JP2020121286A - Regeneration method of adsorbent - Google Patents
Regeneration method of adsorbent Download PDFInfo
- Publication number
- JP2020121286A JP2020121286A JP2019015825A JP2019015825A JP2020121286A JP 2020121286 A JP2020121286 A JP 2020121286A JP 2019015825 A JP2019015825 A JP 2019015825A JP 2019015825 A JP2019015825 A JP 2019015825A JP 2020121286 A JP2020121286 A JP 2020121286A
- Authority
- JP
- Japan
- Prior art keywords
- adsorbent
- activated carbon
- heat treatment
- adsorption
- pores
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000003463 adsorbent Substances 0.000 title claims abstract description 75
- 238000011069 regeneration method Methods 0.000 title description 5
- 238000001179 sorption measurement Methods 0.000 claims abstract description 58
- 238000010438 heat treatment Methods 0.000 claims abstract description 46
- 239000011148 porous material Substances 0.000 claims abstract description 37
- 239000007789 gas Substances 0.000 claims abstract description 36
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 30
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 30
- 239000001301 oxygen Substances 0.000 claims abstract description 30
- 238000005259 measurement Methods 0.000 claims abstract description 21
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 134
- 238000000034 method Methods 0.000 claims description 32
- 239000000126 substance Substances 0.000 claims description 26
- 230000001172 regenerating effect Effects 0.000 claims description 23
- 239000000463 material Substances 0.000 claims description 12
- 239000011368 organic material Substances 0.000 abstract 2
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 56
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 12
- 238000009825 accumulation Methods 0.000 description 11
- 238000002485 combustion reaction Methods 0.000 description 10
- 239000012855 volatile organic compound Substances 0.000 description 9
- 238000003795 desorption Methods 0.000 description 7
- ZSWFCLXCOIISFI-UHFFFAOYSA-N cyclopentadiene Chemical compound C1C=CC=C1 ZSWFCLXCOIISFI-UHFFFAOYSA-N 0.000 description 6
- 230000007423 decrease Effects 0.000 description 6
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 5
- 238000001035 drying Methods 0.000 description 5
- 238000003860 storage Methods 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- RRHGJUQNOFWUDK-UHFFFAOYSA-N Isoprene Chemical compound CC(=C)C=C RRHGJUQNOFWUDK-UHFFFAOYSA-N 0.000 description 4
- 238000000354 decomposition reaction Methods 0.000 description 4
- 230000008929 regeneration Effects 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 230000004580 weight loss Effects 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- -1 2-dimethylbutane Chemical compound 0.000 description 2
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 2
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 2
- 239000012298 atmosphere Substances 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 238000009841 combustion method Methods 0.000 description 2
- 239000010779 crude oil Substances 0.000 description 2
- 125000000753 cycloalkyl group Chemical group 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 239000012299 nitrogen atmosphere Substances 0.000 description 2
- 238000000045 pyrolysis gas chromatography Methods 0.000 description 2
- 230000000630 rising effect Effects 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- 239000011593 sulfur Substances 0.000 description 2
- 238000002076 thermal analysis method Methods 0.000 description 2
- 239000008096 xylene Substances 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 229910021536 Zeolite Inorganic materials 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000010953 base metal Substances 0.000 description 1
- 239000012159 carrier gas Substances 0.000 description 1
- 238000007084 catalytic combustion reaction Methods 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 1
- 230000008034 disappearance Effects 0.000 description 1
- 238000002290 gas chromatography-mass spectrometry Methods 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 238000005338 heat storage Methods 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 150000003613 toluenes Chemical class 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A50/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
- Y02A50/20—Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
Landscapes
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
Abstract
Description
本発明は吸着材の再生方法に係り、特に有機物を吸着することにより吸着能力が低下した、活性炭等の細孔を有する吸着材を、効果的に再生して吸着能力を回復させる方法に関する。 TECHNICAL FIELD The present invention relates to a method for regenerating an adsorbent, and more particularly to a method for effectively regenerating an adsorbent having pores such as activated carbon whose adsorbing ability has been lowered by adsorbing an organic substance to recover the adsorbing ability.
石油化学コンビナートで原油から石油化学製品を製造するまでの工程では、原油精製工程で得られたナフサや、ナフサの分解工程で得られたベンゼン等の液体をタンクに貯留し、更に次工程へ送給することが行われている。ナフサやベンゼン等のナフサ分解生成物の貯留タンクでは、VOC(揮発性有機化合物:Volatile Organic Compounds)を含むベントガスが排出されるため、これを処理する必要がある。 In the process from the production of crude oil to petrochemical products in the petrochemical complex, the naphtha obtained in the crude oil refining process and the liquid such as benzene obtained in the naphtha decomposition process are stored in the tank and sent to the next process. Is being paid. In a storage tank for naphtha decomposition products such as naphtha and benzene, vent gas containing VOC (Volatile Organic Compounds) is discharged, and it is necessary to treat this.
VOCの処理方法としては、従来、吸着材による吸着法、直接燃焼法、触媒燃焼法、蓄熱燃焼法などが一般的な方法として知られているが、このうち、吸着法は低濃度ガスから高濃度ガスまで幅広い濃度の排ガスに適用することができると共に、吸着材フィルターに貯留タンクのベントガスを通すのみでよく、付帯設備も少なく、実機適応性に優れたものである。 As a VOC treatment method, conventionally, an adsorption method using an adsorbent, a direct combustion method, a catalytic combustion method, a heat storage combustion method, and the like are known as general methods. Among them, the adsorption method is performed from a low concentration gas to a high concentration gas. Not only can it be applied to exhaust gas with a wide range of concentrations up to concentration gas, but it is only necessary to pass the vent gas of the storage tank through the adsorbent filter, and there are few incidental facilities, and it has excellent adaptability to actual equipment.
一方で、吸着方式ではVOC等の吸着により吸着材の吸着能力が低下し、使用不可能となるため、新品の吸着材と交換する必要があることが問題となっている。 On the other hand, in the adsorption method, the adsorption capacity of the adsorbent is lowered due to adsorption of VOC or the like, and the adsorbent becomes unusable. Therefore, it is necessary to replace the adsorbent with a new one.
例えば活性炭フィルターの場合、VOCの吸着工程とスチームによる脱着工程とを繰り返して使用しているが(例えば、特許文献1)、吸脱着を繰り返すことにより徐々に活性炭の細孔内にスチームでは脱着し得ない吸着成分や吸着成分の重合物など(以下、これらを「細孔内蓄積物」と称す場合がある。)などが蓄積し、吸着能力が低下してゆく。
即ち、活性炭等の細孔が吸着能に有効に機能する吸着材にあっては、この細孔が細孔内蓄積物の蓄積で閉塞してしまうと、もはや吸着に寄与し得なくなり吸着能力は格段に低下すると共に、単なる脱着操作では吸着能力を回復し得なくなる。
For example, in the case of an activated carbon filter, a VOC adsorption step and a steam desorption step are repeatedly used (for example, Patent Document 1), but steam is gradually desorbed into the pores of the activated carbon by repeating adsorption and desorption. Adsorbed components and polymers of adsorbed components that cannot be obtained (hereinafter, these may be referred to as “accumulated substances in the pores”) accumulate, and the adsorption capacity decreases.
That is, in the adsorbent in which the pores such as activated carbon effectively function for the adsorption capacity, if the pores are clogged by the accumulation of the accumulation material in the pores, the pores can no longer contribute to the adsorption and the adsorption capacity is Not only does it decrease significantly, but the adsorption capacity cannot be restored by a simple desorption operation.
本発明は、有機物を吸着することにより吸着能力が低下した、細孔を有する吸着材を効果的に再生して、その吸着能力を新品における吸着能力と同程度にまで回復させることができる吸着材の再生方法を提供することを課題とする。 The present invention is an adsorbent capable of effectively regenerating an adsorbent having pores, the adsorption capacity of which has been reduced by adsorbing an organic substance, and the adsorption capacity of which can be recovered to the same level as that of a new article. It is an object to provide a reproducing method of.
本発明者は、上記課題を解決すべく検討を重ねた結果、有機物を吸着することにより吸着能力が低下した、細孔を有する吸着材を、酸素含有ガスの存在下に熱処理することにより、吸着材の細孔内に蓄積した細孔内蓄積物を燃焼除去することができ、吸着材の細孔を回復させて吸着に寄与できるようにし、これにより吸着材の吸着能力を新品と同程度にまで回復させることができることを見出した。
本発明はこのような知見に基づいて達成されたものであり、以下を要旨とする。
The present inventor, as a result of repeated studies to solve the above problems, the adsorption capacity was reduced by adsorbing an organic substance, an adsorbent having pores, by heat treatment in the presence of an oxygen-containing gas, adsorption It is possible to burn and remove the accumulation in the pores of the adsorbent, recovering the pores of the adsorbent and contributing to adsorption, thereby making the adsorption capacity of the adsorbent similar to that of a new product. Found that it can be restored.
The present invention has been achieved based on such findings, and the gist is as follows.
[1] 有機物を吸着することにより吸着能力が低下した、細孔を有する吸着材を、酸素含有ガスの存在下に熱処理することにより再生する方法であって、該熱処理温度が、該吸着材を、TG−DTA測定した際に、最初に出現する発熱ピーク温度TH1(℃)に対して、TH1−70℃〜TH1+70℃の範囲であることを特徴とする吸着材の再生方法。 [1] A method of regenerating an adsorbent having pores, the adsorption capacity of which has been lowered by adsorbing an organic substance, by heat treatment in the presence of an oxygen-containing gas, wherein the heat treatment temperature is , upon TG-DTA measurement, the method of reproducing the adsorbent, characterized in that relative to the exothermic peak temperature T H1 (° C.), in the range of T H1 -70 ℃ ~T H1 + 70 ℃ the first occurrence.
[2] [1]において、前記酸素含有ガスの酸素濃度が3〜21体積%であることを特徴とする吸着材の再生方法。 [2] The method for regenerating an adsorbent according to [1], wherein the oxygen concentration of the oxygen-containing gas is 3 to 21% by volume.
[3] [1]又は[2]において、前記吸着材が有機物を含むことを特徴とする吸着材の再生方法。 [3] The method for regenerating an adsorbent according to [1] or [2], wherein the adsorbent contains an organic substance.
[4] [1]ないし[3]のいずれかにおいて、前記吸着材が活性炭を含むことを特徴とする吸着材の再生方法。 [4] The method for regenerating an adsorbent according to any one of [1] to [3], wherein the adsorbent contains activated carbon.
[5] [4]において、前記吸着材の熱処理温度が200〜450℃であることを特徴とする吸着材の再生方法。 [5] The method for regenerating an adsorbent according to [4], wherein the heat treatment temperature of the adsorbent is 200 to 450°C.
本発明によれば、有機物を吸着することにより吸着能力が低下した、細孔を有する吸着材を効果的に再生して、その吸着能力を新品における吸着能力と同程度にまで回復させることができる。
本発明によれば、従来、廃棄処理されていた劣化吸着材を再生して再利用することができ、吸着材コストを大幅に低減することができる。
According to the present invention, it is possible to effectively regenerate an adsorbent having pores, the adsorption capacity of which has been lowered by adsorbing an organic substance, and to recover the adsorption capacity to the same level as that of a new article. ..
According to the present invention, it is possible to regenerate and reuse the deteriorated adsorbent that has been conventionally disposed of, and it is possible to significantly reduce the cost of the adsorbent.
以下に本発明の実施の形態を詳細に説明する。 Embodiments of the present invention will be described in detail below.
本発明の吸着材の再生方法は、有機物を吸着することにより吸着能力が低下した、細孔を有する吸着材を、酸素含有ガスの存在下に熱処理することにより再生する方法であって、該熱処理温度が、該吸着材を、TG−DTA測定した際に、最初に出現する発熱ピーク温度TH1(℃)に対して、TH1−70℃〜TH1+70℃の範囲であることを特徴とする吸着材の再生方法である。
なお、TG−DTA測定の測定条件は以下の通りである。
<TG−DTA測定条件>
METTLER製TGA/DSCI型装置を用いて、キャリアーガスとして空気(酸素濃度21体積%)を50ml/min流通させ、温度を30℃から800℃まで昇温速度5℃/minで昇温させることでTG−DTA測定を実施する。試料は約20mgを精秤したものを使用する。
A method for regenerating an adsorbent of the present invention is a method for regenerating an adsorbent having pores, the adsorption capacity of which has been reduced by adsorbing an organic substance, in the presence of an oxygen-containing gas by regenerating the heat treatment. temperature, the adsorption material, upon TG-DTA measurement, and wherein the relative exothermic peak temperature T H1 (° C.) the first occurrence is in the range of T H1 -70 ℃ ~T H1 + 70 ℃ It is a method of regenerating the adsorbent.
The measurement conditions for the TG-DTA measurement are as follows.
<TG-DTA measurement conditions>
By using a TGA/DSCI type device manufactured by METLER, air (oxygen concentration 21% by volume) as carrier gas is circulated at 50 ml/min, and the temperature is raised from 30° C. to 800° C. at a heating rate of 5° C./min. Perform TG-DTA measurement. A sample is prepared by precisely weighing about 20 mg.
<用語の説明>
本発明において発熱ピークとは、TG−DTA測定により得られるチャートにおける熱量変化プロファイルにおいて、熱量変化曲線の傾きがプラスからマイナスに変化する上向きのピークをさす。
「最初に出現する発熱ピーク」とは、TG−DTA測定における昇温過程で最初に熱量変化曲線の傾きがプラスからマイナスに変化するピークをさし、以下、この最初の発熱ピークを「第1発熱ピーク」と称す場合がある。
最初に出現する発熱ピーク温度TH1(℃)とは、この第1発熱ピークの温度である。
また、TG−DTA測定における昇温過程で、この第1発熱ピーク後に再び熱量変化曲線の傾きがプラスとなり、このプラスの傾きがマイナスに変化するピークを「第2発熱ピーク」と称し、この第2発熱ピークの温度を「第2発熱ピーク温度TH2(℃)」と称す場合がある。
<Explanation of terms>
In the present invention, the exothermic peak refers to an upward peak in which the slope of the heat quantity change curve changes from plus to minus in the heat quantity change profile in the chart obtained by TG-DTA measurement.
The “first appearing exothermic peak” refers to a peak at which the slope of the calorific value change curve first changes from plus to minus in the temperature rising process in TG-DTA measurement, and hereinafter, this first exothermic peak is referred to as “first Sometimes referred to as "exothermic peak".
The exothermic peak temperature TH1 (° C.) that appears first is the temperature of this first exothermic peak.
In addition, in the temperature rising process in the TG-DTA measurement, the slope of the calorific value change curve becomes positive again after the first exothermic peak, and the peak in which the positive slope changes to negative is referred to as the "second exothermic peak". The temperature of the two exothermic peaks may be referred to as the "second exothermic peak temperature TH2 (°C)".
<メカニズム>
細孔を有する吸着材として、代表的なものに活性炭があるが、通常、有機物を吸着させた活性炭を酸素含有ガス中で熱処理すると、活性炭は燃焼により消失してしまう。したがって、酸素含有ガス中で活性炭を熱処理して再生することは従来行われていない。
本発明者は、有機物を吸着させた活性炭などの物質を再生する方法についてTG−DTA測定や熱分解GC/MS測定などの熱分析を用いて詳細に検討した結果、活性炭等の母材は残したままで、吸着した有機物を選択的に燃焼除去する温度条件が存在することを見出し、酸素含有ガス存在下での熱処理での再生を可能とした。
即ち、本発明者は、以下のような検討を行った。
<Mechanism>
A typical adsorbent having pores is activated carbon. Usually, when activated carbon having an organic substance adsorbed therein is heat-treated in an oxygen-containing gas, the activated carbon disappears due to combustion. Therefore, it has not hitherto been performed to heat and regenerate the activated carbon in the oxygen-containing gas.
The present inventor has made a detailed study on a method for regenerating a substance such as activated carbon having adsorbed an organic substance by using a thermal analysis such as TG-DTA measurement or pyrolysis GC/MS measurement. As a result, a base material such as activated carbon remains. As it was, they found that there was a temperature condition for selectively burning and removing the adsorbed organic matter, and made it possible to regenerate by heat treatment in the presence of oxygen-containing gas.
That is, the present inventor conducted the following studies.
(I) 実機ベントガスのFID−GC測定の結果、ベントガス中にシクロペンタジエン(以下、「CPD」と略記することがある。)の存在が確認された。また、実機における吸着処理で劣化した活性炭の熱分析GC/MS測定を行ったところ、CPDおよびCPD骨格を有する化合物が多く確認された。
この結果から、劣化活性炭の細孔内の細孔内蓄積物としては、CPD由来の物質が主体であることが確認された。
(I) As a result of FID-GC measurement of an actual vent gas, the presence of cyclopentadiene (hereinafter sometimes abbreviated as “CPD”) in the vent gas was confirmed. Further, when thermal analysis GC/MS measurement was performed on activated carbon deteriorated by adsorption treatment in an actual machine, many compounds having CPD and CPD skeleton were confirmed.
From this result, it was confirmed that the CPD-derived substance was mainly contained as the in-pore accumulation in the pores of the deteriorated activated carbon.
(II) 活性炭にCPDを吸着させて後掲の実施例の項に記載されるトルエン吸着試験により吸着能を調べたところ、CPDの吸着で活性炭1g当たり0.2gの重量増加を起こした活性炭は吸着能力が失われ、スチームによる脱着処理では回復し得ないことが確認された。 (II) When CPD was adsorbed on activated carbon and the adsorption ability was examined by the toluene adsorption test described in the section of Examples below, it was found that the activated carbon that had a weight increase of 0.2 g per 1 g of activated carbon by adsorption of CPD was It was confirmed that the adsorption capacity was lost, and that it could not be recovered by desorption treatment with steam.
(III) CPD吸着で劣化した活性炭と、新品活性炭について、それぞれ空気中にて室温から780℃まで昇温しながらTG−DTA(熱重量・示差熱同時)測定を行ったところ、図1に示す結果が得られた。 (III) TG-DTA (thermogravimetric/differential heat simultaneous measurement) was performed on the activated carbon deteriorated by CPD adsorption and the new activated carbon in air while increasing the temperature from room temperature to 780° C. Results were obtained.
即ち、新品活性炭では、まず、熱処理による水分減少で約25%の重量減と水の脱離による吸熱があり、その後、昇温してゆくと活性炭の燃焼による重量減及び発熱が認められる。即ち、発熱ピークは、約580℃付近に活性炭自体の燃焼によるものが1つのみ出現する。
一方、CPDを吸着して劣化した活性炭では、水分減少による重量減と水の脱離によるわずかな吸熱を示した後、CPD由来の細孔内蓄積物の燃焼で更なる重量減と発熱があり、その後、活性炭の燃焼による重量減と発熱がある。図1において、劣化活性炭における水分と細孔内蓄積物に起因する重量減は20%程度であった。
That is, in the case of new activated carbon, there is a weight loss of about 25% due to the decrease in water content due to heat treatment and an endotherm due to desorption of water, and then a decrease in weight and heat generation due to combustion of the activated carbon are observed as the temperature rises. That is, only one exothermic peak appears at about 580° C. due to combustion of the activated carbon itself.
On the other hand, with activated carbon that has deteriorated by adsorbing CPD, there is a decrease in weight due to a decrease in water content and a slight endotherm due to desorption of water. After that, the activated carbon burns to reduce the weight and generate heat. In FIG. 1, the weight loss due to water and accumulated material in the pores of the deteriorated activated carbon was about 20%.
図1の劣化活性炭の熱量変化プロファイルにおいて、熱量変化曲線は温度上昇と共に約250℃付近からプラスの傾きを示し、320℃付近でマイナスの傾きに転じる。この傾きがプラスからマイナスに転じる点が第1発熱ピークであり、第1発熱ピーク温度TH1は約320℃程度である。この第1発熱ピークは細孔内蓄積物の燃焼によるものである。
この熱量変化曲線は更なる温度上昇と共に350℃付近で再びプラスの傾きに転じ、約510℃付近で傾きはマイナスに転じる。この約510℃付近が第2発熱ピークであり、第2発熱ピーク温度TH2は約510℃程度である。この第2発熱ピークは活性炭自体の燃焼によるものである。
In the heat quantity change profile of the deteriorated activated carbon shown in FIG. 1, the heat quantity change curve shows a positive slope from around 250° C. and a negative slope around 320° C. as the temperature rises. The point at which this slope changes from plus to minus is the first exothermic peak, and the first exothermic peak temperature TH1 is about 320°C. This first exothermic peak is due to the combustion of the accumulation material in the pores.
This heat quantity change curve turns to a positive slope again near 350° C. with a further temperature rise, and turns to a negative slope near about 510° C. Around this 510° C. is the second exothermic peak, and the second exothermic peak temperature TH 2 is approximately 510° C. This second exothermic peak is due to the combustion of the activated carbon itself.
なお、新品活性炭と劣化活性炭とで活性炭の燃焼による発熱ピークが若干ずれるのは、劣化活性炭においては、細孔内蓄積物の燃焼によって昇温により与えられる熱量以上の熱量を生じるため母材である活性炭が燃焼し始める温度が第1発熱ピーク側にずれることによる。 It should be noted that the exothermic peak due to the combustion of the activated carbon is slightly deviated between the new activated carbon and the deteriorated activated carbon, because in the deteriorated activated carbon, the combustion amount of the accumulation material in the pores causes a heat amount equal to or higher than the heat amount given by the base metal. This is because the temperature at which the activated carbon starts burning shifts to the first exothermic peak side.
このようなTG−DTA測定結果から、250℃程度以上、好ましくは劣化活性炭の第1発熱ピーク温度TH1程度以上、第2発熱ピーク温度TH2未満の温度であれば、活性炭を燃焼させずに活性炭に吸着した細孔内蓄積物を選択的に燃焼除去できると考えられる。 From such TG-DTA measurement results, if the temperature is about 250° C. or higher, preferably about the first exothermic peak temperature T H1 of the deteriorated activated carbon or more and less than the second exothermic peak temperature T H2 , the activated carbon is not burned. It is considered that the accumulation in the pores adsorbed on the activated carbon can be selectively removed by burning.
<吸着材>
本発明で処理する吸着材としては、細孔を有する吸着材であればよく、特に制限はなく、ゼオライト、メタロシリケート、メソポーラスシリカ等の無機多孔体などであってもよいが、本発明は、酸素含有ガス中での熱処理によりそれ自体が燃焼してしまうことで、一般的な技術常識では酸素含有ガス中での熱処理の適用が避けられるような有機物を含む吸着材や、活性炭を含む吸着材などについても適用することができる。
<Adsorbent>
The adsorbent to be treated in the present invention is not particularly limited as long as it is an adsorbent having pores, and may be an inorganic porous material such as zeolite, metallosilicate, mesoporous silica, or the like, but the present invention is Adsorbents containing organic substances and adsorbents containing activated carbon that can be avoided by applying heat treatment in oxygen-containing gas, because the heat treatment in oxygen-containing gas burns itself. Etc. can be applied.
有機物を含む吸着材としては、メソポーラス有機シリカ等の有機無機ハイブリッド型吸着材(例えば、カリックス−Ti/UCB−4、カリックス−Ti/MCM−41、カリックス−Ti/SiO2など)や、表面コーティング吸着材(内部が無機物で表面が有機物のもの、或いは、内部が有機物で表面が無機物のもの)等が挙げられる。 Examples of the adsorbent containing an organic substance include organic-inorganic hybrid adsorbents such as mesoporous organic silica (for example, calix-Ti/UCB-4, calix-Ti/MCM-41, calix-Ti/SiO 2 ) and surface coating. Examples thereof include adsorbents (inorganic substance with organic surface, or organic substance with inorganic surface).
特に、本発明は、TG−DTA測定による熱量変化プロファイルにおいて、細孔内蓄積物の燃焼による第1発熱ピークと、当該吸着材自体の燃焼による第2発熱ピークとを示し、第1発熱ピーク温度TH1<第2発熱ピーク温度TH2であるものに好適に適用される。 In particular, the present invention shows the first exothermic peak due to the combustion of the accumulation material in the pores and the second exothermic peak due to the combustion of the adsorbent itself in the calorific value change profile by the TG-DTA measurement, and the first exothermic peak temperature It is suitably applied to those where T H1 <second exothermic peak temperature T H2 .
とりわけ本発明はナフサ等の貯留タンクにおけるベントガスの吸着処理に多用されている活性炭吸着材の再生に有効である。 In particular, the present invention is effective for regenerating an activated carbon adsorbent that is often used for adsorption treatment of vent gas in a storage tank such as naphtha.
<熱処理条件>
本発明における熱処理は、酸素含有ガス中で行う。酸素含有ガスとしては酸素含有窒素ガス等の不活性ガスに酸素を添加したガスでもよいが、空気を用いるのが取り扱い性、コスト等の面で最も有利である。空気以外の酸素含有ガスの場合の酸素濃度としては、取り扱い性、細孔内蓄積物の燃焼除去効果の面から、酸素濃度は3〜21体積%程度であることが好ましい。
<Heat treatment conditions>
The heat treatment in the present invention is performed in an oxygen-containing gas. As the oxygen-containing gas, a gas obtained by adding oxygen to an inert gas such as oxygen-containing nitrogen gas may be used, but it is most advantageous to use air in terms of handleability and cost. As for the oxygen concentration in the case of an oxygen-containing gas other than air, the oxygen concentration is preferably about 3 to 21% by volume from the viewpoint of handleability and the effect of burning and removing accumulated substances in the pores.
なお、前述の特許文献1では、スチームによる脱着処理を行っているが、この特許文献1では、活性炭の吸着物質をスチームによって脱離させて流出させており、酸素含有ガス存在下での熱処理で燃焼除去する本発明とは異なる。 In addition, in the above-mentioned Patent Document 1, the desorption treatment by steam is performed. However, in this Patent Document 1, the adsorbed substance of activated carbon is desorbed by the steam and discharged, and the heat treatment is performed in the presence of an oxygen-containing gas. This is different from the present invention of burning and removing.
本発明における熱処理温度は、細孔内蓄積物を選択的に燃焼除去するために、第1発熱ピーク温度TH1(℃)に対してTH1−70℃〜TH1+70℃の範囲とする。熱処理温度が上記下限よりも低いと、細孔内蓄積物を十分に燃焼除去することができない。熱処理温度が上記上限よりも高いと、吸着材自体が燃焼して焼失するおそれがある。熱処理温度は、好ましくはTH1−50℃〜TH1+50℃であり、より好ましくはTH1−40℃〜TH1+40℃であり、更に好ましくはTH1−30℃〜TH1+30℃である。 Heat treatment temperature in the present invention, in order to selectively burn off pores buildup, the range of T H1 -70 ℃ ~T H1 + 70 ℃ the first exothermic peak temperature T H1 (℃). If the heat treatment temperature is lower than the above lower limit, it is not possible to sufficiently burn and remove the accumulation material in the pores. If the heat treatment temperature is higher than the above upper limit, the adsorbent itself may burn and burn out. The heat treatment temperature is preferably a T H1 -50 ℃ ~T H1 + 50 ℃, more preferably T H1 -40 ℃ ~T H1 + 40 ℃, more preferably T H1 -30 ℃ ~T H1 + 30 ℃ ..
また、吸着材自体の燃焼による焼失を防止するために、第1発熱ピーク温度TH1と第2発熱ピーク温度TH2を示す吸着材の場合、第2発熱ピーク温度TH2に対して、熱処理温度をTH2−70℃より低くすることが好ましく、吸着材毎に熱処理温度を制御して、熱処理による吸着材自体の重量減少率を10%以下に抑えることが好ましい。 Further, in order to prevent burned by the combustion of the adsorbent itself, when the adsorbent showing the first exothermic peak temperature T H1 of the second exothermic peak temperature T H2, the second exothermic peak temperature T H2, the heat treatment temperature it is preferable to lower than T H2 -70 ° C. and to control the heat treatment temperature for each adsorbent, it is preferable to keep the weight reduction ratio of the adsorbent itself by heat treatment to 10% or less.
具体的な熱処理温度としては、活性炭や有機物含有吸着材では、450℃以下、特に200〜400℃程度とすることが好ましい。また、吸着材が活性炭の場合、熱処理温度は400℃以下、特に200〜360℃程度、とりわけ250〜350℃程度とすることが好ましい。
熱処理温度が上記上限以下であれば、吸着材自体が熱処理により燃焼して消失したり劣化したり、或いは細孔が閉塞したりすることが防止され、一方、上記下限以上であれば、細孔内蓄積物を効率的に燃焼除去して高い再生効果を得ることができる。
The specific heat treatment temperature is preferably 450° C. or lower, particularly about 200 to 400° C. for activated carbon and organic substance-containing adsorbents. When the adsorbent is activated carbon, the heat treatment temperature is preferably 400° C. or lower, particularly about 200 to 360° C., particularly about 250 to 350° C.
If the heat treatment temperature is less than or equal to the above upper limit, the adsorbent itself is prevented from burning and disappearing or deteriorating due to heat treatment, or the pores are blocked. A high regeneration effect can be obtained by efficiently burning and removing the internal accumulation.
熱処理を行う際の雰囲気ガスにおける具体的な酸素濃度は、21体積%(これは空気の酸素濃度に該当する)以下が好ましい。また、酸素濃度は空気および/または酸素と窒素を混合することで任意に調整することができ、3〜21体積%とすることが好ましく、特に10〜21体積%とすることが好ましい。 The specific oxygen concentration in the atmospheric gas when performing the heat treatment is preferably 21% by volume (this corresponds to the oxygen concentration of air) or less. The oxygen concentration can be arbitrarily adjusted by mixing air and/or oxygen and nitrogen, and is preferably 3 to 21% by volume, and particularly preferably 10 to 21% by volume.
従って、本発明により吸着材を再生する際、再生のための熱処理に先立ち、予め吸着材のTG−DTA測定を行い、第1発熱ピーク温度TH1と第2発熱ピーク温度TH2とを求めておくことは好ましい態様である。 Therefore, when regenerating the adsorbent according to the present invention, the TG-DTA measurement of the adsorbent is performed in advance and the first exothermic peak temperature TH1 and the second exothermic peak temperature TH2 are obtained before the heat treatment for regeneration. Placing is a preferred embodiment.
熱処理時間については、吸着材の種類、吸着材の劣化の程度(細孔内蓄積物の蓄積量)、熱処理温度によっても異なるが、通常0.5〜24時間、好ましくは1〜6時間程度の範囲で適宜設定される。熱処理時間が上記下限以上であれば、細孔内蓄積物を高度に燃焼除去して高い再生効果を得ることができ、上記上限以下であれば吸着材自体の消失、劣化を防止することができる。 The heat treatment time is usually 0.5 to 24 hours, preferably 1 to 6 hours, although it varies depending on the type of adsorbent, the degree of deterioration of the adsorbent (accumulation amount of accumulated material in pores), and the heat treatment temperature. The range is appropriately set. If the heat treatment time is at least the above lower limit, it is possible to highly burn and remove accumulated materials in the pores, and if it is at most the above upper limit, it is possible to prevent disappearance and deterioration of the adsorbent itself. ..
このような熱処理により、例えば、ナフサやその分解生成物の蓄積タンクのベントガスの吸着処理に使用された活性炭等の吸着材であれば、後述の実施例に示されるように、ベンゼン、トルエン、キシレン、シクロペンタジエン等の環状炭化水素化合物やイソプレン、2−ジメチルブタン、ヘキサン等の鎖状炭化水素化合物、その他、SO2等の硫黄含有化合物を含有するガスが発生する。
即ち、これらの有機物は、劣化した吸着材の細孔内に蓄積しており、熱処理により燃焼除去されるが、一部燃焼せずに吸着材より脱離し揮散することで、熱処理時に発生するガス中に含まれる。
By such a heat treatment, for example, as long as it is an adsorbent such as activated carbon used for the adsorption treatment of the vent gas in the storage tank of naphtha or its decomposition products, as shown in the examples below, benzene, toluene, xylene A gas containing a cyclic hydrocarbon compound such as cyclopentadiene, a chain hydrocarbon compound such as isoprene, 2-dimethylbutane, and hexane, and a sulfur-containing compound such as SO 2 is generated.
That is, these organic substances are accumulated in the pores of the deteriorated adsorbent and are burned and removed by the heat treatment. Included in.
<適用分野>
本発明の吸着材の再生方法は、特に、ナフサやその分解生成物の蓄積タンクのベントガス中のVOCの吸着処理に使用された活性炭等の吸着材の再生に有効であるが、このような吸着材に限らず、その他のVOCの貯留施設、塗装施設及び塗装後の乾燥・焼付施設、化学製品製造における乾燥施設、工業用洗浄施設及び洗浄後の乾燥設備、印刷設備及び印刷後の乾燥・焼付設備、接着剤使用設備及び使用後の乾燥・焼付施設等において、VOC等の有機物を吸着処理した吸着材の再生に有効に適用することができ、再生した吸着材を有機物の吸着に再使用することができる。
<Applicable fields>
The method for regenerating an adsorbent of the present invention is particularly effective for regenerating an adsorbent such as activated carbon used for the adsorption treatment of VOC in the vent gas of the tank for storing naphtha and its decomposition products. Not limited to materials, other VOC storage facilities, coating facilities and drying/baking facilities after coating, drying facilities in chemical product manufacturing, industrial cleaning facilities and drying facilities after cleaning, printing facilities and drying/baking after printing It can be effectively applied to the regeneration of adsorbents that have undergone adsorption of organic substances such as VOCs in equipment, adhesive use facilities, and drying/baking facilities after use, and the regenerated adsorbents can be reused for adsorbing organic substances. be able to.
以下に実施例を挙げて本発明をより具体的に説明する。 Hereinafter, the present invention will be described more specifically with reference to examples.
なお、以下において、被処理活性炭としては、実機にてVOCの吸着処理に長期間使用したことで、以下のトルエン吸着試験で測定されるトルエン吸着率が1.4〜1.5%にまで低下した劣化活性炭を用いた。 In the following, as the activated carbon to be treated, the toluene adsorption rate measured in the following toluene adsorption test was reduced to 1.4 to 1.5% by using it for a long time for the adsorption treatment of VOC in an actual machine. The deteriorated activated carbon was used.
活性炭の吸着能は以下のトルエン吸着試験により評価した。 The adsorption capacity of activated carbon was evaluated by the following toluene adsorption test.
<トルエン吸着試験>
円柱形(直径:20mm、高さ:500mm)に成形した活性炭フィルターに、トルエン含有ガス(トルエン含有量:500体積ppm、残部:窒素)を、入口ガスと出口ガスのトルエン濃度が同等となるまで通過させてトルエンを飽和吸着させ、このトルエン吸着前後の活性炭フィルターの重量から、トルエン吸着量を求め、この値を活性炭重量で除して、活性炭量に対するトルエンの飽和吸着量の百分率をトルエン吸着率として算出した。
なお、新品の活性炭について、上記の方法で求めたトルエン吸着率は約20%であった。
<Toluene adsorption test>
Toluene-containing gas (toluene content: 500 ppm by volume, balance: nitrogen) was added to an activated carbon filter molded into a cylindrical shape (diameter: 20 mm, height: 500 mm) until the toluene concentration of the inlet gas became equal to that of the outlet gas. After passing through it to saturately adsorb toluene, determine the toluene adsorption amount from the weight of the activated carbon filter before and after this toluene adsorption, divide this value by the activated carbon weight, and calculate the percentage of the saturated adsorption amount of toluene to the activated carbon amount as the toluene adsorption rate. Was calculated as
The toluene adsorption rate of the new activated carbon obtained by the above method was about 20%.
[実施例1]
劣化活性炭試料を空気雰囲気中にて350℃で2時間熱処理した。
この熱処理温度は、第1発熱ピーク温度(TH1)を320℃とすると、TH1+30℃で、TH1−70℃〜TH1+70℃の範囲であり、第2発熱ピーク温度TH2(510℃)−160℃に該当する。
熱処理により再生した活性炭のトルエン吸着率を調べたところ19.7%であり、新品(トルエン吸着率約20%)と同程度にまで再生されたことが確認された。
また、この熱処理で一部の活性炭は燃焼により焼失したが90%以上の活性炭は残存しており、空気下の熱処理で母体の活性炭の十分量を残存させた状態で、活性炭の細孔内の吸着物質を選択的に燃焼させて除去することができることが確認された。
[Example 1]
The deteriorated activated carbon sample was heat-treated at 350° C. for 2 hours in an air atmosphere.
The heat treatment temperature, the first exothermic peak temperature (T H1) and 320 ° C., T in H1 + 30 ° C., in the range of T H1 -70 ℃ ~T H1 + 70 ℃, second exothermic peak temperature T H2 (510 C)-160C.
When the toluene adsorption rate of the activated carbon regenerated by the heat treatment was examined, it was 19.7%, and it was confirmed that the activated carbon was regenerated to the same degree as a new product (toluene adsorption rate of about 20%).
In addition, some of the activated carbon was burned down by this heat treatment, but 90% or more of the activated carbon remained, and in the state where a sufficient amount of the activated carbon of the matrix was left by the heat treatment under air, It was confirmed that the adsorbed substance can be selectively burned and removed.
なお、劣化活性炭の熱処理において発生するガスを熱分解GC/MS測定により分析したところ、ベンゼン、トルエン、キシレン、シクロペンタジエン等の環状炭化水素化合物やイソプレン、2−ジメチルブタン、ヘキサン、その他、SO2等の硫黄含有化合物が含まれていることが確認された。 When the gas generated in the heat treatment of the deteriorated activated carbon was analyzed by pyrolysis GC/MS measurement, cyclic hydrocarbon compounds such as benzene, toluene, xylene, cyclopentadiene, isoprene, 2-dimethylbutane, hexane, and SO 2 It was confirmed that a sulfur-containing compound such as
[比較例1]
劣化活性炭試料を窒素雰囲気中にて500℃で3時間熱処理した。
熱処理により再生した活性炭のトルエン吸着率を調べたところ8.9%であり、再生効果は低かった。
[Comparative Example 1]
The deteriorated activated carbon sample was heat-treated at 500° C. for 3 hours in a nitrogen atmosphere.
When the toluene adsorption rate of the activated carbon regenerated by the heat treatment was examined, it was 8.9%, and the regeneration effect was low.
[比較例2]
劣化活性炭試料を酸素を2%含む窒素雰囲気中にて500℃で3時間熱処理したところ、熱処理により73.8%の重量減があり、活性炭そのものが燃焼により大部分焼失してしまうことが確認された。
[Comparative example 2]
When the deteriorated activated carbon sample was heat-treated at 500° C. for 3 hours in a nitrogen atmosphere containing 2% oxygen, it was confirmed that the weight loss of 73.8% was caused by the heat treatment, and the activated carbon itself was burned to a large extent. It was
[比較例3]
劣化活性炭試料を空気雰囲気中にて500℃で3時間熱処理したところ、熱処理により90%以上の重量減があり、活性炭そのものが燃焼により殆ど焼失してしまうことが確認された。
[Comparative Example 3]
When the deteriorated activated carbon sample was heat-treated in an air atmosphere at 500° C. for 3 hours, it was confirmed that the weight loss of 90% or more was caused by the heat treatment, and the activated carbon itself was almost burned down.
これらの結果を表1にまとめて示す。 The results are summarized in Table 1.
以上の結果から、本発明によれば、酸素含有ガスの存在下に、所定の温度範囲で熱処理することにより、活性炭自体の焼失を抑えて、劣化活性炭の吸着能力を新品と同程度にまで回復させて再生できることが分かる。 From the above results, according to the present invention, by performing heat treatment in the presence of oxygen-containing gas in a predetermined temperature range, the burning of the activated carbon itself is suppressed, and the adsorption capacity of deteriorated activated carbon is restored to the same level as that of a new product. You can see that it can be played.
Claims (5)
該熱処理温度が、該吸着材を、以下の条件でTG−DTA測定した際に、最初に出現する発熱ピーク温度TH1(℃)に対して、TH1−70℃〜TH1+70℃の範囲であることを特徴とする吸着材の再生方法。 A method of regenerating an adsorbent having pores, the adsorption capacity of which has been reduced by adsorbing an organic substance, by heat treatment in the presence of an oxygen-containing gas,
Heat treatment temperature, the adsorption material, upon TG-DTA measurement under the following conditions, the range of relative exothermic peak temperature T H1 (° C.) the first occurrence, T H1 -70 ℃ ~T H1 + 70 ℃ A method for regenerating an adsorbent, characterized in that
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019015825A JP7400189B2 (en) | 2019-01-31 | 2019-01-31 | How to regenerate adsorbent |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019015825A JP7400189B2 (en) | 2019-01-31 | 2019-01-31 | How to regenerate adsorbent |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2020121286A true JP2020121286A (en) | 2020-08-13 |
JP7400189B2 JP7400189B2 (en) | 2023-12-19 |
Family
ID=71993280
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019015825A Active JP7400189B2 (en) | 2019-01-31 | 2019-01-31 | How to regenerate adsorbent |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7400189B2 (en) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS52117545U (en) * | 1977-03-07 | 1977-09-06 | ||
JPS5467592A (en) * | 1977-11-10 | 1979-05-31 | Unitika Ltd | Regeneration of active carbon |
JPS5621624A (en) * | 1979-07-27 | 1981-02-28 | Mitsubishi Heavy Ind Ltd | Method and apparatus for treatment of hydrocarbon- containing exhaust gas |
JPH09215908A (en) * | 1995-12-06 | 1997-08-19 | Kawai Gijutsu Kenkyusho:Kk | Method for recovering hydrocarbon from waste gas containing gaseous hydrocarbon |
JP2001294415A (en) * | 2000-04-13 | 2001-10-23 | Cosmo Engineering Co Ltd | Method of removing residue in liquefied gas and regenerating method of activated carbon |
JP2006068643A (en) * | 2004-09-02 | 2006-03-16 | Cataler Corp | Adsorbent, volatile organic compound recovery apparatus and volatile organic compound recovery system |
JP2012530663A (en) * | 2009-06-17 | 2012-12-06 | マサチューセッツ インスティテュート オブ テクノロジー | Growth of carbon nanostructures assisted by alkynes |
-
2019
- 2019-01-31 JP JP2019015825A patent/JP7400189B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS52117545U (en) * | 1977-03-07 | 1977-09-06 | ||
JPS5467592A (en) * | 1977-11-10 | 1979-05-31 | Unitika Ltd | Regeneration of active carbon |
JPS5621624A (en) * | 1979-07-27 | 1981-02-28 | Mitsubishi Heavy Ind Ltd | Method and apparatus for treatment of hydrocarbon- containing exhaust gas |
JPH09215908A (en) * | 1995-12-06 | 1997-08-19 | Kawai Gijutsu Kenkyusho:Kk | Method for recovering hydrocarbon from waste gas containing gaseous hydrocarbon |
JP2001294415A (en) * | 2000-04-13 | 2001-10-23 | Cosmo Engineering Co Ltd | Method of removing residue in liquefied gas and regenerating method of activated carbon |
JP2006068643A (en) * | 2004-09-02 | 2006-03-16 | Cataler Corp | Adsorbent, volatile organic compound recovery apparatus and volatile organic compound recovery system |
JP2012530663A (en) * | 2009-06-17 | 2012-12-06 | マサチューセッツ インスティテュート オブ テクノロジー | Growth of carbon nanostructures assisted by alkynes |
Also Published As
Publication number | Publication date |
---|---|
JP7400189B2 (en) | 2023-12-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8426336B2 (en) | Composition and process for the removal of sulfur from middle distillate fuels | |
JPH0328295A (en) | Removal of mercury from liquid hydrocarbon compound | |
JP2009297711A (en) | Reactivation system for adsorbent | |
KR101715826B1 (en) | Method for removing organic solvent, and removal device | |
US20150209717A1 (en) | Process for removal of siloxanes and related compounds from gas streams | |
JP2018525453A (en) | Method for inactivating activated carbon in a biogas refiner | |
Lashaki et al. | Effect of desorption purge gas oxygen impurity on irreversible adsorption of organic vapors | |
EP2003186A1 (en) | Method And Apparatus For Regenerating Adsorbents Used In The Purification Of Fuel | |
JP2008100186A (en) | Gas adsorption apparatus | |
JP7400189B2 (en) | How to regenerate adsorbent | |
CN112892484A (en) | VOCs adsorbent and preparation method thereof | |
KR100347720B1 (en) | A Method for Recovery of Organic Solvents Using a Multiple Adsorption-desorption Reactor, An Appliance thereof, and Zeolite Adsorbent packed at the above appliance | |
JP6332586B2 (en) | Water treatment device and water treatment system | |
US2877176A (en) | Process for removing sulfur and aromatics from hydrocarbons using active carbon impregnated with alkali metals or oxides thereof as adsorbent | |
JP2017501869A (en) | Improved adsorption of acid gases | |
CN109569502B (en) | Waste gas adsorbent for petrochemical plant and preparation method thereof | |
EP1947159B1 (en) | Adsorption of vanadium compounds from fuel oil | |
JP2004098014A (en) | Method for treating gas containing volatile organic compound | |
JP5049995B2 (en) | Adsorbent regeneration method | |
JP2001294415A (en) | Method of removing residue in liquefied gas and regenerating method of activated carbon | |
JP2008068205A (en) | Method for cleaning large quantity of exhaust gas containing lean volatile hydrocarbon | |
JP2009011936A (en) | Adsorbent and method for treating combustible gas | |
JPH0670222B2 (en) | Purification process of cracked light fraction | |
KR20170127683A (en) | Regenerable adsorbent and method for producing same | |
JP6772470B2 (en) | Organic solvent processing equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20210716 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20220517 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220524 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20220722 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220916 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20221129 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20230125 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230328 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20230627 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20230825 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230828 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20231107 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20231120 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 7400189 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |