JP2020118341A - refrigerator - Google Patents

refrigerator Download PDF

Info

Publication number
JP2020118341A
JP2020118341A JP2019008916A JP2019008916A JP2020118341A JP 2020118341 A JP2020118341 A JP 2020118341A JP 2019008916 A JP2019008916 A JP 2019008916A JP 2019008916 A JP2019008916 A JP 2019008916A JP 2020118341 A JP2020118341 A JP 2020118341A
Authority
JP
Japan
Prior art keywords
temperature
chamber
switching
evaporator
mode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019008916A
Other languages
Japanese (ja)
Other versions
JP6993993B2 (en
Inventor
慎一郎 岡留
Shinichiro Okadome
慎一郎 岡留
拳司 伊藤
Kenji Ito
拳司 伊藤
直之 小林
Naoyuki Kobayashi
直之 小林
遵自 鈴木
Junji Suzuki
遵自 鈴木
圭介 服部
Keisuke Hattori
圭介 服部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Global Life Solutions Inc
Original Assignee
Hitachi Global Life Solutions Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Global Life Solutions Inc filed Critical Hitachi Global Life Solutions Inc
Priority to JP2019008916A priority Critical patent/JP6993993B2/en
Priority to CN201910831319.1A priority patent/CN111473575B/en
Publication of JP2020118341A publication Critical patent/JP2020118341A/en
Application granted granted Critical
Publication of JP6993993B2 publication Critical patent/JP6993993B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

To provide a refrigerator in which a temperature in any storage chamber does not become too high or too low, and which has enhanced preservation performance of food while enhancing energy saving performance, in the refrigerator which includes a plurality of storage chambers that can be set to a freezing temperature zone.SOLUTION: A refrigerator includes: a plurality of storage chambers which can be set to a freezing temperature zone; a plurality of sensors for detecting an indoor temperature of each of the plurality of storage chambers; a compressor; an evaporator; and a fan. The refrigerator includes a cooling operation for blowing air which has been brought to a low temperature by the evaporator by driving the compressor and the fan to the plurality of storage chambers. When any one out of the plurality of storage chambers detected by the plurality of sensors becomes higher in temperature than a first predetermined temperature of its own, the cooling operation is started.SELECTED DRAWING: Figure 9

Description

本発明は、冷蔵庫に関する。 The present invention relates to a refrigerator.

特許文献1(特開2015−117882号公報)には、「圧縮機、凝縮器、膨張装置及び冷却器が配管で接続され、冷媒が流通する冷媒回路と、内部の温度が冷蔵温度帯に設定された冷蔵室と、前記冷蔵室の下段に設けられ、内部の温度が前記冷蔵温度帯よりも低い冷凍温度帯に設定された冷凍室と、前記冷凍室の下段に設けられ、内部の温度が前記冷蔵温度帯から前記冷凍温度帯までの範囲で切り替え自在に設定された切替室と,を有することを特徴とする冷蔵庫」(特許文献1の請求項1)が記載されている。また,該特許文献1には,実施の形態2として「目標切替室温度が冷凍温度帯であることが切替判定手段で判定された場合、冷凍温度検出部で検出された冷凍室の内部の温度ではなく、切替温度検出部で検出された切替室40の内部の温度に基づいて、圧縮機の動作を制御する」(特許文献1の段落0036)冷蔵庫と,実施の形態3として,「圧縮機制御手段が、冷凍温度検出部で検出された冷凍室の内部の温度、及び、切替判定手段で判定された目標切替室温度の温度帯に基づいて、圧縮機の動作を制御する」(特許文献1の段落0051)と記載されている。 In Patent Document 1 (JP-A-2005-117882), "a compressor, a condenser, an expansion device and a cooler are connected by pipes, a refrigerant circuit through which a refrigerant flows, and an internal temperature are set in a refrigeration temperature zone. The refrigerating chamber, and a freezing chamber provided in the lower stage of the refrigerating chamber, the internal temperature of which is set in a freezing temperature zone lower than the refrigerating temperature zone, and the internal temperature of the freezing chamber provided in the lower stage of the freezing chamber A refrigerator having a switching chamber set to be freely switchable in the range from the refrigerating temperature zone to the freezing temperature zone" (Claim 1 of Patent Document 1). Further, in Patent Document 1, as Embodiment 2, "When the switching determination means determines that the target switching chamber temperature is in the freezing temperature zone, the internal temperature of the freezing chamber detected by the freezing temperature detection unit Instead, the operation of the compressor is controlled based on the temperature inside the switching chamber 40 detected by the switching temperature detection unit" (paragraph 0036 of Patent Document 1) refrigerator and as the third embodiment, "compressor". The control means controls the operation of the compressor based on the temperature inside the freezing compartment detected by the freezing temperature detector and the temperature zone of the target switching chamber temperature determined by the switching determining means" (Patent Document 1 paragraph 0051).

特開2015−117882号公報JP, 2005-117882, A

しかしながら、特許文献1の実施の形態3では,冷凍室の内部の温度と,切替室の切替判定手段で圧縮機の動作を制御しているため,切替室の内部の温度が,例えば切替室の扉の開閉などで,切替室の温度が高くなっても,所定の運転を続けることになる。また実施の形態2では,切替室を冷凍温度帯にすると,冷凍室の温度が高くなっても,所定の運転を続けることになる。そのため,食品の温度に対する配慮が不十分となり,食品の保存性能が低下する。 However, in the third embodiment of Patent Document 1, since the operation of the compressor is controlled by the internal temperature of the freezing compartment and the switching determination means of the switching compartment, the internal temperature of the switching compartment is, for example, that of the switching compartment. Even if the temperature of the switching room rises due to opening and closing of the door, etc., the specified operation will continue. Further, in the second embodiment, when the switching chamber is set to the freezing temperature zone, the predetermined operation is continued even if the temperature of the freezing chamber becomes high. As a result, consideration for the temperature of the food becomes insufficient and the storage performance of the food deteriorates.

本発明は上記の課題を解決するもので、冷凍温度帯に設定可能な複数の貯蔵室を備えた冷蔵庫において,何れの貯蔵室の温度も高くなり過ぎず,かつ低温になりすぎないようにすることができ,省エネルギー性能を高めながら食品の保存性能を高めた冷蔵庫を提供する。 Means for Solving the Problems The present invention solves the above problem, and in a refrigerator having a plurality of storage chambers that can be set in the freezing temperature zone, prevents the temperature of any of the storage chambers from becoming too high and from becoming too low. It is possible to provide a refrigerator with improved energy conservation performance and food preservation performance.

上記課題を鑑みてなされた本発明は、冷凍温度帯に設定可能な複数の貯蔵室と,該複数の貯蔵室のそれぞれの室内温度を検知する複数のセンサと,圧縮機と,蒸発器と、ファンと、を備え,前記圧縮機と前記ファンを駆動させて前記蒸発器で低温にした空気を前記複数の貯蔵室に送風する冷却運転を備えた冷蔵庫において,前記複数のセンサにより検知する前記複数の貯蔵室の何れかが,それぞれの第一所定温度よりも高温になると,前記冷却運転を開始することを特徴とする冷蔵庫。 The present invention made in view of the above problems, a plurality of storage chambers that can be set in the freezing temperature zone, a plurality of sensors that detect the indoor temperature of each of the plurality of storage chambers, a compressor, an evaporator, A refrigerator provided with a cooling operation for driving the compressor and the fan to blow the air cooled by the evaporator to the plurality of storage chambers; and the plurality of sensors detected by the plurality of sensors. The refrigerator, wherein the cooling operation is started when any of the storage chambers of 1. becomes higher than a first predetermined temperature of each.

本発明によれば、冷凍温度帯に設定可能な複数の貯蔵室を備えた冷蔵庫において,何れの貯蔵室の温度も高くなり過ぎず,かつ低温になりすぎないようにすることができ,省エネルギー性能を高めながら食品の保存性能を高めることを目的とする。 According to the present invention, in a refrigerator provided with a plurality of storage chambers that can be set in the freezing temperature zone, it is possible to prevent the temperature of any of the storage chambers from becoming too high and from becoming too low, thus saving energy. The purpose is to improve the preservation performance of foods while increasing

実施例に係わる冷蔵庫の正面図Front view of a refrigerator according to an embodiment 図1のA−A断面図AA sectional view of FIG. (a)は図1のドア、容器、吐出口を外した状態の正面図,(b)は図1のドア、容器を外した状態の正面図1A is a front view of the door, the container and the discharge port of FIG. 1 removed, and FIG. 1B is a front view of the door and the container of FIG. 1 removed. 実施例に係る製氷室、冷凍室、第一切替室、及び第二切替室の冷気の流れを示す風路構造の概略図Schematic diagram of the air passage structure showing the flow of cold air in the ice making chamber, the freezing chamber, the first switching chamber, and the second switching chamber according to the embodiment. 図2の断熱仕切壁より下の拡大図Enlarged view below the heat insulation partition in Figure 2. 図3(b)の断熱仕切壁より下の拡大図Enlarged view below the heat insulation partition wall of FIG. ダンパ及びそのダンパに設けるダンパヒータDamper and damper heater provided in the damper 実施例に係る冷蔵庫の冷凍サイクルの構成図Configuration diagram of a refrigeration cycle of a refrigerator according to an embodiment 操作盤の各大図Large diagrams of operation panel 表示盤の各大図Large drawings of the display board 実施例に係る冷蔵庫の基本温度制御フローチャートBasic temperature control flowchart of the refrigerator according to the embodiment 実施例に係る冷蔵庫の基本温度制御フローチャートBasic temperature control flowchart of the refrigerator according to the embodiment 本実施例の基本的な冷却制御を示す経時温度変化の例Example of temperature change with time showing basic cooling control of the present embodiment 実施例に係る冷蔵庫の除霜運転制御フローチャートDefrosting operation control flowchart of the refrigerator according to the embodiment 実施例1に係る冷蔵庫における第一切替室のモード切り替え制御フローチャートMode switching control flowchart of the first switching chamber in the refrigerator according to the first embodiment. 実施例2に係わる冷蔵庫の正面図Front view of a refrigerator according to a second embodiment 実施例2に係わる操作表示盤Operation display panel according to the second embodiment 実施例2に係わる他の形態例の操作表示盤Operation display panel of another embodiment according to the second embodiment

以下、本発明の実施形態である。 The following are embodiments of the present invention.

(実施例1)
本発明に関する冷蔵庫の実施例について説明する。図1は実施例1に係わる冷蔵庫の正面図、図2は図1のA−A断面図である。
(Example 1)
An embodiment of the refrigerator according to the present invention will be described. 1 is a front view of the refrigerator according to the first embodiment, and FIG. 2 is a sectional view taken along line AA of FIG.

図1に示すように、冷蔵庫1の箱体10は、上方から冷蔵室2、左右に併設された製氷室3と冷凍室4、第一切替室5、第二切替室6の順番で貯蔵室を有している。冷蔵庫1はそれぞれの貯蔵室の開口を開閉するドアを備えている。これらのドアは、冷蔵室2の開口を開閉する、左右に分割された回転式の冷蔵室ドア2a、2bと、製氷室3、冷凍室4、第一切替室5、第二切替室6の開口をそれぞれ開閉する引き出し式の製氷室ドア3a、冷凍室ドア4a、第一切替室ドア5a、第二切替室ドア6aである。これら複数のドアの内部材料は主にウレタンで構成されている。 As shown in FIG. 1, a box body 10 of a refrigerator 1 includes a refrigerating room 2, a left and right ice making room 3 and a freezing room 4, a first switching room 5, and a second switching room 6 in this order from the top. have. The refrigerator 1 includes a door that opens and closes the opening of each storage room. These doors are divided into left and right rotary type refrigerating compartment doors 2a and 2b for opening and closing the opening of the refrigerating compartment 2 and an ice making compartment 3, a freezing compartment 4, a first switching compartment 5 and a second switching compartment 6. These are a drawer-type ice making chamber door 3a, a freezing chamber door 4a, a first switching chamber door 5a, and a second switching chamber door 6a, which open and close the openings, respectively. The inner material of the plurality of doors is mainly made of urethane.

ドア2aには図8(b)にて後述する表示盤201を設けている。ドア2a、2bを冷蔵庫1に固定するために、ドアヒンジ(図示せず)が冷蔵室2上部及び下部に設けてあり、上部のドアヒンジはドアヒンジカバー16で覆われている。 The door 2a is provided with a display panel 201 described later with reference to FIG. In order to fix the doors 2a and 2b to the refrigerator 1, door hinges (not shown) are provided in the upper and lower portions of the refrigerating compartment 2, and the upper door hinges are covered with a door hinge cover 16.

製氷室3及び冷凍室4は、庫内を冷凍温度帯(0℃未満)の例えば平均的に−18℃程度にした冷凍貯蔵室であり、冷蔵室2は庫内を冷蔵温度帯(0℃以上)の例えば平均的に4℃程度にした冷蔵貯蔵室である。第一切替室5、及び第二切替室6は冷凍温度帯もしくは冷蔵温度帯に設定可能な切替貯蔵室で、例えば、平均的に4℃程度にする冷蔵モードと、平均的に−20℃程度にする冷凍モードとを切り替えられる。本実施例の冷蔵庫1では、さらに冷蔵モードと冷凍モードの間の温度となる強冷蔵モードや弱冷凍モード、また冷蔵モードよりも高温にする弱冷蔵モード、冷凍モードよりも低温にする強冷凍モードといった、複数の運転モードを設けており、これらの運転モードは,冷蔵室2内に設けた操作部200を操作することで選択できる。なお,本実施例の冷蔵庫1では,製氷室3及び冷凍室4はツースター性能(−12℃以下),冷凍モードの第一切替室5、及び第二切替室6はフォースター性能(−18℃以下)としており,製氷室3及び冷凍室4よりも冷凍モードの第一切替室5、及び第二切替室6の方が低温にしている。また,本実施例の冷蔵庫1では,野菜室(セラー室)としての使用は弱冷蔵モードで代用するが,冷蔵モードと独立して野菜モードを設けてもよい。 The ice making chamber 3 and the freezing chamber 4 are freezing storage chambers in which the inside of the freezing temperature range (less than 0° C.) is, for example, about −18° C., and the refrigerating room 2 has a refrigerating temperature range (0° C. The above) is, for example, a refrigerated storage room that is kept at an average temperature of about 4°C. The first switching chamber 5 and the second switching chamber 6 are switching storage chambers that can be set in a freezing temperature zone or a refrigerating temperature zone. For example, a refrigerating mode that averages about 4°C and an average of about -20°C. The freezing mode can be switched to. In the refrigerator 1 of the present embodiment, a strong refrigerating mode or a weak refrigerating mode having a temperature between the refrigerating mode and the freezing mode, a weak refrigerating mode in which the temperature is higher than the refrigerating mode, and a strong refrigerating mode in which the temperature is lower than the refrigerating mode. A plurality of operation modes are provided, and these operation modes can be selected by operating the operation unit 200 provided in the refrigerator compartment 2. In the refrigerator 1 of the present embodiment, the ice making chamber 3 and the freezing chamber 4 have a two star performance (-12°C or less), the first switching chamber 5 in the freezing mode and the second switching chamber 6 have a Forster performance (-18°C). Below), the first switching chamber 5 and the second switching chamber 6 in the freezing mode have a lower temperature than the ice making chamber 3 and the freezing chamber 4. Further, in the refrigerator 1 of the present embodiment, the weak refrigerator mode is used as the vegetable compartment (cellar room), but the vegetable mode may be provided independently of the refrigerator mode.

図2に示すように、冷蔵庫1は、鋼板製の外箱10aと合成樹脂製の内箱10bとの間に発泡断熱材(例えば発泡ウレタン)を充填して形成される箱体10により、庫外と庫内は隔てられて構成されている。箱体10には発泡断熱材に加えて、比較的熱伝導率の低い真空断熱材25を外箱10aと内箱10bとの間に実装することで、食品収納容積を低下させることなく断熱性能を高めている。ここで、真空断熱材は、グラスウールやウレタン等の芯材を、外包材で包んで構成される。外包材はガスバリア性を確保するために金属層(例えばアルミニウム)を含む。また、真空断熱材は製造性から一般的に各面形状が平面で形成される。 As shown in FIG. 2, the refrigerator 1 includes a box body 10 formed by filling a foam insulation material (for example, urethane foam) between an outer box 10a made of a steel plate and an inner box 10b made of a synthetic resin. The outside and the inside are separated. In addition to the foam insulation material, the box body 10 is mounted with the vacuum insulation material 25 having a relatively low thermal conductivity between the outer case 10a and the inner case 10b, so that the heat insulation performance is reduced without reducing the food storage volume. Is increasing. Here, the vacuum heat insulating material is configured by wrapping a core material such as glass wool or urethane with an outer wrapping material. The outer packaging material includes a metal layer (for example, aluminum) to ensure gas barrier properties. Further, in terms of manufacturability, the vacuum heat insulating material is generally formed with a flat surface.

本実施例では、箱体10の背面と下部に真空断熱材25e、25fを、箱体10の両側部に真空断熱材25g(図示せず)を設けることで、冷蔵庫1の断熱性能を高めている。 In this embodiment, by providing vacuum heat insulating materials 25e and 25f on the back and bottom of the box body 10 and vacuum heat insulating materials 25g (not shown) on both sides of the box body 10, the heat insulating performance of the refrigerator 1 is enhanced. There is.

同様に、本実施例では、第一切替室ドア5a、第二切替室ドア6aに真空断熱材25c、25dを設けることで、冷蔵庫1の断熱性能を高めている。上記の断熱構成は、特に各切替室5、6を冷凍モードとし、庫外と切替室5、6との温度差が大きく、外気から侵入する熱量が多い場合に、省エネルギー性能を大きく向上できる。 Similarly, in this embodiment, the heat insulation performance of the refrigerator 1 is enhanced by providing the vacuum heat insulating materials 25c and 25d on the first switching chamber door 5a and the second switching chamber door 6a. The above heat insulating structure can greatly improve the energy saving performance particularly when the switching chambers 5 and 6 are set to the freezing mode and the temperature difference between the outside and the switching chambers 5 and 6 is large and the amount of heat entering from the outside air is large.

冷蔵室2と、製氷室3及び冷蔵室4は断熱仕切壁28によって隔てられている。また、製氷室3及び冷凍室4と、第一切替室5は断熱仕切壁29によって隔てられ、第一切替室5と第二切替室6は断熱仕切壁30によって隔てられている。また,第一切替室5の後方には後述するF蒸発器14b及びその周辺風路(F蒸発器室8b、冷凍室風路12、及び冷凍室戻り風路12d)が設けられ,第一切替室5とF蒸発器14b及びその周辺風路の間には断熱仕切壁27が設けられている。 The refrigerating compartment 2, the ice making compartment 3 and the refrigerating compartment 4 are separated by a heat insulating partition wall 28. The ice making chamber 3 and the freezing chamber 4 are separated from the first switching chamber 5 by a heat insulating partition wall 29, and the first switching chamber 5 and the second switching chamber 6 are separated by a heat insulating partition wall 30. Further, an F evaporator 14b and its peripheral air passages (F evaporator chamber 8b, freezing compartment air passage 12, and freezing compartment return air passage 12d), which will be described later, are provided behind the first switching chamber 5, and the first switching portion is provided. A heat insulating partition wall 27 is provided between the chamber 5 and the F evaporator 14b and the air passages around the F evaporator 14b.

冷蔵室ドア2a、2bの庫内側には複数のドアポケット33a、33b、33cを設け、また棚34a、34b、34c、34dを設けることで、冷蔵室2内は複数の貯蔵スペースに区画されている。製氷室ドア3a、冷凍室ドア4a、第一切替室ドア5a、第二切替室ドア6aには、一体に引き出される製氷室容器3b、冷凍室容器4b、第一切替室容器5b、第二切替室容器6bを備えている。 By providing a plurality of door pockets 33a, 33b, 33c inside the refrigerator compartment doors 2a, 2b and by providing shelves 34a, 34b, 34c, 34d, the inside of the refrigerator compartment 2 is divided into a plurality of storage spaces. There is. The ice making chamber door 3a, the freezing chamber door 4a, the first switching chamber door 5a, and the second switching chamber door 6a have an ice making chamber container 3b, a freezing chamber container 4b, a first switching chamber container 5b, and a second switching chamber that are integrally drawn out. The chamber container 6b is provided.

冷蔵室2、冷凍室4、第一切替室5、第二切替室6の庫内背面側には、それぞれ冷蔵室温度センサ41、冷凍室温度センサ42、第一切替室温度センサ43(図3(b)に図示)、第二切替室温度センサ44(図3(b)に図示)を設け、R蒸発器14aの上部にはR蒸発器温度センサ40a、F蒸発器14bの上部にはF蒸発器温度センサ40bを設け、これらのセンサにより、冷蔵室2、冷凍室4、第一切替室5、第二切替室6、R蒸発器14a、及びF蒸発器14bの温度を検知している。また、冷蔵庫1の天井部のドアヒンジカバー16の内部には、外気温度センサ46と外気湿度センサ47を設け、外気(庫外空気)の温度と湿度を検知している。その他にも、ドアセンサ(図示せず)を設けることで、ドア2a、2b、3a、4a、5a、6aの開閉状態をそれぞれ検知している。 The refrigerator compartment temperature sensor 41, the freezer compartment temperature sensor 42, and the first selector compartment temperature sensor 43 (see FIG. 3) are provided on the rear side of the refrigerator compartment 2, the freezer compartment 4, the first switching compartment 5, and the second switching compartment 6, respectively. (Shown in FIG. 3B), a second switching chamber temperature sensor 44 (shown in FIG. 3B) is provided, and an R evaporator temperature sensor 40a is provided above the R evaporator 14a and an F evaporator is provided above the F evaporator 14b. An evaporator temperature sensor 40b is provided, and these sensors detect the temperatures of the refrigerating chamber 2, the freezing chamber 4, the first switching chamber 5, the second switching chamber 6, the R evaporator 14a, and the F evaporator 14b. .. Further, an outside air temperature sensor 46 and an outside air humidity sensor 47 are provided inside the door hinge cover 16 at the ceiling of the refrigerator 1 to detect the temperature and humidity of the outside air (outside air). In addition, a door sensor (not shown) is provided to detect the open/closed state of each of the doors 2a, 2b, 3a, 4a, 5a, 6a.

冷蔵庫1の上部には、制御装置の一部であるCPU、ROMやRAM等のメモリ、インターフェース回路等を搭載した制御基板31を配置している。また、制御基板31は、外気温度センサ46、外気湿度センサ47、冷蔵室温度センサ41、冷凍室温度センサ42、第一切替室温度センサ43、第二切替室温度センサ44、R蒸発器温度センサ40a、F蒸発器温度センサ40b等と電気配線(図示せず)で接続されている。 A control board 31 having a CPU, a memory such as ROM and RAM, an interface circuit, and the like, which is a part of the control device, is arranged above the refrigerator 1. The control board 31 also includes an outside air temperature sensor 46, an outside air humidity sensor 47, a refrigerating compartment temperature sensor 41, a freezing compartment temperature sensor 42, a first switching chamber temperature sensor 43, a second switching chamber temperature sensor 44, and an R evaporator temperature sensor. 40a, F evaporator temperature sensor 40b, etc. are connected by electric wiring (not shown).

制御基板31では、各センサの出力値や操作盤200の設定、ROMに予め記録されたプログラム等を基に、後述する圧縮機58やRファン9a、Fファン9b、ダンパ101a、101b、102a、102b、冷媒制御弁52,表示盤201の制御を行っている。 In the control board 31, a compressor 58, an R fan 9a, an F fan 9b, dampers 101a, 101b, 102a, which will be described later, based on the output value of each sensor, the setting of the operation panel 200, a program recorded in advance in the ROM, and the like, 102b, the refrigerant control valve 52, and the display board 201 are controlled.

加えて,本実施例の冷蔵庫1では外部機器と接続できる通信基盤(図示なし)を設けており,冷蔵庫1の情報をスマートフォン等のモバイルデバイスやパーソナルコンピュータ等に提供できるようにしている。以下でこの機能は外部通信機能とする。 In addition, the refrigerator 1 of the present embodiment is provided with a communication base (not shown) that can be connected to an external device so that the information of the refrigerator 1 can be provided to a mobile device such as a smartphone or a personal computer. Hereinafter, this function will be referred to as an external communication function.

図3(a)は、図1のドア、容器、後述する吐出口を外した(省略した)状態の正面図である。図3(b)は、図1のドア及び容器を外した状態の正面図である。 FIG. 3A is a front view of the state in which the door, the container, and the discharge port described later are removed (omitted) in FIG. 1. FIG. 3B is a front view of the state in which the door and the container of FIG. 1 are removed.

図2および図3(a)に示すように、冷蔵用蒸発器であるR蒸発器14aは、冷蔵室2の背部にあるR蒸発器室8aの内部に設けてある。R蒸発器14aと熱交換して低温になった空気(冷気)は、R蒸発器14aの上方に設けた冷蔵用ファンであるRファン9aにより、冷蔵室風路11、冷蔵室吐出口11aを介して冷蔵室2に送風され、冷蔵室2内を冷却する。ここで、Rファン9aの形態は、遠心型ファンであるターボファンとしている。冷蔵室2に送風された空気は冷蔵室戻り口15a(図2参照)及び冷蔵室戻り口15b(図3(a)参照)からR蒸発器室8aへと戻り、再びR蒸発器14aにより冷却される。 As shown in FIGS. 2 and 3( a ), the R evaporator 14 a that is a refrigerating evaporator is provided inside the R evaporator chamber 8 a at the back of the refrigerating chamber 2. The air (cold air) that has become low in temperature by exchanging heat with the R evaporator 14a passes through the refrigerating compartment air passage 11 and the refrigerating compartment discharge port 11a by the R fan 9a which is a refrigerating fan provided above the R evaporator 14a. The air is blown into the refrigerating compartment 2 via the air to cool the interior of the refrigerating compartment 2. Here, the form of the R fan 9a is a centrifugal fan that is a centrifugal fan. The air blown to the refrigerating compartment 2 returns from the refrigerating compartment return port 15a (see FIG. 2) and the refrigerating compartment return port 15b (see FIG. 3(a)) to the R evaporator chamber 8a, and is cooled by the R evaporator 14a again. To be done.

冷蔵室2の冷蔵室吐出口11aは冷蔵室2の上部に設けており、本実施例では最上段の棚34aと二段目の棚34bの上方に空気が吐出するように設けている。また冷蔵室戻り口15a、15bは冷蔵室2の下部に設けており、本実施例では冷蔵室戻り口15bは冷蔵室2の下から2番目の段(棚34cと棚34dの間)に設け、冷蔵室戻り口15aは冷蔵室2の最下段(棚34dと断熱仕切壁28の間)で後述する第二間接冷却室36の略背部に設けている。 The refrigerating compartment discharge port 11a of the refrigerating compartment 2 is provided at the upper part of the refrigerating compartment 2, and in this embodiment, air is provided above the uppermost shelf 34a and the second shelf 34b. The refrigerating compartment return ports 15a and 15b are provided in the lower part of the refrigerating compartment 2, and in the present embodiment, the refrigerating compartment return port 15b is provided in the second stage (between the shelf 34c and the shelf 34d) from the bottom of the refrigerating compartment 2. The refrigerating compartment return port 15a is provided at the lowermost stage of the refrigerating compartment 2 (between the shelf 34d and the heat insulating partition wall 28) and substantially behind the second indirect cooling compartment 36 described later.

図3(b)に示すように、冷蔵室2内にある棚34dの上方には第一間接冷却室35を設けている。第一間接冷却室35は、ケース35aを備えており、また、第一間接冷却室35に冷気を直接送風する吐出口を設けていない。すなわち、第一間接冷却室35は、R蒸発器14aで生成した低温低湿な冷気が直接入らないようにした間接冷却構造となっており、第一間接冷却室35内に設けた食品の乾燥が抑制され、野菜等の乾燥に弱い食品の保存性を向上できる。 As shown in FIG. 3B, the first indirect cooling chamber 35 is provided above the shelf 34d in the refrigerating chamber 2. The first indirect cooling chamber 35 is provided with a case 35a, and the first indirect cooling chamber 35 is not provided with a discharge port for directly blowing cool air. That is, the first indirect cooling chamber 35 has an indirect cooling structure in which the low-temperature and low-humidity cold air generated by the R evaporator 14a does not directly enter, and the food provided in the first indirect cooling chamber 35 is not dried. Suppressed, it is possible to improve the storability of foods such as vegetables that are susceptible to drying.

また,冷蔵室2の内部である、断熱仕切壁28の上方には第二間接冷却室36を設けている。第二間接冷却室36は、ドア36aと収納部36bを接触させた略密閉構造としている。これにより、低温低湿な空気が第二間接冷却室36内の食品に直接入らないようにして、第二間接冷却室36内の食品の乾燥を抑制している。 A second indirect cooling chamber 36 is provided above the heat insulation partition wall 28, which is inside the refrigerating chamber 2. The second indirect cooling chamber 36 has a substantially hermetic structure in which the door 36a and the storage portion 36b are in contact with each other. This prevents the low-temperature and low-humidity air from directly entering the food in the second indirect cooling chamber 36, and suppresses the drying of the food in the second indirect cooling chamber 36.

図4は、実施例に係る製氷室3、冷凍室4、第一切替室5、及び第二切替室6の冷気の流れを示す風路構造の概略図である。図2,図3(a),および図4を用いて、冷蔵室2以外の庫内の風路構成と、冷気の流れを説明する。 FIG. 4 is a schematic view of an air passage structure showing a flow of cold air in the ice making chamber 3, the freezing chamber 4, the first switching chamber 5, and the second switching chamber 6 according to the embodiment. With reference to FIGS. 2, 3(a), and 4, the configuration of the air passages inside the refrigerator other than the refrigerating compartment 2 and the flow of cold air will be described.

図2および図4に示すように、冷凍用蒸発器であるF蒸発器14bは第一切替室5、第二切替室6の背部のF蒸発器室8b内に設けてある。F蒸発器14bと熱交換して低温になった空気(冷気)は、F蒸発器14bの上方に設けた冷凍用ファンであるFファン9bにより、冷凍室風路12、冷凍室吐出口12a、12bを介して製氷室3及び冷凍室4に送風され、製氷室3の製氷皿3c内の水、容器3b内の氷、冷凍室4の容器4b内の食品等を冷却する。なお,製氷皿3cへの水は,図3(b)に示す製氷タンク37から製氷ポンプ(図示せず)により供給される。ここで、Fファン9bの形態も、省スペース化のため,遠心型ファンであるターボファンとしている。製氷室3及び冷凍室4を冷却した空気は、冷凍室戻り口12cより冷凍室戻り風路12dを介して、F蒸発器室8bに戻り、再びF蒸発器14bにより冷却される。 As shown in FIGS. 2 and 4, the F evaporator 14b, which is a freezing evaporator, is provided inside the F evaporator chamber 8b at the back of the first switching chamber 5 and the second switching chamber 6. The air (cool air) that has become low in temperature by exchanging heat with the F evaporator 14b is cooled by the F fan 9b, which is a freezing fan provided above the F evaporator 14b, to the freezer compartment air passage 12, the freezer compartment outlet 12a, Air is blown into the ice making chamber 3 and the freezing chamber 4 via 12b to cool water in the ice tray 3c of the ice making chamber 3, ice in the container 3b, food in the container 4b of the freezing chamber 4, and the like. The water to the ice tray 3c is supplied from an ice making tank 37 shown in FIG. 3(b) by an ice making pump (not shown). Here, the form of the F fan 9b is also a turbo fan, which is a centrifugal fan, in order to save space. The air that has cooled the ice making chamber 3 and the freezing chamber 4 returns to the F evaporator chamber 8b from the freezing chamber return port 12c through the freezing chamber return air passage 12d, and is cooled again by the F evaporator 14b.

本実施例の冷蔵庫1では、第一切替室5、及び第二切替室6もF蒸発器14bで低温にした空気(冷気)で冷却する。第一切替室5及び第二切替室6への冷気の送風は、送風制御部であるダンパ101a、101b、102a、及び102bにより制御する。 In the refrigerator 1 of the present embodiment, the first switching chamber 5 and the second switching chamber 6 are also cooled by the air (cool air) whose temperature is low in the F evaporator 14b. The ventilation of the cool air to the first switching chamber 5 and the second switching chamber 6 is controlled by the dampers 101a, 101b, 102a, and 102b which are the ventilation control units.

まず、第一切替室5への冷気の流れを説明する。第一切替室5の冷気の流れは、冷凍モードと冷蔵モードとで異なる。第一切替室5が冷凍モードの際は、ダンパ101aを開けて、ダンパ101bを閉じる。F蒸発器14bで冷却された空気は、Fファン9b、冷凍室風路12、ダンパ101a、そして第一切替室5の直接冷却用吐出口である第一切替室吐出口111aを介して、第一切替室5に設けた第一切替室容器5b内に送風され、第一切替室容器5b内の食品を冷却する。冷気は第一切替室容器5b内の食品を直接冷却するため、比較的短時間で第一切替室容器5b内の食品を冷却できる。 First, the flow of cold air to the first switching chamber 5 will be described. The flow of cold air in the first switching chamber 5 differs between the freezing mode and the refrigerating mode. When the first switching chamber 5 is in the freezing mode, the damper 101a is opened and the damper 101b is closed. The air cooled by the F evaporator 14b passes through the F fan 9b, the freezer compartment air passage 12, the damper 101a, and the first switching chamber discharge port 111a which is the direct cooling discharge port of the first switching chamber 5 to the first switching chamber discharge port 111a. Air is blown into the first switching chamber container 5b provided in the one switching chamber 5 to cool the food in the first switching chamber container 5b. Since the cold air directly cools the food in the first switching chamber container 5b, the food in the first switching chamber container 5b can be cooled in a relatively short time.

第一切替室5が冷蔵モードの際は、ダンパ101aを閉じて、ダンパ101bを開ける。F蒸発器14bで冷却された空気は、Fファン9b、冷凍室風路12、ダンパ101b、そして第一切替室5の間接冷却用吐出口である第一切替室吐出口111bを介して、第一切替室容器5bの外側(外周)に送風される。冷気は第一切替室容器5b内の食品に直接到達し難くなり、すなわち食品は第一切替室容器5bを介して間接冷却されるため、食品の乾燥を抑えつつ冷却できる。第一切替室吐出口111a、又は第一切替室吐出口111bより吐出し、第一切替室5内を冷却した空気は、第一切替室戻り口111cより冷凍室戻り風路12dを介してF蒸発器室8bに戻り、再びF蒸発器14bにより冷却される。 When the first switching chamber 5 is in the refrigerating mode, the damper 101a is closed and the damper 101b is opened. The air cooled by the F evaporator 14b passes through the F fan 9b, the freezer compartment air passage 12, the damper 101b, and the first switching chamber discharge port 111b, which is a discharge port for indirect cooling of the first switching chamber 5, to the first The air is blown to the outside (outer periphery) of the one switching chamber container 5b. It becomes difficult for the cool air to directly reach the food in the first switching chamber container 5b, that is, since the food is indirectly cooled via the first switching chamber container 5b, it is possible to cool the food while suppressing the drying. The air discharged from the first switching chamber discharge port 111a or the first switching chamber discharge port 111b and cooling the inside of the first switching chamber 5 flows from the first switching chamber return port 111c through the freezing chamber return air passage 12d to F It returns to the evaporator chamber 8b and is cooled again by the F evaporator 14b.

次に、第二切替室6への冷気の流れを説明する。第二切替室6の構成は、第一切替室5と同様で、運転モードによってダンパの開閉を変更している。第二切替室6が冷凍モードの際は、ダンパ102aを開け、ダンパ102bを閉じる。F蒸発器14bで冷却された空気(冷気)は、Fファン9b、冷凍室風路12、ダンパ102a、そして第二切替室6の直接冷却用吐出口である第二切替室吐出口112aを介して、第二切替室容器6b内に送風され、第二切替室容器6b上の食品を冷却する。冷気は第二切替室容器5bの食品を直接冷却するため、比較的短時間で第二切替室容器6b内の食品を冷却できる。 Next, the flow of cold air to the second switching chamber 6 will be described. The configuration of the second switching chamber 6 is the same as that of the first switching chamber 5, and the opening/closing of the damper is changed depending on the operation mode. When the second switching chamber 6 is in the freezing mode, the damper 102a is opened and the damper 102b is closed. The air (cool air) cooled by the F evaporator 14b passes through the F fan 9b, the freezer compartment air passage 12, the damper 102a, and the second switching chamber discharge port 112a which is the direct cooling discharge port of the second switching chamber 6. Then, air is blown into the second switching chamber container 6b to cool the food on the second switching chamber container 6b. Since the cold air directly cools the food in the second switching chamber container 5b, the food in the second switching chamber container 6b can be cooled in a relatively short time.

第二切替室6が冷蔵モードの際は、ダンパ102bを開け、ダンパ102aを閉じる。F蒸発器14bで冷却された空気は、Fファン9b、冷凍室風路12、ダンパ102b、そして第二切替室6の間接冷却用吐出口である第二切替室吐出口111bを介して、第二切替室容器6bの外側(外周)に送風し、間接冷却として、食品の乾燥を抑えつつ冷却する。第二切替室6内を冷却した空気は、第二切替室戻り口112cより冷凍室戻り風路12dを介してF蒸発器室8bに戻り、再びF蒸発器14bにより冷却される。 When the second switching chamber 6 is in the refrigerating mode, the damper 102b is opened and the damper 102a is closed. The air cooled by the F evaporator 14b passes through the F fan 9b, the freezer compartment air passage 12, the damper 102b, and the second switching chamber discharge port 111b, which is a discharge port for indirect cooling of the second switching chamber 6, to the first The air is blown to the outside (outer periphery) of the two-switching chamber container 6b to indirectly cool the food while suppressing the drying of the food. The air that has cooled the inside of the second switching chamber 6 returns to the F evaporator chamber 8b from the second switching chamber return port 112c via the freezing chamber return air passage 12d and is cooled again by the F evaporator 14b.

なお,本実施例の冷蔵庫では,冷蔵モードにおいても,庫内の温度が所定値よりも高い場合(例えば基準温度よりも10℃以上高い場合)にはダンパ101a,102aを開けるようにしている。これにより,直接冷却により容器内の食品を短時間で冷却し,食品が高温の時間を抑え,食品の鮮度保持性能を高めることができる。 In the refrigerator of this embodiment, even in the refrigerating mode, the dampers 101a and 102a are opened when the temperature inside the refrigerator is higher than the predetermined value (for example, 10° C. or higher higher than the reference temperature). As a result, the food in the container can be cooled in a short time by direct cooling, the time during which the food is at a high temperature can be suppressed, and the performance of maintaining the freshness of the food can be improved.

また,冷蔵モードのうち,野菜室としての使用を想定した弱冷蔵モード(図8に示す操作盤200で「弱」に設定)にダンパ101b,102bを使用し,通常の冷蔵モード(図8に示す操作盤200で「中」設定),または強冷蔵モード時(図8に示す操作盤200で「強」設定)ではダンパ101a,102aを使用するようにしてもよい。これにより,野菜を想定した場合は間接冷却で食品の乾燥を抑え,袋に入った食品や缶やペットボトルに入った飲料など,乾燥の心配の比較的少ないものを貯蔵する際は早く冷やすことを優先することができる。 Further, among the refrigerating modes, the dampers 101b and 102b are used in the weak refrigerating mode (set to "weak" on the operation panel 200 shown in FIG. 8) assuming the use as a vegetable compartment, and the normal refrigerating mode (see FIG. 8) is used. The dampers 101a and 102a may be used when the operation panel 200 is set to "medium" or in the strong refrigeration mode (operation panel 200 shown in FIG. 8 is set to "strong"). As a result, in the case of vegetables, indirect cooling suppresses the drying of food, and when storing things that are less likely to dry, such as food in bags and beverages in cans and PET bottles, cool them quickly. Can be prioritized.

図5は、実施例に係る第一切替室5、及び第二切替室6の冷蔵温度を実現するための構成を示す図であり,図5(a)は図2の断熱仕切壁28より下の拡大図,図5(b)は図3(b)の断熱仕切壁28より下の拡大図である。 5: is a figure which shows the structure for implement|achieving the refrigerating temperature of the 1st switching chamber 5 and the 2nd switching chamber 6 which concerns on an Example, and FIG. 5(a) is below the heat insulation partition wall 28 of FIG. 5B is an enlarged view below the heat insulating partition wall 28 of FIG. 3B.

本冷蔵庫1では,第一切替室5を加熱するため,第一切替室5の背面側(断熱仕切壁27の前方)に第一切替室背面ヒータ60,底面側(断熱仕切壁29の上部)に第一切替室下面ヒータ61を設けている。同様に,第二切替室6を加熱するため,第二切替室6の上面側(断熱仕切壁29の下部)に第二切替室上面ヒータ62,背面側に第二切替室背面ヒータ63を設けている。 In the present refrigerator 1, in order to heat the first switching chamber 5, the first switching chamber rear heater 60 is provided on the back side of the first switching chamber 5 (in front of the heat insulating partition wall 27) and the bottom side (upper side of the heat insulating partition wall 29). Is provided with a first switching chamber lower surface heater 61. Similarly, in order to heat the second switching chamber 6, a second switching chamber upper surface heater 62 is provided on the upper surface side of the second switching chamber 6 (a lower portion of the heat insulation partition wall 29), and a second switching chamber rear surface heater 63 is provided on the rear surface side. ing.

また,本実施例の冷蔵庫1では断熱仕切壁29の内部に真空断熱材25aを設け、断熱仕切壁30内部にも真空断熱材25bを設け,断熱仕切壁27には例えば発泡ポリスチレンの発泡断熱材24を設けている。これらにより,冷蔵庫1の各貯蔵室間の熱移動,及びF蒸発器14b及びその周辺風路(F蒸発器室8b、冷凍室風路12、及び冷凍室戻り風路12d)と第一切替室5との間の熱移動を抑えている。 Further, in the refrigerator 1 of the present embodiment, the vacuum heat insulating material 25a is provided inside the heat insulating partition wall 29, the vacuum heat insulating material 25b is also provided inside the heat insulating partition wall 30, and the heat insulating partition wall 27 is made of, for example, foam polystyrene. 24 are provided. By these, heat transfer between the storage chambers of the refrigerator 1, and the F evaporator 14b and its surrounding air passages (F evaporator chamber 8b, freezing compartment air passage 12, and freezing compartment return air passage 12d) and the first switching chamber It suppresses heat transfer to and from 5.

上記の構成により、特に第一切替室5を冷蔵モードとし、第二切替室6を冷凍モードとした場合の冷蔵庫1の省エネルギー性能を向上できる。冷蔵温度帯の第一切替室5は、隣接する部屋が冷凍温度帯である上面(断熱仕切壁29)、背面(断熱仕切壁27)、さらに底面(断熱仕切壁30)から吸熱され、第一切替室5が低温になり易いが,断熱仕切壁27、29,30に発泡断熱材24または真空断熱材25を設けることで,上面、背面、底面からの吸熱を抑え,ヒータを用いない,またはヒータの電力を抑えて所定の温度対に維持できるようにしている。ヒータに用いる電力を抑えられるため,省エネルギー性能を高めている。一方,外気が低温の場合は,外気による加熱が抑制される,或いは外気からも冷却されることがあり,上記のように庫内間の吸熱を抑えるだけでは不十分になるため,第一切替室5を加熱するための第一切替室背面ヒータ60と第一切替室下面ヒータ61,また第二切替室6を加熱するための第二切替室上面ヒータ62と第二切替室背面ヒータ63を設け,これらを適切に加熱することで,冷蔵温度帯に設定した第一切替室5及び第二切替室6を所定の温度に維持できるようにしている。また,これらのヒータはモード切替制御を短時間で行うために用いても良い。すなわち,冷凍モードから冷蔵モードへ切り替える際に,これらのヒータで加熱し,短時間で冷蔵温度にさせる制御を行ってもよい。 With the above configuration, the energy saving performance of the refrigerator 1 can be improved particularly when the first switching chamber 5 is in the refrigerating mode and the second switching chamber 6 is in the freezing mode. In the first switching chamber 5 in the refrigerating temperature zone, heat is absorbed from the upper surface (insulating partition wall 29 ), the rear surface (insulating partition wall 27 ), and the bottom surface (insulating partition wall 30 ), where the adjacent rooms are in the freezing temperature zone, and Although the switching chamber 5 tends to be low in temperature, the heat insulation partition walls 27, 29, 30 are provided with the foam insulation material 24 or the vacuum insulation material 25 to suppress heat absorption from the top surface, the back surface, and the bottom surface, and no heater is used, or The electric power of the heater is suppressed so that a predetermined temperature pair can be maintained. Since the electric power used for the heater can be suppressed, energy saving performance is improved. On the other hand, when the outside air is at a low temperature, the heating by the outside air may be suppressed or the outside air may be cooled, and it is not enough to suppress the heat absorption between the interiors as described above. A first switching chamber rear surface heater 60 and a first switching chamber lower surface heater 61 for heating the chamber 5, and a second switching chamber upper surface heater 62 and a second switching chamber rear surface heater 63 for heating the second switching chamber 6 are provided. By providing them and heating them appropriately, the first switching chamber 5 and the second switching chamber 6 set in the refrigerating temperature zone can be maintained at a predetermined temperature. Further, these heaters may be used for performing mode switching control in a short time. That is, when switching from the freezing mode to the refrigerating mode, heating may be performed by these heaters and the refrigerating temperature may be controlled in a short time.

なお,断熱仕切壁27内部に真空断熱材25でなく,発泡断熱材24としたのは,真空断熱材25に比べて形状の設計自由度が高く,複雑な形状にでき,また,それ自体で風路を形成できるためである。すなわち,断熱仕切壁27は,F蒸発器室8b、冷凍室風路12、及び冷凍室戻り風路12dを形成し,またF蒸発器14b,Fファン9b、ダンパ101a,101b,102a,102b等を設けるが,発泡断熱材24を用いることで,これらを配設しながら,断熱性能を高め,また比較的通風抵抗の少ない風路を形成することができる。 It should be noted that the reason why the foam insulation material 24 is used instead of the vacuum insulation material 25 inside the insulation partition wall 27 is that the degree of freedom in designing the shape is higher than that of the vacuum insulation material 25, and a complicated shape can be obtained. This is because the air passage can be formed. That is, the heat insulating partition wall 27 forms the F evaporator chamber 8b, the freezer compartment air passage 12, and the freezer compartment return air passage 12d, and the F evaporator 14b, the F fan 9b, the dampers 101a, 101b, 102a, 102b, etc. However, by using the foamed heat insulating material 24, it is possible to enhance the heat insulating performance while forming these, and to form an air passage having relatively little ventilation resistance.

一方,断熱仕切壁29,30は略直方体形状と比較的形状が単純であるため,真空断熱材25を用いることで比較的薄い厚さで高い断熱性能を得られ,貯蔵室間の熱移動を抑えつつ,食品を収納する各貯蔵室の内容積を大きくすることに有効である。 On the other hand, since the heat insulating partition walls 29 and 30 are relatively rectangular parallelepiped and relatively simple in shape, the vacuum heat insulating material 25 can be used to obtain a high heat insulating performance with a relatively thin thickness and to prevent heat transfer between the storage chambers. It is effective in increasing the internal volume of each storage room that stores food while suppressing it.

なお,第一切替室5内は自然対流により上部が高温,下部が低温になり易く,さらに第二切替室6が冷凍モードの際には下面も冷却されるため,第一切替室5は低温になり易い下面にヒータを設けている。一方,第二切替室6は,下面が外気と接するために加熱され,上面は第一切替室5が冷凍モードでは冷却されるため,上面側にヒータを設けている。 In the first switching chamber 5, due to natural convection, the upper portion tends to be hot and the lower portion is likely to be cold, and the lower surface is also cooled when the second switching chamber 6 is in the freezing mode. A heater is provided on the lower surface that tends to On the other hand, the second switching chamber 6 is heated because its lower surface is in contact with the outside air, and the upper surface thereof is provided with a heater because the first switching chamber 5 is cooled in the freezing mode.

また,第二切替室6は,最大(第一切替室5が冷凍モード,第二切替室6が冷凍モード時)で,上面と背面上部が,冷凍温度帯の他室から断熱仕切壁を介して冷却されるのに対し,第一切替室5は,最大(第一切替室5が冷凍モード,第二切替室6が冷凍モード時)で,上面,背面,下面が,冷凍温度帯の他室から断熱仕切壁を介して冷却されるため,冷却される面積の大きい第一切替室5の方が,ヒータの最大加熱量を多くしている。すなわち,第一切替室5を加熱するための第一切替室背面ヒータ60と第一切替室下面ヒータ61の合計の最大消費電力は,第二切替室6を加熱するための第二切替室上面ヒータ62と第二切替室背面ヒータ63の合計の最大消費電力よりも多くし,冷却されて低温になりやすい第一切替室5も適切な温度に制御できるようにしている。 In addition, the second switching chamber 6 is maximum (when the first switching chamber 5 is in the freezing mode and the second switching chamber 6 is in the freezing mode), and the upper surface and the rear upper surface are separated from other chambers in the freezing temperature zone through the heat insulating partition wall. On the other hand, the first switching chamber 5 is the maximum (when the first switching chamber 5 is in the freezing mode and the second switching chamber 6 is in the freezing mode), and the upper surface, the back surface, and the lower surface are other than the freezing temperature zone. Since the chamber is cooled via the heat insulating partition wall, the maximum switching amount of the heater is larger in the first switching chamber 5 having a larger area to be cooled. That is, the total maximum power consumption of the first switching chamber rear surface heater 60 and the first switching chamber lower surface heater 61 for heating the first switching chamber 5 is equal to the second switching chamber upper surface for heating the second switching chamber 6. The total power consumption of the heater 62 and the second switching chamber rear surface heater 63 is set to be higher than the total maximum power consumption, and the first switching chamber 5 which is easily cooled and becomes low temperature can be controlled to an appropriate temperature.

図6は、ダンパ101a,101b,102a,102b及びそのダンパに設けるダンパヒータ64である。各ダンパ本実施例の冷蔵庫1では,ダンパ101aはダンパ構成部111,ダンパ102aはダンパ構成部112,ダンパ101bと102bはダンパ構成部113に内装されており,それぞれダンパ構成部111,112,113に同じく内装したモータ(図示なし)により,各ダンパ101a,101b,102a,102bを駆動させる。なお,ダンパ構成部113は,1つのモータで2つのダンパ101b,102bを駆動させるツインダンパとしており,これによりモータ数を低減し,省スペース化と低コスト化を行っている。 FIG. 6 shows dampers 101a, 101b, 102a, 102b and a damper heater 64 provided on the damper. Each damper In the refrigerator 1 according to the present embodiment, the damper 101a is installed in the damper forming part 111, the damper 102a is installed in the damper forming part 112, and the dampers 101b and 102b are installed in the damper forming part 113. The damper forming parts 111, 112, 113, respectively. Each of the dampers 101a, 101b, 102a, 102b is driven by a motor (not shown) that is also installed inside. The damper configuration unit 113 is a twin damper that drives two dampers 101b and 102b with one motor, thereby reducing the number of motors and saving space and cost.

本ダンパ構成部111,112,113の外周部にはそれぞれダンパヒータ64を設けている。これにより,各ダンパに霜・氷が付着し凍結してしまっても,ヒータにより加熱して,この霜・氷を融解することで,ダンパ101a,101b,102a,102bが動作しなくなることを抑制している。なお,本実施例では,配設しやすいことからダンパ構成部111,112,113の外周部にヒータを設けているが,ダンパ101a,101b,102a,102b(開閉する駆動部)にヒータを設けてもよい。この場合,ダンパ101a,101b,102a,102bを直接加熱できるため,各ダンパに付着した霜・氷を融解し易く,より少ないエネルギーで各ダンパが動作しなくなることを抑制することができる。 Damper heaters 64 are provided on the outer peripheral portions of the damper constituent parts 111, 112, 113, respectively. As a result, even if frost or ice adheres to each damper and freezes, it is possible to prevent the dampers 101a, 101b, 102a, and 102b from becoming inoperative by heating the heater and melting the frost and ice. doing. In this embodiment, the heaters are provided on the outer peripheral portions of the damper components 111, 112, 113 because they are easy to arrange, but the heaters are provided on the dampers 101a, 101b, 102a, 102b (driving units that open and close). May be. In this case, since the dampers 101a, 101b, 102a, 102b can be directly heated, it is possible to easily melt the frost and ice attached to each damper, and it is possible to suppress the inoperability of each damper with less energy.

図7は、本実施例の冷蔵庫1の冷凍サイクルの構成図である。本実施例の冷蔵庫1では、圧縮機58、冷媒の放熱を行う放熱手段である庫外放熱器50aと壁面放熱配管50b、仕切り壁28、29、30の前面部への結露を抑制する結露防止配管50c、冷媒を減圧させる減圧手段である冷蔵用キャピラリチューブ53aと冷凍用キャピラリチューブ53b、冷媒と庫内の空気を熱交換させて、庫内の熱を吸熱するR蒸発器14aとF蒸発器14bを備え、これらにより庫内を冷却している。また、冷凍サイクル中の水分を除去するドライヤ51と、液冷媒が圧縮機58に流入するのを防止する気液分離器54a、54bを備え、さらに冷媒流路を制御する三方弁52、逆止弁56、冷媒流を接続する冷媒合流部55も備えており、これらを冷媒配管59により接続することで冷凍サイクルを構成している。 FIG. 7: is a block diagram of the refrigerating cycle of the refrigerator 1 of a present Example. In the refrigerator 1 according to the present embodiment, the condensation prevention that suppresses the condensation on the compressor 58, the outside radiator 50a that is the heat radiation means for radiating the refrigerant, the wall surface heat radiation pipe 50b, and the front surfaces of the partition walls 28, 29, 30 is prevented. The pipe 50c, the refrigerating capillary tube 53a and the freezing capillary tube 53b which are decompression means for decompressing the refrigerant, the R evaporator 14a and the F evaporator that absorb the heat in the refrigerator by exchanging heat between the refrigerant and the air in the refrigerator. 14b is provided, and the inside is cooled by these. Further, a dryer 51 for removing water in the refrigeration cycle, gas-liquid separators 54a, 54b for preventing liquid refrigerant from flowing into the compressor 58, and a three-way valve 52 for controlling the refrigerant flow path, a check valve. A valve 56 and a refrigerant merging portion 55 that connects the refrigerant flow are also provided, and a refrigeration cycle is configured by connecting these with a refrigerant pipe 59.

なお本実施例の冷蔵庫1は、冷媒にイソブタンを用いている。また、本実施例の圧縮機58はインバータを備えて回転速度を変えることができる。 The refrigerator 1 of this embodiment uses isobutane as the refrigerant. Further, the compressor 58 of the present embodiment is provided with an inverter and can change the rotation speed.

三方弁52は、52a、52bで示す2つの流出口を備え、流出口52a側に冷媒を流す冷蔵モードと、流出口52b側に冷媒を流す冷凍モードを備え、これらを切換えることができる部材である。また、本実施例の三方弁52は、流出口52aと流出口52bの何れも冷媒が流れないようにする全閉、また何れも冷媒が流れるようにする全開のモードも備え、これらにも切換え可能である。 The three-way valve 52 has two outlets 52a and 52b, and has a refrigerating mode in which the refrigerant flows on the outlet 52a side and a freezing mode in which the refrigerant flows on the outlet 52b side. is there. Further, the three-way valve 52 of the present embodiment also has a fully closed mode in which the refrigerant does not flow in either the outlet 52a or the outlet 52b, or a fully open mode in which the refrigerant flows in either of the outlets 52a and 52b. It is possible.

本実施例の冷蔵庫1では、冷媒は以下のように流れる。圧縮機58から吐出した冷媒は、庫外放熱器50a、庫外放熱器50b、結露防止配管50c、ドライヤ51の順に流れ、三方弁52に至る。三方弁52の流出口52aは冷媒配管を介して冷蔵用キャピラリチューブ53aと接続され、流出口52bは冷媒配管を介して冷凍用キャピラリチューブ53bと接続されている。 In the refrigerator 1 of this embodiment, the refrigerant flows as follows. The refrigerant discharged from the compressor 58 flows in the order of the outside radiator 50a, the outside radiator 50b, the dew condensation preventing pipe 50c, and the dryer 51, and reaches the three-way valve 52. The outlet 52a of the three-way valve 52 is connected to the refrigerating capillary tube 53a via a refrigerant pipe, and the outlet 52b is connected to the freezing capillary tube 53b via a refrigerant pipe.

冷蔵室2を冷却する場合は、三方弁52から流出口52a側に冷媒が流れるようにする。流出口52aから流出した冷媒は、冷蔵用キャピラリチューブ53a、R蒸発器14a、気液分離機54a、冷媒合流部55の順に流れた後、圧縮機58に戻る。冷蔵用キャピラリチューブ53aで低圧低温になった冷媒がR蒸発器14aを流れることでR蒸発器14aが低温となり、このR蒸発器14bにより冷却された空気をRファン9a(図2参照)で送風することで冷蔵室2を冷却する。 When the refrigerating chamber 2 is cooled, the refrigerant flows from the three-way valve 52 to the outlet 52a side. The refrigerant flowing out of the outlet 52 a flows in the order of the refrigerating capillary tube 53 a, the R evaporator 14 a, the gas-liquid separator 54 a, and the refrigerant merging portion 55, and then returns to the compressor 58. The low-pressure low-temperature refrigerant in the refrigerating capillary tube 53a flows through the R evaporator 14a, so that the R evaporator 14a becomes low temperature, and the air cooled by the R evaporator 14b is blown by the R fan 9a (see FIG. 2). By doing so, the refrigerator compartment 2 is cooled.

製氷室3、冷凍室4、第一切替室5、第二切替室6を冷却する際は、三方弁52から流出口52b側に冷媒が流れるようにする。流出口52bから流出した冷媒は、冷凍用キャピラリチューブ53b、F蒸発器14b、気液分離機54b、逆止弁56、冷媒合流部55の順に流れた後、圧縮機58に戻る。逆止弁56は気液分離機54bから冷媒合流部55側には冷媒が流れ、冷媒合流部55から気液分離機54b側へは流れないように配設している。冷凍用キャピラリチューブ53bで低圧低温になった冷媒がF蒸発器14bを流れることでF蒸発器14bが低温となり、F蒸発器14bにより冷却された空気をFファン9b(図2参照)で送風することで製氷室3、冷蔵室4、第一切替室5、第二切替室6を冷却する。このように、本実施例の冷蔵庫では、冷蔵室2はR蒸発器14aを用いて冷却し、製氷室3、冷凍室4、第一切替室5、第二切替室6はF蒸発器14bを用いて冷却する構成としている。 When cooling the ice making chamber 3, the freezing chamber 4, the first switching chamber 5, and the second switching chamber 6, the refrigerant is allowed to flow from the three-way valve 52 to the outflow port 52b side. The refrigerant flowing out from the outlet 52b flows in the order of the freezing capillary tube 53b, the F evaporator 14b, the gas-liquid separator 54b, the check valve 56, and the refrigerant merging portion 55, and then returns to the compressor 58. The check valve 56 is arranged so that the refrigerant flows from the gas-liquid separator 54b to the refrigerant merging portion 55 side and does not flow from the refrigerant merging portion 55 to the gas-liquid separator 54b side. The low-pressure low-temperature refrigerant in the freezing capillary tube 53b flows through the F-evaporator 14b, so that the F-evaporator 14b becomes low-temperature and the air cooled by the F-evaporator 14b is blown by the F-fan 9b (see FIG. 2). As a result, the ice making chamber 3, the refrigerating chamber 4, the first switching chamber 5, and the second switching chamber 6 are cooled. As described above, in the refrigerator according to the present embodiment, the refrigerating chamber 2 is cooled by using the R evaporator 14a, and the ice making chamber 3, the freezing chamber 4, the first switching chamber 5, and the second switching chamber 6 include the F evaporator 14b. It is configured to be cooled by using it.

ここで、冷凍温度帯である、又は冷凍温度帯に設定可能な製氷室3、冷凍室4、第一切替室5、第二切替室6を冷却するF蒸発器14bに冷媒を流す際は、これらの貯蔵室よりも低温な蒸発器温度(例えば−25℃)とする。一方、冷蔵温度帯の冷蔵室2を冷却するR蒸発器14aに冷媒を流す際は、冷媒の蒸発器温度を比較的高くする(例えば−10℃)。一般的に、蒸発器の温度が高いほど、冷凍サイクルの冷却効率を高めることができ、省エネルギー性能向上に有効である。また、蒸発器の温度が高いほど、空気が蒸発器を通過する際の空気中の水分の着霜が抑えられ、すなわち空気の除湿が抑えられ、庫内を高湿に保つことができる。従って、R蒸発器14aの温度が高い状態で冷蔵室2を冷却することで、冷凍温度帯の貯蔵室と共通の蒸発器で冷却する場合に比べ、冷蔵室2冷却時の省エネルギー性能を高められるとともに、冷蔵室2内を高湿に保つことができる。 Here, when flowing the refrigerant to the F evaporator 14b that cools the ice making chamber 3, the freezing chamber 4, the first switching chamber 5, and the second switching chamber 6 which are in the freezing temperature zone or can be set in the freezing temperature zone, The evaporator temperature is lower than those of these storage chambers (for example, -25°C). On the other hand, when the refrigerant is supplied to the R evaporator 14a that cools the refrigerating chamber 2 in the refrigerating temperature zone, the evaporator temperature of the refrigerant is set relatively high (for example, -10°C). Generally, the higher the temperature of the evaporator, the higher the cooling efficiency of the refrigeration cycle, and the more effective the energy saving performance is. Further, as the temperature of the evaporator is higher, frost formation of moisture in the air when the air passes through the evaporator is suppressed, that is, dehumidification of the air is suppressed, and the inside of the refrigerator can be kept at high humidity. Therefore, by cooling the refrigerating compartment 2 in a state where the temperature of the R evaporator 14a is high, the energy saving performance when cooling the refrigerating compartment 2 can be improved as compared with the case where it is cooled by the common evaporator with the storage compartment in the freezing temperature zone. At the same time, the inside of the refrigerator compartment 2 can be kept at high humidity.

また、冷蔵室2のみを冷却するR蒸発器14aと、その他の貯蔵室を冷却するF蒸発器14bとを分けることで、R蒸発器14aの除霜方式をオフサイクル除霜とし、さらなる省エネルギー性能向上と、冷蔵室2の高湿化を図っている。 Further, by separating the R evaporator 14a that cools only the refrigerating chamber 2 from the F evaporator 14b that cools the other storage chambers, the defrosting method of the R evaporator 14a is off-cycle defrosting, and further energy saving performance is achieved. It is intended to improve the humidity of the refrigerator compartment 2.

まず図2及び図3を用いてF蒸発器14bの主な除霜方式について説明する。F蒸発器14bの下部には、F蒸発器14bを加熱する除霜ヒータ21を設けている。除霜ヒータ21は、例えば50W〜200Wの電気ヒータで、本実施例では150Wのラジアントヒータとしている。F蒸発器14bの除霜時に発生した除霜水(融解水)はF蒸発器室8bの下部のFトイ23bからF排水管26を介して圧縮機58の上部に設けたF蒸発皿32に排出される。 First, the main defrosting method of the F evaporator 14b will be described with reference to FIGS. 2 and 3. A defrost heater 21 that heats the F evaporator 14b is provided below the F evaporator 14b. The defrost heater 21 is, for example, an electric heater of 50 W to 200 W, and is a radiant heater of 150 W in this embodiment. Defrosting water (melting water) generated during defrosting of the F evaporator 14b flows from the F toy 23b in the lower part of the F evaporator chamber 8b to the F evaporating dish 32 provided above the compressor 58 via the F drain pipe 26. Is discharged.

一方、R蒸発器14aの除霜にはオフサイクル除霜方式を採用しており、R蒸発器14aに冷媒を流さない状態で、Rファン9aを駆動させる。Rファン9aにより、冷蔵室2の空気が冷蔵室戻り口15a、15bを介してR蒸発器14aに流れ(図2、図3(a)参照)、霜の融点よりも高温の冷蔵温度(0℃以上)の冷蔵室2の空気によりR蒸発器14aの霜を加熱して除霜する。R蒸発器14aの除霜時に発生した除霜水は、R蒸発器室8aの下部に設けたRトイ23a(図2参照)から、図示しないR排水管を介して機械室39に設けた図示しないR蒸発皿に排出される。 On the other hand, an off-cycle defrosting method is adopted for defrosting the R evaporator 14a, and the R fan 9a is driven in a state in which the refrigerant does not flow to the R evaporator 14a. By the R fan 9a, the air in the refrigerating compartment 2 flows to the R evaporator 14a through the refrigerating compartment return ports 15a and 15b (see FIGS. 2 and 3A), and the refrigerating temperature (0 higher than the melting point of frost). The frost in the R evaporator 14a is heated and defrosted by the air in the refrigerating chamber 2 at a temperature of ℃ or more). Defrosting water generated during defrosting of the R evaporator 14a is illustrated in the machine room 39 via an R drain pipe (not shown) from the R toy 23a (see FIG. 2) provided in the lower portion of the R evaporator chamber 8a. Not discharged to the R evaporation tray.

オフサイクル除霜方式を用いると、電気ヒータ(約150W)を用いることなくファン(0.5〜3W)のみでR蒸発器14aの除霜が行えるため、電気ヒータを用いる除霜方式に比べ消費電力を抑えられる。また、オフサイクル除霜中に通過する空気(約4℃)は、低温なR蒸発器14a及びR蒸発器14aに付着した霜(約0℃)により冷却されるため、R蒸発器14aを除霜すると同時に、冷蔵室2を冷却できる。従って省エネルギー性能の高い除霜方式である。さらに、オフサイクル除霜中はR蒸発器14aの温度が高いため、R蒸発器14aを通過する空気の除湿が抑えられ、或いは加湿されるため、冷蔵室2を高湿に保つ効果をさらに高めることができる。 When the off-cycle defrosting method is used, the R evaporator 14a can be defrosted only by the fan (0.5 to 3 W) without using the electric heater (about 150 W). Power consumption can be suppressed. Further, since the air (about 4° C.) passing during the off-cycle defrosting is cooled by the low temperature R evaporator 14a and the frost (about 0° C.) attached to the R evaporator 14a, the R evaporator 14a is removed. At the same time as the frost is formed, the refrigerator compartment 2 can be cooled. Therefore, it is a defrosting method with high energy saving performance. Further, since the temperature of the R evaporator 14a is high during the off-cycle defrosting, dehumidification of the air passing through the R evaporator 14a is suppressed or humidified, so that the effect of keeping the refrigerating compartment 2 at high humidity is further enhanced. be able to.

図8(a)は操作盤200,図8(b)は表示盤201の拡大図である。冷蔵室2内に設けた図8(a)に示す操作盤200では,各操作部を押すことで,自動製氷や節電機能,外部通信機能等の付加機能のON,OFFと,冷蔵室2,第一切替室5,第二切替室6の温度調整が可能である。温度調整とは,冷蔵室2及び冷蔵モードの第一切替室5,第二切替室6では,前述の弱冷蔵モード,強冷蔵モードへの変更,冷凍モードの第一切替室5,第二切替室6では,前述の弱冷凍モード,強冷凍モードへの変更を行うもので,例えば2℃程度目標温度を変えるものである。この温度調整に加えて,本実施例の冷蔵庫1では,温度調整の操作部とは別に,第一切替室5の冷蔵モードと冷凍モードを切り替えるモード切替操作部200aと,第二切替室6の冷蔵モードと冷凍モードを切り替えるモード切替操作部200bを設けている。他の操作部は押した直後に設定が変更されるが,モード切替操作部200a,200bは,例えば3秒長押しすることで設定が変更されるようにしている。また,本実施例の冷蔵庫1では,何れの操作部を操作した際も操作盤200に設けたブザーにより操作の受け付けを音で知らせるようにしているが,モード切替操作部200a,200bを長押しし,モード切り替えの実行を受け付けると,他の操作を受け付けた際とは異なる音で受け付けを知らせるようにしている。 8A is an enlarged view of the operation panel 200, and FIG. 8B is an enlarged view of the display panel 201. In the operation panel 200 shown in FIG. 8(a) provided in the refrigerating compartment 2, by pressing each operation part, ON/OFF of additional functions such as automatic ice making, power saving function, and external communication function, and refrigerating compartment 2, The temperature of the first switching chamber 5 and the second switching chamber 6 can be adjusted. In the refrigerating compartment 2 and the first switching compartment 5 and the second switching compartment 6 in the refrigerating mode, the temperature control is changed to the weak refrigerating mode and the strong refrigerating mode, and the first switching compartment 5 and the second switching in the freezing mode. In the chamber 6, the above-mentioned weak refrigeration mode and strong refrigeration mode are changed, for example, the target temperature is changed by about 2°C. In addition to this temperature adjustment, in the refrigerator 1 of the present embodiment, apart from the temperature adjustment operation unit, a mode switching operation unit 200a for switching the refrigerating mode and the freezing mode of the first switching chamber 5 and a second switching chamber 6 are provided. A mode switching operation unit 200b for switching between the refrigerating mode and the freezing mode is provided. The settings of the other operation units are changed immediately after they are pressed, but the settings of the mode switching operation units 200a and 200b are changed by, for example, pressing and holding for 3 seconds. In addition, in the refrigerator 1 of the present embodiment, when any of the operation sections is operated, the buzzer provided on the operation panel 200 notifies the acceptance of the operation by sound, but the mode switching operation sections 200a and 200b are pressed and held. However, when the execution of the mode switching is accepted, the reception is notified with a sound different from that when other operations are accepted.

また,本実施例1の冷蔵庫1では,操作盤200を冷蔵室2内に設けていることから,冷蔵室ドア2a,2bを開けずに冷蔵庫1からの情報を把握できるよう,図8(b)に示す冷蔵室ドア2aに表示盤201を設けている。表示盤201は,ユーザーの使用状態が省エネ性に優れていることを示す「eco」サインや,製氷タンク37の状態を示す「給水」サインに加え,第一切替室5がモード切り替え中であることを表示するモード切替中表示201aと,第二切替室6がモード切り替え中であることを表示するモード切替中表示201bを設けている。 Further, in the refrigerator 1 according to the first embodiment, since the operation panel 200 is provided in the refrigerating compartment 2, it is possible to grasp the information from the refrigerator 1 without opening the refrigerating compartment doors 2a and 2b, as shown in FIG. The display panel 201 is provided on the refrigerating compartment door 2a shown in FIG. In addition to the "eco" sign indicating that the user's usage status is excellent in energy saving and the "water supply" sign indicating the status of the ice making tank 37, the display panel 201 has the first switching chamber 5 switching modes. There is provided a mode switching display 201a for displaying that the state is being displayed and a mode switching display 201b for displaying that the second switching chamber 6 is performing the mode switching.

以上で示した本構成は,ユーザーによる冷蔵モードと冷凍モードの誤動作に配慮している。冷蔵モードと冷凍モードを誤って切り替えると,例えば冷蔵モードで収納していた野菜が凍結することや,冷凍モードで収納していた冷凍食品が解凍されてしまうといった不具合を生じてしまう。従って,温度調整等の操作を行うつもりで意図せず温度帯が変わってしまうことや,意図しない操作(操作部に意図せず触れてしまう等)で温度帯が変わってしまうことがないよう配慮する必要がある。 The above-mentioned configuration takes into consideration malfunctions by the user in the refrigerating mode and the freezing mode. If the refrigerating mode and the freezing mode are mistakenly switched, problems such as freezing of vegetables stored in the refrigerating mode and thawing of frozen food stored in the freezing mode may occur. Therefore, care should be taken not to change the temperature zone unintentionally with the intention of performing an operation such as temperature adjustment, or to prevent the temperature zone from being changed by an unintended operation (such as touching the operation section unintentionally). There is a need to.

これに対し,本実施例の冷蔵庫1では,温度調整用の操作部とモード切替操作部200a,200bを独立させ,誤ったモード変更を抑制している。また,モード切替操作部200a,200bを備えた操作盤200を冷蔵室2内に設けており,これにより,冷蔵室ドア2a,2bが閉まっている状態では操作部に意図せず触れることがなくなるようにしている。 On the other hand, in the refrigerator 1 of the present embodiment, the temperature adjusting operation unit and the mode switching operation units 200a and 200b are made independent to prevent erroneous mode changes. Further, the operation panel 200 provided with the mode switching operation parts 200a and 200b is provided in the refrigerating compartment 2, so that the operation part is not touched unintentionally when the refrigerating compartment doors 2a and 2b are closed. I am trying.

さらに,冷蔵モードと冷凍モードの切り替えを実行するための操作を,長押しとすることで,操作部に意図せず触れてしまうことでの誤動作をより確実に抑えている。なお,本実施例では誤動作抑制方法として長押しとしたが,例えば複数の操作部を同時に押した場合にモード変更するようにしてもよい。この場合は長押しする時間が必要ないため早くモード切り替えの指示を送ることができる。一方,本実施例1のように1つの操作だが長押しとすることで,比較的操作を簡単にすることができる。 Furthermore, by holding down the operation for switching between the refrigerating mode and the freezing mode, it is possible to more reliably suppress malfunctions caused by accidentally touching the operation unit. In this embodiment, the long press is used as the malfunction suppressing method, but the mode may be changed, for example, when a plurality of operation parts are pressed simultaneously. In this case, since it is not necessary to press and hold for a long time, it is possible to quickly send a mode switching instruction. On the other hand, as in the first embodiment, the operation can be relatively simple by long-pressing the operation.

加えて,モード切り替えの実行を受け付けると,他の操作を受け付けた際とは異なるブザー音を鳴らすことで,誤って操作してしまった際に気づき易くしている。また,表示盤201に,第一切替室5がモード切り替え中であることを表示するモード切替中表示201aと,第二切替室6がモード切り替え中であることを表示するモード切替中表示201bを設けることで,ドアを開けずにモード切り替えが実行されていることを確認でき,誤って操作してしまった際に気づき易くしている。これにより,すぐにユーザーがモード切り替えを中止(モードを元に戻す)して,意図しない凍結及び解凍を抑制できるようにしている。なお,ドアを開けずに確認できる表示201に,モード切替中表示201a,201bを設けることで,複数のユーザーがいる家庭において,別のユーザーによりモードが切り替えられたことに気づく易くなり,必要に応じてモード切り替えを早期に中止できるようにしている。特に小さい子供がいる家庭の場合,子供のいたずらによりモード切り替えが行われてしまうリスクが考えられることから,本機能は有効である。 In addition, when the execution of the mode switching is accepted, a buzzer sound different from that when other operations are accepted is emitted, thereby making it easy to notice when the operation is mistaken. Further, on the display panel 201, there are a mode switching display 201a indicating that the first switching chamber 5 is in the mode switching state, and a mode switching display 201b indicating that the second switching chamber 6 is in the mode switching state. By providing it, it is possible to confirm that the mode switching is being executed without opening the door, and it is easy to notice when the operation is performed by mistake. This allows the user to immediately cancel the mode switch (revert the mode) and prevent unintentional freezing and thawing. By providing the mode switching displays 201a and 201b on the display 201 that can be confirmed without opening the door, it becomes easy to notice that the mode has been switched by another user in a home with a plurality of users. Accordingly, the mode switching can be stopped early. This function is particularly effective for households with small children, because there is a risk of mode switching due to child mischief.

また,本実施例の冷蔵庫1では,外部通信機能により,ユーザーが指定したモバイルデバイス等に,モード切り替えが開始されたことをポップアップ表示できるようにしており,これにより,別のユーザーによりモードが切り替えられたことを,より気づく易くしている。 Further, in the refrigerator 1 of the present embodiment, the external communication function allows the mobile device or the like designated by the user to display a pop-up message that the mode switching has been started, whereby the mode is switched by another user. It makes things easier to notice.

なお,例えば指紋認証やパスワードなどでモード切り替えの操作に制限を設けることや,外部通信機能を用い,メインユーザー以外が通常使用しないモバイルデバイスからのみ,モード切り替えが行えるようにするなどで,予めメインユーザー以外によるモード切り替えが行われないようにしてもよい。 In addition, for example, by setting restrictions on the operation of mode switching with fingerprint authentication, password, etc., or by using an external communication function so that mode switching can be performed only from mobile devices that are not normally used by other than the main user, The mode switching may be prevented from being performed by anyone other than the user.

以上が本実施例の冷蔵庫1の基本的な構成である。以下で冷蔵庫1の具体的な制御について説明していく。 The above is the basic configuration of the refrigerator 1 of the present embodiment. The specific control of the refrigerator 1 will be described below.

図9,図10は本実施例の基本的な冷却制御フローチャートである。圧縮機58がOFF(停止)状態の制御S1−1から説明を始める。本実施例では,冷凍温度帯の貯蔵室を備えるF蒸発器14bにより冷却される貯蔵室について,冷却が必要か判断する。まず制御S1−2において,冷凍室温度センサ42により検知する冷凍室4の温度T_Fが例えば−15℃の所定温度T_F−ONより低いか否か,すなわち冷凍室4の冷却が必要かを判断する。T_FがT_F−ON以上の場合(S1−2:No)は,制御S1−12,S1−13へ移行し,F蒸発器14bを用いた冷却運転,すなわちF蒸発器14bに冷媒を流し,低温になったF蒸発器14b周辺の空気をFファン9bにより各貯蔵室に送風する運転になる。冷凍室4の温度T_Fが所定温度T_F−ON(例えば−15℃)より低い場合(S1−2:Yes)は,第一切替室5の冷却が必要かを判断する。この時,第一切替室5が冷蔵モードか冷凍モードかにより,冷却が必要かを判断する温度が異なり,冷凍モードの際(制御S1−3:Yes)は例えば−18℃のT_S1F−ON,冷蔵モードの際(制御S1−3:No)は例えば6℃のT_S1R−ONを基準とする。第一切替室温度センサ43により検知する第一切替室5の温度T_S1が,T_S1F−ON,またはT_S1R−ON以上(制御S1−4またはS1−5:No)であれば,制御S1−12,S1−13のF蒸発器14bを用いた冷却運転になる。同様に第二切替室6についても,冷凍モードの際(制御S1−6:Yes)は例えば−19℃のT_S2F−ON,冷蔵モードの際(制御S1−6:No)は例えば7℃のT_S2R−ONを基準とし,第二切替室温度センサ44により検知する第一切替室6の温度T_S2がこれらの温度以上(制御S1−7又はS1−8:No)であれば,制御S1−12,S1−13のF蒸発器14bを用いた冷却運転になる。この運転の終了条件は図10を用いて後述する。 9 and 10 are basic cooling control flowcharts of this embodiment. The description starts with control S1-1 in which the compressor 58 is in the OFF (stop) state. In this embodiment, it is determined whether or not the storage chamber cooled by the F evaporator 14b including the storage chamber in the freezing temperature zone needs to be cooled. First, in control S1-2, it is determined whether or not the temperature T_F of the freezer compartment 4 detected by the freezer compartment temperature sensor 42 is lower than a predetermined temperature T_F-ON of, for example, −15° C., that is, it is necessary to cool the freezer compartment 4. .. When T_F is equal to or more than T_F-ON (S1-2: No), the control is shifted to S1-12 and S1-13, and the cooling operation using the F evaporator 14b is performed, that is, the refrigerant is allowed to flow through the F evaporator 14b and the temperature is low. The operation is to blow the air around the F-evaporator 14b, which has become the above, to each storage chamber by the F-fan 9b. When the temperature T_F of the freezing chamber 4 is lower than the predetermined temperature T_F-ON (for example, -15°C) (S1-2: Yes), it is determined whether the first switching chamber 5 needs to be cooled. At this time, the temperature for determining whether cooling is necessary differs depending on whether the first switching chamber 5 is in the refrigerating mode or the freezing mode. In the freezing mode (control S1-3: Yes), for example, T_S1F-ON at -18°C, In the refrigerating mode (control S1-3: No), for example, T_S1R-ON at 6° C. is used as a reference. If the temperature T_S1 of the first switching chamber 5 detected by the first switching chamber temperature sensor 43 is T_S1F-ON or T_S1R-ON or higher (control S1-4 or S1-5: No), control S1-12, The cooling operation using the F evaporator 14b in S1-13 is performed. Similarly, also in the second switching chamber 6, in the refrigeration mode (control S1-6: Yes), for example, T_S2F-ON at −19° C., and in the refrigeration mode (control S1-6: No), for example, T_S2R at 7° C. If the temperature T_S2 of the first switching chamber 6 detected by the second switching chamber temperature sensor 44 is equal to or higher than these temperatures (control S1-7 or S1-8: No) with reference to -ON, the control S1-12, The cooling operation using the F evaporator 14b in S1-13 is performed. Conditions for ending this operation will be described later with reference to FIG.

制御S1−2からS1−8までの判断により,冷凍室4,第一切替室5,第二切替室6の冷却が不要と判断された場合,また図10で示すF蒸発器14bを用いた冷却運転が終了した場合(制御S1−14),冷蔵室2の冷却が必要かを判断する。冷蔵室温度センサ41により検知する冷蔵室2の温度T_Rが,例えば6℃の所定温度T_R−ON以上の場合(制御S1−9:No)は,R蒸発器14aを用いた冷却運転(制御S1−10)になる。R蒸発器14aを用いた冷却運転は,冷蔵室2の温度T_Rが例えば2℃のT_R−OFF以下になる(制御S1−11:Yes)と,R蒸発器14aを用いた冷却運転を終了し,再びF蒸発器14bを用いた冷却運転の要否を判断する制御S1−2に戻る。また,制御S1−9に到達しつつ,冷蔵室2の温度T_Rが,T_R−ON未満であった場合(制御S1−9:Yes)は,何れの冷却も必要ないと判断し,圧縮機58を停止する(制御S1−1)。 When it is judged from the control S1-2 to S1-8 that cooling of the freezing compartment 4, the first switching compartment 5, and the second switching compartment 6 is unnecessary, the F evaporator 14b shown in FIG. 10 is used. When the cooling operation is completed (control S1-14), it is determined whether the refrigerating compartment 2 needs to be cooled. When the temperature T_R of the refrigerating compartment 2 detected by the refrigerating compartment temperature sensor 41 is equal to or higher than the predetermined temperature T_R-ON of 6° C. (control S1-9: No), the cooling operation using the R evaporator 14a (control S1). -10). The cooling operation using the R evaporator 14a ends the cooling operation using the R evaporator 14a when the temperature T_R of the refrigerating chamber 2 becomes equal to or lower than T_R-OFF of 2° C. (control S1-11: Yes). Then, the process again returns to the control S1-2 for determining whether or not the cooling operation using the F evaporator 14b is necessary. When the temperature T_R of the refrigerating compartment 2 is less than T_R-ON while reaching the control S1-9 (control S1-9: Yes), it is determined that no cooling is necessary, and the compressor 58 is used. Is stopped (control S1-1).

次に,図10を用いてF蒸発器14bを用いた冷却運転中の制御について説明する。図9の制御S1−13は図10の制御S2−1と同一である。本実施例の冷蔵庫1では,第一切替室5に関する制御と,第二切替室6に関する制御,また冷凍室4に関する制御を平行して行う。 Next, the control during the cooling operation using the F evaporator 14b will be described with reference to FIG. Control S1-13 in FIG. 9 is the same as control S2-1 in FIG. In the refrigerator 1 of the present embodiment, control regarding the first switching chamber 5, control regarding the second switching chamber 6, and control regarding the freezing chamber 4 are performed in parallel.

まず,第一切替室5に関する制御について説明する。第一切替室5が冷凍モードに設定している場合(制御S2−3:Yes),直接冷却用のダンパ101aを開け(制御S2−4),第一切替室5の温度T_S1が例えば−22℃のT_S1F−OFF以下になるまで冷却する(制御S2−5)。第一切替室5が冷蔵モードに設定している場合(制御S2−3:No)は,間接冷却用のダンパ101bを開け(制御S2−6),第一切替室5の温度T_S1が例えば2℃のT_S1R−OFF以下になるまで冷却する(制御S2−7)。これらの制御が終わると,冷やし過ぎによる消費電力量の増加,及び冷蔵モード時の食品凍結を防止するため,ダンパ101a,101bを閉め(制御S2−8),第一切替室5が冷却中であることを示す制御S2−2で1としていたCheck_S1を0とする(制御S2−9)。 First, the control regarding the first switching chamber 5 will be described. When the first switching chamber 5 is set to the freezing mode (control S2-3: Yes), the damper 101a for direct cooling is opened (control S2-4), and the temperature T_S1 of the first switching chamber 5 is, for example, −22. It cools until it becomes below T_S1F-OFF of C (control S2-5). When the first switching chamber 5 is set to the refrigerating mode (control S2-3: No), the damper 101b for indirect cooling is opened (control S2-6), and the temperature T_S1 of the first switching chamber 5 is, for example, 2 The temperature is cooled to T_S1R-OFF or lower (control S2-7). When these controls are finished, the dampers 101a and 101b are closed (control S2-8) in order to prevent an increase in power consumption due to excessive cooling and food freezing in the refrigerating mode, and the first switching chamber 5 is being cooled. Check_S1 that has been set to 1 in control S2-2 indicating that there is is set to 0 (control S2-9).

なお,他の冷凍室4,第二切替室6の冷却制御が完了(制御S2−25に到達)するまで,第一切替室5の温度が高くなりすぎるのを防止するため,第一切替室5を冷凍モードに設定している場合(制御S2−10:Yes)は第一切替室5の温度T_S1が例えば−20℃のT_S1F−ON2以上(制御S2−11:Yes),冷蔵モードに設定している場合(制御S2−10:No)は第一切替室5の温度T_S1が例えば4℃のT_S1R−ON2以上になる(制御S2−12:Yes)と,再びダンパを開ける(制御S2−4,S2−6)。その後,T_S1がT_S1F−OFFまたはT_S1R−OFFより再び低温になると再びダンパを閉める(制御S2−5,S2−7,S2−8)。 In order to prevent the temperature of the first switching chamber 5 from becoming too high until the cooling control of the other freezing chambers 4 and the second switching chamber 6 is completed (reaching control S2-25), the first switching chamber 5 is prevented. 5 is set to the freezing mode (control S2-10: Yes), the temperature T_S1 of the first switching chamber 5 is, for example, T_S1F-ON2 of -20°C or higher (control S2-11: Yes), and set to the refrigeration mode. If the temperature T_S1 of the first switching chamber 5 becomes T_S1R-ON2 of 4° C. or more (control S2-12: Yes), the damper is opened again (control S2--10: No). 4, S2-6). After that, when T_S1 becomes lower than T_S1F-OFF or T_S1R-OFF again, the damper is closed again (control S2-5, S2-7, S2-8).

次に,第二切替室6に関する制御を説明するが,基本的に第一切替室5と同様である。第二切替室6が冷凍モードに設定している場合(制御S2−13:Yes),直接冷却用のダンパ102aを開け(制御S2−14),第二切替室6の温度T_S2が例えば−23℃のT_S2F−OFF以下になるまで冷却する(制御S2−15)。第二切替室6が冷蔵モードに設定している場合(制御S2−13:No)は,間接冷却用のダンパ102bを開け(制御S2−16),第二切替室6の温度T_S2が例えば3℃のT_S2R−OFF以下になるまで冷却する(制御S2−17)。これらの制御が終わると,ダンパ102a,102bを閉め(制御S2−18),第二切替室6が冷却中であることを示す制御S2−2で1としていたCheck_S2を0とする(制御S2−19)。その後,冷凍室4,第一切替室5の冷却制御が完了(制御S2−25に到達)するまで,第二切替室6が冷凍モードに設定されている場合(制御S2−20:Yes)は第二切替室6の温度T_S2が例えば−21℃のT_S2F−ON2以上(制御S2−21),冷蔵モードに設定されている場合(制御S2−20:No)は第二切替室5の温度T_S2が例えば5℃のT_S1R−ON2以上になる(制御S2−22)と,再びダンパを開け(制御S2−14,S2−16),T_S2がT_S2F−OFFまたはT_S2R−OFF以下になると再びダンパを閉める(制御S2−15,S2−17,S2−18)。 Next, the control of the second switching chamber 6 will be described, but it is basically the same as that of the first switching chamber 5. When the second switching chamber 6 is set to the freezing mode (control S2-13: Yes), the damper 102a for direct cooling is opened (control S2-14), and the temperature T_S2 of the second switching chamber 6 is, for example, -23. It cools until it becomes below T_S2F-OFF of C (control S2-15). When the second switching chamber 6 is set to the refrigerating mode (control S2-13: No), the damper 102b for indirect cooling is opened (control S2-16), and the temperature T_S2 of the second switching chamber 6 is, for example, 3 It cools until it becomes below T_S2R-OFF of C (control S2-17). When these controls are completed, the dampers 102a and 102b are closed (control S2-18), and the Check_S2 which was 1 in control S2-2 indicating that the second switching chamber 6 is being cooled is set to 0 (control S2-). 19). After that, when the second switching chamber 6 is set to the freezing mode (control S2-20: Yes) until the cooling control of the freezing chamber 4 and the first switching chamber 5 is completed (reaching control S2-25). If the temperature T_S2 of the second switching chamber 6 is, for example, T_S2F-ON2 of -21° C. or higher (control S2-21) and the refrigeration mode is set (control S2-20: No), the temperature T_S2 of the second switching chamber 5 is set. For example, when T_S1R-ON2 is 5°C or higher (control S2-22), the damper is opened again (control S2-14, S2-16), and when T_S2 is T_S2F-OFF or T_S2R-OFF or lower, the damper is closed again. (Control S2-15, S2-17, S2-18).

最後に冷凍室4に関する制御について説明する。冷凍室4は温度制御を行うダンパを備えていないため,冷凍室4の温度T_Fが例えば−20℃のT_F−OFF以下であることを判定する(制御S2−23:Yes)と,冷凍室4の冷却制御は終了となる。 Finally, the control regarding the freezer compartment 4 will be described. Since the freezer compartment 4 does not include a damper for controlling the temperature, it is determined that the temperature T_F of the freezer compartment 4 is equal to or lower than T_F-OFF of -20° C. (control S2-23: Yes), and the freezer compartment 4 is determined. The cooling control of is ended.

冷凍室4の冷却が終了し(制御S2−23:Yes),Check_S1,S2により第一切替室5と第二切替室6の冷却制御が終了していると判断する(制御S2−24:Yes)と,Fファン9bをOFFし(制御S2−25),F蒸発器14bを用いた冷却運転が終了(制御S2−26)となる。 It is determined that the cooling of the freezing chamber 4 is finished (control S2-23: Yes), and the cooling control of the first switching chamber 5 and the second switching chamber 6 is finished by Check_S1 and S2 (control S2-24: Yes). ), the F fan 9b is turned off (control S2-25), and the cooling operation using the F evaporator 14b ends (control S2-26).

以上のように,本実施例の冷蔵庫1では,冷凍室4,第一切替室5,第二切替室6の何れかがそれぞれの所定温度以上の場合にはF蒸発器14bを用いた冷却運転に移行(図9の制御S1−2からS1−8)し,また,F蒸発器14bを用いた冷却運転中は,冷凍室4,第一切替室5,第二切替室6の何れも少なくとも一度は所定温度以下になるまで必ず冷却するようにしている(図10)。これにより,何れか1つの貯蔵室の温度のみで制御する場合に比べ,何れの貯蔵室の温度も高くなり過ぎず,かつ低温になりすぎないようにすることができ,省エネルギー性能を高めながら食品の保存性能を高めることができる。 As described above, in the refrigerator 1 of the present embodiment, the cooling operation using the F evaporator 14b is performed when any one of the freezing chamber 4, the first switching chamber 5 and the second switching chamber 6 is at a predetermined temperature or higher. (Control S1-2 to S1-8 in FIG. 9), and during the cooling operation using the F evaporator 14b, at least any of the freezing chamber 4, the first switching chamber 5, and the second switching chamber 6 is at least At least once, it is always cooled down to a predetermined temperature or less (Fig. 10). As a result, the temperature of any of the storage chambers can be prevented from becoming too high and too low as compared with the case of controlling only the temperature of any one of the storage chambers, and the food can be saved while enhancing the energy saving performance. The storage performance of can be improved.

さらに,第一切替室5,第二切替室6の冷却制御では,所定温度に到達すると,冷やし過ぎを防止するためダンパを閉じ(制御S2−8,S2−18),冷却状態を解除するが(制御S2−9,S2−19),温度が高くなった場合は(制御S2−10からS2−12,またはS2−20からS2−22),再度ダンパを開けて冷却する。これにより,冷やし過ぎを防止しつつ,温度が高くなりすぎるのも防止し,省エネルギー性能を高めながら食品の保存性能を高めている。 Further, in the cooling control of the first switching chamber 5 and the second switching chamber 6, when the predetermined temperature is reached, the damper is closed (controls S2-8, S2-18) to prevent overcooling, and the cooling state is released. (Control S2-9, S2-19) If the temperature rises (Control S2-10 to S2-12, or S2-20 to S2-22), the damper is opened again to cool. This prevents the temperature from becoming too high while preventing overcooling, improving the energy conservation performance and the food preservation performance.

なお,制御S2−10からS2−12,またはS2−20からS2−22によるダンパ101a,101b,102a,102bを再度開ける制御を行う間,Check_S1,Check_S2は0のままとしている。これにより,Check_S1,Check_S2が交互に1の状態となってしまい,F蒸発器14bを用いた冷却運転が終了しないことを抑制している。本実施例の冷蔵庫1は複数の蒸発器を備え,R蒸発器14aを用いた冷却運転と,F蒸発器14bを用いた冷却運転を切り替えて冷却を行うため,F蒸発器14bを用いた冷却運転が終了してR蒸発器14aを用いた冷却運転に移行すると,暫くの間,F蒸発器14bを用いた冷却運転に移行できない。したがって,この再度ダンパを開ける制御に用いるT_S1F−ON2は図9に示したT_S1F−ONより低温であり,同様にT_S1R−ON2はT_S1R−ONより低温,T_S2F−ON2はT_S2F−ONより低温,T_S2R−ON2はT_S2R−ONより低温にしておき,比較的低温の状態でF蒸発器14bを用いた冷却運転が終了するようにしている。 Note that Check_S1 and Check_S2 remain 0 while the controls S2-10 to S2-12 or S2-20 to S2-22 perform the control for reopening the dampers 101a, 101b, 102a, and 102b. As a result, it is prevented that Check_S1 and Check_S2 are alternately set to 1 and the cooling operation using the F evaporator 14b does not end. The refrigerator 1 according to the present embodiment includes a plurality of evaporators, and the cooling operation using the R evaporator 14a and the cooling operation using the F evaporator 14b are switched to perform cooling. Therefore, the cooling operation using the F evaporator 14b is performed. When the operation is completed and the cooling operation using the R evaporator 14a is started, the cooling operation using the F evaporator 14b cannot be performed for a while. Therefore, T_S1F-ON2 used for controlling the opening of the damper again is lower than T_S1F-ON shown in FIG. 9, similarly T_S1R-ON2 is lower than T_S1R-ON, T_S2F-ON2 is lower than T_S2F-ON, and T_S2R is lower. -ON2 is kept at a temperature lower than that of T_S2R-ON so that the cooling operation using the F evaporator 14b is completed in a relatively low temperature state.

図11は本実施例の基本的な冷却制御を示す経時温度変化の例である。図11は第一切替室5と第二切替室6の両方が冷凍モードの場合である。各制御番号は図9,図10に対応する。 FIG. 11 is an example of temperature change with time showing the basic cooling control of the present embodiment. FIG. 11 shows the case where both the first switching chamber 5 and the second switching chamber 6 are in the freezing mode. Each control number corresponds to FIG. 9 and FIG.

図11の第一切替室5と第二切替室6の両方が冷凍モードの場合について,時刻t0から説明する。時刻t0にて圧縮機58が停止した(制御S1−1)後,制御S1−2〜S1−9の各判定が行われる。時刻t1において,第二切替室6の温度T_S2が,T_S2F−ON以上(制御S1−7:No)になり,F蒸発器14bによる冷却運転が開始される(制御S1−12,S1−13及びS2−1)。図11では,第一切替室5と第二切替室6の両方が冷凍モードのため,直接冷却用のダンパであるダンパ101aと102aが開く。時刻t2で第一切替室5の温度T_S1が,T_S1F−OFF以下になる(制御S2−5:Yes)と,ダンパ101aが閉じ(制御S2−8),第一切替室5が冷却中であることを示すCheck_S1を0(クリア)する(制御S2−9)。また,同様に時刻t3において,第二切替室6の温度T_S2が,T_S2F−OFF以下になる(制御S2−15:Yes)と,ダンパ102aが閉じ(制御S2−18),第二切替室6が冷却中であることを示すCheck_S2を0(クリア)する(制御S2−19)。その後,時刻t4において,冷凍室4の温度T_Fが,T_F−OFF以下になり,冷凍室4,第一切替室5,第二切替室6の何れも冷却が完了したと判断し(制御S2−23,S2−24),F蒸発器14bを用いた冷却運転を終了する(制御S2−25,S2−26及びS1−14)。なお,この間の時刻t6において,第一切替室5の温度がT_S1F−ON2よりも高くなったことから,ダンパ101aを再度開け(制御S2−11:Yes→制御S2−5),第一切替室5の温度上昇を抑えている。 A case where both the first switching chamber 5 and the second switching chamber 6 in FIG. 11 are in the freezing mode will be described from time t0. After the compressor 58 is stopped at time t0 (control S1-1), each determination of control S1-2 to S1-9 is performed. At time t1, the temperature T_S2 of the second switching chamber 6 becomes equal to or higher than T_S2F-ON (control S1-7: No), and the cooling operation by the F evaporator 14b is started (control S1-12, S1-13, and S1-12). S2-1). In FIG. 11, both the first switching chamber 5 and the second switching chamber 6 are in the freezing mode, so that the dampers 101a and 102a, which are dampers for direct cooling, are opened. When the temperature T_S1 of the first switching chamber 5 becomes equal to or lower than T_S1F-OFF at time t2 (control S2-5: Yes), the damper 101a is closed (control S2-8) and the first switching chamber 5 is being cooled. Check_S1 indicating that is 0 (cleared) (control S2-9). Similarly, at time t3, when the temperature T_S2 of the second switching chamber 6 becomes equal to or lower than T_S2F-OFF (control S2-15: Yes), the damper 102a is closed (control S2-18), and the second switching chamber 6 is closed. Check_S2 indicating that the cooling is being performed is 0 (cleared) (control S2-19). After that, at time t4, the temperature T_F of the freezing compartment 4 becomes equal to or lower than T_F-OFF, and it is determined that the cooling of all of the freezing compartment 4, the first switching chamber 5 and the second switching chamber 6 is completed (control S2- 23, S2-24), and the cooling operation using the F evaporator 14b is terminated (controls S2-25, S2-26, and S1-14). At time t6 during this time, the temperature of the first switching chamber 5 becomes higher than T_S1F-ON2, so the damper 101a is opened again (control S2-11: Yes→control S2-5), and the first switching chamber 5 is opened. The temperature rise of 5 is suppressed.

F蒸発器14bを用いた冷却運転を終了した時刻t4において,冷蔵室2の温度T_Rが,T_R−ON以上になっている(制御S1−9:No)ことから,R蒸発器14aを用いた冷却運転に移行する(制御S1−10)。その後,時刻t5において,冷蔵室2の温度T_Rが,T_R−OFF以下になる(制御S1−11:Yes)と,R蒸発器14aを用いた冷却運転を終了し,再びF蒸発器14bを用いた冷却運転の必要可否を判断する(制御S1−2からS2−8)。図11の時刻t5では,F蒸発器14bを用いた冷却運転の必要がないと判断され,冷蔵室2の温度もT_R−ON未満(制御S1−9:Yes)のため,圧縮機58がOFFとなる(制御S1−1)。なお,この時に三方弁52を全閉とすることで,冷凍サイクルの高圧側の冷媒がR蒸発器14a,及びF蒸発器14bに流入し,R蒸発器14a,及びF蒸発器14bが温度上昇することを防ぐためである。 At the time t4 when the cooling operation using the F evaporator 14b is finished, the temperature T_R of the refrigerating compartment 2 is equal to or higher than T_R-ON (control S1-9: No), so the R evaporator 14a was used. Shift to cooling operation (control S1-10). After that, at time t5, when the temperature T_R of the refrigerating compartment 2 becomes equal to or lower than T_R-OFF (control S1-11: Yes), the cooling operation using the R evaporator 14a is ended, and the F evaporator 14b is used again. It is determined whether or not the cooling operation that has been performed is necessary (controls S1-2 to S2-8). At time t5 in FIG. 11, it is determined that the cooling operation using the F evaporator 14b is not necessary, and the temperature of the refrigerating compartment 2 is less than T_R-ON (control S1-9: Yes), so the compressor 58 is turned off. (Control S1-1). At this time, by fully closing the three-way valve 52, the refrigerant on the high pressure side of the refrigeration cycle flows into the R evaporator 14a and the F evaporator 14b, and the R evaporator 14a and the F evaporator 14b rise in temperature. This is to prevent that.

以後,同様の運転が繰り返される。 After that, the same operation is repeated.

図12は本実施例の基本的な除霜制御フローチャートである。本実施例の冷蔵庫1は,F蒸発器14bについた霜を除霜ヒータ21により解かす除霜運転を行う。 FIG. 12 is a basic defrosting control flowchart of this embodiment. The refrigerator 1 of this embodiment performs a defrosting operation in which the frost on the F evaporator 14b is defrosted by the defrosting heater 21.

本実施例の冷蔵庫1では,図9,図10で示した冷却運転中に,前回の除霜運転からの時間,外気温度センサ46と外気湿度センサ47により検知する周囲の温度と湿度,圧縮機58の運転状態(回転数,運転時間),各ドアが開いている時間等により,着霜状態を予測し,所定の条件を満たす(制御S3−1:Yes)と除霜が必要と判断して除霜運転を開始する(制御S3−2)。なお,除霜運転の開始条件を満たした後(制御S3−1:Yes),除霜運転を開始する前に(制御S3−2),除霜運転での温度上昇を予測して予め庫内を通常よりも低温に冷やしておくプリクール運転を行っても良い。 In the refrigerator 1 of the present embodiment, during the cooling operation shown in FIGS. 9 and 10, the time from the previous defrosting operation, the ambient temperature and humidity detected by the outside air temperature sensor 46 and the outside air humidity sensor 47, the compressor The frosting state is predicted based on the operating state (rotation speed, operating time) of 58, the time when each door is open, etc., and it is determined that defrosting is necessary when a predetermined condition is satisfied (control S3-1: Yes). To start the defrosting operation (control S3-2). After the start condition of the defrosting operation is satisfied (control S3-1: Yes), and before the defrosting operation is started (control S3-2), the temperature rise in the defrosting operation is predicted to predict the inside of the refrigerator in advance. You may perform the pre-cool operation which cools to a temperature lower than usual.

除霜運転中(制御S3−2)は圧縮機58とファン9bをOFF,除霜ヒータ21をONし,またダンパヒータ64もONにする。ダンパ101a,101b,102a,102bはF蒸発器14bを用いた冷却運転を行っている間,冷凍温度の空気により冷却されるが,第一切替室5または第二切替室6が冷蔵モードで,特に野菜などを貯蔵している場合,庫内からの高湿な空気がダンパ101a,101b,102a,102bに到達し,着霜することがあるため,除霜運転中にダンパヒータ64もONにし,ダンパ101a,101b,102a,102bの除霜も行う。なお,第一切替室5用のダンパ101a,101bと,第二切替室6用のダンパ102a,102bのヒータを別個に設け,冷蔵モードにしている切替室に関わるダンパ側のヒータのみONにして,ヒータ電力を抑えて省エネルギー性能を高めてもよい。 During the defrosting operation (control S3-2), the compressor 58 and the fan 9b are turned off, the defrosting heater 21 is turned on, and the damper heater 64 is also turned on. While the dampers 101a, 101b, 102a, 102b are cooled by the air having the freezing temperature during the cooling operation using the F evaporator 14b, the first switching chamber 5 or the second switching chamber 6 is in the refrigerating mode, Especially when storing vegetables and the like, high-humidity air from the inside of the refrigerator may reach the dampers 101a, 101b, 102a, 102b and cause frost formation. Therefore, the damper heater 64 is also turned on during the defrosting operation, The dampers 101a, 101b, 102a, 102b are also defrosted. In addition, the heaters of the dampers 101a and 101b for the first switching chamber 5 and the dampers 102a and 102b for the second switching chamber 6 are separately provided, and only the heaters on the damper side related to the switching chambers in the refrigerating mode are turned on. ,Energy saving performance may be improved by suppressing heater power.

除霜運転を行い,F蒸発器温度センサ44bにより検知するF蒸発器14bの温度T_eが例えば8℃のT_e−def以上になる(制御S3−3)と除霜運転を終了(制御S3−4,S3−5)し,図9の冷却制御に戻る(図9中の制御S1−15)。 When the defrosting operation is performed and the temperature T_e of the F evaporator 14b detected by the F evaporator temperature sensor 44b becomes equal to or higher than T_e-def of 8° C. (control S3-3), the defrosting operation ends (control S3-4). , S3-5) and returns to the cooling control of FIG. 9 (control S1-15 in FIG. 9).

図13は本実施例の冷蔵庫1における第一切替室5のモード切り替え制御フローチャートである。なお,第二切替室6のモード切り替え制御は第一切替室5と同様のため省略する。本実施例の冷蔵庫1では,第一切替室5のモード切り替えが行われると,「温度制御」と「ダンパヒータ制御」と「切替中表示」の3つの制御を並列して行う。 FIG. 13 is a mode switching control flowchart of the first switching chamber 5 in the refrigerator 1 of this embodiment. The mode switching control of the second switching chamber 6 is omitted because it is the same as that of the first switching chamber 5. In the refrigerator 1 of the present embodiment, when the mode switching of the first switching chamber 5 is performed, three controls of "temperature control", "damper heater control" and "switching display" are performed in parallel.

まず温度制御について説明する。モードの切り替えが行われると,第一切替室5に関する各基準温度設定値が変更される(例えば図9の制御S1-4(基準温度T_S2F-ON)を制御S1-5(基準温度T_S2R-ON)に変更)。また,短時間で所定の温度に到達させる,特に冷蔵モードから冷凍モードの切り替えの際に冷凍温度に到達させるため,圧縮機58の回転数及びFファン9bの回転数を高める。その後,その状態にて図9,図10に示した冷却制御を行う(制御S4−2)が,圧縮機58がOFFになる(制御S4−3)と,除霜運転に移行する(制御S4−5)。除霜運転が終了する(制御S4−6)と,図9,図10に示した通常の冷却制御に戻り,モード切り替え時特有の温度制御を終了する。除霜運転中の制御は図12に示したものと同様である。なお,本実施例では,冷凍モードから冷蔵モードへの切り替えの場合も,圧縮機58の回転数及びFファン9bの回転数を高めるようにしており,これは後述する除霜運転を早く開始させるため(制御S4−3:Yes→制御S4−5)と,制御の場合分けを少なくして制御プログラムを簡略化するためである。 First, the temperature control will be described. When the mode is switched, each reference temperature set value for the first switching chamber 5 is changed (for example, control S1-4 (reference temperature T_S2F-ON) in FIG. 9 is controlled S1-5 (reference temperature T_S2R-ON). )change to). In addition, the rotation speed of the compressor 58 and the rotation speed of the F fan 9b are increased in order to reach the predetermined temperature in a short time, particularly when the freezing mode is reached when switching from the refrigeration mode to the freezing mode. After that, the cooling control shown in FIGS. 9 and 10 is performed in that state (control S4-2), but when the compressor 58 is turned off (control S4-3), the operation shifts to the defrosting operation (control S4). -5). When the defrosting operation ends (control S4-6), the normal cooling control shown in FIGS. 9 and 10 is returned to, and the temperature control peculiar to the mode switching ends. The control during the defrosting operation is the same as that shown in FIG. In the present embodiment, even when the freezing mode is switched to the refrigerating mode, the rotation speed of the compressor 58 and the rotation speed of the F fan 9b are increased, which makes the defrosting operation described later start earlier. This is to simplify the control program by reducing the number of cases of control (control S4-3: Yes→control S4-5).

ここで,制御S4−3にて除霜運転に移行する理由について説明する。 Here, the reason for shifting to the defrosting operation in control S4-3 will be described.

1つ目は,この除霜運転を行うことで,冷凍モードから冷蔵モードへの加熱を促進できる。除霜ヒータは約150Wと,本実施例の冷蔵庫の中で最大の発熱量を備えているため,これによりF蒸発器14b及びその周辺風路を加熱することで,第一切替室5及び第二切替室6も断熱仕切壁27を介して加熱され,比較的短い時間で冷凍温度帯から冷蔵温度帯に切り替えることができる。なお,例えば第一切替室5を冷凍モードから冷蔵モードにした場合,この除霜運転中は第一切替室5側のダンパ101aまたは101bを開けておき,F蒸発器14b周辺の風路を流れる暖気が第一切替室5に流れるようにすることで,この暖気により第一切替室5を加熱し,冷蔵温度帯に切り替える速度をさらに高めてもよい。 First, by performing this defrosting operation, heating from the freezing mode to the refrigeration mode can be promoted. Since the defrost heater has about 150 W, which is the maximum heat generation amount in the refrigerator of this embodiment, by heating the F evaporator 14b and the air passages around it, the defrosting heater 5 and the first switching chamber 5 and The second switching chamber 6 is also heated via the heat insulating partition wall 27, and can switch from the freezing temperature zone to the refrigerating temperature zone in a relatively short time. Note that, for example, when the first switching chamber 5 is changed from the freezing mode to the refrigerating mode, the damper 101a or 101b on the first switching chamber 5 side is opened during this defrosting operation, and the air passage around the F evaporator 14b flows. By allowing warm air to flow to the first switching chamber 5, the first switching chamber 5 may be heated by this warm air and the speed of switching to the refrigerating temperature zone may be further increased.

2つ目は,モード毎に異なる着霜により,考慮し難い着霜状態が生じることを抑制するためである。例えばF蒸発器14bには,第一切替室5用のダンパ101aと第二切替室6用のダンパ102aの両方を開けている場合は冷凍室4と第一切替室5と第二切替室6の空気が流れ,ダンパ101aのみを開けている場合は冷凍室4と第一切替室5の空気が流れ,ダンパ102aのみを開けている場合は冷凍室4と第一切替室5の空気が流れ,また両方を閉じている場合は冷凍室4の空気が流れる。すなわち,ダンパの開閉状態によってF蒸発器14b周りの空気の流れが変わる。従って,冷蔵モードと冷凍モードでダンパ101a,101bの開閉時間が変わると,F蒸発器14b周りの空気の流れに対する影響が変わる。また,本実施例の冷蔵庫1では,冷凍モードと冷蔵モードでダンパ101a,101bと異なるダンパを開けているため,さらに冷凍モードと冷蔵モードでF蒸発器14b周りの空気の流れは複雑に変化する。空気の流れが変わるとF蒸発器14bに生じる着霜分布も変わる。加えて,冷蔵モードの貯蔵室から来る空気の方が基本的に高温で高湿(絶対湿度が高い)ため着霜もし易く,その点でもモードによって着霜分布が変わる。そのため,切替室が冷蔵モードと冷凍モードの両方が混ざった場合を考慮して着霜状態を予測することは難しい。試験において評価する場合も冷蔵モードと冷凍モードの時間割合を変えて各割合で着霜分布の評価する必要があり,膨大な試験時間が必要になり困難である。これは,特に本実施例1のように切替室の容量が比較的大きい(例えば切替室の幅方向の長さが、冷蔵庫1全体の幅方向と同じ)冷蔵庫や,複数の切替室を持っている冷蔵庫では影響が大きい。意図しない着霜分布になると,空気が意図しない箇所に流れ,さらに意図しない箇所へと霜が成長していくことが考えられる。これにより,例えば除霜ヒータ21等の熱が伝わり難い箇所に霜が成長し,除霜が適切に行えないことや,F蒸発器14bの冷気を送風するFファン9bの周りに霜が成長し,Fファン9bがロックしてしまい送風できない等の不具合を生じる恐れがある。 The second is to prevent frost formation that is difficult to consider due to different frost formation for each mode. For example, when both the damper 101a for the first switching chamber 5 and the damper 102a for the second switching chamber 6 are opened in the F evaporator 14b, the freezing chamber 4, the first switching chamber 5, and the second switching chamber 6 are opened. Of the freezing chamber 4 and the first switching chamber 5 flows when only the damper 101a is opened, and the air of the freezing chamber 4 and the first switching chamber 5 flows when only the damper 102a is opened. , When both are closed, the air in the freezer compartment 4 flows. That is, the flow of air around the F evaporator 14b changes depending on whether the damper is open or closed. Therefore, if the opening/closing time of the dampers 101a and 101b changes in the refrigerating mode and the freezing mode, the influence on the flow of air around the F evaporator 14b changes. Further, in the refrigerator 1 of the present embodiment, the dampers 101a and 101b different from the dampers are opened in the refrigerating mode and the refrigerating mode, so that the air flow around the F evaporator 14b changes in a complicated manner in the refrigerating mode and the refrigerating mode. .. When the air flow changes, the frost distribution generated on the F evaporator 14b also changes. In addition, the air coming from the storage room in the refrigerating mode is basically hot and humid (high absolute humidity), so that it is more likely to be frosted. Therefore, it is difficult to predict the frosted state in consideration of the case where both the refrigerating mode and the freezing mode are mixed in the switching chamber. Even in the case of evaluation in a test, it is necessary to change the time ratio between the refrigeration mode and the freezing mode to evaluate the frost distribution at each ratio, which requires a huge amount of test time and is difficult. This is especially true for a refrigerator having a relatively large capacity of the switching chamber (for example, the length of the switching chamber in the width direction is the same as the width of the entire refrigerator 1) as in the first embodiment, and a plurality of switching chambers. The refrigerator has a large effect. When unintended frost distribution is reached, air may flow to unintended locations and frost may grow to unintended locations. As a result, for example, frost grows in a place where heat cannot be easily transferred, such as the defrosting heater 21, and defrosting cannot be performed properly, and frost grows around the F fan 9b that blows the cool air of the F evaporator 14b. , The F fan 9b may be locked, and a problem such as inability to blow air may occur.

そこで本実施例の冷蔵庫1では,モードを切り替えた後,比較的早い時間にて除霜運転を行うようしている。これにより,モードを切り替える前に生じていた霜の影響を抑え,このような不具合を抑制している。すなわち,信頼性の高い冷蔵庫としている。 Therefore, in the refrigerator 1 of the present embodiment, the defrosting operation is performed in a relatively early time after switching the mode. As a result, the effect of frost that had occurred before switching modes was suppressed, and such problems were suppressed. That is, the refrigerator is highly reliable.

但し,前回の除霜運転終了から経過した時間(図13の制御S3−4よりタイマAにて計測)が例えば6時間以下と短い場合(制御S4−4:No),前のモード状態での着霜の影響は小さいと考え本除霜制御は省略し,図9,図10に示した通常の冷却制御に戻り,モード切り替え時特有の温度制御を終了する。これにより高い信頼性を保ちながら,除霜運転による消費電力量の増加を抑え,省エネルギー性能を高めている。 However, when the time elapsed since the end of the previous defrosting operation (measured by timer A from control S3-4 in FIG. 13) is as short as 6 hours or less (control S4-4: No), the previous mode state This defrosting control is omitted because the influence of frost formation is considered to be small, the normal cooling control shown in FIGS. 9 and 10 is returned to, and the temperature control peculiar to the mode switching is ended. As a result, while maintaining high reliability, an increase in power consumption due to defrosting operation is suppressed and energy saving performance is improved.

次に,ダンパヒータ制御について説明する。本制御は冷蔵モードから冷凍モードに切り替えた際に行われる(制御S4−8:Yes)。図12の除霜運転制御でも示したが,ダンパ101a,101bはF蒸発器14bを用いた冷却運転を行っている間,冷凍温度の空気により冷却されるが,第一切替室5が冷蔵モードで,特に野菜などを貯蔵している場合,庫内からの高湿な空気がダンパ101a,101bに到達し,着霜することがある。そこで,本実施例の冷蔵庫1では,冷蔵モードから冷凍モードに切り替えると,タイマBが20分以上になるまでダンパヒータ64をONにする(制御S4−9からS4−11)。これにより,冷蔵モードを実施している間にダンパ101a,101bが凍結しても,冷凍モードでは確実にダンパ101a,101bが正常に動作できるようにしている。特に,本実施例の冷蔵庫1では,第一切替室5のダンパを複数備え,冷蔵モードの場合,基本的にダンパ101aは開かないようにしているため,本制御が重要となる。冷蔵モードの状態でダンパ101aが長時間に渡って動作しないと,通常の除霜運転中に霜を溶かしていても,ダンパ101aに除霜水が残って氷結してしまい,正常に動作できない状態になってしまう可能性がある。一方,冷凍モードになるとダンパ101aを主に開閉させるため,冷蔵モードから冷凍モードに切り替えた際にダンパヒータ64によりダンパ101aを加熱し,確実にダンパ101aが動作するようにしている。 Next, the damper heater control will be described. This control is performed when the refrigerating mode is switched to the freezing mode (control S4-8: Yes). As shown in the defrosting operation control of FIG. 12, the dampers 101a and 101b are cooled by the air of the freezing temperature while the cooling operation using the F evaporator 14b is performed, but the first switching chamber 5 is in the refrigeration mode. Therefore, particularly when storing vegetables and the like, high-humidity air from the inside of the refrigerator may reach the dampers 101a and 101b and frost may be formed. Therefore, in the refrigerator 1 of the present embodiment, when the refrigerating mode is switched to the freezing mode, the damper heater 64 is turned on until the timer B reaches 20 minutes or more (control S4-9 to S4-11). As a result, even if the dampers 101a and 101b freeze during the refrigerating mode, the dampers 101a and 101b can surely operate normally in the freezing mode. Particularly, in the refrigerator 1 of the present embodiment, a plurality of dampers of the first switching chamber 5 are provided, and in the refrigerating mode, the damper 101a is basically prevented from opening, so this control is important. If the damper 101a does not operate for a long time in the refrigeration mode, even if the frost is melted during the normal defrosting operation, the defrosting water remains in the damper 101a and freezes up, and the damper 101a cannot operate normally. There is a possibility of becoming. On the other hand, since the damper 101a is mainly opened/closed in the freezing mode, the damper heater 64 heats the damper 101a when the refrigerating mode is switched to the freezing mode so that the damper 101a operates reliably.

次に,切替中表示制御について説明する。本実施例の冷蔵庫1では,第一切替室5のモードを切り替えると,モード切替中表示201a(図8(b)参照)がON(点灯)する(制御S4−13)。このモード切替中表示201aは,冷蔵モードから冷凍モードへの切り替えの際(制御S4−14:Yes)は,第一切替室5の温度T_S1が例えば−15℃のF切替完了判定温度になるとOFF(制御S4−17)し,冷凍モードから冷蔵モードへの切り替えの際(制御S4−14:No)は,第一切替室5の温度T_S1が例えば0℃以上のR切替完了判定温度になるとOFF(制御S4−17)する。これにより,消灯してから食品を入れるようにすることで,冷蔵モードから冷凍モードへの切り替えの際は,冷凍食品が誤って解凍されることを抑えられ,冷凍モードから冷蔵モードへの切り替えの際は,食品が誤って凍結することを抑えられるようにしている。なお,冷蔵モードに切り替える際は水の融点温度(0℃)付近であるのに対し,冷凍モードに切り替える際は−15℃と融点温度よりも10℃以上低温にしているのは,例えばアイスクリームなどの融点が低いものに配慮しているとともに,食品を入れる際のドア開閉による温度上昇を考慮したものである。 Next, the display control during switching will be described. In the refrigerator 1 of the present embodiment, when the mode of the first switching chamber 5 is switched, the mode switching display 201a (see FIG. 8B) is turned on (lit) (control S4-13). The mode switching indication 201a is turned off when the temperature T_S1 of the first switching chamber 5 reaches the F switching completion determination temperature of, for example, −15° C. when switching from the refrigerating mode to the freezing mode (control S4-14: Yes). (Control S4-17), and when switching from the freezing mode to the refrigerating mode (Control S4-14: No), when the temperature T_S1 of the first switching chamber 5 reaches the R switching completion determination temperature of 0° C. or higher, for example, it is turned off. (Control S4-17) is performed. As a result, by turning off the light and inserting food, it is possible to prevent the frozen food from being thawed by mistake when switching from the refrigerating mode to the freezing mode, and to switch from the freezing mode to the refrigerating mode. In this case, the food is prevented from accidentally freezing. It should be noted that, when switching to the refrigerating mode, the melting point temperature of water is around 0°C, whereas when switching to the freezing mode, the temperature is -15°C, which is 10°C lower than the melting point temperature. In addition to considering low melting points such as, the temperature rise due to opening and closing the door when food is put in is taken into consideration.

なお,上記の切替中表示のOFFに合せ,本実施例の冷蔵庫1では,専用のブザー音を所定の時間鳴らし,また,ユーザーがモバイルデバイスやパーソナルコンピュータを登録していると,外部通信機能により,そのデバイスに切替完了をポップアップで通知するようにしている(制御S4−17)。これによりモード切り替えを行っても,食品の意図しない凍結及び解凍を抑えながら,比較的早いタイミングで食品を入れられるようにしている。 In addition, when the above-mentioned display during switching is turned off, the refrigerator 1 of the present embodiment emits a dedicated buzzer sound for a predetermined time, and when the user has registered a mobile device or a personal computer, the external communication function causes A pop-up notification of the completion of switching is given to the device (control S4-17). As a result, even if the mode is switched, food can be put in at a relatively early timing while suppressing unintentional freezing and thawing of food.

なお,図8(b)でも前述したように,本実施例の冷蔵庫1では,デバイスを登録しておくと,モード切り替えが開始されたこともポップアップ表示する(制御S4−13)ようにしており,これにより,別のユーザーによりモードが切り替えられたことを気づき易くしている。 As described above with reference to FIG. 8B as well, in the refrigerator 1 of the present embodiment, when the device is registered, the fact that the mode switching has started is also displayed in a pop-up (control S4-13). , This makes it easier to notice that the mode has been switched by another user.

(実施例2)
本実施例は,操作盤と表示盤を兼ねる操作表示盤202を備えた形態例である。操作盤200,表示盤201以外は実施例1と同様である。
(Example 2)
The present embodiment is an example of a form provided with an operation display panel 202 which also serves as an operation panel and a display panel. The operation panel 200 and the display panel 201 are the same as those in the first embodiment.

図14は実施例2に係わる冷蔵庫の正面図,図15は実施例2に係わる操作表示盤202である。 14 is a front view of a refrigerator according to the second embodiment, and FIG. 15 is an operation display panel 202 according to the second embodiment.

本実施例では,冷蔵室ドア2aに操作表示盤202を備えており,何れのドアも開けることなく,操作できるようにしている。これにより,操作性を向上させている。一方,操作表示盤202では,実施例1の操作盤201と同様,第一切替室5のモードを切り替える際はモード切替操作部202a,第二切替室6のモードを切り替える際はモード切替操作部202bを,例えば3秒長押しとする。本実施例では,何れのドアも開けることなく,通常のキッチン作業中にモード切替操作部202a,202bに触れてしまう恐れがあるが,長押しとすることで,意図せずモードが切り替わる誤操作を抑えることができる。 In this embodiment, the refrigerating compartment door 2a is provided with the operation display panel 202 so that the operation can be performed without opening any door. This improves operability. On the other hand, in the operation display panel 202, similar to the operation panel 201 of the first embodiment, when switching the mode of the first switching chamber 5, the mode switching operating section 202a and when switching the mode of the second switching chamber 6, the mode switching operating section. 202b is pressed and held for 3 seconds, for example. In this embodiment, there is a risk that the mode switching operation units 202a and 202b will be touched during normal kitchen work without opening any doors, but if the button is pressed for a long time, an erroneous operation in which the mode is unintentionally switched is performed. Can be suppressed.

本実施例では,実施例1の図8(b)で示したモード切替中表示201a,201bを,冷蔵モードか冷凍モードかを示す表示部202c,202dで兼ねる。ただし,実施例1においてモード切替中表示が点灯する条件(図13参照)では,本実施例では表示部202c,202dが点滅することで代用する。具体的には,例えばモード切替操作部202aを長押しし,冷蔵モードの第一切替室5を冷凍モードに切り替える指示が行われると,第一切替室5が低温になるまで表示部202cの冷凍側の照明を点滅させる。これにより,少ない照明でモードの状態表示と切替中表示を示すことができ,低コスト化できると共に,ドアを開けることなく,切り替え中であることと,切り替え後のモードが何になるかを合せて確認することができる。 In this embodiment, the mode switching displays 201a and 201b shown in FIG. 8B of the first embodiment are also used as the display units 202c and 202d that indicate the refrigerating mode or the freezing mode. However, under the condition that the mode switching display is lit in the first embodiment (see FIG. 13), the display units 202c and 202d blink in this embodiment to substitute. Specifically, for example, when the mode switching operation unit 202a is pressed for a long time and an instruction to switch the first switching chamber 5 in the refrigerating mode to the freezing mode is issued, the freezing of the display unit 202c is continued until the first switching chamber 5 becomes a low temperature. Blink the side lights. As a result, it is possible to display the mode status display and the switching-in-progress display with a small amount of illumination, and it is possible to reduce the cost. Can be confirmed.

次に,類似の効果が得られる他の形態例を示す。 Next, another form example in which a similar effect is obtained will be shown.

図16は他の形態例の操作表示盤203である。(a)は全ての照明を点灯させた状態,(b)は操作している最中の表示の一例,(c)は無操作時の表示の一例,(d)はモード切替中の表示の一例である。 FIG. 16 shows an operation display panel 203 of another form example. (A) is a state in which all the lights are turned on, (b) is an example of a display during operation, (c) is an example of a display during no operation, and (d) is a display during mode switching. This is an example.

実施例2と同様に,操作表示盤203は冷蔵室ドア2aに設けており,何れのドアも開けることなく,操作できる。本実施例の操作表示盤203は,冷蔵庫の形状を模した図を載せており,それぞれの貯蔵室の温度設定(図中の低め,標準,高め)と,各切替室5,6のモード状態(冷凍,冷蔵)を,その模した貯蔵室内に表示させる。各貯蔵室の横に,それぞれの温度調整の操作部と,モード切替操作部203a,203bを設けている。これにより,各貯蔵室の名前が分からないユーザーでも,状態が確認し易く,また操作し易くなっている。 Similar to the second embodiment, the operation display panel 203 is provided on the refrigerating compartment door 2a and can be operated without opening any door. The operation display panel 203 of the present embodiment is provided with a diagram simulating the shape of a refrigerator, the temperature setting of each storage chamber (lower, standard, higher in the diagram) and the mode state of each switching chamber 5, 6. Display (freezing, refrigerating) in the simulated storage room. Next to each of the storage chambers, an operation unit for temperature adjustment and mode switching operation units 203a and 203b are provided. As a result, even a user who does not know the name of each storage room can easily check the status and operate the storage room.

本実施例では,いずれかの操作部に触れると,(b)に示すように,そのときの各貯蔵室の各状態を表示するが,数秒間操作がされないと,(c)に示すように,切替室5,6の冷凍モード,冷蔵モードの状態のみ,すなわち表示部203c,204dのみを表示するようにしている。なお,これは図15に示す例でも同様である。このように切替室5,6の冷凍モード,冷蔵モードの状態を常に点灯させて表示しておくことで,ユーザーによる冷凍食品と冷蔵食品の入れ間違えを抑制できる。なお,この効果は,操作部200,と表示部201を兼ねたものに限定されるものだけではなく,例えば表示部202に,それぞれのモードの状態を示す表示を設けても同様の効果が得られる。 In this embodiment, when one of the operation parts is touched, each state of each storage chamber at that time is displayed as shown in (b), but if no operation is performed for several seconds, as shown in (c). , Only the states of the switching chambers 5 and 6 in the freezing mode and the refrigerating mode, that is, only the display units 203c and 204d are displayed. This is the same in the example shown in FIG. In this way, the states of the freezing mode and the refrigerating mode of the switching chambers 5 and 6 are constantly lit and displayed to prevent the user from mistakenly inserting the frozen food and the chilled food. It should be noted that this effect is not limited to a combination of the operation unit 200 and the display unit 201, and the same effect can be obtained even if the display unit 202 is provided with a display showing the state of each mode. To be

図16の例では,モード切替中表示が点灯する条件(図14参照)では,表示部203c,203dを点滅させる。例えば,モード切替操作部202aを長押しし,冷蔵モードの第一切替室5を冷凍モードに切り替える指示が行われると,第一切替室5が低温になるまで表示部203cの冷凍の文字を点滅させる。これにより,図15に示した例と同様,少ない照明でモードの状態表示と切替中表示を示すことができ,低コスト化できると共に,ドアを開けることなく,切り替え中であることと,切り替え後のモードが何になるかを合せて確認することができる。 In the example of FIG. 16, the display units 203c and 203d are made to blink under the condition that the mode switching display is lit (see FIG. 14). For example, when the instruction to switch the first switching chamber 5 in the refrigerating mode to the freezing mode is issued by pressing the mode switching operation unit 202a for a long time, the frozen character on the display unit 203c blinks until the first switching chamber 5 becomes cold. Let As a result, similar to the example shown in FIG. 15, it is possible to show the mode status display and the switching-in-progress display with a small amount of illumination, which can reduce the cost, and it is being switched without opening the door and after switching. You can also check what the mode will be.

以上が、本実施の形態例を示す実施例である。なお、本発明は前述した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、前述した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 The above is an example of the embodiment. It should be noted that the present invention is not limited to the above-described embodiments, but includes various modifications. For example, the above-described embodiments have been described in detail in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the configurations described. Further, it is possible to add/delete/replace other configurations with respect to a part of the configurations of the embodiment.

1 冷蔵庫
2 冷蔵室
2a、2b 冷蔵室ドア
3 製氷室
3a 製氷室ドア
3b 製氷室容器
3c 製氷皿
4 冷凍室
4a 冷凍室ドア
4b 冷凍室容器
5 第一切替室
5a 第一切替室ドア
5b 第一切替室容器
6 第二切替室
6a 第二切替室ドア
6b 第二切替室容器
8a R蒸発器室(冷蔵用蒸発器室)
8b F蒸発器室(冷凍用蒸発器室)
9a Rファン(冷蔵用ファン)
9b Fファン(冷凍用ファン)
10 断熱箱体
10a 外箱
10b 内箱
11 冷蔵室風路
11a 冷蔵室吐出口
12 冷凍室風路
12a 製氷室吐出口
12b 冷凍室吐出口
12c 冷凍室戻り口
12d 冷凍室戻り風路
14a R蒸発器(冷蔵用蒸発器)
14b F蒸発器(冷凍用蒸発器)
15a、b 冷蔵室戻り口
16 ヒンジカバー
21 ラジアントヒータ
23a Rトイ
23b Fトイ
24 発泡断熱材
25,25a、25a、25b、25c、25d、25e、25f、25g 真空断熱材
26 F排水管
27、28、29、30 断熱仕切壁
31 制御基板
32a R蒸発皿
32b F蒸発皿
34a R棚最上段
34b R棚2段目
34c R棚3段目
34d R棚最下段
35 第一間接冷却室
36 第二間接冷却室
37 製氷タンク
39 機械室
40a R蒸発器温度センサ
40b F蒸発器温度センサ
41 冷蔵室温度センサ
42 冷凍室温度センサ
43 第一切替室温度センサ
44 第二切替室温度センサ
45 トイ温度センサ
46 外気温度センサ
47 外気湿度センサ
50a、50b 放熱器
51 ドライヤ
52 三方弁(冷媒制御手段)
53a 冷蔵用キャピラリチューブ(減圧手段)
53b 冷凍用キャピラリチューブ(減圧手段)
54b 冷蔵用気液分離器
54b 冷凍用気液分離器
55 冷媒合流部
56 逆止弁
57a、57b 熱交換部
58 圧縮機
60 第一切替室背面ヒータ
61 第一切替室下面ヒータ
62 第一切替室上面ヒータ
63 第一切替室背面ヒータ
64 ダンパヒータ
101a、101b、102a、102b ダンパ(送風制御部)
111a、111b 第一切替室吐出口
111c 第一切替室戻り口
112a、112b 第二切替室吐出口
112c 第二切替室戻り口
200 操作部
1 Refrigerator 2 Cold room 2a, 2b Cold room door 3 Ice making room 3a Ice making room door 3b Ice making room container 3c Ice making tray 4 Freezing room 4a Freezing room door 4b Freezing room container 5 First switching room 5a First switching room door 5b First Switching chamber container 6 Second switching chamber 6a Second switching chamber door 6b Second switching chamber container 8a R evaporator chamber (refrigerating evaporator chamber)
8b F evaporator room (freezer evaporator room)
9a R fan (cooling fan)
9b F fan (freezing fan)
10 Thermal Insulation Box 10a Outer Box 10b Inner Box 11 Refrigerator Chamber Airway 11a Refrigerator Chamber Discharge Port 12 Freezer Chamber Airway 12a Ice Making Chamber Discharge Port 12b Freezer Chamber Discharge Port 12c Freezer Chamber Return Port 12d Freezer Chamber Return Airway 14a R Evaporator (Refrigerator evaporator)
14b F evaporator (freezing evaporator)
15a, b Refrigerator return port 16 Hinge cover 21 Radiant heater 23a R toy 23b F toy 24 Foam insulation 25, 25a, 25a, 25b, 25c, 25d, 25e, 25f, 25g Vacuum insulation 26 F Drain pipe 27, 28 , 29, 30 Adiabatic partition wall 31 Control board 32a R evaporation tray 32b F evaporation tray 34a R shelf top 34b R shelf 2nd 34c R shelf 3rd 34d R shelf bottom 35 First indirect cooling chamber 36 Second indirect Cooling room 37 Ice making tank 39 Machine room 40a R evaporator temperature sensor 40b F evaporator temperature sensor 41 refrigerating room temperature sensor 42 freezing room temperature sensor 43 first switching room temperature sensor 44 second switching room temperature sensor 45 toy temperature sensor 46 outside air Temperature sensor 47 Outside humidity sensor 50a, 50b Radiator 51 Dryer 52 Three-way valve (refrigerant control means)
53a Refrigerating capillary tube (pressure reducing means)
53b Capillary tube for freezing (pressure reducing means)
54b Refrigerating gas-liquid separator 54b Freezing gas-liquid separator 55 Refrigerant merging section 56 Check valves 57a, 57b Heat exchange section 58 Compressor 60 First switching chamber rear heater 61 First switching chamber lower surface heater 62 First switching chamber Upper surface heater 63 First switching chamber rear surface heater 64 Damper heater 101a, 101b, 102a, 102b Damper (blower control unit)
111a, 111b 1st switching chamber discharge port 111c 1st switching chamber return port 112a, 112b 2nd switching chamber discharge port 112c 2nd switching chamber return port 200 Operation part

Claims (5)

冷凍温度帯に設定可能な複数の貯蔵室と,該複数の貯蔵室のそれぞれの室内温度を検知する複数のセンサと,圧縮機と,蒸発器と、ファンと、を備え,
前記圧縮機と前記ファンを駆動させて前記蒸発器で低温にした空気を前記複数の貯蔵室に送風する冷却運転を備えた冷蔵庫において,
前記複数のセンサにより検知する前記複数の貯蔵室の何れかが,それぞれの第一所定温度よりも高温になると,前記冷却運転を開始することを特徴とする冷蔵庫。
A plurality of storage rooms that can be set in the freezing temperature range, a plurality of sensors that detect the room temperature of each of the plurality of storage rooms, a compressor, an evaporator, and a fan;
A refrigerator provided with a cooling operation for driving the compressor and the fan to blow the air cooled at the evaporator to the plurality of storage chambers,
The refrigerator characterized by starting the cooling operation when any of the plurality of storage chambers detected by the plurality of sensors becomes higher than a first predetermined temperature of each of the plurality of storage chambers.
冷凍温度帯の複数の貯蔵室と,該複数の貯蔵室のそれぞれの室内温度を検知する複数のセンサと,圧縮機と,蒸発器と、ファンと、を備え,
前記圧縮機と前記ファンを駆動させて前記蒸発器で低温にした空気を前記複数の貯蔵室に送風する冷却運転を備えた冷蔵庫において,
前記複数のセンサにより検知する前記複数の貯蔵室の温度が,何れも少なくとも1度以上,それぞれの第二所定温度よりも低温になると,前記冷却運転を終了することを特徴とする冷蔵庫。
A plurality of storage compartments in the freezing temperature zone, a plurality of sensors for detecting the respective room temperatures of the plurality of storage compartments, a compressor, an evaporator, and a fan,
A refrigerator provided with a cooling operation for driving the compressor and the fan to blow the air cooled at the evaporator to the plurality of storage chambers,
The refrigerator characterized in that when the temperatures of the plurality of storage chambers detected by the plurality of sensors are at least 1 degree or more and lower than the respective second predetermined temperatures, the cooling operation is terminated.
前記貯蔵室のうち少なくとも1つは,冷蔵温度帯と冷凍温度帯に設定可能な切替室であることを特徴とする請求項1乃至2に記載の冷蔵庫。 The refrigerator according to claim 1, wherein at least one of the storage chambers is a switching chamber capable of setting a refrigerating temperature zone and a freezing temperature zone. 送風制御手段を備え,
前記センサにより検知する前記貯蔵室の温度が前記第二所定温度よりも低温になると,前記送風制御手段により前記ファンから前記貯蔵室への送風を抑制し,
その後,前記貯蔵室の温度が第三の所定温度よりも高温になると,前記送風制御手段による前記ファンから前記貯蔵室への送風の抑制を止めることを特徴とする請求項1乃至3に記載の冷蔵庫。
Equipped with ventilation control means,
When the temperature of the storage chamber detected by the sensor becomes lower than the second predetermined temperature, the air blow control unit suppresses air flow from the fan to the storage chamber,
After that, when the temperature of the storage chamber becomes higher than a third predetermined temperature, the suppression of the air blow from the fan to the storage chamber by the air blow control means is stopped. refrigerator.
前記冷却運転を開始する際の前記第一所定温度に比べ,前記送風制御手段により前記ファンから前記貯蔵室への送風を抑制した後に,送風の抑制を止める際の前記第三所定温度の方が低温であることを特徴とする冷蔵庫。 Compared to the first predetermined temperature at the time of starting the cooling operation, the third predetermined temperature at the time of stopping the suppression of the air flow after suppressing the air flow from the fan to the storage chamber by the air flow control means is Refrigerator characterized by low temperature.
JP2019008916A 2019-01-23 2019-01-23 refrigerator Active JP6993993B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019008916A JP6993993B2 (en) 2019-01-23 2019-01-23 refrigerator
CN201910831319.1A CN111473575B (en) 2019-01-23 2019-09-04 Refrigerator with a door

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019008916A JP6993993B2 (en) 2019-01-23 2019-01-23 refrigerator

Publications (2)

Publication Number Publication Date
JP2020118341A true JP2020118341A (en) 2020-08-06
JP6993993B2 JP6993993B2 (en) 2022-01-14

Family

ID=71890455

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019008916A Active JP6993993B2 (en) 2019-01-23 2019-01-23 refrigerator

Country Status (1)

Country Link
JP (1) JP6993993B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112240677A (en) * 2020-11-25 2021-01-19 合肥工业大学 Control method for multifunctional chamber of refrigerator
CN114440529A (en) * 2020-11-03 2022-05-06 海信(山东)冰箱有限公司 Refrigerator refrigeration system energy-saving control method and refrigerator
US20220282901A1 (en) * 2021-03-04 2022-09-08 Lg Electronics Inc. Refrigerator

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006090686A (en) * 2004-08-26 2006-04-06 Toshiba Corp Refrigerator
JP2010249482A (en) * 2009-04-20 2010-11-04 Mitsubishi Heavy Ind Ltd Refrigerating device for land transportation
JP2011080696A (en) * 2009-10-07 2011-04-21 Toshiba Corp Refrigerator
JP2015117882A (en) * 2013-12-18 2015-06-25 三菱電機株式会社 Refrigerator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006090686A (en) * 2004-08-26 2006-04-06 Toshiba Corp Refrigerator
JP2010249482A (en) * 2009-04-20 2010-11-04 Mitsubishi Heavy Ind Ltd Refrigerating device for land transportation
JP2011080696A (en) * 2009-10-07 2011-04-21 Toshiba Corp Refrigerator
JP2015117882A (en) * 2013-12-18 2015-06-25 三菱電機株式会社 Refrigerator

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114440529A (en) * 2020-11-03 2022-05-06 海信(山东)冰箱有限公司 Refrigerator refrigeration system energy-saving control method and refrigerator
CN114440529B (en) * 2020-11-03 2024-02-06 海信冰箱有限公司 Energy-saving control method for refrigerating system of refrigerator and refrigerator
CN112240677A (en) * 2020-11-25 2021-01-19 合肥工业大学 Control method for multifunctional chamber of refrigerator
CN112240677B (en) * 2020-11-25 2021-11-30 合肥工业大学 Control method for multifunctional chamber of refrigerator
US20220282901A1 (en) * 2021-03-04 2022-09-08 Lg Electronics Inc. Refrigerator
US12085328B2 (en) * 2021-03-04 2024-09-10 Lg Electronics Inc. Refrigerator having heater in duct between compartments

Also Published As

Publication number Publication date
JP6993993B2 (en) 2022-01-14

Similar Documents

Publication Publication Date Title
JP5135045B2 (en) refrigerator
JP5109565B2 (en) vending machine
JPH0428988B2 (en)
JP6993993B2 (en) refrigerator
JP2003075050A (en) Refrigerator
JP2003121043A (en) Refrigerator
JP2015222131A (en) refrigerator
JP2001082850A (en) Refrigerator
JP6735436B2 (en) refrigerator
KR20050094673A (en) Cold air path structure of cold storage room door
JP2003090667A (en) Icemaking chamber constitution for refrigerator
JP7046023B2 (en) refrigerator
JP6985308B2 (en) refrigerator
CN111473575B (en) Refrigerator with a door
JP5175705B2 (en) refrigerator
JP2000258028A (en) Refrigerator
JP2021046984A (en) refrigerator
JP5957761B2 (en) Cooling storage
CN111473573A (en) Refrigerator with a door
JP2019184092A (en) refrigerator
JP4011314B2 (en) refrigerator
JP6646818B2 (en) refrigerator
JP5376796B2 (en) refrigerator
WO2005038364A1 (en) Cooling storage chamber and cooling equipment
JP6454866B2 (en) refrigerator

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190125

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20200904

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20200911

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200923

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210824

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211210

R150 Certificate of patent or registration of utility model

Ref document number: 6993993

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150