は、車両が遅延した場合に減少し、車両が交差点Aに到着する前にもう1回ターンした場合は、ゼロになることがある。次いで、車両が、交差点Aに向かって、または交差点Aから離れて走行するとき、交差点Aに関する車両のEVは、時間(または距離)に相応して増加または減少する。
図8Dは、本明細書の別の場所で説明される、TMS101によって一緒に、またはTMS101およびTMS101と通信するように構成された別個のナビゲーションサービスもしくはシステムによって、適用され得る、交通動作および優先度付与動作に基づいた、適応型交通管理プロセス650およびナビゲーションプロセス670の例示的なプロセスの図である。適応型交通管理プロセス650は、1つまたは複数の信号機が設置された交差点に適応型交通管理を提供するプロセス650であり、およびナビゲーションプロセス670は、道路上またはエリア内で動作する1つまたは複数の車両にナビゲーションガイダンスを提供するプロセス670である。プロセス650は、ナビゲーションプロセス670が動作し始めるとき、すでに動作中であることがある。
適応型交通管理プロセス650は、ナビゲーションプロセス670を含むさまざまなソース、および交通カメラ、検出ループ、および車両カウンタなどのさまざまな検出システム、ならびにナビゲーションシステムまたはネットワークからのデータソースから受信された交通検出入力に応答して、交通を適応的に管理する。
適応型交通管理プロセス650は、上記で述べられたものなどのさまざまなソースから検出情報を受信するために、サブプロセスS652に進むことによって始まる。次いで、プロセス650は、図8A〜図8B1によって説明されるなどのTMS101の動作モードに対して、1つまたは複数の信号機が設置された交差点に接近する交通需要に応答して交通制御デバイス(交通信号、動的メッセージボード、および動的速度制限など)を調整するべきかどうかを決定する。そうである場合、プロセス650は、図8A〜図8C3の説明において定義されたものなどの、信号フェーズもしくはタイミング交通を変更すること、動的メッセージボード上に表示されるメッセージを変更すること、および/または交通需要を満たすように動的速度制限を変更することなどによって、少なくとも1つのTCD340またはTSS348を調整するためにサブプロセスS654に進む。
次いで、プロセス650は、1つまたは複数のTCD340もしくはTSS348のステータスの更新、またはサブプロセスS652において受信された可能性のある追加の検出情報を、ナビゲーションシステムに送信するべきかどうかを決定する。送信のための基準としては、道路区間、エリア、もしくは交通信号ステータスの更新、またはナビゲーションシステムを使用する車両に関連のあるカウントダウンがあり得る。
プロセス650が、更新を送信しないことを決定した場合、プロセス650は、プロセス650を繰り返すべきかどうかを決定するために進む。プロセス650が、更新を送信することを決定した場合、プロセス650は、ナビゲーションプロセス670に更新を通信するために、サブプロセスS656に進む。サブプロセスS656が完了されると、プロセス650は、プロセス650を繰り返すべきかどうかを決定する。一般に、プロセス650は、システム障害または電力の喪失がない限り、連続的である。
そうである場合、プロセス650は、サブプロセスS652を再度開始するために戻る。そうでない場合は、プロセス650は終了する。
ナビゲーションプロセス670は、ナビゲーションプロセスを使用する車両および適応型交通管理プロセス650によって検出され得る車両などの、ナビゲーションプロセスに関連のある1つまたは複数の車両を識別するために、サブプロセスS672に進むことによって始まる。
次いで、プロセス670は、サブプロセスS672によってエリア内または1つもしくは複数の道路上で識別される車両を優先させるために、サブプロセスS674に進む。識別された車両の優先度付与としては、利用可能なVSSごとの各車両および/または利用可能なGSSごとの車両の各グループを並び替えることがあり得る。それは、エリア内または1つもしくは複数の道路区間に沿って交通量または速度を予測することなど、VSSを有さない検出された車両の量が、VSSをもつ車両のナビゲーションにどのように影響し得るかを計算することも必要とすることがある。
次いで、プロセス670は、VSSを有する車両またはGSSを有する車両グループのうちの少なくとも1つに対するナビゲーションルートを生成するべきかどうかを決定する。高いGSSを有する車両グループは、VSSをもつ個々の車両よりも高い優先度が与えられることがあり、VSSをもつ個々の車両は、優先度スコアなしに動作する車両よりも高い優先度を有する。宣言された目的地とともにナビゲーションシステムを使用するすべての車両は各々、システムにより生成されたルートを備えることがある。
プロセス670が、車両のうちの少なくとも1つに対してナビゲーションルートを生成しないことを決定した場合、プロセス670は、決定点S679に進む。そうである場合、プロセス670は、適応型交通シグナリングおよびプロセス650によって提供される制御情報をさらに説明する、サードパーティによって提供されるなどの、既知のプロセスを使用して、車両または車両グループのうちの少なくとも1つのためのナビゲーションルートを生成するために、サブプロセスS676に進む。次いで、プロセス670は、車両もしくは車両グループに搭載されたシステムまたはデバイスにルート情報を送信することなどによって、車両または車両グループのうちの少なくとも1つにナビゲーションルートを提供するために、サブプロセスS678に進む。次いで、プロセス670は、決定点S679に進む。
決定点S679において、プロセス670は、1つまたは複数の車両または車両グループのルートまたは他の情報を更新すべきかどうかを決定する。そうするべきかどうかを決定する前に、プロセス670は、サブプロセスS680を介して適応型交通管理プロセス650からステータス更新を受信することもある。プロセス650から受信された情報に基づいてルートを調整するかどうかに少なくとも一部は依存してルートまたは情報を更新するプロセスは、ナビゲーションシステムを使用する車両のうちの1つまたは複数が、1つまたは複数の車両の現在のルートプランと比較して、走行時間を減少させる、遅延を回避する、または停止の数を減少させることができることがある。
プロセス670が、ルートまたは他の情報を更新しないことを決定した場合、プロセス670は、プロセス670を繰り返すべきかどうかを決定する。
プロセス670が、ルートまたは他の情報を更新することを決定した場合、プロセス670は、更新を実行するために、サブプロセスS682に進む。プロセス670は、次いで、車両および/または車両グループの関連のある更新されたルート情報の通知をプロセス650に提供するために、サブプロセスS684に進む。プロセス670は、次いで、繰り返すべきかどうかを決定し、一般に、エリア内または道路区間上のサービスを使用するVSSまたはGSSを有する車両がなくなるまで、繰り返す。
そうである場合、プロセス670は、サブプロセスS672を再度開始するために戻る。そうでない場合は、プロセス670は終了する。
一実装形態では、TMS101は、交通移動または流量のレベルを達成または維持するために道路網のゾーン内の車両の数、たとえば、設定された数または動的な数を、ゾーンおよび/または他のゾーン(たとえば、隣接するゾーンまたは近くのゾーン)のための数の範囲、移動の割合、または別の基準内またはこれよりも下に限定することを優先させることがある。
TMS101は、道路網の優勢な条件および環境に一部は基づいて、異なる動作のモードのうちの少なくとも1つを各車両またはユーザに提供することがあり、動作のモードは、車両スループットを最大にすること、走行時間を最小にすること、またはアクセスを制御もしくは制限することなどの、異なる目的を有することがある。これらの目的は、たとえば、ゾーンもしくはエリア内に現在配置された個々の車両のために、すべての車両のために、すべての車両のサブセットのために、エリア内の道路網全体のために、またはエリアの1つもしくは複数のゾーンのために、さらに定義されることがある。さらに依然として、動作のモードは、道路のタイプ、たとえば、信号機が設置された道路または信号機が設置されていない道路、または制御されたアクセスをもつ道路区間(たとえば、主要道路および州間)とともに変化することがある。
TMS101は、交通カウントと流量とを検出および計算するために、ゾーンまたはエリア内で使用されることがある。少なくとも1つのシステム動作モードの使用に基づいて、TMS101は、車両およびユーザにガイダンスと命令とを提供するために、車両交通を動的に優先させ、ナビゲーション情報を提供すること、交通信号タイミングと、速度制限と、運転ルートとを動作および適合させること、システム条件を調整すること、システム利用率と、性能と、入力とを監視すること、およびリアルタイム条件またはリアルタイムに近い条件、確率的推定、または履歴データに基づいてフィードバックを提供するためにシステム上のユーザまたは車両と通信することなどによって、モバイルデバイス、車両、および道路脇の機器と、およびこれらを通して通信することがある。
図8E〜図8Fは、システム負荷または条件に応じてTMS101が異なるシステム動作モードを使用することがある例示的な条件を示す。システム負荷の尺度は、交通密度であり、これは、少ない交通から激しい交通までの、すなわち、道路区間上で1つの車両のみを有することから、車両が自由に運転できること、飽和状態しきい値に接近するより高い交通量を有することに向かって、次いで、交通が事実上停止している交通麻痺の状況などの重度の渋滞に到達する、連続体(continuum)を占めることがある。そのようなケースでは、交通は、妨害により青色ランプの信号の方向にすら移動することはできないので、交通信号は、もはや効果的でない。
交通密度TDは、車線ごとの時間期間ごとの車両の数であってよい。
TD=(車両/時間)であり、道路区間に対する飽和状態率Sは定数であってよい。
S=1,800車両/時間であり、飽和状態比率は、TD/Sによって決定されてよい。飽和状態比(SR)がしきい値を超える場合(以下で図21Aの説明において提供される例)、渋滞が発生することがある。さらに、道路区間に対する交通密度の傾向は、第1の時間期間(たとえば、1時間、15分、または1分間隔)のTDを1つまたは複数のその後の時間期間のTDと比較することによって決定されることがある。車線または道路のTDが、TD1<TD2<TD3などの各測定値とともに引き続き増加する場合、増加の率に応じて、道路区間は、飽和状態に接近することがある。
道路区間上を運転する各車両は、他の車両の間で安全に運転するために必要とされる周囲エリアを包含するように、その物理的専有面積を超える道路区間の一部分を効果的に占める。車両が、より予測通りに振る舞う(動作または運転される)ほど、必要とされる周囲エリアは小さい。道路区間またはネットワーク上の車両の密度(交通密度としても知られる)が高いほど、より予測可能な車両は、交通流量のレベルを維持するために振る舞う必要がある。言い換えれば、道路区間のための飽和状態しきい値は、車両の予測可能性が増加するにつれて、(たとえば、70%から90%に)増加することがある。逆に、飽和状態しきい値は、予測可能性が減少するにつれて、道路区間を妨害する衝突を引き起こすことなどによって、1つの予測不可能な車両が渋滞を引き起こすのに十分であることがある点まで減少する。TMS101の任意のシステム動作モードとしては、車両スコアスタック(VSS)、グループスコアスタック(GSS)、ルート指定におけるJW、ガイダンス、交通信号タイミング計算、および他の交通制御尺度のうちの少なくとも1つの使用があり得る。VSSおよびGSSはそれぞれ、車両優先度および車両グループ優先度の尺度を表し、図16Aによって詳細に説明される。車両優先度およびグループ優先度は、予測可能性の代理として働くこともある。したがって、VSS(またはGSS)が高いほど、TMS101が車両に車両中心動作モードを提供し得る可能性が高くなる。異なるシステム動作モードは、異なる目的、たとえば、車両交通スループットを最大にすること、交通密度を減少させること、距離ごとの平均走行時間を減少させること(または、平均速度を増加させること)、特定の車両もしくは車両グループのための走行時間を最小にすること、特定の車両に対する停止の数を最小にすること、車両グループに対する停止の数を最小にすること、車両グループによって走行される総距離を最小にすること、特定の交通をそらすこともしくは特定の交通を特定のロケーションもしくはエリアの方へ統合すること、または目的の組合せを最適化することを有することがある。これらは例にすぎず、他の目的があってよい。
TMS101は、異なる道路区間、ゾーン、または車両に対して動作のモードを同時に使用してもよいし、これらを組み合わせてもよいし、これらをブレンドしてもよい。システム動作モードの動的選択は、道路網上の車両のルート指定のための少なくとも1つのシステム動作モードを含んでよく、目的を成し遂げるために、さまざまな組合せで、さまざまなプロセスを使用してよい。
図8Eは、一例による、VSSと、交通密度と、3つの動作領域PとRとEとを示すグラフである。このグラフは、道路区間の条件、異なる動作モードまたは動作モードのセットが各領域内でTMS101によってさまざまな目的を満たすことに向けて使用され得るゾーンまたはエリアについて説明し、条件を表すために交通密度を使用することがある。領域Pは、TMS101が、1つまたは複数の特定の車両に対して、一般に低い交通密度範囲に対して、道路網および/または交通信号を最適化するために車両中心動作モードを使用し得る条件を表すことがある。領域Pは、TMS101が、既知の車両または検出された車両の大半に対して、一般に高い交通密度範囲に対して、道路網および/または交通信号を最適化するためにシステム中心動作モードを使用し得る条件を表すことがある。交通密度が、より低い範囲からより高い範囲に向けて増加するにつれて、より少ない車両が、車両中心動作モード、具体的には、高い(しきい値を上回る)または比較的高いVSSまたはGSSをそれぞれもつ車両または車両グループのみを備えることがある。一例では、道路区間は、TD=750車両/時間またはSR=0.5などの、TDまたはSRの尺度を有することがあり、それを超えると優先度交通信号を受信するために次第に高いVSSが必要とされ、それを超えて、車両が渋滞または差し迫った渋滞による優先度信号を受信することがあり、システムが領域R内で動作している点までである。別の例では、0.50<SR<0.70であるとき、少なくとも1.2のVSS比(VSSと平均VSSの比)をもつ車両のみが、優先度交通信号を備えることがある。これに対する例外は、領域E内でVSSを有する車両に適用されることがある。この動作の重大な性質により、緊急モードで動作する緊急車両は、緊急車両の走行時間を最小にするために、交通密度または他の道路条件に関係なく、特に交通信号タイミングに関して、TMS101によって車両中心動作モードを備えることがある。
車両中心動作モードは、図8C2によって説明される式における特定の車両または車両グループの重みを示す要素など、相対的重要性を増加させるように、車両要素の重みを調整することがある。たとえば、他の車両よりも車両R1を優先させるために、EV計算において、車両R1の重みは、一時的に増加されることがあり、および/または他の車両の重みは、低下されることがある。車両または車両グループが有する影響の割合を調整するために、総交通需要計算において、データソースの、W1などの重みも、一時的に増加されることがあり、および/または別のデータソースの重み、たとえばW2も、低下されることがあり、これは、TMS101に接続された車両または車両グループが、特に低い交通密度の期間中に、同じくTMS101に接続される交通信号を装備するエリア内で大部分はまたは青色ランプの信号のみに遭遇することを可能にし得る。
システム中心動作モードは、個々の車両または車両グループではなく、交通スループットを優先させるために、図8C2の説明によって説明される交通需要およびEV式における検出機器または特定のデータフィード(たとえば、集約的なまたは匿名扱いのフィード)からの数値的車両カウントを示す要素など、相対的重要性を増加させるようにシステム要素の重みを調整することがある。たとえば、道路区間、エリア、またはゾーンの交通移動を最適化するように、他の交差点よりも第1の交差点の相対的重要性を優先させるために、総交通需要計算において、第1の交差点の交差点重みJWは、一時的に増加されることがあり、および/または他の交差点の交差点重みは、低下されることがある。
図8Fは、一例による、VSSと、交通密度と、4つの動作領域PとQとRとEとを示すグラフである。このグラフは、道路区間の条件、異なる動作モードがTMS101によってさまざまな目的を満たすことに向けて使用され得るゾーンまたはエリアについて説明し、条件を表すために交通密度を使用することがある。領域P、R、およびEは、図8Eによって説明されるものと同じであってよい。しかしながら、交通密度が、低交通密度条件から高交通密度条件へと次第に増加するとき、システム動作モードのより大きいセットが使用されることがある。中間では、領域Qは、TMS101が、一般に低交通密度範囲に対して、1つまたは複数の特定の車両に対して道路網および/または交通信号を最適化するために両方の車両中心動作モードの組合せを使用することがある条件を表すことがある。領域Qは、一般に高い交通密度範囲に対して、TMS101が既知の車両または検出された車両の大多数に対して道路網および/または交通信号を最適化するためにシステム中心動作モードを使用することがある条件を表すことがある。交通密度が、より低い範囲からより高い範囲に向けて増加するにつれて、より少ない車両が、車両中心動作モード、具体的には、より高いVSSをもつ車両またはより高いGSSをもつ車両グループのみを備えることがある。一例では、第1の密度減少システム動作モードは、車両またはユーザが旅行し始めることを将来の時間または将来の時間期間に延期させることを要求することがある。別の例では、第2の密度減少システム動作モードは、車両またはユーザが、出発前の特定の時間または時間期間に次の旅行をスケジューリングすることを要求することがある。さらに、ユーザは、前もってTMS101を介して出発時間をスケジューリングすることがあり、TMS101は、ユーザまたは車両ごとにスケジューリングするために固守を追跡することがある。別の例では、第3の密度減少システム動作モードは、車両またはユーザが旅行中に現在の時間に出発することを要求することがある。車両およびユーザのうちの少なくとも1つによって密度減少モードで動作するTMS101による任意の要求に対する合意および固守は、VSSに対する強化または他の報酬を提供することがある。そのような要求に対するユーザまたは車両による固守の欠如は、VSSまたは他の抑止要因の減少をもたらすことがある。
別の例では、第2の密度減少システム動作モードが、ある時間期間にわたって、または道路区間、エリア、もしくはゾーンに対する目標交通密度しきい値が満たされるまで、交通アクセスを制限する、またはゾーンに入る特定の道路もしくは交差点を閉鎖する。
別の例では、車両最適システム動作モードは、走行時間、距離、停止の数、コスト(たとえば、料金または他の費用)、ターンの数、および遅延の確率のうちの少なくとも1つに基づいて、特定の車両に対するルート指定を最適化するように設計された車両中心ルート指定を車両に提供することがある。変数およびメトリクスは、ユーザによって、システムオペレータによって、またはそれらの何らかの組合せを通して、アルゴリズム的に優先されるまたは重み付けされることがある。
別の例では、第1のシステム最適システム動作モードは、たとえば、平均速度、走行時間、および走行距離のうちの少なくとも1つに基づいて車両交通スループットを最大にすることによって、車両の数に対するルート指定を最適化するように設計されたシステム中心ルート指定を提供することがある。変数およびメトリクスは、アルゴリズム的に優先されるまたは重み付けされることがあり、車両最適モードによって提供されるものなど、個々のユーザ優先度または複合ユーザ優先度に少なくとも一部基づくことがある。
別の例では、第2のシステム最適システム動作モードは、1つもしくは複数の交差点における交通流量を増加させるまたは交通密度を減少させるなどのために、交通を複数のルートに分散させる様式で、車両をルート指定することがある。
別の例では、第3のシステム最適システム動作モードは、1つまたは複数の交差点における車両流量を最小にするなどのために、1つまたは複数のルート上の交通を統合または集中する様式で車両をルート指定することがある。
別の例では、代替走行システム動作モードは、利用可能であり、バス、鉄道、サイクリング、車の相乗りもしくは共有、歩行、またはそれらの何らかの組合せなどの輸送の他のモードを通して同等または類似の走行目的を成し遂げるために駆動する代わりに、またはこれに加えてユーザに輸送のモードを提示するように設計され得る。
別の例では、緊急システム動作モードは、優先度または優先度の最も高いルート指定を、警察車両、消防車両、および救助車両などの緊急応答車両に提供することがある。緊急システム動作モードは、緊急モードで動作する緊急応答車両に対する最も高い優先レベルまたは最も高い優先度帯域ステータスをもつ車両最適システム動作モードの変形形態であってよい。
別の例では、人工知能(AI)システムは、道路網上の少なくとも1つのゾーン内で走行し、それらの車両に応答して交通信号タイミングを調整する1つまたは複数の車両のためのルート指定を決定するなどのために、任意のシステム動作モードを増強させるために使用されることがある。AIシステムは、少なくともルート指定機能の一部分に、たとえば、機械学習、論理、確率論、検索、および最適化(発見法での使用を含む)、ならびにさまざまなタイプのニューラルネットワークを使用して各車両のルートを決定するために、さまざまな技法またはプロセスのうちの少なくとも1つを利用することがある。さらに、いくつかの状況では、人間による入力または見直しが使用されることがある。
別の例では、動作モードは、他のソースからのデータ入力を用いてまたは用いずに、交差点における交通信号または第2の交差点における第2の交通信号を動作させるために、交差点におけるまたはそれに接近する車両の存在の検出を使用することがある。
別の例では、バックアップ動作モードは、緊急事態または以前のデータもしくは接続の喪失の場合に交差点における信号タイミングを提供するために、交通信号フェーズとサイクルスケジュールとを使用することがある。
図9は、一例による、交差点Cに接近する車両R1を有する2つの道路の交差点Cを示す図である。車両R1は、TMS101と通信し、TMS101によって提供されるルートをたどることがある。交差点Cは、交通信号を有することがある。TMS101は、車両R1が交差点Cに接近すると車両R1の存在を認識し、次いで、車両R1が交通ランプ信号のために停止しなくても交差点Cを通って走行し得るような方向に青色ランプの信号を提供するように、たとえば、減少された障害物をもつ交差点Cを通ってまっすぐ前進するように、交差点Cにおいて右折するように、または交差点Cにおいて左折するように、交通信号を調整することがある。TMS101に接続された車両は、図16Aによって説明されるように、VSSが割り当てられることがあり、バッファ長LFLと、運転長(drive length)LDLとを有することがある。車両のバッファ長LFLは、ナビゲーション目的であることがあり、車両の長さと、車両のロケーションの前方の距離と、たとえば、車両が別の車両(横方向に走行する別の車両など)のバッファ長または運転長と交差または重複することなく現在の車両速度、平均車両速度、または推定車両速度のためにルート上の1つもしくは複数の来たるべき交差点を完全に通過するのに十分な距離を提供する、または車両が停止するまたは速度を変更することが予期されるナビゲーションルート上のロケーションを示すために計算されたルート上のパスとを含むことがある。
車両の運転長LDLは、車両の長さと、現在の車両速度に対する回避的アクションまたは緊急アクションをとる距離、たとえば、別の車両がほぼ同じ方向に前方に走行する距離を提供するために計算された車両の前方の距離とを含むことがある。車両のバッファ長LFLおよび運転長LDLは各々、同じ基準点(たとえば、車両の後縁または前縁)から測定されることがあり、少なくとも車両の長さであることがあり、バッファ長LFLは、運転長LDLを含むことがある。
バッファ長LFLと運転長LDLの両方は各々、車両の前方の距離に向かって延びる後縁または前縁車両からの動的距離であってよく、前方の距離は、たとえば、車両速度および/または動作環境と条件とともに変化することがある。バッファ長LFLと運転長LDLの両方は、車両の占有面積を含むことがあるバッファエリアを形成する幅成分も有することがある。運転長LDLは、バッファ長LFLの一部分であってよい。運転長LDLは、たとえば、現在の速度からの車両停止距離、車両が現在の速度からある量の分だけ速度を減少させる距離(たとえば、ブレーキ)、または車両の現在の車線もしくはパスにおけるゆっくりしたもしくは停止された妨害を回避するためにそれる距離にほぼ等しいことがある。
車両のバッファ長LFLは、車両が個々に(1つの車両グループ)走行している場合または車両が車両グループ内の先頭車両である場合、計算目的のために使用されることがある。一例では、30秒時間ホライズン(time horizon)で動作する30mph(44ft/s)で運転する車両は、約1,320フィートのバッファ長LFLを有することがある。一例では、40秒時間ホライズンで動作する45mph(66ft/s)で運転する車両は、約2,640フィートのバッファ長LFLを有することがある。車両の時間ホライズンは、たとえば、次の交差点またはその後の交差点における青色ランプの信号が車両の走行の方向に提供される予定である時間であってよい。時間ホライズンは、横方向における移動が車両のバッファ長LFLのうちの少なくとも1つに重複するのを防止するために、他の車両、歩行者、自転車に乗っている人、およびグラウンドドローンの交差交通移動のための待機時間も決定することがある。さらに、車両の運転長LDLは、静的であってもよいし、動的であってもよい。動的である場合、車両の運転長LDLは、車両速度の関数として変化してよい。たとえば、速度が増加すると、運転長LDLは、車両の前の車間距離または反応距離に対応するために増加することがある。別の例では、車両の運転長LDLは、車両のブレーキ能力(サイズ、重量、ブレーキタイプ、コンピュータ支援、車両自立性など)と、他の性能基準と、ならびに既知の交通密度およびスピード、および天候(たとえば、雨、雪、霧、曜日)などの優勢な条件または道路条件(たとえば、構造ゾーン、スクールゾーン、TOD、DOW、使用不能な車両の存在、自転車に乗っている人、歩行者など)とを示すことがあるスピードならびに車両のクラスおよび/または仕様とともに変化することもある。
交差点の方向の交差点重み(JW)を決定し得る要因としては、交差点に入る走行方向の方向性優先度、車両またはグループの優先度、車両またはグループの速度、車両またはグループの長さ、および道路区間上の車両密度または車線密度、現在のスピード制限、歩行者、自転車に乗っている人、または人々のグループの存在、傾斜、比高、道路曲率などの地勢要因、およびおそらく交差点の第2の方向の同じ側面と比較した、可視性または方向に関連する状況認識に関連する特定の一意の特徴、のうちの少なくとも1つがあり得る。各道路区間の地図データは、制約を使用して道路と道路区間とを識別するデータを含むことがある。例としては、長さ、幅、高さ、グレード、車線の数、交差点(インターセクション)のロケーションおよびターン方向または制限、交通制御デバイスのロケーション(たとえば、交通信号、ゲート)、スピード制御デバイス(たとえば、減速バンプ、減速舗装)、オーバヘッドクリアランス制限、トンネルの存在、橋梁、地勢データ(勾配、傾斜)、一時的な制限アクセスおよび長期制限アクセスおよび制限の期間、交通流量および履歴データ、許容可能な走行方向、トラック制限、看板、道路脇の機器(たとえば、動的メッセージボード、カメラ、他の監視機器)、写真、アクセス道路、ならびに通信機器、電気機器、および配管設備などのインフラストラクチャのロケーションがあり得る。本明細書において説明される運転手としては、少なくとも部分的に、(人間)運転手支援システムまたは自動車両(AV)の場合などのコンピュータシステムがあり得る。
たとえば、交差点に入る第1の方向が、交差点に接近する険しい下り坂を有する場合、その接近方向のJWは、交差点に接近する比較的平坦な地勢を有する、交差点に入る第2の方向の重みよりも、高いまたは低い重みを有することがある場合、第2の方向の可能性と比較して交差点の第1の方向における青色ランプの信号の可能性を増加または減少させること。別の例では、交差点の第1の出口方向は、上向きの勾配を有するが、交差点の第2の出口方向は、実質的な勾配を有さない。交差点を通る車両の運動量を保存する助けとなるために、流量を維持し、車両エネルギー消費を減少させて、交差点の方向優先度は、第2の出口方向のJWよりも高い値を有するために、第1の出口方向における青色信号のためのJWをもたらすことがある。
一例では、車両R1は、速度v1で交差点Cに向かって東行き走行しており、交差点Cから距離x1であり、車両R1の前に車両R1の長さを含むバッファ長LFL1を有する。車両R1のバッファ長LFL1が交差点Cに到着するための時間tinは、tin=(x1−LFL1)/v1と計算され得る。車両R1が交差点Cを通ってまっすぐに前進しているケースでは、車両R1が交差点Cを横切るとき車両R1が交差道路の幅W1を通り過ぎる時間toutは、tout=(x1+w1)/v1と計算され得る。時間t=0において、x1が360フィート、LDL1が40フィート、W1が48フィート、v1が44ft/sである場合、tin=(360−40)/44=7.27秒、tout=(360+48)/44=9.27秒である。
したがって、これらの条件下では、2秒で交差点Cを通過する運転長LDL1(車両R1を含む)。
別の例は、前の例と同一であることがあってよく、第2の車両R2も有し、この第2の車両R2は、速度v2で交差点Cに向かって南に走行している。第2の車両R2は、TMS101によって提供される対応する第2のルートをたどることもある。
交差点Cにおける交通信号が南行き方向に青色である場合に第2の車両R2が交差点Cを通ってまっすぐに前進するケースでは、第2の車両R2が交差点Cを横切るとき第2の車両R2が交差道路の幅W2を完全に通り過ぎる時間toutは、tout=(x2+w2)/v2として計算され得る。時間t=0において、x2が300フィート、LDL2が40フィート、W2が48フィート、v2が44ft/sである場合、tin=(x2−LDL2)/v2=(300−48)/44=5.72秒、tout=(x2+w2)/v2=(300+48)/44=7.91秒である。
第1の車両R1と第2の車両R2が両方とも、TMS101に知られており、到着する予定である場合、またはそれらそれぞれのバッファ長LFLが、重複する時間期間中に交差点C内で到着する予定である場合、TMS101は、交差点Cにおける同時到着またはほぼ同時の到着を回避するために第1の車両R1および第2の車両R2のうちの少なくとも1つにガイダンスまたは命令を提供し、第1の車両R1および第2の車両R2のうちの少なくとも1つのための遅延または停止を最小にすることがある。
そのようなガイダンスとしては、第1の車両R1の速度v1および第2の車両R2の速度v2のうちの少なくとも1つを減少させること、第1の車両R1の速度v1および第2の車両R2の速度v2のうちの少なくとも1つを増加させること、交差点Cを回避するように第1の車両R1および第2の車両R2のうちの少なくとも1つをルート指定すること、ならびに/または交差点Cもしくは車両のルートに沿った前の交差点(現在の時間期間中にその車両に適用可能な場合)における車両の走行の方向に赤色ランプ信号を提供することなどによって、交差点Cに入る前に第1の車両R1および第2の車両R2のうちの少なくとも1つを点に停止させることがあり得る。TMS101は、交差点Cに対する第1の車両R1の優先度VSS1、第2の車両R2の優先度VSS2、第1の車両R1のロケーション、および第2の車両R2のロケーション、第1の車両R1の速度v1、第2の車両R2の速度v2、スピード制限、車両ルート、ならびに周囲道路および交差点上の交通条件のうちの少なくとも1つに一部は基づいて、どのガイダンスもしくは命令を提供するべきか、またはどのアクションをとるべきかを決定することがある。一例では、さらに、第1の車両R1と第2の車両R2の両方が交差点Cに接近しつつあり、重複する時間期間内に到着する予定である場合、交通信号は、交差点Cに入る少なくとも1つの方向に交通を停止するために、第1の車両R1および第2の車両R2のうちの少なくとも1つに赤色ランプの信号を提供することがある。
速度v1または速度v2などをもつ、第1の車両R1および第2の車両R2のためのガイダンスまたは命令のいかなる変更も、追加の条件に従うことがある。たとえば、交通信号などにおいて、第1の車両R1および/または第2の車両R2が停止するために減速しない限り、および、さまざまな可能な制約の中でも、|v1−SL1|<(第1の速度偏差制限)および/または|V2−SL2|<(第2の速度偏差制限)などの条件で、それぞれの速度制限SL1またはSL2に対して速度v1または速度v2を維持する。
別の例は、先行する例と同一であってよく、第3の車両R3も有し、この第3の車両R3は、速度v3で交差点に向かって南に走行しており、共通道路区間上の第2の車両R2の後ろに続く。第3の車両R3は、TMS101によって提供される対応する第3のルートに続くことがあり、この第3のルートは、第2のルートの共通道路区間(たとえば、第2の車両R2の共通道路区間)として、少なくとも1つの共通道路区間を有する。
第2の車両R2および第3の車両R3は、車両グループと考慮されることがある。1つのケースでは、グループ優先度GSSおよび車両グループバッファ長LFLGがそれぞれ、第2の車両R2および第3の車両R3のうちの少なくとも1つの優先度および運転長LDLのうちの少なくとも1つの関数であることがある。
一例では、車両グループは、1つの車線内で一列に走行する2つ以上の車両を含んでよく、グループ優先度は、車両グループ内の各車両の優先度VSSの関数(合計など)であってよく、車両グループバッファ長LFLGは、最大で、車両グループ内の各車両のLFLおよびLDLのうちの少なくとも1つと、グループ内の車両のさまざまなLFLおよびLDLとの間に存在し得る任意のギャップ長との合計であってよい。各車両は、たとえば、車線または道路区間内の車両のロケーション、車両の現在の速度および方向、車両の予想速度および予想方向、車両のVSS、割り当てられたルートおよび/または走行時間に対する固守、車両の、車両グループ内の別の車両に対する近接性、または識別情報もしくは動作ステータスのうちの少なくとも1つに基づいて、車両グループに割り当てられることがある。
別の例では、車両グループのグループ優先度GSSは、たとえば、道路区間の長さのいくつかの車線上もしくは道路区間の1つの車線の長さ上を走行する少なくとも2つの車両のVSSに基づいた、合計、積、または積および合計、または何らかの計算の関数であってよい。車両グループバッファ長LFLGは、道路区間の1つの車線に沿った長さであることがあり、長さ内の各車両のバッファ長LFLおよび運転長LDLのうちの少なくとも1つは、車両グループバッファ長LFLGを決定するための基礎であることがある。車両グループバッファ長LFLGは、先頭車両の車両バッファ長LFLおよび車両グループ内の続く各車両の運転長LDLに完全に及ぶことがあり、たとえば、最大で車両のグループ内の最終車両およびそれ以下である。
別の例では、グループ優先度GSSおよび車両グループバッファ長LFLGは、少なくとも1つの車線を有する道路区間のエリア内に配置され、共通方向に走行する少なくとも2つの車両に基づいてよい。車両グループバッファ長LFLGは、グループ内の一番後ろの位置に配置された第2の車両R2に対する一番先の位置に配置された第1の車両R1の運転長LDLまたはバッファ長LFLを含む長さに及ぶことがある。第2の車両R2は、第1の車両R1と同じ車線内に配置されてもよいし、異なる車線内に配置されてもよい。
第3の車両R3が、交差点における交通信号が南行き方向に青色である場合、第3の車両R3が第2の車両R2の後ろにあるままであると仮定して、第2の車両R2とともに交差点を通ってまっすぐに前進するケースでは、車両グループが交差点に入るための時間tINGおよび第3の車両R3が交差点を横切るときとき車両グループが交差道路の幅W2を完全に通り過ぎるための時間tOUTGは、1つの例では、時間t=0において、x3が350フィート、LDL3が60フィート、W2が48フィート、v3=v2、v2が44ft/sである場合、
tING=(x3−LDL3−LDL2)/v2=(350−60−40)/44=5.68秒、tOUTG=(x3+w2)/v3=(350+48)/44=9.05秒
と計算され得る。
第1の車両R1、第2の車両R2、および第3の車両R3がすべて、TMS101に知られており、重複する時間期間中に交差点内で到着する予定である場合、TMS101は、交差点における同時到着またはほぼ同時の到着を回避するために第1の車両R1および第2の車両R2のうちの少なくとも1つにガイダンスまたは命令を提供し、第1の車両R1、第2の車両R2、および第3の車両R3のうちの少なくとも1つのための遅延または停止を最小にすることがある。
上記の例の各々において、追加の時間tFSは、たとえば、TMS101内で通信して存在し得る待ち時間により、または道路条件もしくは交通条件により、交通信号がその方向において赤色に変化する前に各(グループ内である場合は最終車両)車両が交差点Cを通過するために当てがわれた総時間が追加の遅延の原因となるように、時間tOUTに追加されることがある。代替的に、時間tFSが、交通信号が青色から黄色そして赤色に変化する時間期間中に説明されることもある。そうでない場合、時間tEXTRAが、減速するための時間、既存の交通の列を解消するための時間、および/または固定された待機期間を説明することがある。
交差点に接近する車両の優先レベルは、交差点に接近する1つまたは複数の走行方向が1つの車両のみを有する場合、VSSであってよい。交差点に接近する複数の車両の優先度は、複数の車両が、VSSを有する1つの走行方向から交差点に接近している場合、GSSであってよい。言い換えれば、GSSは、1つまたは複数の車両のVSSを含むことがある。
一例では、第1の車両が、第2のルートと交差する第1のルート上で走行している。第2のルート上で走行する第2の車両は、別の方法で、おおよそ、第1の車両が第1のルート上の交差点に到着する時間に、第1のルートおよび第2のルートの交差点に到着する。第2の車両は、交差点における第2の車両の到着を第1の車両の到着から相殺するように交差点の前にロケーションで始まる量の分だけ第2の車両の速度を減少または増加させるためにTMS101によって要求またはガイドされ、TMS101が交差点を通過するために第1の車両に青色ランプの信号を提供し、次いで、交差点における第2の車両の到着時に交差点を通過するために第2の車両に青色ランプの信号を提供すること、または第1の車両が交差点を安全に通過し、第1の車両が走行している方向において交通ランプが赤色に変わる前に、第2の車両が交差点に到着する場合、第2の車両が交差点における交通ランプで停止される時間を減少させることのどちらかを可能にすることがある。
JWは、たとえば、交差点に入る少なくとも1つの方向が、交差点に入る少なくとも1つの他の方向よりも高い優先度を有する場合、交差点に割り当てられることがある。交差点の重みは、動的であってよく、時刻、交差点に接近するもしくはこれに入る現在の交通の量もしくは交通の量履歴、交差点に接近する傾斜の勾配などの交差点の地勢、道路面、気象条件、可視性、歩行者の交通、鉄道の交通、脇道、TMS101を使用する車両の既知のルート、および/または他の要因に一部依存することがある。
さらに、交差点の交差点重みは、ゾーンまたはエリア内の他の交差点の相対的重要性に対する交差点の相対的重要性のインジケータとして働くことがある。交差点の個々の方向の重みは、交通流量履歴、地勢など(または特別なイベントまたはタイムスケジュール)に基づいてよい。交差点重みは、特定のロケーションにおける交通移動ではなくエリア内の交通移動を優先させるように、エリア内の交差点の全体的な重要性に基づいて動的または静的に割り当てられてよい。
交差点の重要性および交差点に入るまたはこれを出る各方向の重要性は、動的であってよい。いくつかの交差点および交差点方向が、他の交差点に対する近接性およびそれらの他の交差点の交通効果、交通量、ならびに交差点内またはその近くの障害物(たとえば、スクールバス)などの状況により、特定の時間において、高い優先度を有することがある。
各交差点に入るまたは接近する交通量は、TMS101またはルートがTMS101に通信されるように他のナビゲーションシステムによって車両に提供されるルートによって、一部は推定または決定されることがある。さらに、交差点に接近する各車両のための予想到着時間も、TMS101によって推定または決定されることがある。利用可能であり得る他の情報と組み合わされて、動的な交差点重みが、交差点に入りこれを出る各方向にTMS101によって割り当てられることがあり、少なくとも一部は、TMS101に対する方向優先度を決定するために使用されることがある。
交差点を通る車両優先度付与は、関数の値の比較として実行されることがある。各関数としては、たとえば、合計、積、または交差点重み、VSS、およびGSSのうちの少なくとも1つを関与させる数学的演算の別の組合せがあり得る。たとえば、JW1の交差点重みをもつ方向から交差点に入るVSSの優先度をもつ車両は、(VSS)×(JW1)に等しい総優先度を有することがあり、JW2の交差点重みをもつ方向から交差点に入るGSSの優先度をもつ車両グループは、(GSS)×(JW2)に等しい総優先度を有することがある。
一例では、第1の方向から交差点に接近する第1の車両の優先度VSS1が、第2の方向から交差点に接近する第2の車両の優先度VSS2と比較されることがある。
別の例では、交差点に接近する第1の車両の優先度VSS1と第1の方向の交差点重みJW1の関数が、交差点に接近する第2の車両の優先度VSS2と第2の方向の交差点重みJW2の関数と比較されることがある。
別の例では、第1の方向から交差点に接近する第1の車両グループの優先度GSS1が、第2の方向から交差点に接近する第2の車両グループの優先度GSS2と比較されることがある。
別の例では、交差点に接近する第1の車両グループの優先度GSS1と第1の方向の交差点重みJW1の関数が、交差点に接近する第2の車両グループの優先度GSS2と第2の方向の交差点重みJW2の関数と比較されることがある。
別の例では、第1の方向から交差点に接近する第1の車両の優先度VSS1が、第2の方向から交差点に接近する車両グループの優先度GSS1と比較されることがある。優先度VSS1は、1つの車両を有するGSSと考慮されてよい。
別の例では、交差点に接近する第1の車両の優先度VSS1と第1の方向の交差点重みJW1の関数が、交差点に接近する車両グループの優先度GSS1と第2の方向の交差点重みJW2の関数と比較されることがある。優先度VSS1は、1つの車両を有する車両グループのGSSに等しいと考慮されてよい。
ルート指定プロセスに関する限り、車両がTMS101によってどのようにルート指定されるかを決定し得る少なくとも2つの異なるケースが存在する。第1のケースでは、第1の車両バッファ長を有する第1の車両が第1のルート上を走行しており、第2の車両バッファ長を有する第2の車両が第2のルート上を走行しており、第1の車両バッファ長と第2の車両バッファ長が、現在の時間では交差または重複せず、次の時間期間内でも交差または重複しない場合、第1のルートおよび第2のルートは、独立したルートであるとTMS101によって考慮され得る。このケースは、一般に、低い交通密度の状況において存在する。
中程度から高い交通密度の状況において存在する傾向がある第2のケースでは、第1の車両および第2の車両が、第1の車両バッファ長と第2の車両バッファ長が現在の時間において交差もしくは重複する、または次の時間期間内に交差または重複すると予想されることを除いて、第1のケースにおいて説明されたように走行している場合、TMS101は、影響を軽減するアクションをとることがある。アクションとしては、第2の車両が代替ルート上を走行している場合に第2の車両バッファ長が第1の車両バッファ長と交差しないように第2の車両のための代替ルートを生成すること、または交通流量を最適化するために以下で説明されるルート指定プロセスの1つもしくは組合せを使用すること、のうちの少なくとも1つがあり得る。
TMS101のシステム動作モードに応じて、道路網上の各車両のためのルートであってTMS101に接続されたルートは、既知のプロセスを使用して生成されてもよいし、既知のプロセス、たとえば、ダイクストラ法、ジョンソン法、ベルマン−フォード法、フロイド−ワーシャル法、またはそれらの変法に基づいて生成されてもよいし、代替ルート指定プロセスによって決定されてもよい。
ルート指定プロセスは、VSS、GSS、JW、第1のルートの少なくとも一部分のための時間構成要素、および他の情報のうちの少なくとも1つの使用を含む、第1の車両または第1の車両グループのための第1のルートを生成することがある。ルート指定プロセスは、少なくとも第2のルートの一部分のための、VSS、GSS、交差点重み、時間構成要素、および第1の車両または第1の車両グループのために生成された第1のルートから生じ得る情報などの他の制約のうちの少なくとも1つの使用を含み得る、第2の車両または第2の車両グループのための第2のルートを生成することがある。TMS101のシステム動作モードに応じて、第2のルートは、第1のルートと交差するのを回避するための優先度とともに生成されることがある。車両ルート指定、ガイダンス、および/または命令は、目的に向かって、たとえば、少なくとも1つの車両に対する車両停止の数を最小にするために、またはルート上、ゾーン内、またはエリア内などの車両スループットを最大にするために、第1の車両(または第1の車両グループ)および第2の車両(または第2の車両グループ)のうちの少なくとも1つのために調整されることがある。
一例では、第2の車両または第2の車両グループは、第2のルート上を走行し、おおよそのスピード範囲および/または第2のルート上を走行する間の1回または複数回の時間期間の間の完全停止のうちの少なくとも1つにガイドされることがある。さらに、第2の車両または車両の第2のグループは、第2のルート上を走行し、第2のルートの少なくとも一部分にわたって、第1のルートから離れる迂回路上にガイドされることがある。
秒から分の時間期間は、システム目的を成し遂げるために十分な制限を提供し得る。車両ルートは、TMS101がルートに関する更新された目的地を提供されない限り、固定されたままである各ルートに関する初期目的地を用いて連続的に改定または更新されることがある。
多数の異なる独立したロケーションおよび時間領域ルート区間は、割り当てられた車両ルートを分け、現在の時間期間および/またはその後の時間期間中に車両交通をガイドするために1つまたは複数の直ちに関連のある下流ルート区間を使用することによって作成されることがある。プロセスは、ある時間期間に関して使用中のルート区間のスナップショットを作成することがある。ルート間のすべての交差点および道路区間のサブセットのみが、各車両ルートの長さ全体が考慮される場合に存在するであろうよりも、各車両によってカバーされる短縮された時間期間および予期距離により、スナップショット内で使用中であることがある。使用中のルートまたはルート区間の長さは、ルート近接性、車両スピード、およびまたは車両バッファ長LFLの関数であってよい。
途切れない道路区間を作成するための1つのルート指定プロセスは、時間の期間にわたってのエリア内の利用可能な交差点の数を減少させることと、それらの時間期間中にそれらの交差点の赤色ランプが点灯された方向から離れるように車両をルート指定することによるものであることがある。
JWは、静的であってもよいし、動的であってもよく、方向によって変化してもよい。交差点に入るまたは出る各方向は、異なるJWを有することがある。第1の交差点は、少なくとも2つの交差点のセット内の主要な交差点であることがあり、第2の交差点は、第1の交差点の少なくとも1つのJWの関数であり得る少なくとも1つのJWをもつ二次的な交差点であることがある。1つのケースでは、第2の交差点のJWは、第1の交差点の距離または走行時間からの、第2の交差点の距離または走行時間(たとえば、時間期間t1)に基づくことがある。JWは、TMS101に適用される恣意的な制約であることがあり、ならびに/または地勢、交通量、および周囲条件などの、上記で説明された永続的な条件もしくは一時的な条件に依存することがある。
交差点の各方向に対する交通需要優先度を計算するためのプロセスは、最も高いJWから最も低いJWまで順序正しくセットの交差点を並び替え、最も高いJWを交差点に対する交通を最適化し、次いで2番目に高いJWをもつ交差点に対する交通を最適化し、最も低いJWをもつ交差点に対する交通を最後に最適化するまで以下同様であるサブプロセスまたはステップを含むことがある。1つのケースでは、交差点に対する交通需要優先度を計算することは、現在の交差点の最適化前に最適化されたより高いJWをもつ交差点の優先度付与結果を変更または考慮することなく、実行される。別のケースでは、交差点に対する交通需要優先度を計算することが、現在の交差点のJWよりも高いJWをもつ交差点の優先度付与結果を同時に変更または考慮しながら、実行されることがある。
図10は、一例による、エリアB100内で走行する車両R1を示す。車両R1は、バッファ長LFL1を有し、車両R1の走行の順方向の前の道路2の区間である交差点B2に向かって道路2上を走行している。交差点B2は、車両R1の走行の方向に青色ランプの信号を現在提供し、交差点C2に配置された交通信号などの、ルート車両R1のルート上のその後の交差点に配置された交通信号は、現在の時間から、車両R1が対応する交差点を通過するまで、青色ランプの信号を提供することがある。交差点C2における交通信号は、交差点における車両R1の到着の前に青色ランプの信号を提供することがあり、または交通信号は、交差点と交差する車両R1のバッファ長LFL1に関連する時間に青色ランプの信号を提供することがあり、対応する交通信号は、固定された時間の期間にわたって、または少なくとも車両R2が交差点C2を通過するまで、青色ランプの信号を維持することがある。
これは、停止/進行間の転換を減少させ、交通渋滞に寄与し得る交通流量中断およびアクティビティを減少させることがある。赤色ランプが点灯された交差点(ロックされたまたは赤色ランプが点灯された交差点としても知られる)近くの街路上に目的地をもつ交通は、たとえば、道路2上を走行する車両のための道路2上の明確なパスを維持するために交差点B1を介するが交差点B2は介さない、ロックされた交差点を交差することのないロック期間中に、ロケーションMなどのそれらの街路上のロケーションに、依然としてルート指定されることがある。ロック交差点期間は、持続時間が変化することがあり、一般に、通常の交通信号フェーズまたはサイクルよりも、持続時間に関して長いことがある。持続時間は、秒から分、たとえば、30秒、1分、2分、3分、5分、および10分、またはより長いことがある他の増分にわたってよい。他の交通は、一般に、赤色ランプが点灯された街路が、青色ランプが点灯されるまたは青色ランプが点灯されようとするまで、その街路に沿ってルート指定されることがある。ロックされた交差点(車両の走行の方向に赤色ランプをもつ)をもつ街路に向かって車両をルート指定することの例外は、車両が低いVSSを有する場合、車両またはユーザが、ロックされた交差点をもつ街路に沿ってルート指定されることを要求する、ユーザがそのような遅延に同意する、または高い交通密度/渋滞条件はTMS101によるそのようなルート指定を必要とすることを含むことがある。さらに、カウントダウンが、赤色交通信号が再度青色になるまでどのくらい長いかについて、TMS101または交通信号システムによって道路脇のディスプレイ、車両、および/またはモバイルデバイスに通信されることがある。さらに、ロックされた交差点または別の交差点に接近する1つまたは複数の方向における車両のVSS、車両グループGSS、車両カウント、およびロックされた交差点で待機する他の車両ステータスまたは規格は、交通信号およびロック期間の持続時間に影響することがある。
別のルート指定プロセスは、2つ以上の車両がエリア内の異なるルートまたは方向上で同時に動作することを含むことがある。車両のルートのうちの少なくともいくつかが交差する場合でも、車両またはそれらそれぞれのバッファ長LFLは、同じ交差点を同時に横切らなくてもよいし、LFLは、別の方法で、ほぼ同じ時間に交差してもよい。したがって、ルートは、交差点の数を減少させるように少なくとも1つの時間領域を通して分けられるまたは分割され、したがって、必要とされ得る優先度付与動作および交通シグナリング動作の数を減少させることがある。ルート細分化は、車両密度、交差点の数または密度、速度制限、現在の車両スピード、平均車両スピードまたは推定車両スピード、および使用不可能な車両、特別なイベント、緊急アクティビティなど、などの例外の存在のうちの少なくとも1つに基づいて、1つまたは複数のルートに適用されることがある。言い換えれば、各車両のための目的地またはルートの長さ全体についてのデータはTMS101によって知られていることがあるが、TMS101は、交通信号優先度付与および制御の目的のためにルート全体を考慮する必要がないことがある。次の30秒、60秒、90秒、120秒、または旅行の次の時間期間tNEXT以内などの、時間期間tNEXTにわたって必要とされる各ルートの一部分のみまたは関連のあるルートdRの距離が、一度に考慮される必要があることがある。次の時間期間tNEXTの持続時間は、車両スピード、スピード制限、交通密度、および交差点の近接性の関数であることがある。車両または車両グループが、道路区間を通過したもしくはこれを出た後、または第1のルートの道路区間の一部分を通過した後、第1のルートの使用のための制約はもはや適用されず、道路区間は、第1のルートの使用と競合することなく第2のルートに使用されることがある。
図11A〜図11Cは、一例による、交差するルート上のエリアB100内で走行する車両R1と車両R2とを示す。車両R1はバッファ長LFL1を有し、道路1上を走行しており、車両R2はバッファ長LFL2を有し、道路B上を走行している。車両R1とR2の両方が、交差点B1を通るようにルート指定されており、交差点B1に向かっていることがある。考慮される時間期間中、それらそれぞれのバッファ長LFL1、LFL2間に重複のないケースでは、TMS101が、図11Bによって示されるように、バッファ長LFL1、LFL2によってカバーされる道路区間を、独立した異なる交差しないルートとみなすことがある。
図11Cは、一例による、交差するルート上のエリアB100内で走行する車両R1と車両R2とを示す。車両R1はバッファ長LFL1を有し、道路1上を走行しており、車両R2はバッファ長LFL2を有し、道路B上を走行している。車両R1とR2の両方が、交差点B1を通るようにルート指定されており、交差点B1に向かっていることがある。車両R1、R2が、同時に交差点B1に到着もしくはこれを通過することがある場合、または、車両R1および車両R2のうちの少なくとも1つが交差点B1に接近して通過するとき、それぞれのバッファ長LFL1、LFL2が重複することがある場合、TMS101は、最初に交差点B1を通過し、バッファ長LFL1およびLFL2がいかなるときでも重複するのを防止するために、より高いVSS、GSS、および/または交通信号優先度をもつ交差点重みを車両または車両グループに提供するために交差点優先度付与プロセスを使用することがある。
別のルート指定プロセスは、共通道路区間をもつルートを有する車両をルート指定およびグループ化することを含むことがある。いくつかの実装形態では、車両およびルートは、VSSまたはVSSの範囲によって並び替えられることがあり、たとえば、数値範囲内のVSSをもつ車両が、一緒にグループ化またはルート指定されることがあるが、異なるVSSをもつ車両は、高いVSSをもつ車両グループとグループ化されないことがある。さらに、エリア内の車両のVSSは、ルートを統合するために使用されることがある。より高いVSSをもつ車両は、より大きい重みまたはより高い優先度を有し、仮にそうであるとしても、ルートがより少なく変えられることをもたらすことがあり、より低いVSSをもつ車両は、より小さい重みを有し、より高いVSS車両のそれらと共通ルート区間を共有するために、ルートがより多く変えられることをもたらす。車両のルートが変えられ得る程度は、エリア内、ゾーン内、および/またはグループ内の車両間のVSSの範囲に一部は依存することがある。推定距離、走行時間、ならびに/またはルート上の予期される停止もしくは交差点の数および交差点重みも、TMS101の現在のシステム動作モードに応じて、ルートが各車両に割り当てられる前に考慮されることがある。さらに、車両ルートが考慮されるとき、VSSによってまたはVSSの範囲によって共通ルート区間上のグループ内の車両を階層化するために、たとえば、交通信号タイミングの使用、動的スピード制限の調整、および他の通信によって、アクションが、TMS101によってとられることがある。例としては、共通ルート区間上を走行している前部部分または後部部分に向けて車両グループのより高いVSS車両またはより低いVSS車両をそれぞれガイドすることがあり得る。さらに、車両グループ内の車両の位置決めは、車両が車両グループまたは共通ルート区間から分離するシーケンスなどの、ナビゲーションまたはルート指定に関連することがある。たとえば、車両グループが交差点をまっすぐに通過し続けており、車両が、まっすぐに通過し続ける車両グループ内の他の車両を妨げる確率を最小にするように交差点を曲がる場合、車両は、車両グループの後部部分にガイドまたは位置決めされることがある。
別のケースでは、第1の車両R1および第2の車両R2は、共有ルート区間を有し、車両R1は、車両R2のVSSよりも高いVSSを有する、またはより高いVSS層内にある。共有ルート区間上の車両の順序は、車両R1が、最初に共有ルート区間に入ることが可能にされるまたはガイドされ、車両R2が、車両R1が通り過ぎた後、または時間持続時間が経過した後、共有ルート区間に入るようにガイドまたは可能にされるように、少なくとも一部は、各車両のVSSによって決定されることがある。代替的に、車両R1および車両R2の共有ルート区間へ入る順序は、各車両の到着の推定時間、各車両がターンしなければならないことがある量、相対的スピード、車線の数、および/または共有ルート区間の前の各車両のルート区間の交通量、および共有ルート区間の交差点における任意の(nay)交通信号の存在、のうちの少なくとも1つに基づいて決定されることもある。
図12A〜図12Bは、ルートまたは交通統合の一例による、ルートエリアB100内で走行する車両R1と車両R2とを示す。車両R1およびR2の各々はVSSを有し、車両R1のVSSは、車両R2のVSSよりも大きい。車両R1は、交差点C1に向かって道路1上を走行している。最初は、(時間t=0)車両R1は、交差点A1と交差点B1との間に配置される。車両R2は、交差点C1に向かって道路2上を走行している。最初は、車両R2は、交差点A2と交差点B2との間に配置される。TMS101は、交差点B1における交通信号に、車両R1が妨げられずに交差点B1を通過することを可能にする方向において、時間期間中に青色ランプの信号を提供させる。TMS101は、交差点B2において道路B上へターンし、交差点B1に向かって前進するように、車両R2に通信する。車両R2は、次いで、交差点B1において道路1上へターンし、交差点C1に向かって前進するように、ガイダンスが提供される。優勢な条件に応じて、TMS101は、車両R2が妨げられずに交差点B2を交差点B1に向かって通過することを可能にする方向に時間期間中に青色ランプの信号を提供するように、交差点B2における交通信号に指示することがあり、車両R2が交差点C1に向かって道路1上へ妨げられずに交差点B1を通過することを可能にする方向に別の時間期間中に青色ランプの信号をさらに提供することがある。後の時間(t=s)において、第2の条件は、車両R1’および車両R2’のロケーションによって示されることがあり、車両R2’は、同じ道路区間上の車両R1’に続く。図12Bは、t=0からt=sに及ぶ時間期間中にエリアB100の別個の道路区間上で同時に走行していることがある他の車両から車両R1および車両R2のルートを分離するために、TMS101によって使用され得る図12Aの一部分を示す。交差点A1、B1、C1、A2、およびB2のうちの少なくとも1つは、図10によって説明されるように、車両R1およびR2のうちの少なくとも1つの途切れない移動を提供するためにロックされることがある。
別の例では、車両R2は、車両R1の初期VSSよりも高い初期VSSを有することがある。そのケースでは、TMS101は、車両R1が交差点B1を通過するのを防止する方向に赤色ランプの信号を提供し、交差点B1における赤色ランプの信号のために停止しなくても、車両R2が交差点B1を通過し、交差点C1に向かうことを可能にする方向に青色ランプの信号を提供するように、交差点B1における交通信号に指示することがある。後に、交差点B1における交通信号は、交差点B1を通って走行し、交差点C1に向かって車両R2に続くために、車両R1に青色ランプの信号を提供することがある。
別のルート指定プロセスは、車両グループ長LFLGを管理し、安定したスピードを維持するために、たとえば、流量を維持しながら道路区間上の車両密度を増加させ、それによって、車両スループットを増加させる、グループ内の少なくとも1つの車両と通信することを含むことがある。
図13A〜図13Bは、一例による、エリアB100内で走行する車両R1と車両R2とを示す。車両R1およびR2の各々はVSSを有し、車両R1のVSSは、車両R2のVSSよりも大きい。車両R1は、交差点C1に向かって道路1上を走行している。最初は、時間t=0において、車両R1は、交差点A1と交差点B1との間に配置される。車両R2は、交差点C2に向かって道路1上を走行している。最初は、車両R2は、交差点A1に接近しつつあり、交差点B1に向かっている。TMS101は、車両R1が交差点B1を妨げられずに通過することを可能にする方向において青色ランプの信号を提供するように、交差点B1における交通信号に指示する。TMS101は、交差点A1において道路A上へターンし、交差点A2に向かって前進するように、ナビゲーションガイダンスを車両R2にさらに提供する。交差点A2において、車両R2は、道路2上へターンし、交差点C2に向かって前進するように、ガイダンスが提供される。優勢な条件に応じて、TMS101は、車両R2が交差点B2の方へ交差点A2を通って最小障害物とともに通過することを可能にする方向において青色ランプの信号を提供するように、交差点A2における交通信号に指示することがある。さらに、TMS101は、車両R2が交差点C2の方へ道路2上で交差点B2を通って最小障害物とともに通過することを可能にする方向において別の時間期間中に青色ランプの信号を提供するように、交差点B2における交通信号に指示することがある。時間sの後、第2の条件が、車両R1’および車両R2’のロケーション、それぞれ交差点C2および交差点C1に向かって向けられる道路2上の車両R2’および道路1上の車両R1’によって示される。図13Bは、互いから、ならびにt=0からt=sに及ぶ時間期間中にエリアB100の別個の道路区間上で同時に走行していることがある他の車両から、車両R1および車両R2のルートを分けるために、TMSによって使用され得る図13Aの一部分を示す。
図14は、一例による、車両グループとして道路1上を走行する車両R1と車両R2とを示す。車両R1および車両R2は各々、運転長LDL1とLDL2とをそれぞれ有し、車両R1は、バッファ長LFL1を有することがあり、バッファ長LFL1は、少なくとも一部は、車両R1が車両グループ内の先頭位置にあるとき車両グループ長さLFLGを決定するために使用される。最初は(時間t=0において)、車両R2は、交差点C1に向かって車両R1に続いており、車両R2は、車両R1と同じ車線内にある。車両グループ長LFLGが現在の条件に必要とされるよりも長いことがあることを示す、車両R2の運転長LDL2と車両R1のバッファ長LFL1との間のギャップ長が存在することがある。TMS101は、車両R1のバッファ長LFL1と車両R2の運転長LDLとの間のギャップ長を減少させるために、車両R1、R2のうちの少なくとも1つと通信することがある。これは、たとえば、後の時間t=sにおいて、車両グループ長LFLG’の第2の条件が、車両R1’および車両R2’のロケーションによって示されることがあり、車両R1’と車両R2’とを含む車両グループの長さは、長さLFL1’とLDL2’のほぼ合計(たとえば、理想的な条件)であることがあるように、ギャップを減少または閉鎖し、減少された車両グループ長LFLGを維持するために、車両R2が速度を増加させることと、車両R1が速度を減少させることのうちの少なくとも1つによって成し遂げられることがある。所与の速度におけるより短い車両グループ長は、車両グループが道路区間をカバーし、道路区間上の交差点を通過するためのより短い時間を必要とすることがあり、より長い車両グループ長よりも大きい車両スループットおよび交通信号タイミング柔軟性を可能にする。さらに、第1の方向に走行するより密に詰め込まれた車両グループの車両グループ間のより大きい時間期間を出ることによって、交差点において第1の方向と交差する第2の方向に走行する車両は、第1の方向または別の方向に走行する車両グループの中間の第2の方向に交通信号が青色信号を与える、より多くの機会が提供されることもある。
図15は、一例による、車両グループとして道路1上を走行する車両R1と車両R2とを示す。
単一の車線内のグループ内の1つまたは複数の車両に対して、最小車両グループ長LFLGは、LFLG=LFL1+LDL2+…+LDLnによって定義されることがあり、ここで、nはグループ内の最後の車両である。LFLGは、先頭車両の後縁に対する続く車両のLDLとの間にギャップがある場合、最小よりも長いことがある。
複数車線状況では、最小LFLGは、すべての車線の間の先頭車両のLFLプラスLDLの最長合計をもつ車線に沿った続く各車両のLDLであることがある。この最小は、続く第1の車両が先頭車両と同じ車線内にない場合、先頭車両のLFLと、LFLと重複することがある続く第1の車両からm個の続く車両のLDL2〜LDLmとの間の任意の重複によって調整されることがある。
さらに、最大で車両のグループ内の車両のすべてのVSSは、車両のグループに対するGSSの計算内に含まれることに対して考慮されることがある。または、グループに追加され得るVSSをもつ車両の数のmまでの制限があることがあり、または、長さが、走行の方向に青色フェーズ中に信号機が設置された次の交差点を通過することが可能であるように計算もしくは推定され得る道路区間の同じ方向における1つまたは複数の走行の車線に沿った長さによって決定されることがあり、または、グループ長さは、0.125マイルもしくは0.25マイルなどの所定の制限までであることがある。GSSは、同じ走行の方向に沿った道路区間のエリアまたは車線内の車両のすべてのVSSの合計に等しいことがある。車線が隣接しており、ほぼ同じ方向に移動する限り、車両グループは、1つの車線内にあってもよいし、複数の車線にまたがってもよい。
車両R1および車両R2は各々、運転長LDL1とLDL2とをそれぞれ有することがあり、別個でほぼ平行な車線内の共通方向における道路区間333上の車両グループとして走行することがある。車両R1は車両R2の前方にあることがあり、車両R1および車両R2のうちの少なくとも1つの間に、ならびに/または運転長LDL1と運転長LDL2との間に、ほぼ平行な重複があることがある。そのようなケースでは、車両R1のバッファ長LFL1は、車両グループ長LFLGを決定する際に使用されることがあり、車両グループ長LFLGは、バッファ長LFL1と、バッファ長LFL1が重複しない運転長LDL2の一部分との合計であってよい。
言い換えれば、車両グループ長LFLGは、運転長LDL2の後縁とバッファ長LFL1の前縁間の車線に沿った距離など、バッファ長LFL1と運転長LDL2の合計よりも小さいことがあり、車両グループが、道路区間をカバーし、車両グループが単一の車線内に分布された場合よりも短い時間で道路区間上の交差点を通過することを可能にし、車両グループ長LFLGを定義させ、たとえば、車両R2は車両R1に続く。
さらに、各車両の運転長LDLおよびバッファ長LFLは、車両仕様、条件、またはステータスに少なくとも一部は基づくことがあり、動的であってもよいし、車両速度および他の条件とともに変化してよい(図9に対する説明を参照されたい)ので、道路区間上または交差点を通る車両スループットは、一部は、速度を車両変更することによって最適化されることがある。本質的に、LDLは、現在の速度および道路条件の場合の、車両の長さと、車両が停止するまたは車両の前方の障害物を回避する前方距離とを含む距離である。LFLは、車両の長さと、車両が減速することなく交差点を通ることができるように信号機が設置された交差点における車両の到着の前に、車両の走行の方向に青色ランプの信号を提供するために車両の前方の信号機が設置された交差点が別のフェーズ移動において青色から安全に変化するのに十分な前方距離とを含む距離である。長さLFLは、主に、車両の時間および速度の関数である。
別のルート指定プロセスは、より高い優先度もしくはより低い優先度を有する、または異なる層内の優先レベルを有する、他の車両または車両グループとともに、道路区間に沿って渋滞しきい値に到達するのを回避または延期するために交通をゾーンまたはエリアに分散させるように、相対的優先度によって、たとえば、車両優先度VSSまたは車両グループ優先度GSSによって並び替えるように(上記で説明されたように)、車両または車両グループをルート指定するまたは並び替えることを含むことがある。
ルート指定するおよび/または並び替えるための少なくとも1つのプロセスが利用されてよい。ルート指定プロセスと並び替えプロセスは、たとえば、現在の時間において、および次の時間期間中に、使用中のシステム動作モードに応じて、さまざまな順序で組み合わされてよい。
いくつかの実装形態では、検出されたまたはTMSに情報を提供する各車両は、車両が、信号機が設置された交差点に接近するとき、信号機が設置された交差点を通過し続けるために、信号をルート指定する、ナビゲーションする、および受信するのうちの少なくとも1つに関連する目的で、VSSが割り当てられることがある。車両のVSSは、特定のアクションとアクティビティとを奨励し、やめさせ、それによって、運転手などのユーザによってとられ得るまたはとられないことがあるアクションの予測可能性を増加させることによって、ユーザがユーザの優先レベルに影響を及ぼすことを可能にすることがある。
本明細書において車両スコアスタック(VSS)と呼ばれる優先度のレベルは、いくつかのソースおよびユーザから取得され得るいくつかの要素に基づいてTMS101によって決定される複合スコアまたはランキングであることがある。要素は、カテゴリ化されることがある(図16A)。
少なくともVSSの一部分は、特定のユーザがモータ車両内の乗客、歩行者、自転車に乗っている人、または業務もしくは通信における別の関係者であるケースなどの、特定のユーザがモータ車両を運転または動作させるケースとは異なる追加の目的に使用されることがある。
VSSは、特定の運転手、乗客、自転車に乗っている人、および歩行者の振る舞い、走行パターン、車両特性および使用、ナビゲーション使用、ならびにそれ以外の均衡道路システム負荷を奨励し、やめさせるために使用されることがある。VSSは、グローバル変数とローカル変数のセットを含むことがあり、各要素の重みは、ロケーション、日、時間、カテゴリ化、または他の側面によって調整されることがある。
車両のVSSは、最初に、特定のスケールで、たとえば、10,000、1,000、500、100でスコアされてもよいし、セット内の他の車両のVSSに対してランク付けされてもよい。しかしながら、各ケースでは、第1の車両のVSSは、VSSを有さないことがある第2の車両と、正規化されて比較されることがある。検出された、VSSを有さない車両は、1に等しい重みまたはカウントを有すると考慮されることがある。第1の車両のVSSが、所定のVSSまたは他の車両のセットのVSSスコアの平均に対して正規化される場合、第2の車両に対する第1の車両の優先度が確立されることがある。たとえば、第1の車両が800のVSSを有し、比較するために使用されるVSSスコアの平均が400である場合、第1の車両は、800/400=2の優先度を有することがある。すなわち、第1の車両は、優先度付与の目的で、第2の車両の2倍カウントすることがある。
VSSを有する車両に対して、一例では、各車両のVSSは、1,000スケールに正規化される。ベースライン値は、たとえば、ゼロが割り当てられるまたは決定されることがある。別の例では、VSSは、ゼロから100、500、1,000、10,000、または何らかの他の数までの正規化されたスコアであることがある。別の例では、VSSは、ゼロ未満に減少することがある。別の例では、別個のデメリットスコア(demerit score)が保持されることがあり、VSSは、ゼロ未満に減少することがある。
デメリットスコアは、たとえば、交通移動および安全性に関する予測不可能な振る舞い、安全でない振る舞い、または望ましくない振る舞いを運転手または車両が示すたびに発生するインスタンスまたは点のカウントによって表されることがある。デメリットスコアがデメリットインスタンスまたは点の数に到達するまたはこれを超えると、運転手または車両が、交通ランプに関するより低い優先度などの、特権の減少または制限を経験し、より長いルートまたはより遅いルート、または他の車両がより高い優先度で前進することを可能にするより多くの停止をもつルート上でナビゲーションするガイダンスを受信することがある。デメリットスコアは、進行中の勘定(tally)として保持されてもよいし、周期的に減少されてもよいし、ゼロにリセットされてもよい。デメリットスコアはまた、以前の距離もしくは時間期間にわたる車両または運転手の平均VSS、または距離もしくは時間期間に対する他の車両および/もしくは運転手の平均VSSなどの、あるレベルよりも上に瞬間的VSSのセットを維持することによって減少されることがある。以下は、瞬間的VSS611の減少の例である。そのような減少の代わりに、またはこれに加えて、カウントまたは点が、説明される出現ごとに、デメリットスコアに追加されることがある。
一例では、車両が、道路区間上の速度制限を20mph超えたことが検出される。次いで、その後の各瞬間的VSS611の運転手アクション618構成要素(図19)が、次の20マイルまたは30分にわたって、ほぼ50パーセント減少されることがある。
別の例では、車両が、2秒以上にわたる20mph/sなどの、所定のしきい値を上回る率で、ある時間の期間にわたって加速の率を経験することが検出される。次いで、その後の各瞬間的VSS611の運転手アクション618構成要素が、次の15マイルまたは25分にわたって、ほぼ30パーセント減少されることがある。
別の例では、車両が、TMS101またはTMS101と通信するように構成されたナビゲーションシステムによって提供されるルートからそれたことが検出される。次いで、その後の各瞬間的VSS611のナビゲーション固守620構成要素は、車両が、提供されたルート上を再び走行していることが検出されるまで、車両が、示された目的地に到着するまで、またはユーザが、更新された目的地をナビゲーションシステムもしくはTMS101に通信するまで、ほぼ60パーセント減少されることがある。
これらは例示的にすぎず、本発明は、これらの例に限定されない。さまざまな程度でさまざまなアクションまたは振る舞いをやめさせるために、多くの他のデメリットが想定され得る。
各VSS610要素の検出が、少なくとも1つまたは複数のモバイルデバイス、車両システムまたはデバイス、および道路側検出システムまたはデバイスを通して、および異なる時間になどの、さまざまな様式で実行されることがある。
一例では、車両の排出コンプライアンスのインジケータは、排出出力がしきい値を下回る搭載された車両データシステムからのセンサデータ出力によって決定される、測定機器による道路側検出と、サービスセンタまたは州当局などの承認データソースからの車両の排ガス検査結果の検証の受信のうちの少なくとも1つに由来することがある。
別の例では、車両のスピードは、モバイルまたはポータブルデバイス搭載車両によって受信されるGPS信号を介して得られる送信回転スピードなどの、車両のセンサのうちの少なくとも1つによって、およびカメラまたはレーダなどの1つまたは複数の道路センサまたは検出デバイスによって、決定されることがある。
複数のデータソースまたは計算プロセスが、ある要素の値を決定するために同時に利用可能である場合、少なくとも1つのデータソースまたは計算プロセスが、その要素の値を決定するために使用されることがある。各データソースまたは計算プロセスが、要素を決定するための主要データソースまたは主要計算プロセスが選択されることがあり、次いで、二次的データソースまたは二次的計算プロセスが選択されることがあり、以下同様であるように、VSSの要素を決定するために使用されるデータソースまたは計算プロセスが、要素に応じて、絶対的な項または相対的な項においてしきい値を超える競合する情報または矛盾する情報を提供するケースにおける使用のために、優先度のレベルが割り当てられることがある。
車両のVSSは、使用中のTMS101に対する要素またはデータソースの包含または除外に基づいて、増加または減少することがある。一例では、スマートフォンなどの第2のモバイルデバイスの、VSS計算への追加は、少なくとも1つの追加の乗客を示し、VSSの利用構成要素を増加させることがある。別の例では、車両データバス内でのエンジン故障コードの検出が、車両のVSSを減少させることがある。重みは、各要素またはカテゴリの未加工データに割り当てられることがあり、時間、日、ロケーション、交差点、道路区間、車両クラス/ステータスなどによって変化することがある。
VSSは、動的で、TMS101によってもしくはこれに知られているもしくは利用可能である要素、アクティビティ、もしくはステータスが検出される累積的な時間の持続時間または累積的距離のうちの少なくとも1つに基づくことがあり、持続時間は、本明細書において、持続性と呼ばれる。VSSの少なくとも1つの要素が、持続性を有することがある。たとえば、持続性は、走行された時間の期間または距離にわたる回転平均または連続的勘定とすることができる。
VSSの各要素は、少なくとも1つの率および/またはインスタンスごとの値が割り当てられることがある。要素が検出される時間または距離が大きいほど、より多くの値が、いくつかのケースでは制限値まで、VSSによって累積されるまたはこれから差し引かれることがある。VSSの値は、数値の数字、ランキング、または別の量的メトリックの形をとることがある。各要素の重みは、静的であってもよいし、動的であってもよい。動的重みは、たとえば、日または時間、TMS101のシステム動作モード、ゾーンまたはエリア内の車両カウント、車両の動作モード、および車両ロケーションのうちの少なくとも1つに基づいて調整されることがある。静的重みは、初期使用からTMS101においてあらかじめ構成されることがあり、静的重みが、システムアドミニストレータまたは管理者によって周期的に調整される間、静的重みは、追加入力または介入なしのシステム動作条件に応答して変化しないことがある。
VSSは、累積的および/または瞬間的なアクションおよびアクティビティ(すなわち、以前の時間期間、時間のインスタンス、走行された距離、またはこれら2つの変形形態など)に基づくことがある。各要素は、たとえば、特定の量(たとえば、時間または距離)を超えたTMS101の使用が、制限なしでVSSを増強しないなどの、数値結果を特定の範囲内に制限するように非線形性を生じさせるまたは回避するために特定の帯域内に設定された制限を有することがある。
各VSS構成要素の持続性は、たとえば、約30秒から永久的まで(または、先行するマイル、10マイル、100マイルなどの、距離の分だけ)変化し得る。VSSに影響する条件としては、車両またはユーザの旅行目的地が前もって知られていること、および旅行目的地が車両によって時間または距離内に固守されていることがあり得る。VSSのない車両は、TMS101に知られていないことがある、またはこれに対する限られた可視性を有することがあるので、TMS101の使用およびVSSを有することを通して、車両は、VSSを有さない別の車両よりも高い優先度を有することがある。
TMS101が動作中であるゾーンまたはエリア内で動作する車両は、いくつかの識別レベルのうちの1つを有することがある。一例では、車両は検出されず、識別不可能である。これは、道路が車両検出能力を有さない状況において発生することがあり、TMS101は、モバイルデバイスおよび車両とのワイヤレス通信のみを通して動作することがあり、特定の車両と通信しない。別の例では、TMS101が、検出デバイス、たとえば、車両が通過するとき車両を検出し得るカメラまたは車両カウントデバイスを道路区間上にまたはその近くに有するケースなどにおいて、車両が検出され、識別不可能である。しかしながら、車両はTMS101と通信せず、識別されないままである。別の例では、以前の例のケースなどにおいて、車両が検出され、識別不可能であり、TMS101は、車両を識別するために検出デバイスを有する。さらに、TMS101はまた、たとえば、ワイヤレス接続を通して、車両と通信することがある、またはTMS101は、車両上のライセンスプレートまたはトランスポンダを読むなどによって、検出デバイスを通して車両を識別することが可能であることがある。別の例では、車両は、TMS101によって検出され、ワイヤレス通信などを通してTMS101と通信するが、車両識別情報が、ワイヤレスデバイスのイーサネット(登録商標)ハードウェアアドレス(EHA)、焼き込まれたアドレス(BIA:Burned-In Address)、メディアアクセス制御(MAC)アドレス、または拡張一意識別(EUI:Extended Unique Identified)の識別のみと関連付けられるように、匿名接続の使用などを通して、識別されないままである。さらに、暗号化プロセスおよび技術の使用(たとえば、ブロックチェーンの使用)も、匿名性のレベルを維持する能力を提供することがある。
図16Aは、一例による、VSSを形成し得るデータ要素のいくつかのカテゴリと重みとを有するチャートを示す。
TMS内で動作する各車両および/またはユーザは、さまざまなレベルの精度、詳細、および待ち時間で検出されることがある。車両は、VSS610が割り当てられることがある。VSS610は、車両の優先レベルの決定に影響するスコアまたは相対的ランキングを複合することがあり、TMS101に接続されたさまざまなデバイスを通して、および/またはTMS101と通信するさまざまなデータソースを通して、TMS101によって検出、計算、推定、推理、または別の方法で決定されるいくつかのデータ要素を含むことがある。データ要素は、VSS610を生成するように重み付けされ、優先度が付けられ、組み合わされることがある。すべてのデータ要素タイプは、数値が割り当てられることがあり、VSS610は、要素値とそれらそれぞれの要素の重みの積の合計の組合せであることがある。
VSS610が、車両、ユーザ、および/またはそのアクティビティを表すことがあるが、車両、ユーザ、および/またはアクティビティを示すデータのセットが、スマートフォン、タブレット、車両データシステム、ラップトップ、および/または車両の外部にあるリモートネットワークなどの少なくとも1つのプロキシデバイス内にあることがある。プロキシデバイスは、スマートフォンが車両内に含まれているが、車両に通信で接続されておらず、車両に接続されていないスマートフォンに接続されたまたはこの中に含まれるセンサから近似的な車両移動データ(たとえば、車両スピードおよび加速度など)を得るケースなどにおいて、車両と通信している、または別の方法でこれに接続されていてもよいし、されなくてもよい。
VSS610内のいくつかのデータ要素タイプ(「データ要素」または「要素」としても知られる)は、理解の容易さのために、ならびに識別および計算の簡単さのために、カテゴリ内でグループ化されることがあるが、要素は、カテゴリ化されることが必要でない。VSS610は、利用可能な入力に基づいて決定されることがある。提供されるまたは決定可能であるVSS610の要素が多いほど、およびVSS610の各要素について知られているまたは決定可能である要素が多いほど、VSS610が、最終的に高くなることがある。VSS610が高いほど、車両の優先度が高くなることがある。少なくとも1つのカテゴリおよび/または要素は、いくつかの要素およびカテゴリが、VSS610の値に対して、他の要素よりも大きい影響を有することがある(たとえば、第1の要素が、第2の要素よりも大きい影響を有することがあり、または、その逆である)ように、対応する重みWn(たとえば、W612、W614、W616、W618、W620、W622、W624など)をVSS610の計算内に有することがある。
利用可能なデータ要素およびそれらの要素のソースに応じて、VSS610の一部分は、車両に割り当てられるおよび/またはこれから供給されることがあり、一部分は、車両に関連付けられた1つまたは複数のユーザ(たとえば、運転手および/または乗客など)に割り当てられるおよび/またはこれから供給されることがある。一例では、車両または車両に埋め込まれたもしくは別の方法で接続されたデバイスによって少なくとも一部は追跡されることがあり、一般に車両から分離されないVSS610の要素は、車両に帰せられ得るVSS610の一部分を形成することがある。デバイスは、制御エリアネットワーク(CAN)バス、高度運転手支援システム(ADAS)、車両テレマトリックスシステム、または車両情報エンターテインメントシステム、OBD−IIもしくは他のポートなどを介したプラグインデバイス、または具体的にはカメラ、もしくはビデオもしくは音声記録システムなどの車両に接続されたもしくは割り当てられたデバイスを含めて、車両に一体化したシステムの一部であることがある。車両のシステム、埋め込みデバイス、またはVSS610の少なくとも一部分を形成し得る関連デバイスによって追跡され得るVSS610の要素の例示的なカテゴリは、車両クラス612、車両仕様614、および車両ステータス616のうちの少なくとも1つを含む。
別の例では、1つの特定の車両とは無関係にユーザとともに走行し得るモバイルデバイスたとえばスマートフォンによって少なくとも一部は追跡され得るVSS610の要素は、VSS610に類似したユーザスコア608の少なくとも一部も形成することがある。ユーザスコア608は、VSS610として、あるやり方で定量化されることがあり、ユーザスコア608は、VSS610の一部分をさらに形成することがある。ユーザスコア608の少なくとも一部分を形成し得るVSS610の要素の例示的なカテゴリは、運転手アクション618、ナビゲーション固守620、および利用622のうちの少なくとも1つを含む。さらに、VSS610の他のカテゴリも、1つまたは複数のモバイルデバイスによって追跡されることがあり、したがって、ユーザスコア608の別の部分を形成することがある。1つまたは複数のユーザスコア608は、したがって、たとえば、1つまたは複数の関数によって、VSS610の決定に寄与することがある。ユーザスコア608が車両の運転手のスコアであると決定され得るケースでは、ユーザスコア608、またはその要素は、車両の乗客の重みであることがある第2のユーザスコア608’の重みとは異なる重みを有することがある。
使用され得るデータ要素としては、限定するものではないが、車両登録もしくは車両識別番号(VIN)データ、画像もしくはビデオ、音声署名および/または量レベル、排出測定、重量測定、走行方向、1つもしくは複数の道路区間上を走行する頻度、特定のイベントもしくは条件に向けてもしくはこれから離れて走行すること、走行目的に向かってユーザによって当てがわれたVSS点、およびルート熟知(たとえば、特定のルート上を走行する頻度)などの、車両(または他のデバイス)の速度、加速度、条件、および/または方向、GPSロケーション、車輪スピード、トランスミッション出力シャフトスピード、ブレーキ油圧、ブレーキ制御圧力もしくは力、エンジンもしくはモータのRPM、パワー出力、スロットル位置、燃料流量、燃料レベル、バッテリパックの充電状態(SOC)、冷却材温度、油圧、タイヤ圧力、座席位置重量、エアバッグ配備、ハンドブレーキイベント、任意の検出可能車両制御デバイスもしくは機構の使用、不揮発性メモリへのイベントデータレコーダ(EDR)記録、ならびに/またはユーザの頭部、手、および/もしくは目の位置もしくは移動、のいずれかがある。他のデータとしては、スマートフォンの動作モードもしくは使用、たとえば、テキスト化、通話、ハンズブリーモードの使用、表示モード、タッチスクリーンの使用、およびスマートフォンの特定の特徴、機能、またはアプリの使用、これらを使用できること、またはこれらを使用できないことがあり得る。車両の外部にある検出デバイスからの、または別のデータソースからの、車両内のモバイルデバイスまたはポータブルデバイスを通しての、搭載車両から入手可能な任意のデータは、車両または運転手または他の車両乗員のステータスを検出、決定、推定、予期、および/または推理するために使用されることがあり、結果は、ある時間期間にわたってVSS610の1つまたは複数の要素またはカテゴリの値を決定するために使用されることがある。一般に、データ要素タイプは、VSS610の計算をその存在によって知らせてもよいし、またはデータから得ることが可能な情報を知らせてもよく、スコアまたはポイント値に等しくされることがあり、次いで、スコアまたはポイント値がVSS610の構成要素を形成することがある。たとえば、TMS101が車両のVINを備える場合、VSS610の車両ステータス614のスコアは、車両のさまざまな部品の数値またはステータス情報をTMS101の動作に割り当てる所定のスケジュールなどにより、ポイントが追加されることがある。
データ要素タイプのカテゴリとしては、車両クラス、車両仕様、車両ステータス、運転手アクション、ナビゲーション固守、利用、およびブーストがあり得る。データ要素の各タイプすなわちカテゴリは、範囲数値を有することがあり、各カテゴリスコアは、データ要素の数値スコアの合計であってよい。経時的な車両のVSS610は、その瞬間的VSS611スコアの合計または平均であってよく、瞬間的VSS611aは、各カテゴリにおけるスコアの合計であってよく、各カテゴリは、重みによって乗算されることがある。重み(たとえば、W612〜W624)は、それらそれぞれのカテゴリおよび/または要素の乗数として働くことがあり、車両が特定のゾーン、エリア、または道路区間内で、または特定の時間に、もしくは特定の条件下で、動作しているかに応じて変化することがある。カテゴリおよび重みは、より細かいレベルで、カテゴリ内でカテゴリ内のデータ要素の個々のタイプに別個の重みを適用することによって定義されることがある(カテゴリが使用される場合)。カテゴリは、本明細書において例示的な目的で使用されるが、VSS610は、データ要素タイプおよび各データ要素タイプに対する重みからも計算されることがあり、そのような重みは、単純に1に等しいことがある。
一般に、カテゴリおよび要素は、車両、運転手、および/またはユーザの特性および性能が測定またはスコア化されることを可能にするが、重みは、特定の条件下で、たとえば、道路、エリア、もしくはゾーン、および/または時刻もしくは曜日によって、互いに対してカテゴリまたは要素が強調されることを可能にする。
重みはまた、他の条件に基づいて、特定の車両または運転手に関して調整されることがある。言い換えれば、特定のエリア内で動作するいくつかの車両または運転手は、同じエリア内の他の車両または運転手とは異なる、重みのセットが適用されることがある。この一例は、緊急モードで動作する緊急車両であり、他の車両の車両クラス重みおよび/または車両ステータス重みよりも高い車両クラス重みW612および/または車両ステータス重みW616を有することがある。
緊急モードで動作する緊急車両などの特定の状況において、緊急車両のカテゴリスコアのいくつかまたはすべては、エリア内に存在し得るすべての他の非緊急車両に対する優先度を有するように最大にされることがある。さらに、TMS101またはナビゲーションシステムと通信する少なくともいくつかの非緊急車両のカテゴリスコアは、緊急車両に対する交通信号先取りなどの、とられ得る他の方策に加えて、緊急車両に対してより大きい優先度を保証するために減少されることがある。
次いで、データ要素の各カテゴリは、ゼロからそのカテゴリに関する最大値の間、たとえばゼロから100の間、またはゼロから500の間の、現在のスコアを有することがある。重みはまた、倍数として各カテゴリスコアにさらに適用されることがある。それらのカテゴリに利用可能な現在のスコアの合計は、瞬間的VSS611を表すことがある(図19)。たとえば、ちょうどTMS101の要件内で現在運転中であることが検出された運転手は、瞬間的VSS611の最大運転手アクション618カテゴリスコアを受信することがある。時間の期間にわたっての瞬間的VSS611の合計は、VSS610を表すことがある。VSS610および瞬間的VSS611は各々、単一の得られた値である。一例では、カテゴリおよび重みのセットに対して、瞬間的VSS611およびVSS610は、
瞬間的VSS611=Σ[(カテゴリn)(カテゴリ重みn)]
ここで、各カテゴリnは、データ要素スコアΣ(データ要素タイプm)の合計であってよい。
VSS610=図17の説明によって定義された時間期間にわたってのΣ(瞬間的VSS611)
と表されることがある。
別の例では、1つまたは複数のカテゴリの個々のデータ要素タイプは、カテゴリ重みの重みと異なる重みを有することがある。次いで、瞬間的VSS611は、それぞれのデータ要素タイプ重みによって乗算されたデータ要素タイプの合計として計算される。言い換えれば、カテゴリのカテゴリ重みは、カテゴリ全体に適用されないことがあり、その代わりに、異なる重みが、カテゴリ内の個々のデータ要素タイプに適用されることがあり、それが、より高い粒度をもつ瞬間的VSS611をもたらすことがある。以下で提供される例は、各カテゴリタイプに対してゼロから100の範囲を仮定し、そのカテゴリスコアは、各カテゴリ内のデータ要素タイプスコアの合計であり、スコアへの追加またはそれからの差し引きが、カテゴリスコア範囲内で行われることがある。提供されるポイントは、例示的な目的にすぎない。他の例は、各カテゴリを形成するデータ要素タイプにスコアを割り当てることがあり、または、カテゴリ自体をデータ要素タイプと分類することがある。
車両クラス612は、たとえば、車両分類(たとえば、緊急、政府、または非一般人)、緊急車両のさまざまなタイプ(たとえば、軍隊、警察、消防、救急車など)、一般人、商用(低耐荷重、中耐荷重、および高耐荷重の、バス、長距離バス)、および自家用車、トラック、および低スピード車両、グループに属する車両(たとえば、ロケーション、エリア、道路区間、会社、組織、護衛などによって)、オートバイ、スクーター、および自転車、および登録分類(たとえば、自家用、商業用、政府、外交官、身体障害者、スクールバス、政府など)のうちの少なくとも1つを識別するために使用される1つまたは複数のデータ要素、プロセス、または関数を含むことがある。一例では、非緊急モードで動作する緊急車両は、100のうち90の車両クラス612スコアを有することがあり、緊急モードでは、車両クラス612スコアは、100に増加することがあるが、車両ステータス重みW616は、2から10に増加することがある。別の例では、乗客車両は、30の車両クラス612スコアと、1の車両クラス重みW612とを有することがある。別の例では、大型トラックが、危険物と分類されない場合の60の車両クラス612スコアと、危険物と分類される場合の80とを有することがある。別の例では、オートバイが、45の車両クラス612スコアを有することがある。別の例では、TMS101に明らかにされた登録分類をもつ任意の車両が、最大カテゴリスコアまで追加の5ポイントが追加されることがある。車両仕様614は、たとえば、車両のロール、ピッチ、およびヨーの大きさ、自動化されたもしくは部分的に自動化された車両のための動作の運転モード(たとえば、使用中のSAE自動車両分類)、車両ロケーション、スピード、加速度、減速、交通信号、道路区間上の他の車両のロケーション、スピード、加速度、および減速、または別のメトリック、1つもしくは複数の道路車線に対するもしくは少なくとも1つの他の車両に対する車両横方向位置もしくは変化率、物体、または時間の尺度、先頭車両に続く距離、ADASアクティブ化(たとえば、自動緊急ブレーキ、車線逸脱介入、またはアラートイベントなど)、選択されたトランスミッションギアもしくはモード、ステアリング角度、車両重量、照明ステータス(たとえば、ヘッドライト、ハイビーム、方向指示器、テールライト、ブレーキライト、マーカランプ、バックライト、フォグライトなどの)、シートベルト使用、ワイパーステータス、熱、除霜、または空気調節ステータス、車両システム故障コードステータス、排出出力、検査もしくは登録ステータス、ライセンスプレートタイプ、タイヤ圧力、組合せ車両長さ(トレーラーを牽引する乗客車両、トラックトラクタトレーラー、トレーラーなしのトレーラートラクタ)、時間期間内にゾーンもしくはエリア内で走行される距離、および車両内部騒音レベル(たとえば、オーディオボリューム)、および車両外部騒音レベルのうちの少なくとも1つを識別または測定するために使用される1つまたは複数のデータ要素、プロセス、または関数を含むことがある。
一例では、アンチロックブレーキシステム(ABS)を有することが検出された車両は、5ポイントがその車両仕様614スコアに追加されることがある。別の例では、推進エネルギーの唯一の源が電力である車両は、38ポイントがその車両仕様614スコアに追加されることがあり、ガソリンハイブリッド電力推進をもつ車両は、28ポイントがその車両仕様614スコアに追加されることがある。別の例では、ステアリング角度センサの出力をTMS101に提供する車両は、6ポイントがその車両仕様614スコアに追加されることがある。車両ステータス616は、上記(車両仕様614)から識別され得るステータスなどの、1つまたは複数のデータ要素、プロセス、または関数のステータスを含むことがある。
一例では、現在の道路区間の公示スピード制限のパーセンテージ以内のスピードで運転中であることが検出された車両は、20ポイントが車両ステータス616スコアに追加されることがある。別の例では、一日の暗い期間中にそのヘッドライトがオンにされていることが検出された車両は、18ポイントが車両ステータス616スコアに追加されることがある。別の例では、1つの時間期間または運転距離以上にわたって方向指示器がオンの状態で動作していることが検出された車両は、15ポイントが車両ステータス616スコアから差し引かれることがある。
運転手アクション618またはステータスは、たとえば、車両乗員のステータス(たとえば、運転手または乗客)、ステアリングホイールまたはデバイスを操作する運転手、スロットル制御、ブレーキ制御、ギアシフトまたはトランスミッション制御、ヘッドライト制御(たとえば、ロービーム、ハイビームなど)、方向指示器制御、ハザードライト制御、ホーン、惰走(cruise)スピード制御、シートベルト、ミラーまたは風防ワイパー、運転手がモバイルデバイス使用すること(およびモバイルデバイスのモード)、TMS101によって提供されるガイダンスを受信し厳守することによって運転手がガイダンスモードでTMS101を使用していることがあること、運転手が、運転免許が与えられ得るおよび/もしくは運転が保証され得るかどうか、ゾーンもしくはエリアの居住者であるかどうか、またはルートを熟知している可能性があるかどうか(いくつかの以前の旅行、ルートに必要とされるものに対するステアリング入力の数、大きさ、もしくは率、または他のアクションなどに基づいて)、別の方法で分類が割り当てられ得るかどうか、および運転手が法執行または緊急サービスによって求められているかどうか、のうちの少なくとも1つを識別するために使用される1つまたは複数のデータ要素、プロセス、または関数を含むことがある。
さらに、運転手アクション618は、ステアリングホイールまたは他のデバイス上の運転手の手の位置、座席位置、頭部もしくは目の移動、心拍数、血圧、発汗、身体もしくは皮膚表面の温度、注意散漫のレベル、眠気、酔い(血中アルコール含有量(BAC)などを通して)のうちの少なくとも1つを識別するために使用される1つまたは複数のデータ要素も含むことがあり、または、他の障害は、少なくとも一部は、バイオメトリックプロセスを通して、たとえば、車両内に組み込まれたもしくは据え付けられたセンサ、または運転手によって装着され、さらにはスマートフォンもしくは車両CANバスなどを通してTMS101と通信するようにも構成するウェアラブルデバイスを介して、取得されるデータに基づくことがある。
モバイルデバイスと関連付けられた各ユーザの識別情報検証は、パスワードもしくは署名などのユーザ入力、または指紋、網膜、もしくは虹彩パターンの使用などのバイオメトリック情報、または音声オーディオによって推理または決定されることがある。信頼のレベルは、識別情報検証に使用される入力のタイプおよび量に応じて、デバイスまたはTMS101によって割り当てられることがある。たとえば、指紋入力は、適切なパスワードの使用によって提供される信頼のレベルよりもユーザの識別子に関する高い信頼のレベルを提供することがあるが、両方の使用は、はるかに高い信頼を提供することがある。
ユーザが、車両の現在の運転手であることが識別または推理される場合、運転手のモバイルデバイスが、運転モードで動作することがある。一例では、モバイルデバイスの移動、受台もしくはドッキングステーションからのデバイスの挿入もしくは除去、モバイルデバイスの車両との相対移動の検出、または車両テレマティックスもしくは情報エンターテインメントシステムとの同期を通して、モバイルデバイスの運転モードは、使用可能または使用不可能にされることがある。
モバイルデバイスの運転モードは、動作のデフォルトモードまたは通常モードと異なる機能または特徴セットを有することがある。たとえば、運転モードは、テキストメッセージの送受信、メッセージ、ビデオ表示、非緊急電話の使用(たとえば、9−1−1以外のダイアル番号)、ウェブ閲覧、電子メール、ゲーム機能のうちの少なくとも1つを限定、制限、または不可能にすることなどの通常モードから特定のアプリ、機能、または特徴を可能にするまたは優先させる、または、車両、もしくはプロキシによって、モバイルデバイスが、あるスピードで、おそらく少なくとも時間の期間にわたって、移動することが検出されない限り特定のアプリもしくは機能もしくは特徴をアクセス可能にすることのみを可能にすることがある。モバイルデバイスのさまざまな運転モードは、VSS610の運転手アクション618部分に対するさまざまな効果を有することがある。したがって、運転手の注意散漫および道路の安全性に対するより大きい効果を有すると考えられる機能的特徴またはアプリは、車両内部での使用により制限または使用不可能にされるとき、車両のVSS610に対して相応の効果を有することがある。運転手が、制限または使用不可能にされたモバイルデバイス上の特徴またはアプリを使用することを望む場合、車両は、それらの特徴およびアプリへのアクセスが再度利用可能になる前に、おそらく時間の最小経過持続時間の間、停止することが要求されることがある。時間の最小持続時間は、変化することがあり、次の交差点における次の赤色ランプが走行の車両方向の方向において赤色のままであるまでの時間よりも大きいことがある。このようにして、テキストメッセージの送受信と運転とを限定することが可能であることがある。機能、特徴、およびアプリを使用不可能にすることの例外は、緊急使用のための緊急通話およびロケーションの共有であることがある。そのような特徴の使用は、何らかのときまたは常に許容可能であることがあり、ゾーン、エリア、またはデバイスのロケーションによって変化することがある。
別の例では、オーバヘッドガントリ上に取り付けられたカメラなどのカメラは、気の散った運転に対する執行に関連する目的のために、画像を記録、提出、およびまたは処理することがある。累積VSS影響は、運転手の運転記録の既知の部分(たとえば、デメリットスコア、運転手の免許ステータス、制限など)、ゾーンまたはエリア内の未払いチケット、および政府当局、サードパーティ認定による、またはシミュレータ訓練を通してなどの運転手訓練レベルを説明することがある。運転手アクションについて説明するデータが、たとえば、車両ロケーション、道路のタイプ(たとえば、主要道路、地方、駐車場、オフハイウェー)、ならびに日および時間に応じて、異なる時間に、異なるように処理されることがある。1つの例は、一日の第1の部分中に道路上で第1の方向に運転する車両がシステム要件を満たしていることであり得る。しかしながら、道路方向が、一日の第2の部分中に第2の方向に逆転され、車両が、一日の第2の部分中に第1の方向に道路上で運転されている場合、車両および運転手はシステム要件を満たしておらず、VSSが、異なる様式で調整されることがある。
一例では、運転中にモバイルデバイスを使用していることが検出されず、そのモバイルデバイスが運転モードで動作している運転手は、60ポイントが運転手アクション618スコアに追加されることがある。別の例では、BACが限界を超えることが検出された運転手が、そのVSS特権が一時停止されることがあり、他のアクションがTMS101によってとられることがある。別の例では、両手をステアリングホイール上に置いていることおよび運転手のシートベルトが運転時間のある割合より長い間係合されることが検出された運転手は、16ポイントが運転手アクション618スコアに追加されることがある。ナビゲーション固守620は、たとえば、旅行目的地、推奨ルート上を運転すること、主要道路上を運転すること、制限された道路を回避すること、走行開始時間、走行時間、走行スピード、もしくは走行距離を厳守すること、ルートの柔軟性を示すこと、駐車場利用可能性を指定し、目的地における駐車場予約を明らかにすること、ルートを重複させること(たとえば、同じ方向、街路、ゾーン、またはエリア内を繰り返し運転することなど)、意図されたルートまたは推奨ルートからある距離および/または時間よりも大きく逸脱すること、特別許可を所有すること、および輸送グループステータスを示すこと、のうちの少なくとも1つを識別するために使用される1つまたは複数のデータ要素、プロセス、または機能を含むことがある。
一例では、予約された駐車場スペースを有することが検出された車両は、22ポイントがそのナビゲーション固守620スコアに追加されることがある。目的地のエリア内の高交通量の時間中に、カテゴリ重みW620は、車両優先度の構成要素としてナビゲーション固守を強調するために、1から3に増加されることがある。別の例では、あるロケーションからスケジュールされた時間の3分以内に出発する車両は、17ポイントがそのナビゲーション固守620スコアに追加されることがある。別の例では、TMS101またはナビゲーションシステムによる要求に応答してロケーションを出るのをある時間期間の分だけ延期することを宣言されたルートをもつ車両は、そのナビゲーション固守620スコアに追加されたある量のポイントを有することがあり、その量は、時間期間の持続時間および/または宣言されたルート上の交通の条件に相応する。別の例では、車両が、ナビゲーションシステムおよび/またはTMS101によって提供されるルートをたどり続ける限り、車両は、40ポイントがそのナビゲーション固守620スコアに追加されることがある。
利用622は、たとえば、車両乗員の数、車両または少なくとも1つの車両乗員の目的地、および各乗員の、運転手、ユーザ、または車両乗客に割り当てられ得るモバイルデバイスの使用のうちの少なくとも1つを識別するために使用される1つまたは複数のデータ要素、プロセス、または機能を含むことがある。車両内の確認された車両乗員の数が、車両のVSS610に影響することがある。一例では、複数の車両乗員をもつ車両は、より高い利用622構成要素を有することがあり、したがって、車両は、より高い全体的なVSS610を有することがある。別の例では、複数の車両乗員をもつ車両は、各車両乗員のユーザスコア608と各車両乗員のユーザスコア608の積または合計のうちの少なくとも1つの関数に基づいて計算された利用622を有することがある。関数は、線形であってもよいし、非線形であってもよい。非線形関数は、車両のクラスに対する利用622時に車両乗員の数が有し得る影響に対する上限または下限を提供することがある。さらに、ユーザの重みは、車両占有を検出する目的のために、乗客としてのユーザの重みと比較して、運転手として、より高いことがある。別の例では、複数の車両乗員をもつ車両は、少なくとも一部は、少なくとも1つの車両乗員に対する1つまたは複数の既知の旅行目的地に基づいて、計算された利用622を有することがあり、旅行ルート指定は、少なくとも一部は、1つまたは複数の既知の旅行目的地によって決定されることがある。言い換えれば、旅行目的地が多く定義されるほど、ルートが多く定義されることがあり、利用622がVSS610に対して及ぼし得る影響も大きくなる。別の例では、車両乗員と既知の旅行目的地の比が高いほど、車両の利用622が、旅行のコースにわたって高くなることがある。さらに別の例では、推定または実際の乗客距離と旅行ルートに対する車両距離との間の関係に基づく機能は、車両のVSS610に影響することがある。類似は、貨物輸送移動、たとえば、質量−距離(または体積−距離)とルートに走行される車両距離との間の関係にも使用されることがある。さらに別の例では、緊急モードで動作する緊急車両は、任意の非緊急車両を上回る優先度を緊急車両に提供する最も高い可能な値の範囲内で、利用622および/またはVSS610を有することがある。
一例では、車両乗員の数は、ワイヤレス通信、GPS信号、および/または車両内の少なくとも1つのモバイルデバイスの検出の別の手段のうちの少なくとも1つの分析によって、時間および類似のパス上のロケーションによる検出を通してTMS101によって推理されることがある。別の例では、車両座席システム内のシートベルトまたは体重センサが、車両乗員の存在を検出するために使用されることがある。
さらに、以前に述べた、モバイルデバイスのためのユーザ識別子を確認する手段に加えて、車両乗員が複数のモバイルデバイスを使用することによって車両乗員の数に人工的に影響するのを防止するために、TMS101は、モバイルデバイスが、または車両内で、車両の現在の運転手のステータスまたは乗客のステータスとしてモバイルデバイスのステータスを検出、推定、推理、または確認したにせよ、そうでなかったにせよ、ランダムな時間に問題のモバイルデバイスと通信することがある。例としては、少なくとも1つのモバイルデバイスに電話すること、動作モードを確認するためにモバイルデバイスにプロンプトを提供すること、および車両のモーションに対するモバイルデバイスのモーションまたは受台もしくはドッキングステーションからのモバイルデバイスの除去を検出すること、のうちの少なくとも1つがある。さらに、モバイルデバイスのいずれかに対する応答は、気の散った運転のインジケータが少なくとも1つのモバイルデバイスへの入力と同時に発生する可能性があるかどうかを見分けるまたは相関させるために、TMS101によって車両の運転パターンと比較されることがある。気の散った運転のインジケータとしては、たとえば、さまざまな車両スピード、他の交通との統計的に優位なまたは別の方法で定量化可能なスピード差、車線内または車線を越えてジグザグに進む車両、および車両と1つまたは複数の来たるべき交差点との間の距離よりも大きい距離にわたっての、所定の距離よりも長くまたは所定の時間期間よりも長くにわたって1つの道路区間のみを車両が走行するときの、車両方向指示器アクティブ化があり得る。
一例では、複数の人間が乗車していることが検出された車両は、10ポイントがその利用622スコアに追加されることがある。走行のエリア内の高交通量の時間中に、カテゴリ重みW622は、車両優先度の構成要素として利用を強調するために、1から5に増加されることがある。別の例では、多量の積み荷を運んでいることが知られている商業用トラックは、12ポイントがその利用622スコアに追加されることがある。別の例では、車両は、車両に乗車した確認された乗客の数に応じて、20から60ポイントがその利用622スコアに追加されることがある。乗客は、存在を識別および確認するためのスマートデバイスおよび/またはカメラの使用を通してカウントされることがある。
ブースト624は、たとえば、ゾーンまたはエリア内での走行に対するTMS101の使用の頻度、ゾーン、エリア内の、道路区間上、または特定の目的地などのロケーションによって走行された時間期間または距離にわたってVSS610を増加させることに向けてのユーザのアカウントからVSSポイントの割り当て、およびユーザのアカウントへの、またはユーザのアカウント以外のソースからの、VSSポイントの追加のうちの少なくとも1つを識別するために使用される1つまたは複数のデータ要素、プロセス、または機能を含むことがある。
VSSポイントは、アクティビティ(たとえば、実行を通して得られる)、購入、または別のアカウントもしくはソースからの移転のどちらかを通して受信され、次いで後で使用され得るデジタルクレジットであることがある。VSSポイントは、クラスによって分類されることがあり、VSSポイントの各クラスは、有効期限または時間、一緒に使用され得るポイントの数値限定、VSSポイントの各クラスが使用可能または使用不可能である時間期間または日付範囲、およびVSSポイントの各クラスが使用され得る適格な目的またはロケーションなどの、持続時間または使用に関連する制約または制限の異なるセットを有することがある。
一例では、ユーザまたはサードパーティは、ブーストポイントをユーザのブースト624スコアに追加する。追加される各ブーストポイントは、1ブーストポイントの追加が、次の10マイルまたは次の20分にわたってのブースト624スコアに追加された10ポイントをもたらすなど、何らかの時間の期間または旅行距離にわたってユーザの(したがって車両の)ブースト624スコアの、相応する数のポイント増加をもたらすことがある。別の例では、ユーザまたはサードパーティは、旅行の持続時間にわたってユーザのブーストスコア624を15ポイント増加させるために、3ブーストポイントを追加する。別の例では、サードパーティは、次の5マイルにわたってユーザのブーストスコア624を8ポイント増加させるために、2ブーストポイントを追加し、ユーザは、TMS101またはナビゲーションシステムによって追加が知らされる。別の例では、サードパーティは、サードパーティによって定義され、ユーザによって合意された特定のロケーションに行くルートなどの特定のルートに関して、ユーザのブーストスコア624を20ポイント増加させるために、5ブーストポイントを追加する。
車両のVSS610または平均VSSは、絶対的もしくは相対的に、またはTMSに知られているすべての他の車両の第2のVSSもしくは平均VSSと比較して、などにより、ゾーンもしくはエリア内で動作している車両の第2のVSSまたは平均VSSなどの、第2の車両またはいくつかの車両の第2のVSSまたは平均VSSと比較されるまたはこれと関連してランク付けされることがある。一例では、第1の車両のVSSは、第2の車両のVSSと比較され、時間期間(たとえば、過去1分、5分、15分、および60分)中により高いVSSをもつ車両が、より大きい優先度を有することがある。別の例では、直前の5マイル、20マイル、または100マイルにわたってより高いVSSまたは平均VSSをもつ車両が、より大きい優先度を有することがある。
図16Bは、一例による、各方向から交差点Aに接近する交通需要の大きさを示す図である。図8B2および図8C3において説明されるものと同様であるが、車両は、交通需要を計算するように交差点Aに接近する各方向からカウントされることがあるので、次いで、交通需要は、時間期間(または距離)によってだけでなく、各車両の優先度またはVSSと、利用可能な場合は、車両のナビゲーションルートを知ることによっても、重み付けされることがある。
したがって、VSSを有する第1の車両は、VSSを有さないことがある第2の車両の倍数である重みを有することがある。これは、第1の車両が第2の車両よりも予測可能であることがあるためである。さらに、第1の車両の意図されたルートが明らかにされ、第2の車両がTMS101に知られていないことすらあるが、TMS101が第1の車両に対して交通信号をいつ変更するべきかを計算することを可能にすることがある。第1の車両の相対的VSSは、数値的にカウントされるにすぎない(すなわち、事実上VSS=1)第2の車両と比較して、1よりも大きいことがある。次いで、明らかにされたルートを有することにより、それが交差点Aから遠く離れるほど、交差点Aに対する第1の車両のEVは、交差点Aから何らかの距離のところにおいても1に近くなる(ほぼ=1ですらある)が、交差点Aに対する第2の車両のEVは、1の何分の1にすぎない。
交差点Aに対する第1の車両のEVは、明らかにされたルートをもたない車両の以前に説明されたシナリオと同様に、同じ理由で、第1の車両が交差点Aに近づくにつれて依然として増加することがある。しかしながら、第1の車両のEVの増加の率は、交差点Aを通過するその明らかにされたルートにより第1の車両が交差点Aに対するすでに高いEVから始まることにより、より低いことがある。さらに、図8C1および図8C2によって説明されるなどの、交差点Aと別の交差点Bの間の空間的関係は、少なくとも1つの交差点重み(JW)が、交通需要またはある交差点から別の交差点へのEVに基づいて交通信号タイミングを調整するために、TMS101によって適用されることを可能にすることがある。
たとえば、交通需要が、交差点Bに接近することが検出されるとき、交通需要の一部分は、交差点Bを出て、道路区間BA1、BA2、およびBA3に沿って西から交差点Aに接近する。交通需要の少なくとも一部分が、VSSと交差点AおよびBを通過する明らかにされたルートをもつ車両からのものであるケースでは、それらの車両の各々に対するEVが計算され、交差点Aに接近するEVE3、EVE2、およびEVE1と表されることがある。期待値EVE3、EVE2、およびEVE1は各々、車両が交差点Aに接近するにつれて、それらのそれぞれのEV量がはるかに低い値から増加するので、それらの間に、それらのそれぞれの時間期間(t1、t2、t3)が明らかにされたルートを有さなかった場合よりも小さいデルタを有することがある。言い換えれば、車両のEVは交差点からの車両の距離の関数であり得るので、交差点から出る、より長い時間期間からの車両のEVから、交差点により近い時間期間における車両のEVの間の線の勾配は、明らかにされたルートを有さない車両に対して、より急である。
接近しつつある車両のEVまたは時間期間のEVは、交差点のJWまたはJWの方向性部分によって乗算されることがある(JWは、交差点の方向の方向性交差点重みの合計であってもよい)。JWは、第2の交差点と比較した第1の交差点の相対的重要性のインジケータとして働くことがあり、車両または時間期間(EVによる)の相対的重要性は、交差点の別のススルー(through)方向と比較した、1つの交差点から次の交差点への交通需要の相対的重要性および/または交差点の1つのスルー方向における交通需要の相対的重要性の計算を可能にすることがある。交差点AのJWは、JWAN+JWAW+JWAE+JWASと表される、進入の各方向のJWの合計に等しいことがある。各方向のJWは、所定の値であってもよいし、時刻、曜日などによって、または交通条件に基づいて、動的に調整されてもよい。
一例では、JWA=1であり、4方向の各々のJWは0.25に等しい。次いで、JWAが、JWBなどの別の交差点のJWと比較され、次いで、JWBに対してスケールアップまたはスケールダウンされる、たとえばJWAが1.2にスケールアップされる場合、4つのJWA方向の割合は同じままであってよく、各JWA方向は、0.30の値を有するであろう。他の例では、JWA方向の割合は等しくなく、スケールされたJWAの値に等しくなるように合計してもよい。
図17は、一例による、時間スケールに対するVSS610のいくつかの要素のグラフを示す。VSS610の要素の各々は、重み(図16Aにおいて説明される)と、別個の時間ベース持続性とを有することがある。
VSS610の各要素は、現在の時間tの前に開始時間を有することがある。各要素の開始時間は、変化することがある。VSS610は、検出されたステータス、要素、加重計算、および累積計算のうちの少なくとも1つに対する検出されたステータス(たとえば、2進)、平均計算、瞬間的計算、または測定のうちの少なくとも1つを含むことがある。代替的に、VSS610の各カテゴリは、平均計算と、瞬間的計算または測定と、加重計算と、累積計算とを有することがある。
VSS610は、少なくとも1つの要素の経時的なローリング平均または加重平均に基づいて、持続性が割り当てられることがある。たとえば、VSS610は、直前の旅行などの以前の旅行の時間の期間中に検出または計算されたいくつかまたはすべての利用可能な要素からのデータを使用することがあり、そのデータを現在の旅行の少なくともいくつかの時間の期間にわたって使用することがある。
さらに、以前の旅行からのデータは、未加工データであることがあり、VSS610に関する重みおよび/もしくは持続性情報、または他の車両のVSSに関連する、もしくはロケーション、ゾーン、エリアに対する、および走行されたルートもしくは道路に対する、データもしくは計算を含むことも、含まないこともある。
一例では、以前の旅行の少なくとも1分のデータが、現在の旅行の第1の部分に関する計算において使用されることがある。別の例では、以前の旅行からの約1〜5分のデータが、現在の旅行の少なくとも一部分に関する計算において使用されることがある。別の例では、以前の旅行からの約1時間までのデータが、現在の旅行の少なくとも一部分に関する計算において使用されることがある。別の例では、以前の旅行からの約1〜24時間のデータが、現在の旅行の少なくとも一部分に関する計算において使用されることがある。別の例では、特定のエリアまたはロケーション内からのデータが、現在の旅行の少なくとも一部分に関する計算において使用されることがある。さらに別の例では、最大ですべての利用可能な以前の旅行は、同じ輸送のモードまたは少なくとも2つの輸送のモードから、のどちらかで、現在の旅行の少なくとも一部分に関する計算において使用されることがある。
VSS610の各要素の重みおよび持続性は、たとえば、特定の要素により大きくまたはより小さく重点を置くために、現在の環境、ゾーン、またはエリアにも基づいて変化されることがある(たとえば、スクールゾーン、建設構造ゾーン内、または他のときにおける、スピード違反またはテキストメッセージの送受信)。
VSS610は、動的であることがあり、旅行中に時間とともに変化することがあり、VSS610(またはVSS610の要素)は、最大で時間tの期間に及ぶ持続性を有し、tは、現在の時間を表す。時間tA、tB、tC、tD、およびtEはそれぞれ、現在の時間tに対するVSS610を計算する際にVSS610の1つまたは複数の要素が使用され得る、以前の開始時間を表す。
VSS610の各要素、または要素のカテゴリは、他の要素またはカテゴリの持続性と異なる持続性を有することがある。次いで、VSS610に対する要素の影響は、少なくとも部分的に、要素の持続性および大きさの関数であってよい。
いくつかのケースでは、要素が、持続性を有さないことがある。そのようなケースでは、代理値が、必要とされる場合、計算と置換されるまたは割り当てられることがある。たとえば、意図された目的地において車両が駐車場を予約した(または、駐車場が利用可能であると推定される)かどうかなどの2進ステータスをもつ要素は、瞬間的VSS611値のみを有し、持続性を有さないことがある。しかしながら、意図された目的地において車両が予約された駐車場を有するまたは有さないという確認をTMS101に提供することが、車両が意図された目的地の距離または到着時間推定値以内に接近するとき、代理値の割り当てをもたらすことがある。
実際、要素の持続性は、VSS610を計算するプロセスにおいて時間または距離重みを要素に割り当てるために使用されることがある。一例では、より長い持続性が、VSS610内での、より大きい全体的重みを要素に提供することがあるが、より短い持続性は、VSS610内での、より小さい全体的重みを要素に提供することがある。さらに、瞬間的VSS611は、より長い時間の期間にわたって決定されたVSS610と比較されることがある。
依存または条件関係が要素間に存在することがある。たとえば、緊急車両のみが緊急モードで動作することがある場合、他の車両クラスは、「オン」の緊急モードステータスを有する可能性はないであろう。別の例では、商業用車両は、一緒に、または個人乗客自動車が異なる制約を有することがある間の特定の時間期間中、のどちらかで、商業用車両が特定の道路を制限するために異なるナビゲーション固守条件を有することがある。
さらに、各車両またはユーザは、重大度またはタイミングに応じて、違反の検出時に別個のデメリットスコア(上記で図15を参照して説明された)が割り当てられることがある。たとえば、車両は、ランプが赤になった後、時間tRによって、赤信号を無視したことが検出される。一例では、時間tRは、3秒であることがある。別の例では、時間tRは、10秒であることがある。別の例では、デメリットスコアは、時間tRが1〜4秒の範囲内にある場合に割り当てられることがあり、第2のデメリットスコアは、時間tRが4秒よりも大きい場合に割り当てられることがある。デメリットスコアは、VSS610またはVSS610の要素がどのように決定または利用されるかに対する影響を有することがあるが、デメリットスコアは、VSS610と異なり、別個であることがある。または、デメリットスコアは、VSS610および/または瞬間的VSS611から差し引かれることがある。
図18は、一例による、瞬間的VSS611を決定するためのプロセスS811のための図である。図は、いくつかのデータソースから受信され得る各要素を受信するS850プロセスと、二次プロセスによって、最初に瞬間的VSS611のフォーマットに関連しなければならないポイント値をデータに割り当てることを含む、データが計算するために使用可能なフォーマットであることを保証すること(たとえば、車両VINの受信は、瞬間的VSS611ポイント値に変換されなければならない)を含む、受信され得る各要素のためのデータを処理することS860と、ならびに各要素のためのデータおよびメモリ内の各要素のための処理されたデータのうちの少なくとも1つを記憶することS870、ならびに瞬間的VSS611を決定するため、次いで、瞬間的VSS611をメモリに記録するまたは別の方法で瞬間的VSS611またはVSS610をTMS101に通信するために、処理するS860プロセスおよび/または記憶するS870プロセスの出力に少なくとも一部は基づいて計算することS880を含む、車両の瞬間的VSS611を決定するために使用されるいくつかの一次プロセスと二次プロセスとを含むことがある。記憶するS870プロセスは、計算するS880プロセス中に使用するためにデータを一時メモリまたは揮発性メモリに記憶することがある。計算するS880プロセスが完了すると、データは、後での検索のために揮発性メモリから不揮発性メモリに移されてもよいし、削除されてもよい。
計算することS880は、メモリ内に記憶された要素のデータおよび/またはメモリ内の処理された要素のデータのうちの少なくとも1つ比較することを含むことがある。さらに、プロセスS811は、図16Aのための説明で説明されるように、VSS610を決定することも可能にすることがある。二次プロセスは、瞬間的VSS611およびVSS610の特定の要素に関連するデータを収集および/または処理するプロセスを含むことがある。特定の要素としては、カテゴリ化されたデータおよびカテゴリ化されていないデータのうちの少なくとも1つ、たとえば、図16Aによって列挙されたカテゴリがあり得る。TMS101に明らかにされた、またはTMS101によって検出、決定、推定、もしくは推理された、瞬間的VSS611およびVSS610の要素(時々互換的に使用され得る用語)、および要素に割り当てられた値としては、限定するものではないが、車両クラス、車両仕様、車両ステータス、運転手アクションなどを含む、図16Aによって説明される例示的なカテゴリがあり得る。さらに、要素は、複数のカテゴリに、または説明されたカテゴリと異なるカテゴリに分類されることがある。各プロセスは、TMS101内のどこにでも、またはシステム、デバイス、および/もしくはTMS101と通信するもしくはこれに接続された構成要素を介して発生し、構成要素、デバイス、またはシステムの間で通信するステップを含むことがある。スマートフォンなどの、車両と通信しないモバイルデバイスによって提供されるデータによって決定され得る例示的な情報としては、複数軸における加速度データ、GPSデータおよびロケーションデータ、ならびに車両乗員の数がある。車両センサおよびデータネットワークによって提供されるデータによって決定され得る例示的な情報としては、ホイールスピード、車両燃費、および車両ステアリング角度がある。道路脇にあり、TMS101に接続されたセンサまたは検出器によって提供されるデータによって決定され得る例示的な情報としては、車両存在を識別すること(たとえば、車両をカウントすること)、車両が配置された道路の車線、車両スピード、および車両のライセンスプレート番号を識別することがある。いくつかのタイプの情報は、述べた例示的なソースのうちの複数から得られることがある。
一例では、TMS101またはTMS101と通信するように構成されたシステムは、車両スピードに関連する車両の瞬間的VSS611要素を計算することがある。スマートフォンまたは車両に組み込まれたナビゲーションシステムなどを介した、車両に搭載されているGPS能力は、TMS101を協調させる一連の日付/時間と緯度経度とを提供することがある。次いで、TMS101は、使用可能なデータフォーマットのセットのうちの1つからであることを保証するようにデータを処理し、データをメモリに記憶することに進み、次いで、時間に関するGPSロケーションデータの変化を比較することによって車両スピードを計算することがある。さらに、車両スピードセンサ出力が利用可能である場合、そのデータも、スピードセンサ出力信号をスピードに変換し、結果をGPS座標から計算された車両スピードと比較することなどによって、車両スピード計算においてTMS101によって、受信され、処理される(およびタイムスタンプが付与される)、記憶される、および組み込まれることもある。
図19は、一例による、瞬間的VSS611のシリーズを含むVSS610を示す。VSS610は、たとえば、瞬間的VSS611の時間または距離ベースのシリーズにわたっての、合計、またはその関数として、セットオフ瞬間的VSS611から決定されることがある。VSS610は、連続した瞬間的VSS611によって形成されないことがあり、1つまたは複数のデータサンプル率で計算されたいくつかの瞬間的VSS611から計算されることがある。一例では、VSSポイントは、車両のVSS610および/または瞬間的VSS611が第1のしきい値982を上回って動作することがTMS101によって検出される時間期間の少なくとも一部分の間に得られ、これは運転手が所定のレベルよりも上で実行していることを示すことがあり、特定のグッズの購入の報酬、サービス、またはユーザもしくは車両による、もしくは別の関係者による車両もしくはユーザに与えられたもしくは割り当てられた、他のアクションのためなどの、VSSポイント、または別の関係者から受信されたVSSポイントの購入および/または使用を含むことがある。
第1のしきい値982は、たとえば、ゾーンもしくはエリア内のいくつかの車両のVSSの平均であってもよいし、別のベースラインであってもよい。さらに、車両のVSS610が、第1のしきい値982または第2のしきい値984を下回ることがTMS101によって検出され(第1のしきい値982は第2のしきい値984に等しくてよい)、ユーザが所定のレベルまで実行していないことを示す場合、VSSポイントは、所定の量によって、または所定の率で、ユーザのアカウントから差し引かれることがあるが、値は、ユーザのデメリットスコアに追加されることがある。ユーザによるVSSポイントを受信するためのアクションは、第1のしきい値982よりも上に走行された時間期間もしくは距離にわたって車両のVSS610を運転手として維持すること、時間期間内に、特別な日に、または特別な日もしくは時間に存在するように、ゾーン、エリア、道路区間、もしくはロケーション内もしくはこれに走行していること、および/または提供もしくは要求されたアクションを完了すること、のうちの少なくとも1つを含むことがある。報酬としては、ユーザのアカウントに対する追加ポイント、信号機が設置された交差点に接近するとき車両またはユーザが大量または大きい割合の青色ランプを受信すること、減少された待機時間、駐車場予約および割り引き、燃料購入割り引き、公共輸送に対するインセンティブ、ならびにより大きい信頼度をもつ到着時間と走行時間を予期できることを有するなどによって、TMS101のユーザの使用から利益を得る政府、機関、および会社からの特権(perk)があり得る。報酬は、ユーザがアクションを実行することと引き換えに、サードパーティによって提供されることがある。アクションとしては、特定のロケーションにおいて、もしくはその中で、特定の時間において、または特定の時間の間、走行することまたはこれに残っていることがあり得る。そのようなアクションに対する報酬は、ユーザがゾーンまたはエリア内で激しい交通の期間中の運転を減少または延期するように、現在の交通レベルおよび/または車両内の乗客の数(利用622)を説明する動的構成要素を有することがある。VSSポイントは、代替可能であり、1つまたは複数のユーザまたは車両に移転可能であることがあり、ユーザのアカウントまたは車両のアカウントとともにあることがあり、デジタル通貨のタイプとして働くことがある。
一例では、VSSポイントは、車両のVSS610および/または瞬間的VSS611が、第1のしきい値982よりも上で動作していることがTMS101によって検出される時間期間中またはその間、ユーザアカウント内に蓄積することがあり、ならびに/またはVSSポイントは、車両のVSS610および/もしくは瞬間的VSS611が第1のしきい値982もしくは第2のしきい値984を下回ることがTMS101によって検出される時間期間もしくはイベントの間にユーザアカウントから差し引かれないことがある。
別の例では、VSSポイントは、車両のVSS610および/または瞬間的VSS611が、第1のしきい値982よりも上で動作していることがTMS101によって検出される時間期間中またはその間、ユーザアカウント内に蓄積することがあり、ならびにVSSポイントは、車両のVSS610および/もしくは瞬間的VSS611が第1のしきい値982もしくは第2のしきい値984を下回ることがTMS101によって検出される時間期間もしくはイベントの間にユーザアカウントから差し引かれることがある。VSSポイントは、固定量によって、またはそのような時間期間中の率で、ユーザのアカウントから差し引かれることがある。
別の例では、VSSポイントは、車両のVSS610および/または瞬間的VSS611が、第1のしきい値982よりも上で動作していることがTMS101によって検出される車両の時間期間中またはその間、ユーザアカウント内に蓄積することがあり、VSSポイントは、車両のVSS610および/もしくは瞬間的VSS611が第1のしきい値982もしくは第2のしきい値984を下回ることがTMS101によって検出される時間期間もしくはイベントの間にユーザアカウントから差し引かれないことがある。しかしながら、少なくとも1つの値が、ユーザのアカウントのデメリットスコアに追加されることがある。
図20は、一例による、本明細書において説明されるモバイルデバイス322の機能を実施するための制御装置320を示すブロック図である。当業者は、本明細書において説明される特徴が、さまざまなデバイス(たとえば、ラップトップ、タブレット、サーバ、電子書籍リーダー、ナビゲーションデバイスなど)上でまたはこれとともに実施されるように適合され得ることを諒解するであろう。制御装置320は、中央処理装置(CPU)900と、アンテナ912に接続されたワイヤレス通信処理装置910とを含むことがある。
CPU900は、1つまたは複数のCPU900を含むことがあり、通信制御および他の種類の信号処理に関連する機能を実行するように制御装置320内の各要素を制御することがある。CPU900は、メモリ950内に記憶された命令を実行することによって、これらの機能を実行することがある。メモリ950のローカルストレージの代替として、またはこれに加えて、機能が、ネットワーク上でアクセスされる外部デバイス上または非一時的なコンピュータ可読媒体上に記憶された命令を使用して実行されることがある。
メモリ950としては、限定するものではないが、読み出し専用メモリ(ROM)、ランダムアクセスメモリ(RAM)、または揮発性メモリユニットおよび不揮発性メモリユニットの組合せを含むメモリアレイがあり得る。メモリ950は、本開示のプロセスとアルゴリズムとを実行する間、CPU900によってワーキングメモリとして利用されることがある。加えて、メモリ950は、長期データ記憶装置に使用されることがある。メモリ950は、情報と、コマンドのリストとを記憶するように構成されることがある。
制御装置320は、内部通信バスラインとして、制御ラインCLとデータラインDLとを含むことがある。CPU900へ/からの制御データは、制御ラインCLを通して送信されることがある。データラインDLは、データの送信に使用されることがある。
アンテナ912は、さまざまな形態のセルラー電話通信などの無線ベース通信を実行するために、基地局間の電磁波信号を送信/受信することがある。ワイヤレス通信処理装置910は、アンテナ912を介して制御装置320と他の外部デバイスとの間で実行される通信を制御することがある。たとえば、ワイヤレス通信処理装置は、セルラー電話通信のために基地局間の通信を制御することがある。
制御装置320はまた、ディスプレイ920、タッチパネル930、操作キー940、およびアンテナ972に接続された短距離通信処理装置970のうちの少なくとも1つを含むことがある。ディスプレイ920は、液晶ディスプレイ(LCD)であってもよいし、有機エレクトロルミネセンスディスプレイパネルであってもよいし、別のディスプレイスクリーン技術であってもよい。静止画データと動画データとを表示することに加えて、ディスプレイ920は、制御装置320の制御に使用され得る数字またはアイコンなどの操作入力を表示することがある。ディスプレイ920は、加えて、ユーザが制御装置320および/または他のデバイスの状況を制御するためのGUIを表示することがある。さらに、ディスプレイ920は、制御装置320によって受信されたおよび/またはメモリ950内に記憶されたまたはネットワーク上の外部デバイスからアクセスされた文字と画像とを表示することがある。たとえば、制御装置320は、インターネットなどのネットワークにアクセスし、ウェブサーバから送信されたテキストおよび/または画像を表示することがある。
タッチパネル930は、物理的タッチパネルディスプレイスクリーンと、タッチパネルドライバとを含むことがある。タッチパネル930は、タッチパネルディスプレイスクリーンの操作面上の入力動作を検出するための1つまたは複数のタッチセンサを含むことがある。タッチパネル930はまた、タッチ形状とタッチエリアとを検出することがある。本明細書において使用される、「タッチ動作」という句は、指、親指、またはスタイラスタイプの器具などの指示物体でタッチパネルディスプレイの操作面に触れることによって実行される入力動作を指す。スタイラスなどがタッチ動作で使用されるケースでは、スタイラスは、タッチパネル930内に含まれるセンサが、(指がタッチ動作に使用されるケースと同様に)スタイラスがいつタッチパネルディスプレイの操作面に接近/接触したかを検出し得るように、少なくともスタイラスの先端に導電材料を含むことがある。
本開示のいくつかの態様では、タッチパネル930は、ディスプレイ920に隣接して配設され(たとえば、積層され)てもよいし、ディスプレイ920と一体的に形成されてもよい。簡略さのために、本開示は、タッチパネル930がディスプレイ920と一体的に形成されると仮定し、したがって、本明細書において論じられる例は、タッチパネル930ではなくディスプレイ920の面上で実行されるタッチ動作について説明することがある。しかしながら、当業者は、これは限定的でないことを諒解するであろう。
簡略さのために、本開示は、タッチパネル930は静電容量タイプのタッチパネル技術であると仮定する。しかしながら、本開示の態様は、代替構造をもつ他のタッチパネルタイプ(たとえば、抵抗タイプのタッチパネル)に容易に適用され得ることが諒解されるべきである。本開示のいくつかの態様では、タッチパネル930は、透明センサガラスの表面上でX−Y方向に並べられた透明電極タッチセンサを含むことがある。
操作キー940は、検出されたユーザによる入力に基づいて動作信号を生成し得る、1つまたは複数のボタンまたは類似の外部制御要素を含むことがある。タッチパネル930からの出力に加えて、これらの動作信号は、関連処理と制御とを実行するために、CPU900に供給されることがある。本開示のいくつかの態様では、外部ボタンなどに関連付けられた処理および/または機能は、外部ボタン、キーなどではなくタッチパネル930ディスプレイスクリーン上での入力動作に応答して、CPU900によって実行されることがある。このようにして、制御装置320上の外部ボタンが、タッチ動作を介して入力を実行する代わりになくされ、それによって、水密性を改善することがある。
アンテナ972は、他の外部装置へ/から電磁波信号を送信/受信することがあり、短距離ワイヤレス通信処理装置970は、他の外部装置間で実行されるワイヤレス通信を制御することがある。ブルートゥース、IEEE802.11、および近距離通信(NFC)は、短距離ワイヤレス通信処理装置970を介したデバイス間通信に使用され得るワイヤレス通信プロトコルの非限定的な例である。
制御装置320は、モーションセンサ976を含むことがある。モーションセンサ976は、制御装置320のモーション(すなわち、1つまたは複数の動き)の特徴を検出することがある。たとえば、モーションセンサ976は、加速度を検出するための加速度計、角速度を検出するためのジャイロスコープ、方向を検出するための地磁気センサ、ロケーションを検出するためのジオロケーションセンサなど、または制御装置320のモーションを検出するためのそれらの組合せを含むことがある。いくつかの実施形態では、モーションセンサ976は、検出されたモーションを表すデータを含む検出信号を生成することがある。たとえば、モーションセンサ976は、モーション中の(たとえば、動きのシリーズの開始から停止まで、所定の時間間隔以内、など)異なる動きの数、制御装置320上の物理的衝撃(たとえば、電子デバイスの揺れ、衝突など)の数、モーションのスピードおよび/もしくは加速度(瞬間的および/または一時的)、または他のモーション特徴を決定することがある。検出されたモーション特徴は、生成された検出信号内に含まれることがある。検出信号は、たとえば、CPU900に送信されることがあり、それによって、さらなる処理が、検出信号内に含まれるデータに基づいて実行されることがある。モーションセンサ976は、全地球測位システム(GPS)セクション960に関連して機能することができる。GPSセクション960は、制御装置320の現在の位置を検出することがある。GPSセクション960によって検出された現在の位置の情報は、CPU900に送信されることがある。アンテナ962は、GPS衛星へおよびこれから信号を受信および送信するために、GPSセクション960に接続されることがある。
図21Aは、一例による、エリアC100内で走行する車両R1を示す。エリアC100は、各々が南北方向に配置された、道路Aから道路Fと指定されたいくつかの道路と、各々が東西方向に配置された、道路1から道路5と指定されたいくつかの道路によって形成される交差点のグリッドを表す。各交差点は、南北道路と東西道路の組合せによって識別されることがある。たとえば、交差点B2は、道路Bと道路2の交差点である。交差点A1からF5は、信号機が設置された4方向交差点であってよく、交差点Aのそれ(図5A〜図5H)と同一または類似であり、さまざまな可能な交通移動を有してよい。交差点A1からF5における交通信号のいくつかまたはすべては、適応型でTMS101に接続されてもよいし、車両R1のルート上の1つまたは複数の交差点においてTSS348に接続されてもよい。
一例では、交差点はすべて、南北方向と東西方向の両方において距離x離れて等しく離隔されることがあり、距離xは0.5マイルとすることがある。車両R1は、道路Aの西で道路1上に配置され、交差点A1に接近していることがあり、道路Fの東側で道路4と道路5の間に配置された目的地Mまで運転していることがある。1つのケースでは、各道路は、双方向交通を可能にすることがあり、交差点の任意の方向から左折および右折がなされることがある。ダイヤモンドとともに示される交差点(たとえば、交差点B1、C4など)は、車両R1の1つまたは複数の例示的なルート上に配置された交差点を示す。
あるケースでは、車両R1のロケーションおよび方位、または交差点における推定到着時間(ETA)などの車両R1の他の関連情報が、TMS101またはTSS348に通信されることがある。TMS101は、車両R1の到着前に車両R1の走行の方向に青色交通信号を提供するように、または車両R1が交差点A1に接近するときの車両R1の遅延を最小にするように、次の交差点の信号タイミング、たとえば、交差点A1の信号タイミングを調整することがある。
車両R1のロケーション、方位、および目的地M、または1つもしくは複数の交差点における車両R1のETAなどの他の関連情報が、TMS101に通信される、またはTMS101によって知られているもしくは生成されるケースでは、TMS101は、車両R1と目的地Mとの間の交差点のいくつかまたはすべてにおける交通信号タイミングを調整することがあり、車両R1の推定走行時間と遅延とを減少または増加させるように交通信号タイミングを調整するように、車両R1のルート上の次の交差点、またはTMS101と通信する他の交差点における信号タイミングを調整することがある。
TMS101は、交差点間の平均スピードまたは時間、さまざまなタイプのターン(たとえば、90度右折、90度左折、180度Uターン、他の角度大きさのターンなど)またはターンの組合せを取り決めるスピードまたは時間、および歩行者の移動、交通信号および交通待ち行列のために減速または停止すること、気象条件、建設、駐車場、および他のアクティビティなどの外部条件からの遅延などの、ルート上の任意の2つの地点間の車両R1の平均スピードまたは走行時間を推定する、計算する、または提供されることがある。推定スピードまたは推定時間は、さまざまなデータ、たとえば、車両R1のルート上もしくはその近くの1つもしくは複数の車両の現在の平均スピード、車両R1のルート上もしくはその近くの1つもしくは複数の現在の速度制限、または履歴データおよび/もしくは測定ロケーション間の距離を使用する計算に基づくことがある。履歴データとしては、車両、歩行者、自転車に乗っている人、デバイス(たとえば、ブルートゥース)、ならびに他の移動、交通信号タイミングプラン、動作モードおよび/またはステータス、イベントスケジュール、火事、救助および警察の記録、保険の記録、授業時間、乗り合いバスもしくはスクールバスのスケジュール、ならびに/または会社、施設、および機関の営業の時間などの情報があり得る。車両R1が目的地Mに到着する走行時間は、車両R1がルートの各道路区間を運転し、ターンを取り決め、遅延を回避する時間の合計によって推定されることがある。
車両R1のための例示的なルートは、道路1上で東へ運転し、交差点F1において右折し、道路F上を南に運転し、目的地Mで左折することであることがある。目的地における車両R1の到着のための時間は、ルートの各道路区間の推定走行時間を合計し、ターンおよび遅延などのいくつかの要因のために推定時間を追加または減算することによって定義されることがある。
交差点A1と交差点F1との間の車両R1の平均スピードが45mphと推定され、交差点F1と交差点F4の間では、平均スピードが30mphと推定されるケースでは、車両R1が目的地Mに到着するための走行時間が推定されることがある。
車両R1のための第2の例示的なルートは、道路1上で東へ運転し、交差点B2において右折し、道路B上を南に運転し、交差点B4において左折し、道路4上を東に運転し、交差点F4において右折し、道路F上を南に運転し、目的地Mで左折することであることがある。
車両R1の平均スピードが、交差点A1と交差点B1の間の道路区間では45mph、交差点B1と交差点B4との間では30mph、交差点B4と交差点F4との間では45mph、交差点F4と目的地Mとの間では30mphであるケースでは、車両R1が目的地に到着するための第2の走行時間は、上記で説明されたように、車両R1が第2のルートの各道路区間を運転し、ターンを取り決め、遅延を待機する時間の合計によって推定されることがある。
逆に、予期しないアクティビティおよび指定されないアクティビティのための時間持続時間は、予測することが可能ではなく、したがって、車両R1ハザードランプがアクティブ化されている場合、および/または車両R1が、2つの交差点などの間で予期しないロケーションにおいて停止し、次の交通信号がその車両に対して青色であることが知られており、既知の交通列はない場合などの、既知であり得る車両スピード、ロケーション、または他の条件のいくつかの変更に1つまたは複数の時定数を割り当てることによって推定されることがある。車両R1がターンするための時間のインスタンスは、遅延時間のサブセットと考えられることがある。
上記で説明されたルートは、車両R1が目的地Mに到着するようにTMS101またはナビゲーションシステムによってガイドされ得る複数の例示的なルートのうちの2つである。ルートは、マッピングおよびナビゲーションAPIなどのサードパーティアプリケーションによって計算されることがある。
別の例では、車両R1が、上記で説明された第1のルートなどの提供されたルートからそれ、道路1上を東へ運転し、交差点D1において右折し、道路D上を南へ運転する。車両R1が引き続き運転するケースでは、TMS101は、車両R1が依然として目的地Mへと向かい、車両R1の現在のロケーションから目的地Mまでのルートと走行時間を再計算すると仮定することがある。信号タイミングは、車両R1の再計算されたルート上の交差点、およびおそらく車両R1がガイダンスを提供している以前のルート上に配置された交差点、のうちのいくつかまたはすべてに対して調整されることがある。また、他の動的交通制御要素およびシステムが、速度制限、歩行者信号、および他の道路脇看板、ならびに車両またはユーザ(たとえば、運転手VSS)ガイダンスおよびスコアリングなど、車両R1に関して調整されることがある。新しい走行時間が計算され、車両R1またはユーザに提供されることがある。
さらに、車両R1のVSSが調整されることがあり、たとえば、VSSは、提供されたルートから車両R1が逸脱したことによりTMS101によって低減されることがある。VSSの調整の大きさは、距離、ターンの数、方向、提供される1つまたは複数の道路区間、別の道路区間、または他のルート上のルートの交通量に基づいた関数などの、関数に基づくことがある。
車両R1が、予想されるロケーション以外のロケーションで時間tSTOPよりも長く停止するケースでは、TMS101は、車両R1内のユーザに、車両R1のために提供されたルートを変更する、一時停止する、またはキャンセルするべきかどうかについて質問することがある。
TMS101は、ユーザまたは車両R1にガイダンスを提供する、および/または青色ランプの信号を提供するように、もしくは車両R1の遅延を減少または増加させるように、車両R1が接近しつつある交差点における信号タイミングを調整することがあり、たとえば、そのような計算におけるバッファ長LFLおよび/または運転長LDLの使用を含むことがある(図9を参照されたい)。TMS101は、平均走行時間、総走行時間を最小にすること、またはエリアもしくはゾーン内の道路の車両スループットを最大にすることなどの、TMS101の動作モード目的のうちの少なくとも1つを満たす目的で、車両R1のルート上の最も近い交差点または次の交差点以外の交差点に配置されたさまざまな交通信号の信号タイミングを調整することがある。
交通流量をスムーズに保つ主要な目的は、交通量が道路区間上の条件のセットのための飽和状態しきい値に到達するのを防止することに依存する。飽和度は、容量に関する需要、または所与の道路区間もしくは交差点のための交通流量率と定義されることがある。80%、85%、または90%であるしきい値または飽和点は、容量の割合としての需要のインジケータであることがある。たとえば、道路区間の各車線は、1時間当たり約1,500〜2,000車両の容量を有することがある。飽和度は、道路区間上を走行している1時間期間(1時間の何分の1)当たりの実車両または推定車両と道路区間の容量との比として決定されることがある。飽和度が道路区間のための飽和状態しきい値に到達するまたはこれを超えると、主に渋滞を減少させることに頼ることは、交通量が条件のセットに対してより低くなるまで待機する時間であり、これは、著しい交通遅延をもたらすことがある。交通量が道路区間上で増加するにつれて、飽和状態しきい値が接近する前またはそのときに道路区間に入ってくる交通を減少させる能力を有することは、交通流量を維持し、飽和度を飽和状態しきい値よりも下に維持するうえで有利なことがある。
TMS101は、走行時間を減少させる目的、車両スループットを増加させる目的、または別の方法でエリアを通る車両および/もしくは歩行者交通流量を改善する目的などの、システム目的を満たすために、いくつかのプロセスを使用することがある。
図21Eは、一例による、道路区間の飽和状態に基づいて交通をルート指定するためのルート指定プロセス1000のための図である。交通をルート指定するためのプロセス1000は、
来たるべき時間期間中のエリア内の1つまたは複数の道路区間の飽和度を計算することR1000、エリア内の1つまたは複数の道路区間の飽和度が到達されたもしくは越えられたかどうかを計算すること、ならびに/またはエリア内の少なくとも1つの道路区間のための推定飽和状態しきい値および/もしくは走行時間を計算すること。計算は、計算において車両カウント履歴または重み履歴またはリアルタイム車両カウントまたは重みを使用することがある。
来たるべき時間期間中にエリア内で走行していることが予想される第1の車両R1のVSSと第2の車両R2のVSSを並び替えることR1020、
車両R1および車両R2のためのルートを生成することR1040、
道路区間上の交通が車両R1およびR2のための統合されたルート上の車両R1および車両R2を包めて来たるべき時間期間中に道路区間の飽和状態しきい値を下回るままであることが推定されることがある場合、少なくとも1つの道路区間のための車両R1および車両R2のルートを統合することR1060。GSSは、車両R1およびR2が統合されたルートの共同する道路区間上にある時間期間のために生成されることがある。
車両R1およびR2の統合されたルート上の車両R1およびR2を含めて、車両R1およびR2の統合されたルートが、来たるべき時間期間中に1つまたは複数の道路区間の飽和状態しきい値に到達するまたは超えることが推定され得る場合、少なくとも車両R1および車両R2のルートの共通した共同する道路区間を細分化することR1080。車両R1および/または車両R2は、統合されたルート上の飽和状態を回避するように、異なる道路区間を統合されたルートの少なくとも1つの道路区間とみなすために、TMS101によってガイドされることがある。
のうちの少なくとも1つを含むことがある。
TMS101またはナビゲーションシステムは、現在の時間からエリア内の時間期間以内まで走行していることが推定される第1の車両R1および第2の車両R2のVSSを並び替えることがある。
第1の車両R1のVSSが第2の車両R2のVSSよりも大きいケースでは、TMS101またはナビゲーションシステムは、第2の車両R2の制約に関連する制約のない、第1の車両R1のための第1のルートを最初に生成し、次いで、第2の車両R2のための第2のルートを生成することがあり、第2のルートは、第1のルートの制約に関連する制約を有する(適用可能な場合)。
第1のルートと第2のルートの任意の道路区間が交差または重複し、車両R1および車両R2、または車両R1およびR2のバッファ長が、時間期間中に異なる方向または対立する方向から交差すると推定される場合、TMS101は、第1のルートの道路区間と共通する少なくとも1つの道路区間を有するように異なる第2のルートを調整する、および/または車両R1およびR2が、車両R1の方向と対立する方向から交差点に到着する代わりに、車両R2がR1の後に続く状態で共通道路区間上を走行することがあるように、エリア内の任意の信号機が設置された交差点の信号タイミングを調整するために、異なる第2のルートを生成することがある。さらに、TMS101は、第2のルートが、ある距離以内、走行時間以内、またはある数の第1のルートの交差点以内にあり、第1のルートに接続し得る道路区間を有する場合、第1のルートの道路区間と共通する少なくとも1つの道路区間を有するように、第2のルートを調整することがある。代替的に、TMS101は、第2のルートが、ある距離以内、走行時間以内、またはある数の第1のルートの交差点以内にあり、第1のルートに接続し得る道路区間を有する場合、少なくとも1つの道路区間を共通させるように第1のルートおよび/または第2のルートを調整することがある。
1つのケースでは、TMS101は、車両R1およびR2のバッファ長が交差しない、重複しない、または別の方法で対立しないように、車両R1および/または車両R2のためのガイダンスおよび/または信号タイミングを調整することがある。
別のケースでは、車両R1およびR2のバッファ長が、道路区間上の同時走行の共通方向に重複すると推定される場合、TMS101は、車両R1およびR2の各々のVSSのGSSを生成し、車両R1およびR2が同時道路区間上を走行しながら、時間の期間のための車両R1およびR2のバッファ長を統合することがある。
第1のルートおよび第2のルートの1つまたは複数の道路区間を統合するべきかどうかの決定は、道路区間のうちの1つまたは複数を統合することが、推定飽和状態しきい値が第1のルートまたは第2のルートの1つまたは複数の道路区間上で到達されるまたは超えられる条件に至るかどうかに依存することがある。
別のケースでは、第1のルートおよび第2のルートの1つもしくは複数の道路区間の統合が、推定飽和状態しきい値が到達されるもしくは超えられる条件に至る場合、または現在の飽和状態しきい値が、少なくとも1つの道路区間に関して到達されているまたは超えられている場合、TMS101は、共通道路区間上で車両R1とR2の両方をガイドしながら、第1のルートおよび第2のルートの任意の共通した共同する道路区間を分けるもしくは分離する、または第1の車両R1を含む車両のグループから第2の車両R2を分離することがある(車両R1が、青色交通信号フェーズ中に信号機が設置された交差点を通過した後で、赤色交通信号をもつ、信号機が設置された交差点において停止するように車両R2をガイドすることなどによって)。交通は、1つまたは複数の道路区間上を同時に走行していることが推定される1つまたは複数の車両のルートを調整することによって、分けられることがある。
図21Bに示されるエリアC100は、一例による、図21Aに示されるエリアC100の一部分である。図21Bは、1つまたは複数の車両たとえば車両R1のルートの少なくとも一部分が、エリアC100内の他の道路および/または交通から分離され得るという点で、図12A〜図12Bと類似してよい。ルート上の交通信号のうちのいくつかまたはすべては、ルートまたはルートの一部分のクロス交通および/または他の交通移動が、車両R1または他の車両が、ある時間の期間にわたって、小さい遅延でまたは遅延なしにルート上を進むことを可能にするために、交通信号および/または他の動的交通制御システムもしくはプロセスの調整などによって、一時的に止められるように、ある時間の期間にわたって車両R1の走行の方向において青色のままであるように調整されることがある。このタイプのルートは、フラッシュルートと呼ばれることがある。
フラッシュルートは、いくつかの連続した道路区間によって形成されることがあり、具体的には1つまたは複数の車両の特定のルートのために生成されることがある。複数のフラッシュルートは、ルートの1つまたは複数の道路区間がタイミング競合の移動を有するまたはこれを有することが予想されるケースなどにおいて、ルートのために生成されることがある。次いで、ルートは、連続して車両R1によってナビゲーションされることになる2つ以上のフラッシュルートを有することがあり、車両R1のために可能な停止または遅延がフラッシュルート間にある。
いくつかの道路区間が、指定された車両または車両のグループによる一時的使用のためにフラッシュルートを形成するために使用されることがあり、次いで、道路区間は、指定された車両が、フラッシュルートを形成する道路区間を通ってもしくはこれを越えて走行した後、またはこれを迂回したもしくはこれからそれた後、通常使用に戻ることがある。フラッシュルートの道路区間は、他の道路区間と非同期で、他の使用に/から変化する(すなわち、他の交通移動を可能にする)ことがある。
第1のフラッシュルートの一部分を形成する道路区間は、車両または車両のグループが交差点を通過した後などのケースにおいて、第1のフラッシュルートから分離されることがある。たとえば、車両R1が交差点A1から交差点B1を越えて交差点F1に向かって走行するとき、交差点A1とB1との間の道路1の道路区間は、もはや車両R1の第1のフラッシュルートに必要とされない。次いで、その道路区間が、第1のフラッシュルートから分離されることがあり、クロス交通および他の交通移動が、交差点A1および交差点B1で再開することがある。いくつかのケースでは、交差点B1は依然として第1のフラッシュルートに必要とされるが、交差点A1は必要とされないことがあり、したがって、交差点A1はまた、交差点B1が再開する前に、他の交通移動のためのサービスを再開することがある。
さらに、第1のフラッシュルートと競合しない第2のフラッシュルート(または第2のフラッシュルートの部分)は、第1のフラッシュルートが、第2のフラッシュルートの道路区間と異なる道路区間のみを含む、第1のフラッシュルートが、第2のフラッシュルートの交差点と異なる交差点のみを含む、または第1のフラッシュルートが、第2のフラッシュルートの道路区間の車線と異なる道路区間の車線のみを含むケースなどで、エリアC100内で同時に動作することがある。フラッシュルートは、車線、道路区間、および/または交差点の同じセットが、異なる時間領域において複数のフラッシュルート上で使用され得るケースにおいて競合すると考えられない。
フラッシュルート交差点は、列へのゲートとして働き、フラッシュルートに入るために交通を準備することがある。そのようなケースでは、フラッシュルートは、車両R2のルートが、同時時間の期間中に少なくとも一部は車両R1のルートと統合されるまたは別の方法で車両R1のルートと重複する場合、別のR2がフラッシュルートに入ることを可能にするため、車両R1が通過した後もアクティブなままであることがある。
図21Cは、一例による、車両R2および車両R2のための第2のフラッシュルートの追加を有する図21Bに示されるものに類似した、エリアC100を示す図である。第1のフラッシュルートは、図21Bにおいて車両R1のために説明されたのと同じままである。
車両R2が、道路1上の道路Fの東などの目的地を有するケースでは、車両R2は、交差点B2において右折し、道路2上で交差点F2へ東に前進して(図21Bに示される)左折し、次いで交差点F1で右折することなどによって、目的地に到達するようにいくつかのルートのうちの1つの上でルート指定されることがある。
しかしながら、代わりに、車両R2のルートの少なくとも一部分が、車両R1のルートの少なくとも一部分と統合されることがある。車両R2のルートが交差点B1まで道路B上を北へ走行することがあるそのようなケースでは、右折し、道路Fの東にある目的地への途中で交差点F1を通って道路1上を前進する。車両R1のルートは、目的地Mをもつ、図21Bによって説明されるルートのままである。さまざまな要因、たとえば、車両R2の到着の推定時間に対する車両R1の交差点B1におけるETA、車両R2と比較した車両R1の相対的VSS、車両のどちらがルート統合後(たとえば交差点F1において)最初にターンしたか、および/または他の交通移動もしくは車両R1、車両R2、もしくは他の交通の交通との同時交通に応じて、TMS101は、車両R1が通過した後まで、交差点B1において減速または停止するように車両R2をガイドすることがある。類似のシナリオが、図12A〜図12Bにおいて説明されている。車両R1およびR2のルート(またはその部分)は各々、図21Bにおいて説明されるように、フラッシュルートであってもよい。
図21Dは、一例による、共通道路区間上で車両R1と同時に同じ方向に走行する車両R2の追加を有する、図21Aに示されるものに類似した、エリアC100を示す図である。両方の車両は、目的地Mに向かうことがある。車両R1およびR2の意図されたルートに沿った任意の道路区間に対する交通量は、車両R1およびR2のうちの少なくとも1つが意図されたルート上にある来たるべき時間期間中に飽和状態しきい値に接近する、これに等しい、またはこれをすでに超えたと推定される場合、車両R1およびR2のうちの1つまたは複数のルートは、調整または変更されることがある。たとえば、車両R1は、道路1に沿って交差点F1まで走行し、交差点F1において右折し、目的地Mまで道路F上で南へ前進するようにルート指定されることがある。一方、車両R2は、交差点B1において右折し、交差点B4まで道路B上で南へ前進し、次いで交差点B4において左折し、道路4上で交差点Fまで前進し、次いで道路F上へ右折し、目的地Mまで前進するようにルート指定されることがある。これは、元の意図されたルートの道路区間上の飽和状態しきい値に到達するリスクを減少させることがある、または交通の蓄積を相殺し、元の意図されたルートの道路区間上の飽和状態しきい値に到達することを回避することがある。
車両R1およびR2のルートが分けられる場合、より高いVSSをもつ車両は、予想距離、走行時間、または停止の数に関してより好ましいルートまたはルート区間が提供されることがある。
説明されるいくつかの例は、別個のケースとしてルートの統合とルートの細分化とを含んでいるが、いくつかのケースでは、2つ以上の車両のルートが、各車両のそれぞれのルートの部分に対するいくつかの道路区間上で統合される(および別の部分のために細分化される)ことがある。言い換えれば、車両は、ルート統合および/または細分化を通してルート再指定されることがある。いくつかのケースでは、第1のフラッシュルートは、車両R1に関して図21Bにおいて説明されたのと同じままであることがある。しかしながら、車両R2のための第2のフラッシュルートは、第1のフラッシュルートと統合されることがある。
図22は、一例による、TMS101、TSS348、および/またはTCD制御装置340によって実行され得る、TMS101のエリア内に配置された交差点の適応型交通信号制御プロセス3000の図である。適応型交通信号制御プロセス3000は、初期SPaT(信号フェーズおよびタイミング)条件を設定するサブプロセスS3010、交差点の少なくとも1つの方向において方向性需要を識別するサブプロセスS3020、SPaTプランを調整するサブプロセスS3030、ならびにS3030の一部としてSPaTおよび/または交差点に関連する交通のデータを記録するサブプロセスS3040のうちの少なくとも1つを含むことがある。TMS101、TSS348、および/またはTCD制御装置340にデータを送信するためのプロセスをさらに含むことがある。
方向性需要としては、少なくとも1つの方向から交差点に接近する交通、たとえば、図5A〜図5F、図6A〜図6C、および図9によって説明されるなどの北行き方向、西行き方向、東行き方向、および/または南行き方向からの車両があり得る。
TMS101が交通信号フェーズの持続時間を決定し得る1つの手段は、複数の時間間隔(たとえば、第1の時間間隔t1、第2の時間間隔t2、第3の時間間隔t3など)にわたって交差点の複数の交通需要を比較することによるものであることがある。たとえば、時間間隔t1の間のすべての方向からの交通需要の合計が比較されることがある。次いで、同じものが、時間間隔t1+t2に対して比較されることがある。次いで、再び時間間隔t1+t2+t3などに対して、何らかのtnまで、1つまたは複数の現在のシステム動作モードのために最適化する。
図23は、一例による、交通信号制御装置のための検出システムの図である。キャビネット4001は、TCD制御装置340(または図3において制御装置506として説明されるTCD制御装置340の一部分)と、少なくとも1つの検出器回路4005(一例では、検出器回路4005は、I/Oボード502、検出器カード504、制御装置506、および少なくとも1つのスイッチ508のうちの少なくとも1つを含むことがある)と、通信システム4002とを含むことがある。
検出器カード4005は、通信システム4002を通して、また制御装置506と通信するために、データを送るおよび/または受信するように構成されることがある。一例では、検出器回路4005は、イーサネットポート、シリアルポート、またはUSBポートなどの入力/出力(I/O)ポート、埋め込まれたプロセッサまたはスタンドアロンプロセッサ(たとえば、Raspberry Pi、Arduinoなど)などのプロセッサ、および類似または同等のデジタル出力信号を提供する中継機またはシステムなどの1つまたは複数のスイッチ(たとえば、ソリッドステート中継機など)のうちの少なくとも1つを含むことがある。I/Oポートは、プロセッサからまたはこれによって受信されるまたは送られることになるデータを通信システム4002などに提供するように構成されることがあり、プロセッサは、検出入力を制御装置506に提供するように構成され得る1つまたは複数のスイッチに接続されることがある。
通信システム4002は、イーサネット通信、Wi−Fi通信、ブルートゥース通信、DSRC通信、無線通信、衛星通信、またはセルラー通信などの、任意の種類の既知のワイヤレス接続および/またはワイヤード接続のためのデバイスまたはシステムであってよい。通信システム4002がワイヤレスデバイスまたはシステムであるケースでは、モデム、ルータ、およびアンテナ4003のうちの少なくとも1つも、通信システム4002内に含まれるまたはこれに接続されることがある。通信システム4002が、イーサネット接続などを有するワイヤード接続であるケースでは、通信システム4002は、イーサネットケーブルを含み、アンテナを有さないことがある。
通信システム4002は、対応する検出器回路4005に車両、自転車に乗っている人、および/または歩行者(交通)の検出を通信するために、クラウドコンピューティング環境300からなどのTMS101内の他の場所からデータを受信してもよいし、搭載ユニット(OBU)または車両CANバス、および/または車両のスマートフォンもしくはユーザのウェアラブルデバイスなどのモバイルデバイス320から直接的にデータを受信してもよい。今度は、検出器回路4005が、たとえば、即時にまたは指定された時間期間の後のどちらかで、交通に関連のある方向に交差点において青色ランプの信号または歩行者歩行信号を提供するように、TMS101内の変化を遂行するために、検出をTCD制御装置340に通信することがある。検出器回路4005は、ワイヤリングハーネス、シリアルケーブル、同期データリンク制御(SDLC)接続、または他の任意の既知の接続、ワイヤリング規格もしくは技法などを介して、検出器カードラックまたは他のワイヤード接続上の接続を介してTCD制御装置340と通信するように構成されることがある。TCD制御装置340と、クラウドコンピューティング環境300などのTMS101の他のシステムとの間の通信は、クラウドコンピューティング環境300からTCD制御装置340までなどの単方向性であってもよいし、データがクラウドコンピューティング環境300とTCD制御装置340の両方の間で通信される状態で双方向性であってもよい。
図8A〜図8Fによって説明されるように、いくつかのタイプの交通ならびにいくつかの車両、自転車に乗っている人、および/または歩行者が、他の重みと異なる重みを有することがあるので、検出は、実際の交通に直接的に相関されないことがある。たとえば、車両が、他の交通と比較して低い重みまたは優先度を有することがあるので、車両についての検出情報は、検出器回路4005によって受信されるが、TCD制御装置340に通信されないことがある。別の例では、車両は、他の交通と比較して高い重みまたは優先度を有することがあるので、検出情報は、少なくとも1つの車両の検出としてTCD制御装置340に通信されることがある。言い換えれば、車両の検出は、1つの車両として厳密にカウントしないことがあり、むしろ、検出された車両(または自転車または歩行者)の重みまたは優先度に応じて、より多いまたはより少ない車両としてカウントすることがある。
さらに、通信システム4002は、クラウドコンピューティング環境300を介して、またはポイントツーポイント通信を介して、TMS101、別の交通信号システム348、および/またはモバイルデバイス320などにデータを送信することがある。
交通を管理するための方法は、車両、運転手、乗客、モバイルデバイスユーザ、歩行者、自転車に乗っている人、およびドローンのうちの少なくとも1つの存在の交通検出入力を受信するステップと、少なくとも1つの交差点に接近する少なくとも1つの方向における交通需要を計算するステップと、第1の車両が青色交通信号を通過することを可能にする時間の持続時間にわたって第1の車両に青色交通信号を提供するステップとを含むことがある。時間の持続時間は、少なくとも1つの交差点に接近する少なくとも第1の車両の複数の検出インスタンス、少なくとも第1の車両の優先レベル、および少なくとも1つの交差点の少なくとも1つの他の方向の相対的交通需要に基づく。優先レベルは、車両優先レベルスコアによって決定されることがあり、相対的交通需要は、検出された交通、および/または識別を提供するように構成された交通の期待値計算によって決定されることがある。
方法は、車両最適モード、システム最適モード、および/または車両システム最適モードを実行するためにモードで動作することをさらに含むことがある。車両システム最適モードは、最小優先レベルを上回る優先レベルをもつ車両に対して車両最適モードを実行し、最小優先レベルを下回る優先レベルをもつ車両に対してシステム最適モードを実行する。
さらに、最小優先レベルは、固定された最小優先レベルのセットの間で変わることがある。
さらに、最小優先レベルは、1つまたは複数の交通需要とともに変化することがある。
方法は、第1の交差点方向および第2の交差点方向の交通需要に基づいて、交差点の第2の方向に接近する交通需要に対して、交差点の第1の方向に接近する交通需要の1つを優先させることをさらに含むことがある。
方法は、第1の車両の優先レベルスコアと第2の車両の優先レベルスコアとを比較することによって、交差点に接近する第2の車両に対して交差点に接近する第1の車両のうちの1つを優先させることをさらに含むことがある。各車両の優先レベルスコアは、可変であり、第1の車両および第2の車両のうちの少なくとも1つの車両の数値カウント、車両スコア、運転手スコア、車両クラス、車両仕様、ナビゲーションスコア、利用スコア、およびブーストスコアのうちの少なくとも1つに基づいてよい。
方法は、各車両の優先レベルおよび車両の各グループの優先レベルの少なくとも1つによって、2つ以上の道路区間の交差点に接近する車両の少なくとも1つのグループを並び替えることをさらに含むことがある。
方法は、第1の交差点の少なくとも1つの方向に接近する交通需要と第2の交差点の少なくとも1つの方向に接近する交通需要とを優先させるために、第2の交差点の交差点重みと比較した第1の交差点の交差点重みによって、交差点のセットを並び替えることをさらに含むことがある。
方法は、各車両のルートの少なくとも一部に対して共通道路区間上で同じ方向に走行するために、車両のセットをルート指定することをさらに含むことがある。
方法は、各車両のルートの少なくとも一部に対して別個の道路区間を走行するために、共通の道路区間上で同じ方向に走行する車両のセットをルート指定することをさらに含むことがある。
方法は、1つまたは複数の車両が車両のルートの少なくとも一部を走行するために他の交通から交差点および道路区間のセットを分離することをさらに含むことがある。各交通信号は、少なくとも、少なくとも1つの車両が交通信号を通過するまで、車両の走行の方向における青信号として提供されることがある。
方法は、時間期間中の1つまたは複数の車両のロケーションと、時間期間のほぼ終了における1つまたは複数の車両のロケーションの確率とを予測することをさらに含むことがある。
交通を検出するためのシステムは、リモートモバイルソースからの検出入力に基づくことがある。このシステムは、コンピュータネットワークから1つまたは複数の検出信号を受信し、交通信号制御装置に検出信号を送信するように構成された検出器カードを含むことがある。コンピュータネットワークは、モバイルデバイス、モータ車両、ドローン、および自転車と通信し、これからロケーション情報をリモートで受信するようにさらに構成されることがある。ロケーション情報は、コンピュータネットワークに通信されることがあり、コンピュータネットワークは、検出信号を検出器カードにいつ送信するべきかを計算し、検出器カードは、検出信号を交通信号制御装置に提供するように構成されることがある。
さらに、システムは、実際の車両検出カウントに対する固定比率で交通信号制御装置に検出信号を提供することがある。
さらに、システムは、実際の車両検出カウントに対する可変比率で交通信号制御装置に検出信号を提供することがある。さらに、交通信号制御装置に提供される検出信号の可変比率は、検出された車両の優先レベルに基づくことがある。
交通制御デバイスを適応的に制御するためのシステムは、交通信号システムと、コンピューティングネットワークと、通信システムと、モバイルデバイスとを含むことがある。交通信号システムは、通信システムを通してコンピューティングネットワークと通信するように構成されることがあり、モバイルデバイスは、通信システムを通してコンピューティングネットワークと通信するように構成されることがあり、コンピューティングネットワークは、モバイルデバイスのロケーションを使用して交通信号システムを適応的に制御する。優先レベルは、車両クラス、車両仕様、車両ステータス、運転手アクション、ナビゲーション固守、利用、およびブーストに基づくことがある。
したがって、前述の論述は、本発明の例示的な実施形態を開示および説明するにすぎない。当業者によって理解されるように、本発明は、その趣旨または本質的な特性から逸脱することなく、他の特定の形態で実施されてよい。したがって、本発明の開示は、例示的であるが、本発明の範囲ならびに他の請求項の限定でないことを意図するものである。本明細書における教示の任意の容易に識別可能な変形態を含む本開示は、一部は、本発明の主題が公衆に専用であるように前述の請求項用語の範囲を定義する。