JP2020099991A - Fiber-reinforced composite material for arm member, arm member, and method of manufacturing arm member - Google Patents
Fiber-reinforced composite material for arm member, arm member, and method of manufacturing arm member Download PDFInfo
- Publication number
- JP2020099991A JP2020099991A JP2019222617A JP2019222617A JP2020099991A JP 2020099991 A JP2020099991 A JP 2020099991A JP 2019222617 A JP2019222617 A JP 2019222617A JP 2019222617 A JP2019222617 A JP 2019222617A JP 2020099991 A JP2020099991 A JP 2020099991A
- Authority
- JP
- Japan
- Prior art keywords
- arm member
- metal beam
- arm
- section
- fiber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Manipulator (AREA)
- Moulding By Coating Moulds (AREA)
Abstract
Description
本発明は、少なくとも片側に連節部を有する、多関節ロボット用アーム部材用繊維強化複合材料、アーム部材およびアーム部材の製造方法に関するものであり、特に、金属製梁部材に繊維強化複合材料の補強層を配置し、曲げ剛性とねじり剛性に優れたアーム部材に関する。 TECHNICAL FIELD The present invention relates to a fiber-reinforced composite material for an arm member for an articulated robot, an arm member, and a method for manufacturing the arm member, which has a joint portion on at least one side. The present invention relates to an arm member having a reinforcing layer and excellent in bending rigidity and torsional rigidity.
例えば、溶接やワークハンドリング等を行う多関節ロボットにおいて、少なくとも片側に連節部を有するアーム部材には、十分な曲げ剛性とねじり剛性が求められている。一方、ロボットの基端部分にはより先端側の自重が付加されるため、慣性モーメントが大きくなりロボットの高速化や小型化を阻害する一因となっている。つまり、アーム用のフレームには、高い曲げ剛性とねじり剛性を有するとともにより軽量な材料が求められている。 For example, in a multi-joint robot that performs welding, work handling, etc., sufficient bending rigidity and torsional rigidity are required for an arm member having a joint portion on at least one side. On the other hand, since the base end portion of the robot is further loaded with its own weight on the tip end side, the moment of inertia becomes large, which is one of the factors that hinder the speedup and downsizing of the robot. That is, for the frame for the arm, a material that has high bending rigidity and torsional rigidity and is lighter is required.
一般に、ロボットのフレームには、鉄やステンレス、アルミニウムなどの金属材による成形加工品が用いられているが、近年、低コスト化と共に更なる高速化や高精度化のために、先端側のフレームには特に格段の小形軽量化が求められ、フレーム用の材料として比較的安価で高強度で剛性も高くさらに比重が小さい繊維強化プラスチック(FRP)を適用する技術が提案されている(例えば、特許文献1参照)。 In general, the frame of a robot is a molded product made of a metal material such as iron, stainless steel, or aluminum, but in recent years, the frame on the tip side has been improved in order to reduce cost and further increase speed and accuracy. Is required to be significantly smaller and lighter, and there has been proposed a technique of applying a fiber reinforced plastic (FRP), which is relatively inexpensive, has high strength, high rigidity and low specific gravity, as a material for a frame (for example, a patent. Reference 1).
ところで、繊維強化プラスチックは強化繊維の配向に応じた方向性(繊維方向)を有しており、曲げ応力など繊維方向に対して垂直な力に対しては大きな強度を有するが、ねじり荷重により発生するせん断力等、繊維方向と平行な力に対しては強度が小さいという特徴がある。 By the way, fiber-reinforced plastic has a directionality (fiber direction) according to the orientation of the reinforcing fiber, and has great strength against forces perpendicular to the fiber direction such as bending stress, but it is generated by torsional load. It is characterized by low strength against forces parallel to the fiber direction, such as shearing forces.
この繊維強化プラスチックをロボットのフレームに適用する際には、様々な方向の曲げ応力やねじり方向の応力に対して十分な強度を得るために、フレームに使用する繊維強化プラスチックの繊維方向を少なくともフレームの0°(軸方向)と90°(軸に直交する方向)の2方向(場合によっては0°、45°、90°などの3方向)に交互に配向させながら積層成形して製造する技術が提案されている(例えば、特許文献2参照)。この技術によれば、種々の方向への曲げ応力やねじり応力に対して十分な強度や剛性を確保することができるが、金属材料に比べ材料費が高い、成形工程が複雑で生産性が低下するなどの経済性の観点から、実用化された例は限定的であった。 When applying this fiber reinforced plastic to the frame of the robot, in order to obtain sufficient strength against bending stress in various directions and stress in the torsion direction, the fiber direction of the fiber reinforced plastic used for the frame must be at least the frame direction. A technology of manufacturing by laminating while alternately orienting in two directions of 0° (axial direction) and 90° (direction orthogonal to the axis) (three directions such as 0°, 45°, 90° in some cases). Has been proposed (for example, see Patent Document 2). According to this technology, sufficient strength and rigidity can be secured against bending stress and torsional stress in various directions, but the material cost is higher than that of metal material, the molding process is complicated, and the productivity is reduced. From the economical point of view, the number of practical applications was limited.
本発明は、ねじり剛性と曲げ剛性を両立する、経済性に優れた多関節ロボット向けアーム部材を提供することを課題とする。 An object of the present invention is to provide an economically-efficient arm member for an articulated robot that achieves both torsional rigidity and bending rigidity.
本発明者らは、上記課題を解決すべく鋭意検討した結果、以下の構成からなるアーム部材、およびアーム部材の製造方法を見出し、本発明を完成させるに至った。すなわち本発明は、以下の構成からなる。
(1)少なくとも片側に連節部を有する多関節ロボット用アーム部材であり、少なくとも1つの平らな面を有する金属製梁部材の側面に、繊維強化複合材料からなる補強層を連節部から前記金属製梁部材の長さ方向に沿って配置することを特徴とするアーム部材。
(2)両側に連節部を有する(1)に記載のアーム部材。
(3)前記金属製梁部材が多角形断面を有する(1)または(2)に記載のアーム部材。
(4)金属製梁部材が矩形断面を有する(3)に記載のアーム部材。
(5)金属製梁部材が中空断面を有する(1)から(4)のいずれかに記載のアーム部材。
(6)前記補強層が金属製梁断面の角を避けて配置される(1)から(5)のいずれかに記載のアーム部材。
(7)前記多角形断面が中空断面である多角形中空断面であり、前記多角形中空断面の内辺iの長さaiと、内辺iに向かい合う外辺と接合した補強層の長さbiが、0.5ai≦bi≦aiの関係にある(5)または(6)に記載のアーム部材。
(8)前記補強層が少なくとも2つの側面に配置される(1)から(7)のいずれかに記載のアーム部材。
(9)前記補強層が幅方向の端部に向けて徐々に厚さが減少するテーパ部を有する(1)から(8)のいずれかに記載のアーム部材。
(10)前記繊維強化複合材料の強化繊維が炭素繊維であり、前記炭素繊維の配向が金属製梁部材の長手方向に揃えられている(1)から(9)のいずれかに記載のアーム部材。
(11)前記金属製梁部材が、少なくとも2つの金属製梁構成材を組み合わせた複合梁部材からなる(1)から(10)のいずれかに記載のアーム部材。
(12)(1)から(11)のいずれかに記載の多関節ロボット用アーム部材の製造方法であって、所定寸法にカットしたプリプレグを梁部材上に積層した複合体をプリプレグの硬化雰囲気に暴露し、プリプレグを硬化して補強層とする工程と、金属製梁部材と繊維強化複合材料を接着する工程を同時に行うことを特徴とするアーム部材の製造方法。
(13)(1)から(11)のいずれかに記載の多関節ロボット用アーム部材の製造方法であって、あらかじめ硬化したプリプレグからなる補強層を金属製梁部材に接着して一体化することを特徴とするアーム部材の製造方法。
(14)(1)から(11)のいずれかに記載の多関節ロボット用アーム部材の製造方法であって、補強層となる熱可塑UDテープを、前記熱可塑UDテープのマトリックスが溶融状態になるまで加熱した後に、金属製梁部材上に溶着することを特徴とするアーム部材の製造方法。
(15)(1)から(11)のいずれかに記載のアーム部材に用いられるアーム部材用繊維強化複合材料。
(16)前記アーム部材用繊維強化複合材料がプリプレグである(15)に記載のアーム部材用繊維強化複合材料。
(17)前記アーム部材用繊維強化複合材料が熱可塑UDテープである(15)に記載のアーム部材用繊維強化複合材料。
As a result of intensive studies to solve the above problems, the present inventors have found an arm member having the following configuration and a method for manufacturing the arm member, and completed the present invention. That is, the present invention has the following configurations.
(1) An arm member for an articulated robot having a joint portion on at least one side, wherein a reinforcing layer made of a fiber-reinforced composite material is formed on the side surface of a metal beam member having at least one flat surface from the joint portion. An arm member arranged along the length direction of a metal beam member.
(2) The arm member according to (1), which has joints on both sides.
(3) The arm member according to (1) or (2), wherein the metal beam member has a polygonal cross section.
(4) The arm member according to (3), wherein the metal beam member has a rectangular cross section.
(5) The arm member according to any one of (1) to (4), wherein the metal beam member has a hollow cross section.
(6) The arm member according to any one of (1) to (5), wherein the reinforcing layer is arranged so as to avoid a corner of a metal beam cross section.
(7) The polygonal cross section is a hollow polygonal cross section, and the length ai of the inner side i of the polygonal hollow cross section and the length bi of the reinforcing layer joined to the outer side facing the inner side i. Is the arm member according to (5) or (6), which has a relationship of 0.5ai≦bi≦ai.
(8) The arm member according to any one of (1) to (7), wherein the reinforcing layer is arranged on at least two side surfaces.
(9) The arm member according to any one of (1) to (8), in which the reinforcing layer has a tapered portion whose thickness gradually decreases toward an end portion in the width direction.
(10) The arm member according to any one of (1) to (9), wherein the reinforcing fibers of the fiber-reinforced composite material are carbon fibers, and the orientation of the carbon fibers is aligned in the longitudinal direction of the metal beam member. ..
(11) The arm member according to any one of (1) to (10), wherein the metal beam member is a composite beam member in which at least two metal beam components are combined.
(12) A method for manufacturing an arm member for an articulated robot according to any one of (1) to (11), wherein a composite body in which a prepreg cut to a predetermined size is laminated on a beam member is used as a curing atmosphere for the prepreg. A method for manufacturing an arm member, which comprises simultaneously performing the step of exposing and curing the prepreg to form a reinforcing layer and the step of adhering the metal beam member and the fiber reinforced composite material.
(13) The method for manufacturing an arm member for an articulated robot according to any one of (1) to (11), wherein a reinforcing layer made of a pre-cured prepreg is bonded and integrated with a metal beam member. And a method for manufacturing an arm member.
(14) The method for manufacturing an arm member for an articulated robot according to any one of (1) to (11), wherein the thermoplastic UD tape serving as a reinforcing layer is melted in a matrix of the thermoplastic UD tape. A method for manufacturing an arm member, which comprises heating to a certain temperature and then welding the metal beam member.
(15) A fiber-reinforced composite material for arm member used for the arm member according to any one of (1) to (11).
(16) The fiber-reinforced composite material for arm members according to (15), wherein the fiber-reinforced composite material for arm members is a prepreg.
(17) The fiber-reinforced composite material for arm members according to (15), wherein the fiber-reinforced composite material for arm members is a thermoplastic UD tape.
本発明は、ねじり剛性と曲げ剛性を両立する、経済性に優れた多関節ロボット向けアーム部材を提供する。 The present invention provides an arm member for an articulated robot that has both torsional rigidity and bending rigidity and is highly economical.
以下、さらに詳しく、本発明のアーム部材およびアーム部材の製造方法を実施するための形態について説明する。 Hereinafter, the modes for carrying out the arm member and the method for manufacturing the arm member of the present invention will be described in more detail.
本発明は、少なくとも片側に連節部を有する多関節ロボット用アーム部材であり、少なくとも1つの平らな面を有する金属製梁部材の前記側面に、繊維強化複合材料からなる補強層を連節部から前記金属製梁部材の長さ方向に沿って配置することを特徴とするものである。 The present invention is an arm member for an articulated robot having a joint portion on at least one side, wherein a reinforcing layer made of a fiber-reinforced composite material is formed on the side surface of a metal beam member having at least one flat surface. From the metal beam member is arranged along the length direction of the metal beam member.
図1は、本発明のアーム部材の一例を示す斜視図(a)および断面図(b)である。図1に示すように、本発明の一例のアーム部材1は、矩形中空構造の金属製梁部材2、補強層3、連節部4から構成されている。連節部4は、他の部材との接合構造を有し、駆動用の電動機が含まれる場合もある。 FIG. 1 is a perspective view (a) and a sectional view (b) showing an example of the arm member of the present invention. As shown in FIG. 1, an arm member 1 according to an example of the present invention includes a metal beam member 2 having a rectangular hollow structure, a reinforcing layer 3, and a joint portion 4. The articulation part 4 has a joint structure with other members, and may include an electric motor for driving.
本発明者らの知見によれば、かかる範囲を全て満たすものは、多関節ロボット用アーム部材に要求される、曲げ剛性とねじり剛性を両立し、金属材料から製造されたアーム部材に比べ軽量であり、繊維強化複合材料単体から製造されたアーム部材に比べ安価である。また、金属製梁部材の平らな側面に補強層を配置することで、繊維強化複合材料の積層工程を簡易にするだけでなく、シワの発生を防ぎ、外観に優れる。 According to the knowledge of the present inventors, those satisfying all such ranges satisfy both bending rigidity and torsional rigidity required for an arm member for an articulated robot, and are lighter than an arm member manufactured from a metal material. Yes, it is cheaper than an arm member manufactured from a single fiber-reinforced composite material. Further, by disposing the reinforcing layer on the flat side surface of the metal beam member, not only the lamination process of the fiber-reinforced composite material is simplified, but also wrinkles are prevented and the appearance is excellent.
本発明は、多関節ロボットの、両側に連節部を有するアームと、片側のみに連節部を有するアームのどちらにも用いることができるが、要求される曲げ剛性とねじり剛性のより高い両側に連節部を有するアームに、好ましく用いられる。 INDUSTRIAL APPLICABILITY The present invention can be used for both an arm having articulated parts on both sides of an articulated robot and an arm having articulated parts on only one side, but both sides having higher required bending rigidity and torsional rigidity. It is preferably used for an arm having an articulated part.
本発明で使用するアーム部材用繊維強化複合材料の各構成要素について説明する。 Each component of the fiber-reinforced composite material for arm members used in the present invention will be described.
本発明で使用するアーム部材用繊維強化複合材料は、例えば、プリプレグまたは熱可塑UD(Uni Directional)テープが挙げられる。プリプレグはアーム部材の曲げ剛性の観点から好ましい。 For a fiber-reinforced composite material arm member used in the present invention include, for example, a prepreg or thermoplastic UD (U ni D irectional) tape. The prepreg is preferable from the viewpoint of bending rigidity of the arm member.
プリプレグは、特に限定されるものではなく、強化繊維や強化繊維製の布地を、平板型の金型内に繊維束を並べるか繊維布を敷くなどしてから、熱硬化性樹脂を染み込ませてプレスすることで、プリプレグを容易に作成することができる。 The prepreg is not particularly limited, and the reinforcing fiber or the cloth made of the reinforcing fiber is arranged in the flat plate mold by arranging the fiber bundle or laying the fiber cloth, and then impregnated with the thermosetting resin. By pressing, a prepreg can be easily created.
プリプレグを構成する熱硬化性樹脂は、熱により架橋反応が進行して、少なくとも部分的に三次元架橋構造を形成する樹脂であれば特に限定されない。かかる熱硬化性樹脂としては、例えば、エポキシ樹脂、不飽和ポリエステル樹脂、ビニルエステル樹脂、ベンゾオキサジン樹脂、フェノール樹脂、尿素樹脂、メラミン樹脂および熱硬化性ポリイミド樹脂等が挙げられ、これらの変性体および2種類以上ブレンドした樹脂なども用いることができる。また、これらの熱硬化性樹脂は、加熱により自己硬化するものであっても良いし、硬化剤や硬化促進剤などを配合するものであっても良い。 The thermosetting resin that constitutes the prepreg is not particularly limited as long as it is a resin that undergoes a crosslinking reaction by heat to at least partially form a three-dimensional crosslinked structure. Examples of such thermosetting resins include epoxy resins, unsaturated polyester resins, vinyl ester resins, benzoxazine resins, phenol resins, urea resins, melamine resins and thermosetting polyimide resins, and the like, and modified products thereof and A resin obtained by blending two or more kinds may also be used. Further, these thermosetting resins may be self-curable by heating, or may be ones in which a curing agent, a curing accelerator and the like are blended.
これらの熱硬化性樹脂の中でも、エポキシ樹脂が、機械特性のバランスに優れ、硬化収縮が小さいという観点から、好ましい。 Among these thermosetting resins, epoxy resins are preferable from the viewpoint of excellent balance of mechanical properties and small curing shrinkage.
熱可塑UDテープは、特に限定されるものではないが、熱硬化性樹脂を用いる代わりに熱可塑性樹脂を用いること以外は上記のプリプレグと同様にして、熱可塑UDテープを容易に作成することができる。 The thermoplastic UD tape is not particularly limited, but a thermoplastic UD tape can be easily prepared in the same manner as the above prepreg except that a thermoplastic resin is used instead of the thermosetting resin. it can.
熱可塑UDテープを構成する熱可塑性樹脂としては、例えば、ポリエチレン(PE)樹脂、ポリプロピレン(PP)樹脂等のポリオレフィン系樹脂や、ポリエチレンテレフタレート(PET)樹脂、ポリアミド(PA)樹脂、ポリフェニレンスルフィド(PPS)樹脂等や、これらの共重合樹脂や変性樹脂、またアロイ等が挙げられる。中でも、得られる成形品の軽量性の観点からはポリプロピレン系樹脂が好ましく、力学特性および成形性の観点からはポリアミド系樹脂が好ましい。耐熱性の観点からはポリフェニレンスルフィド樹脂が好ましく用いられる。 Examples of the thermoplastic resin forming the thermoplastic UD tape include polyolefin resins such as polyethylene (PE) resin and polypropylene (PP) resin, polyethylene terephthalate (PET) resin, polyamide (PA) resin, and polyphenylene sulfide (PPS). ) Resins and the like, copolymer resins and modified resins thereof, alloys and the like. Among them, polypropylene resin is preferable from the viewpoint of lightness of the obtained molded product, and polyamide resin is preferable from the viewpoint of mechanical properties and moldability. From the viewpoint of heat resistance, polyphenylene sulfide resin is preferably used.
次に本発明にかかる補強層の各構成要素について説明する。 Next, each component of the reinforcing layer according to the present invention will be described.
本発明にかかる補強層は、アーム部材用繊維強化複合材料を積層・成形することにより得ることができる。 The reinforcing layer according to the present invention can be obtained by laminating and molding fiber-reinforced composite materials for arm members.
本発明にかかる補強層の積層構成は、例えば、強化繊維を一つの方向に積層した一方向積層、0°、±45°、90°を満遍なく含む疑似等方積層、織物積層などが挙げられるが、なかでも強化繊維の配向が金属梁の長さ方向にそろえられた一方向積層が、曲げ剛性の観点から好ましく、金属製梁部材の持つ高いねじり剛性と合わせて、曲げ剛性とねじり剛性の両方に優れたアーム部材を得られるため、好ましい。 Examples of the laminated structure of the reinforcing layer according to the present invention include unidirectional lamination in which reinforcing fibers are laminated in one direction, pseudo isotropic lamination including 0°, ±45°, and 90° evenly, and fabric lamination. Among them, unidirectional lamination in which the orientation of the reinforcing fibers is aligned in the length direction of the metal beam is preferable from the viewpoint of bending rigidity, and combined with the high torsional rigidity of the metal beam member, both bending rigidity and torsional rigidity are It is preferable because an excellent arm member can be obtained.
本発明にかかる補強層は、金属製梁部材の角を避けて配置することで、補強層を平板状の成形板から切断して準備し、作業工程を簡易にすることができるため、好ましい。 The reinforcing layer according to the present invention is preferably arranged by avoiding the corners of the metal beam member, so that the reinforcing layer can be cut and prepared from a flat-plate forming plate to simplify the working process.
本発明にかかる補強層の寸法として、前記多角形断面が中空断面である多角形中空断面であり、前記多角形中空断面の内辺iの長さai(mm)と、内辺iに向かい合う外辺と接合した補強層の長さbi(mm)が、0.5ai≦bi≦aiの関係にあることが好ましい。補強層のbi(mm)を、内辺iのai(mm)以下とすることで、もともと剛性に優れる金属製梁部材の角周辺の補剛を省略し、軽量性に優れるため好ましい。また、補強層のbi(mm)を、内辺iのai(mm)の半分の長さの0.5×ai(mm)以上とすることで、曲げ剛性やねじり剛性の観点から好ましい。 As a dimension of the reinforcing layer according to the present invention, the polygonal cross section is a polygonal hollow cross section which is a hollow cross section, and a length ai (mm) of an inner side i of the polygonal hollow cross section and an outer side facing the inner side i. It is preferable that the length bi (mm) of the reinforcing layer joined to the side has a relationship of 0.5ai≦bi≦ai. By setting the bi (mm) of the reinforcing layer to be equal to or less than the ai (mm) of the inner side i, stiffening around the corners of the metal beam member which is originally excellent in rigidity is omitted, and it is excellent in lightness, which is preferable. Further, it is preferable from the viewpoint of bending rigidity and torsional rigidity that bi (mm) of the reinforcing layer is 0.5×ai (mm) or more, which is half the length of ai (mm) of the inner side i.
上記好ましい内辺iのai(mm)と補強層のbi(mm)の関係を、本発明のアーム部材の一例を示す断面図の図2で説明する。図2に示すように、本発明の一例のアーム部材5は、矩形中空断面の内辺i(i=1,2,3,4)の長さai(添え字i=1,2,3,4)が、内辺と向かい合う補強層の長さbi(添え字i=1,2,3,4)と、それぞれ0.5ai≦bi≦ai(添え字のi=1,2,3,4)の関係を満たすことをいう。 The relationship between ai (mm) of the preferable inner side i and bi (mm) of the reinforcing layer will be described with reference to FIG. 2 which is a sectional view showing an example of the arm member of the present invention. As shown in FIG. 2, an arm member 5 according to an example of the present invention has a length ai (subscript i=1, 2, 3, 3) of an inner side i (i=1, 2, 3, 4) of a rectangular hollow section. 4) is the length bi of the reinforcing layer facing the inner side (subscript i=1, 2, 3, 4) and 0.5ai≦bi≦ai (subscript i=1, 2, 3, 4), respectively. ) To satisfy the relationship.
本発明にかかる補強層は、金属製梁部材の少なくとも2つ以上の側面に配置されることが好ましい。例えば、矩形断面の上側面と下側面にのみ配置することで、断面の鉛直方向の曲げ剛性を飛躍的に高めることができるため、好ましい。さらに、矩形断面の上下左右の4側面に補強層を配置することで、断面の鉛直方向に加え、水平方向の曲げ剛性を高めることができるため、より好ましい。 The reinforcing layer according to the present invention is preferably arranged on at least two side surfaces of the metal beam member. For example, it is preferable to dispose the rectangular cross section only on the upper side surface and the lower side surface because the bending rigidity of the cross section in the vertical direction can be dramatically increased. Further, it is more preferable to arrange the reinforcing layers on the four side surfaces of the rectangular cross section, that is, in the vertical and horizontal directions in addition to the vertical direction of the cross section.
本発明にかかる補強層は、幅方向の端部に近づくにつれて、徐々に厚みが低下する、テーパ部を有すると、長期間使用しても、補強層の剥がれなく、好ましい。 The reinforcing layer according to the present invention preferably has a tapered portion in which the thickness gradually decreases toward the end in the width direction, and the reinforcing layer does not peel off even after long-term use, which is preferable.
本発明にかかるアーム部材用繊維強化複合材料の改質を目的として、上述した樹脂以外の熱硬化性樹脂、エラストマー、フィラー、ゴム粒子、熱可塑性樹脂粒子、無機粒子およびその他の添加剤を配合することもできる。 For the purpose of modifying the fiber-reinforced composite material for arm member according to the present invention, a thermosetting resin other than the above-mentioned resins, elastomer, filler, rubber particles, thermoplastic resin particles, inorganic particles and other additives are blended. You can also
本発明にかかるアーム部材用繊維強化複合材料は、導電性を向上させる目的で、導電性フィラーを混合して用いることも好ましい。このような導電性フィラーとしては、カーボンブラック、カーボンナノチューブ、気相成長法炭素繊維(VGCF)、フラーレン、金属ナノ粒子、カーボン粒子、金属めっきした先に例示した熱可塑性樹脂の粒子、金属めっきした先に例示した熱硬化性樹脂の粒子などが挙げられ、単独で使用しても併用してもよい。なかでも安価で効果の高いカーボンブラック、カーボン粒子が好ましく用いられ、かかるカーボンブラックとしては、例えば、ファーネスブラック、アセチレンブラック、サーマルブラック、チャンネルブラック、ケッチェンブラックなどを使用することができ、これらを2種類以上ブレンドしたカーボンブラックも好適に用いられる。また、かかるカーボン粒子として“ベルパール(登録商標)”C−600、C−800、C−2000(鐘紡(株)製)、“NICABEADS(登録商標)”ICB、PC、MC(日本カーボン(株)製)などが具体的に挙げられる。金属めっきした熱硬化性樹脂粒子としてはジビニルベンゼンポリマー粒子にニッケルをメッキし、さらにその上に金をメッキした粒子“ミクロパール(登録商標)”AU215などが具体的に挙げられる。 The fiber-reinforced composite material for arm members according to the present invention is preferably mixed with a conductive filler for the purpose of improving conductivity. Such conductive fillers include carbon black, carbon nanotubes, vapor grown carbon fibers (VGCF), fullerenes, metal nanoparticles, carbon particles, metal-plated thermoplastic resin particles exemplified above, and metal-plated. Examples thereof include the thermosetting resin particles exemplified above, which may be used alone or in combination. Among them, inexpensive and highly effective carbon black, carbon particles are preferably used, and as such carbon black, for example, furnace black, acetylene black, thermal black, channel black, Ketjen black, etc. can be used. Carbon black in which two or more kinds are blended is also preferably used. Further, as such carbon particles, "Belle Pearl (registered trademark)" C-600, C-800, C-2000 (manufactured by Kanebo Co., Ltd.), "NICABEADS (registered trademark)" ICB, PC, MC (Nippon Carbon Co., Ltd.) Manufactured) and the like. Specific examples of the metal-plated thermosetting resin particles include particles "Micropearl (registered trademark)" AU215 in which divinylbenzene polymer particles are plated with nickel and gold is further plated thereon.
次に、本発明で使用する強化繊維について説明する。 Next, the reinforcing fiber used in the present invention will be described.
本発明において使用する強化繊維としては、例えば、有機繊維、アラミド繊維、ガラス繊維、金属繊維および炭素繊維が挙げられる。なかでも、ガラス繊維は経済性の観点から好ましく、炭素繊維は強度と弾性率の観点から好ましい。 Examples of the reinforcing fiber used in the present invention include organic fiber, aramid fiber, glass fiber, metal fiber and carbon fiber. Among them, glass fiber is preferable from the viewpoint of economy, and carbon fiber is preferable from the viewpoint of strength and elastic modulus.
また、炭素繊維においても、例えば、ポリアクリロニトリル(PAN)系、レーヨン系およびピッチ系の炭素繊維が挙げられるが、なかでも、強度と弾性率のバランスに優れたPAN系炭素繊維が好ましく用いられる。 In addition, examples of the carbon fibers include polyacrylonitrile (PAN)-based, rayon-based, and pitch-based carbon fibers. Among them, PAN-based carbon fibers having an excellent balance between strength and elastic modulus are preferably used.
本発明のアーム部材を構成する、金属製梁部材について説明する。 The metal beam member that constitutes the arm member of the present invention will be described.
本発明にかかる金属製梁部材は、補強層を配置するための、少なくとも1つの平らな側面を有することが重要である。曲面形状では、アーム部材用繊維強化複合材料の積層・成形作業が複雑で経済性に劣る、といった問題がある。 It is important that the metal beam member according to the invention has at least one flat side surface for arranging the reinforcing layer. With the curved shape, there is a problem in that the laminating and forming operations of the fiber-reinforced composite material for arm members are complicated and the economy is poor.
金属製梁部材の断面形状としては、例えば、三角形や、矩形といった多角形断面、アングル、チャンネル、I型、T型といった開断面、半円、扇形といった曲線を有する断面が挙げられる。多角形断面は曲げ剛性やねじり剛性の観点から好ましく、開断面は配線の取り回しの観点から好ましく、曲線を有する断面は意匠性の観点から好ましい。 Examples of the cross-sectional shape of the metal beam member include polygonal cross-sections such as triangles and rectangles, open cross-sections such as angles, channels, I-shapes and T-shapes, and cross-sections having curved lines such as semicircles and fans. A polygonal cross section is preferable from the viewpoint of bending rigidity and torsional rigidity, an open cross section is preferable from the viewpoint of wiring arrangement, and a cross section having a curve is preferable from the viewpoint of designability.
金属製梁部材の望ましい多角形断面としては、例えば、経済性の観点からは矩形断面が好ましく、より、曲げ剛性やねじり剛性を高める観点からは、八角形断面が好ましく、経済性と力学特性をバランスさせる観点からは、六角形断面が好ましい。 As a desirable polygonal cross section of the metal beam member, for example, a rectangular cross section is preferable from the viewpoint of economic efficiency, and an octagonal cross section is preferable from the viewpoint of further increasing bending rigidity and torsional rigidity, and economic and mechanical characteristics are improved. From the viewpoint of balancing, a hexagonal cross section is preferable.
本発明にかかる金属製梁部材は、例えば、中空断面、中実断面が例示されるが、軽量性の観点から中空断面であることが好ましい。 The metal beam member according to the present invention has, for example, a hollow cross section and a solid cross section, but the hollow cross section is preferable from the viewpoint of lightweight.
本発明のアーム部材は、2つ以上の金属製梁構成材を組み合わせた複合梁部材からなる金属製梁部材を用いてもよい。例えば、アングルまたはチャンネルの金属製梁構成材を2つ組み合わせて、矩形断面とする場合が挙げられ、断面の内辺側にも、補強層を比較的容易に配置できる観点から、好ましい。図3に、アングルの金属製梁構成材7を組み合わせた複合梁部材からなる金属製梁部材を用いたアーム部材6の断面図の一例を示す。また、金属製梁構成材は、単体で金属製梁部材として用いることもできる。 The arm member of the present invention may use a metal beam member composed of a composite beam member in which two or more metal beam components are combined. For example, there is a case where two metal beam constituent members of angles or channels are combined to form a rectangular cross section, which is preferable from the viewpoint that the reinforcing layer can be relatively easily arranged on the inner side of the cross section. FIG. 3 shows an example of a cross-sectional view of the arm member 6 using a metal beam member made of a composite beam member in which angled metal beam constituent members 7 are combined. Further, the metal beam constituent material may be used alone as a metal beam member.
本発明のアーム部材は、金属製梁構成材に補強層を配置したアーム構成材を、複数組み合わせた複合アーム部材としてもよい。 The arm member of the present invention may be a composite arm member in which a plurality of arm constituent members each having a reinforcing layer arranged on a metal beam constituent member are combined.
金属製梁部材を構成する金属材料は、例えば、アルミ合金、鉄鋼、ステンレス鋼、銅合金、チタンおよびマグネシウム合金が挙げられる。中でも、軽量性の観点からは、アルミ合金が好ましく用いられる。また、2つ以上の金属製梁構成材を組み合わせる場合には、同種の金属を組み合わせることが好ましい。 Examples of the metal material forming the metal beam member include aluminum alloy, steel, stainless steel, copper alloy, titanium and magnesium alloy. Among them, an aluminum alloy is preferably used from the viewpoint of lightness. Moreover, when combining two or more metal beam components, it is preferable to combine the same kind of metal.
本発明にかかる補強層の設置方法としては特に制限はないが、例えば、プリプレグを未硬化の状態で、金属製梁部材上に張り付け、プリプレグの硬化と接着を同時に行うコモールド法や、プリプレグまたは熱可塑UDテープをあらかじめ積層・成形した後に、金属製梁部材上に接着剤で張り付けるコボンド法、または、熱可塑UDテープを金属製梁部材上に加熱または振動させながら溶着する溶着法が挙げられるが、コボンド法がシワの発生が抑えられ、好ましい。 The method of installing the reinforcing layer according to the present invention is not particularly limited, for example, in the uncured state of the prepreg, pasted on the metal beam member, the comolding method for simultaneously curing and bonding the prepreg, prepreg or heat. A co-bonding method in which a plastic UD tape is laminated and molded in advance and then adhered onto a metal beam member with an adhesive, or a welding method in which a thermoplastic UD tape is welded onto a metal beam member while heating or vibrating However, the cobond method is preferable because it can suppress the generation of wrinkles.
図4に溶着法で作製したC形断面のアーム部材8の断面図を例示する。熱可塑UDテープの補強層10を、C形断面の金属製梁部材9に溶着しているが、補強層がアーム部材の外周に位置しているため、曲げ剛性に優れるといった特徴がある。 FIG. 4 illustrates a cross-sectional view of the arm member 8 having a C-shaped cross section manufactured by the welding method. The reinforcing layer 10 of the thermoplastic UD tape is welded to the metal beam member 9 having a C-shaped cross section, but since the reinforcing layer is located on the outer circumference of the arm member, it has a feature of excellent bending rigidity.
図5に溶着法で作製した、補強層12として熱可塑UDテープを2層積層したC形断面アーム部材11の断面図を例示する。C形断面の金属製梁部材9の1つの外側面につき2層の熱可塑UDテープを溶着することで、曲げ剛性とねじり剛性に優れるといった特徴がある。 FIG. 5 illustrates a cross-sectional view of a C-shaped cross-section arm member 11 that is manufactured by the welding method and has two layers of thermoplastic UD tapes laminated as the reinforcing layer 12. By welding two layers of thermoplastic UD tape to one outer surface of the metal beam member 9 having a C-shaped cross section, there is a feature that it is excellent in bending rigidity and torsional rigidity.
図6に、2つのC形断面のアーム構成材を、接合面16を介して組み合わせた矩形断面のアーム部材13の断面図を例示する。個別に成形したC形断面アーム構成材を組み合わせる前に、内部にコア材等を容易に挿入できるといった特徴がある。図6で図示した矩形断面のアーム部材13は、図4で図示したC形断面アーム部材8を組み合わせたものであるが、この態様に限定されるものではなく、2つのC形断面の金属製梁構成材をあらかじめ組み合わせた複合梁部材とした後、補強層10として熱可塑UDテープを溶着することもできる。 FIG. 6 illustrates a cross-sectional view of the arm member 13 having a rectangular cross section in which two arm components having a C-shaped cross section are combined with each other through the joint surface 16. A feature is that a core material and the like can be easily inserted inside before combining the individually formed C-shaped cross-section arm constituent materials. The arm member 13 having a rectangular cross section shown in FIG. 6 is a combination of the C-shaped cross-section arm members 8 shown in FIG. 4, but the present invention is not limited to this mode and is made of metal having two C-shaped cross sections. It is also possible to weld a thermoplastic UD tape as the reinforcing layer 10 after forming a composite beam member in which beam constituent materials are combined in advance.
次に、実施例により本発明を具体的に説明するが、本発明はこれらの実施例により制限されるものではない。 Next, the present invention will be specifically described with reference to examples, but the present invention is not limited to these examples.
<評価・測定方法>
(1)曲げ剛性の評価
実施例または比較例により得られたアーム部材から、それぞれ、長さ400mmに切り出した試験片を作製し、曲げ試験を行い、式(1)から曲げ剛性EIを算出した。測定数はn=2とし、平均値を用いた。
<Evaluation/Measurement method>
(1) Evaluation of Bending Stiffness Test pieces cut out to a length of 400 mm were prepared from the arm members obtained in Examples or Comparative Examples, bending tests were performed, and bending stiffness EI was calculated from Equation (1). .. The number of measurements was n=2, and the average value was used.
試験機として“インストロン(登録商標)万能試験機5980型(インストロン社製)”を用い、3点曲げ試験冶具(圧子直径10mm、支点直径10mm)を用いて支持スパンを試験片外径の4倍、試験速度を1%歪/mmに設定し、曲げ剛性を測定した。試験片の水分率0.1質量%以下、雰囲気温度23℃、および湿度50質量%の条件下において、試験を行った。
EI=L3/48・ΔP/Δδ (1)
・EI:アーム部材の曲げ剛性(N・m2)
・L:指示スパン(m)
・ΔP/Δδ:荷重―たわみ曲線の直線部の勾配(たわみ範囲0.05%−0.25%)(N/m)
"Instron (registered trademark) universal testing machine 5980 type (manufactured by Instron Co., Ltd.)" is used as a testing machine, and a support span is measured by using a three-point bending test jig (indenter diameter 10 mm, fulcrum diameter 10 mm). The bending rigidity was measured by setting the test speed to 4 times and the test speed to 1% strain/mm. The test was conducted under the conditions that the water content of the test piece was 0.1% by mass or less, the ambient temperature was 23° C., and the humidity was 50% by mass.
EI=L 3 /48·ΔP/Δδ (1)
・EI: Bending rigidity of arm member (N·m 2 ).
・L: Indicated span (m)
.DELTA.P/.DELTA..delta.: load-gradient of the straight line portion of the deflection curve (deflection range 0.05%-0.25%) (N/m)
(2)ねじり剛性の評価
実施例または比較例により得られたアーム部材から、それぞれ、長さ400mmに切り出した試験片を作製し、ねじり試験を行い、式(2)からねじり剛性GIpを算出した。
(2) Evaluation of Torsional Rigidity Test pieces cut out to a length of 400 mm were prepared from the arm members obtained in Examples or Comparative Examples, respectively, and subjected to a torsion test, and the torsional rigidity GIp was calculated from the equation (2). ..
試験機として“インストロン”(登録商標)ねじり試験機MT−10(インストロン社製)を用い、周波数0.2Hz、ねじり角振幅20°、両振りの条件で過重負荷を与え、たわみ角範囲1度−10度における、ねじれ剛性GIpを10回連続して測定し、その平均値を求めた。試験片の水分率0.1質量%以下、雰囲気温度23℃、および湿度50質量%の条件下において、試験を行った。
GIp=L・ΔT/Δφ (2)
・GIp:アーム部材のねじり剛性(N・m2)
・L:チャック間(m)
・ΔT/Δφ:ねじり―ねじれ角曲線の直線部の勾配(たわみ角範囲1度−10度)(N・m)
"Instron" (registered trademark) torsion tester MT-10 (manufactured by Instron) is used as a tester, and a deflection angle range is obtained by applying a heavy load under the conditions of a frequency of 0.2 Hz, a twisting angle amplitude of 20°, and both swings. The torsional rigidity GIp at 1 degree to 10 degrees was continuously measured 10 times, and the average value was obtained. The test was conducted under the conditions that the water content of the test piece was 0.1% by mass or less, the ambient temperature was 23° C., and the humidity was 50% by mass.
GIp=L·ΔT/Δφ (2)
・GIp: torsional rigidity of the arm member (N·m 2 ).
・L: Between chucks (m)
・ΔT/Δφ: Torsion-Slope of straight line part of twist angle curve (deflection angle range 1°-10°) (Nm)
<使用した材料>
各実施例および各比較例で用いた材料と成分は下記の通りである。
<Materials used>
The materials and components used in each example and each comparative example are as follows.
[金属製梁部材(A)]
・A−1:矩形中空断面の金属製梁部材
アルミニウム合金“A5052”を、加工温度まで加熱した後、押出し機のコンテナ内に装填し、矩形中空断面用のダイから押し出すことにより、幅50mm、高さ50mm、厚み1mm、長さ500mmの矩形中空断面の金属製梁部材(A−1)を得た。
[Metal beam member (A)]
-A-1: Metal beam member of rectangular hollow section After heating aluminum alloy "A5052" to a processing temperature, it is loaded into a container of an extruder and extruded from a die for rectangular hollow section to have a width of 50 mm, A metal beam member (A-1) having a rectangular hollow cross section with a height of 50 mm, a thickness of 1 mm and a length of 500 mm was obtained.
・A−2:六角形中空断面の金属製梁部材
アルミニウム合金“A5052”を、加工温度まで加熱した後、押出し機のコンテナ内に装填し、正六角形中空断面用のダイから押し出すことにより、一辺32mm、厚み1mm、長さ500mmの正六角形中空断面の金属製梁部材(A−2)を得た。
-A-2: Metal beam member having a hexagonal hollow cross section After heating aluminum alloy "A5052" to a processing temperature, it is loaded into a container of an extruder and extruded from a die for a regular hexagonal hollow cross section to form one side. A metal beam member (A-2) having a regular hexagonal hollow cross section having a length of 32 mm, a thickness of 1 mm and a length of 500 mm was obtained.
・A−3:C断面の金属製梁部材
アルミニウム合金“A5052”を、加工温度まで加熱した後、押出し機のコンテナ内に装填し、矩形中空断面用のダイから押し出すことにより、幅25mm、高さ50mm、厚み1mm、長さ500mmのC形断面の金属製構成材(A−3)を得た。
-A-3: Metal beam member having a C cross section An aluminum alloy "A5052" is heated to a processing temperature, then loaded into a container of an extruder and extruded from a die for a rectangular hollow cross section to have a width of 25 mm and a high height. A metal component (A-3) having a C-shaped cross section having a length of 50 mm, a thickness of 1 mm and a length of 500 mm was obtained.
[炭素繊維強化複合材料(B)]
・B−1:東レ(株)製、“トレカ(登録商標)”プリプレグ P3252S−12
・B−2:熱可塑UDテープ
炭素繊維束(東レ(株)製、“トレカ(登録商標)”糸T700S−12K)を準備し、連続的に糸道ガイドを通じて炭素繊維束を送り出した。連続的に送り出された炭素繊維束に、含浸ダイ内において6ナイロン樹脂(東レ(株)製、“アミラン(登録商標)”CM1017)を、充填したフィーダーから定量供給し、含浸させた。続いて、6ナイロン樹脂を含浸した炭素繊維束を、引取ロールを用いて含浸ダイのノズルから連続的に引き抜き、冷却ロールを通過して、6ナイロン樹脂が冷却固化され、熱可塑UDテープとして巻取機に巻き取られた。得られた熱可塑UDテープの厚さは0.5mmであり、炭素繊維方向は一方向に配列していた。また、熱可塑UDテープ中の炭素繊維含有率は50vol%であった。
[Carbon fiber reinforced composite material (B)]
B-1: "Torayca (registered trademark)" prepreg P3252S-12 manufactured by Toray Industries, Inc.
B-2: Thermoplastic UD tape A carbon fiber bundle ("Torayca (registered trademark)" yarn T700S-12K manufactured by Toray Industries, Inc.) was prepared, and the carbon fiber bundle was continuously fed through the yarn guide. 6 Nylon resin ("Amylan (registered trademark)" CM1017 manufactured by Toray Industries, Inc.) was supplied from the filled feeder in a fixed amount to the carbon fiber bundles that were continuously fed out and impregnated. Subsequently, the carbon fiber bundle impregnated with 6 nylon resin was continuously drawn out from the nozzle of the impregnation die using a take-up roll, passed through a cooling roll, the 6 nylon resin was cooled and solidified, and wound as a thermoplastic UD tape. It was wound up by the opportunity. The thickness of the obtained thermoplastic UD tape was 0.5 mm, and the carbon fiber directions were arranged in one direction. The carbon fiber content in the thermoplastic UD tape was 50 vol%.
[接着剤(C)]
・C−1:セメダイン(株)製、エポキシ系接着剤“EP−171”
[Adhesive (C)]
C-1: Cemedine Co., Ltd., epoxy adhesive "EP-171"
[離型剤(D)]
・D−1:ダイキン(株)製、離型剤“ダイフリーGW−251”
[Release agent (D)]
-D-1: Daikin Co., Ltd. release agent "Diefree GW-251"
(実施例1)
所定の寸法にカットした炭素繊維強化複合材料(B−1)を、0°方向に厚み2mmになるよう積層し、硬化雰囲気に暴露した硬化板を、炭素繊維の配向方向に500mm、直角方向に50mmの寸法に切り出した。次に、前記硬化板の接着面にサンドブラストをかけて整え、接着剤(C−1)を塗り、接着面を上にしてデシケータに入れ、真空ポンプで3mmHgまで減圧し1分置いてから空気を入れて常圧に戻した。減圧にしては常圧に戻す操作を合計3回繰り返し、デシケータから取り出し、接着剤塗布済み硬化板を用意した。
(Example 1)
The carbon fiber reinforced composite material (B-1) cut to a predetermined size was laminated in a 0° direction to a thickness of 2 mm, and the cured plate exposed to a curing atmosphere was set to 500 mm in the carbon fiber orientation direction and in a perpendicular direction. It was cut to a size of 50 mm. Then, the adhesive surface of the cured plate is sandblasted to prepare it, apply adhesive (C-1), put the adhesive surface upward in a desiccator, reduce the pressure to 3 mmHg with a vacuum pump and leave for 1 minute, and then air. It was put in and returned to normal pressure. The operation of reducing the pressure and returning to the normal pressure was repeated three times in total, and taken out from the desiccator to prepare a cured adhesive coated plate.
次に、矩形中空断面の金属製梁部材(A−1)の4つの側面すべてにサンドブラストをかけて整え、接着剤(C−1)を塗り、接着面を上にしてデシケータに入れ、真空ポンプで3mmHgまで減圧し1分置いてから空気を入れて常圧に戻した。減圧にしては常圧に戻す操作を合計3回繰り返し、デシケータから取り出し、接着剤塗布済み金属製梁を用意した。 Next, all four side surfaces of the metal beam member (A-1) having a rectangular hollow section are sandblasted to be prepared, and the adhesive agent (C-1) is applied, and the adhesive surface is placed in a desiccator, and a vacuum pump is used. The pressure was reduced to 3 mmHg, and the mixture was allowed to stand for 1 minute, and then air was added to return to normal pressure. The operation of depressurizing and returning to normal pressure was repeated a total of 3 times, taken out from the desiccator, and an adhesive-coated metal beam was prepared.
接着剤塗布済み硬化板を4つの側面にそれぞれ張り付けた金属梁を、バギングフィルムで覆い、前記バギングフィルム内の真空度が3mmHgまで減圧した状態で、80℃に設定した温風機内で30分間加熱し、金属製梁に補強層を接着したアーム部材を得て、曲げ剛性の評価及びねじり剛性の評価を実施した。その結果を表1に記す。 A metal beam with adhesive-coated cured plates attached to each of four sides is covered with a bagging film, and the bagging film is heated to 30°C for 30 minutes in a warm air machine set to 80°C while the vacuum level is reduced to 3 mmHg. Then, an arm member in which a reinforcing layer was adhered to the metal beam was obtained, and bending rigidity and torsional rigidity were evaluated. The results are shown in Table 1.
(実施例2)
実施例1で用意した硬化板を、炭素繊維の配向方向に500mm、その直角方向に48mmの寸法に切り出し、矩形中空断面の金属製梁部材(A−1)の4つの側面にそれぞれ、両幅端1mmの隙間を開けて接着する以外は、実施例1と同様にして、アーム部材を得て、曲げ剛性の評価及びねじり剛性の評価を実施した。その結果を表1に記す。
(Example 2)
The cured plate prepared in Example 1 was cut into a dimension of 500 mm in the carbon fiber orientation direction and a dimension of 48 mm in the direction perpendicular to the orientation direction, and the width was set on each of the four side surfaces of the metal beam member (A-1) having a rectangular hollow section. An arm member was obtained and evaluation of bending rigidity and evaluation of torsional rigidity were performed in the same manner as in Example 1 except that a gap having an end of 1 mm was opened and bonded. The results are shown in Table 1.
(実施例3)
実施例1で用意した硬化板を、炭素繊維の配向方向に500mm、直角方向に32mmの寸法に切り出し、六角形中空断面の金属製梁部材(A−2)の6つの側面にそれぞれ、接着する以外は、実施例1と同様にして、アーム部材を得て、曲げ剛性の評価及びねじり剛性の評価を実施した。その結果を表1に記す。
(Example 3)
The hardened plate prepared in Example 1 is cut into a size of 500 mm in the carbon fiber orientation direction and a size of 32 mm in the perpendicular direction, and adhered to each of the six side surfaces of the metal beam member (A-2) having a hexagonal hollow cross section. Except for this, the arm member was obtained and the bending rigidity and the torsional rigidity were evaluated in the same manner as in Example 1. The results are shown in Table 1.
(実施例4)
実施例1で用意した接着剤塗布済み金属製梁(A−1)に、炭素繊維強化複合材料(B−1)を、炭素繊維の配向方向と前記金属製梁の長さ方向に合わせて、炭素繊維強化複合材料(B−1)層の厚みが2mmになるまで巻き付けた、中間体を得た。
(Example 4)
The carbon fiber reinforced composite material (B-1) was added to the adhesive-coated metal beam (A-1) prepared in Example 1 according to the orientation direction of the carbon fibers and the length direction of the metal beam, An intermediate body obtained by winding the carbon fiber reinforced composite material (B-1) layer until the thickness thereof became 2 mm was obtained.
次に、前記中間体をバギングフィルムで覆い、前記バギングフィルム内の真空度が3mmHgまで減圧した状態で、炭素繊維強化複合材料(B−1)の硬化雰囲気に暴露し、アーム部材を得て、曲げ剛性の評価及びねじり剛性の評価を実施した。その結果を表1に記す。 Next, the intermediate body is covered with a bagging film, and in a state where the degree of vacuum in the bagging film is reduced to 3 mmHg, the carbon fiber reinforced composite material (B-1) is exposed to a curing atmosphere to obtain an arm member, The bending rigidity and the torsional rigidity were evaluated. The results are shown in Table 1.
(比較例1)
矩形中空断面の金属製梁部材(A−1)の4つの側面すべてを、♯800のサンドペーパーで鏡面になるまで磨き、離型剤(D−1)を塗布したこと以外は、実施例1と同様にしてアーム部材を得た。このアーム部材を、−20℃の冷凍機内で冷却した後、矩形中空断面の金属製梁部材(A−1)を除去し、CFRPアーム部材を得て、曲げ剛性の評価及びねじり剛性の評価を実施した。その結果を表1に記す。
(Comparative Example 1)
Example 1 except that all four side surfaces of the metal beam member (A-1) having a rectangular hollow section were polished with #800 sandpaper to be a mirror surface and the release agent (D-1) was applied. An arm member was obtained in the same manner as in. After cooling this arm member in a refrigerator at −20° C., the metal beam member (A-1) having a rectangular hollow section is removed to obtain a CFRP arm member, and the bending rigidity and the torsional rigidity are evaluated. Carried out. The results are shown in Table 1.
(比較例2)
矩形中空断面の金属製梁部材(A−1)を、曲げ剛性の評価及びねじり剛性の評価に供した。その結果を表1に記す。
(Comparative example 2)
The metal beam member (A-1) having a rectangular hollow cross section was used for evaluation of bending rigidity and torsional rigidity. The results are shown in Table 1.
(実施例5)
C形断面の金属製梁部材(A−3)にサンドブラストをかけて表面を整えた後に、3つの外側面に熱可塑UDテープ(B−2)を、レーザー溶着装置を用いて、長さ方向の500mm全域に超音波溶着し、アーム部材を得た。熱可塑UDテープ(B−2)は、1度に、C形断面の金属製梁部材(A−3)の1面にのみ、熱可塑UDテープの繊維方向とC形断面の金属製梁部材(A−3)の長さ方向を一致するように超音波溶着した。その際、3つの貼り付け面のうち、C断面の上辺と、下辺にあたる面は、張り付け面の幅より1mm狭い24mmにスリットした熱可塑UDテープ(B−2)を、C形断面の2つの角から1mm離して配置し、上辺と下辺をつなぐ第3の辺にあたる面は、張り付ける面の幅より2mm狭い48mmスリットした熱可塑UDテープ(B−2)を、貼り付け面の幅方向の両端からそれぞれ1mmずつ離して、配置した。得られたアーム部材を評価に供し、その結果を表2に記す。
(Example 5)
After sandblasting the metal beam member (A-3) having a C-shaped cross section to prepare the surface, thermoplastic UD tapes (B-2) are applied to the three outer surfaces using a laser welding device in the longitudinal direction. Was ultrasonically welded over the entire area of 500 mm to obtain an arm member. The thermoplastic UD tape (B-2) is a metal beam member having a C-shaped cross section and the fiber direction of the thermoplastic UD tape only on one surface of the metal beam member (A-3) having a C-shaped cross section at a time. It ultrasonically welded so that the length direction of (A-3) might correspond. At this time, of the three pasting surfaces, the upper and lower sides of the C cross section were formed of a thermoplastic UD tape (B-2) slit into 24 mm, which was narrower by 1 mm than the width of the pasting surface. The surface corresponding to the third side connecting the upper side and the lower side, which is arranged 1 mm away from the corner, is a thermoplastic UD tape (B-2) slit by 48 mm, which is narrower by 2 mm than the width of the pasting surface, in the width direction of the pasting surface. It was placed at a distance of 1 mm from each end. The obtained arm member was subjected to evaluation, and the results are shown in Table 2.
(実施例6)
C形断面の金属製梁部材(A−3)の1つの外側面につき、熱可塑UDテープ(B−2)1層をレーザー溶着する工程を2度実施して、2層積層する以外は、実施例5と同様にして、図5に示すアーム部材を得て、評価に供した。その結果を表2に示す。
(Example 6)
For one outer surface of the metal beam member (A-3) having a C-shaped cross section, the step of laser welding one layer of the thermoplastic UD tape (B-2) is performed twice, and two layers are laminated. In the same manner as in Example 5, the arm member shown in FIG. 5 was obtained and provided for evaluation. The results are shown in Table 2.
(比較例3)
C形断面の金属製梁部材(A−3)を、曲げ剛性の評価及びねじり剛性の評価に供した。その結果を表2に記す。
(Comparative example 3)
The metal beam member (A-3) having a C-shaped cross section was subjected to evaluation of bending rigidity and torsional rigidity. The results are shown in Table 2.
(実施例7)
(実施例5)で作製したC形断面アーム部材の図6に示す接合面をサンドブラストにかけて整え、接着剤(C−1)を塗り、接着面を上にしてデシケータに入れ、真空ポンプで3mmHgまで減圧し1分置いてから空気を入れて常圧に戻した。減圧にした後で常圧に戻す操作を合計3回繰り返し、デシケータから取り出し、接着剤塗布済みC形断面アーム構成材を2本用意した。この接着剤塗布済みC形断面アーム構成材2本を、図6に示すように突き合わせ、接合面を接着により接合した矩形断面のアーム部材を得て、評価に供した。その結果を表3に示す。
(Example 7)
The joint surface shown in FIG. 6 of the C-shaped cross-section arm member manufactured in (Example 5) is conditioned by sandblasting, the adhesive (C-1) is applied, and the adhesive surface is placed in a desiccator with the adhesive surface up to 3 mmHg by a vacuum pump. The pressure was reduced and left for 1 minute, and then air was added to return to normal pressure. The operation of returning to normal pressure after depressurization was repeated three times in total, taken out from the desiccator, and two adhesive-coated C-shaped cross-section arm constituent materials were prepared. Two adhesive-coated C-shaped cross-section arm constituent materials were abutted as shown in FIG. 6 to obtain an arm member having a rectangular cross section in which the bonding surfaces were bonded by bonding and used for evaluation. The results are shown in Table 3.
以上のように、実施例1から7においては、曲げ剛性とねじり剛性を両立し、補強層がシワなく張り付けられ外観に優れた、良好なアーム部材が得られた。本発明のアーム部材を構成する、炭素繊維強化複合材料の補強層が、既定の範囲を満足するよう配置したことにより、成し得たものである。しかし、実施例4は、アーム部材の角周辺にわずかにシワが見られるもののおおむね許容できる水準であった。 As described above, in Examples 1 to 7, good arm members having both bending rigidity and torsional rigidity and having the reinforcing layer attached without wrinkles and having an excellent appearance were obtained. This can be achieved by arranging the reinforcing layer of the carbon fiber reinforced composite material constituting the arm member of the present invention so as to satisfy the predetermined range. However, in Example 4, the wrinkles were slightly seen around the corners of the arm member, but the wrinkles were generally at an acceptable level.
一方、比較例1はシワに加えてねじり剛性に劣り、比較例2は曲げ剛性に劣り、比較例3は曲げ剛性とねじり剛性の両方に劣るものであった。 On the other hand, Comparative Example 1 was inferior in torsional rigidity in addition to wrinkles, Comparative Example 2 was inferior in bending rigidity, and Comparative Example 3 was inferior in both bending rigidity and torsional rigidity.
本発明のアーム部材は、高い曲げ剛性とねじり剛性を有し、経済性に優れることから、少なくとも片側に連節部を有する、多関節ロボットに好適に用いることができる。 INDUSTRIAL APPLICABILITY The arm member of the present invention has high bending rigidity and torsional rigidity and is excellent in economic efficiency, and thus can be suitably used for an articulated robot having a joint portion on at least one side.
1 アーム部材
2 矩形中空構造の金属製梁部材
3 補強層
4 連節部
5 アーム部材
6 アーム部材
7 アングルの金属製梁構成材
8 C形断面のアーム部材(補強層を溶着法で接合)
9 C形断面の金属製梁部材
10 補強層
11 C形断面のアーム部材(2層の補強層を溶着法で接合)
12 補強層(熱可塑UDテープを2層積層)
13 2つのC形断面のアーム構成材を組み合わせた矩形断面のアーム部材
14 金属製梁構成材
15 補強層材
16 接合面
DESCRIPTION OF SYMBOLS 1 Arm member 2 Metal beam member 3 having a rectangular hollow structure 3 Reinforcement layer 4 Articulation part 5 Arm member 6 Arm member 7 Angled metal beam constituent material 8 Arm member having C-shaped cross section (reinforcement layer is joined by welding method)
9 Metal beam member having C-shaped cross section 10 Reinforcing layer 11 Arm member having C-shaped cross section (joining two reinforcing layers by welding method)
12 Reinforcement layer (two layers of thermoplastic UD tape are laminated)
13 A rectangular cross-section arm member that combines two C-shaped cross-section arm constituent materials 14 Metal beam constituent material 15 Reinforcement layer material 16 Bonding surface
Claims (17)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018237958 | 2018-12-20 | ||
JP2018237958 | 2018-12-20 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2020099991A true JP2020099991A (en) | 2020-07-02 |
Family
ID=71140669
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019222617A Pending JP2020099991A (en) | 2018-12-20 | 2019-12-10 | Fiber-reinforced composite material for arm member, arm member, and method of manufacturing arm member |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2020099991A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111844815A (en) * | 2020-07-15 | 2020-10-30 | 哈尔滨工业大学 | Connecting method of steel material and carbon fiber woven piece |
CN111873495A (en) * | 2020-07-30 | 2020-11-03 | 西南交通大学 | Manufacturing method of continuous fiber reinforced composite material connecting structure |
-
2019
- 2019-12-10 JP JP2019222617A patent/JP2020099991A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111844815A (en) * | 2020-07-15 | 2020-10-30 | 哈尔滨工业大学 | Connecting method of steel material and carbon fiber woven piece |
CN111844815B (en) * | 2020-07-15 | 2021-11-02 | 哈尔滨工业大学 | Connecting method of steel material and carbon fiber woven piece |
CN111873495A (en) * | 2020-07-30 | 2020-11-03 | 西南交通大学 | Manufacturing method of continuous fiber reinforced composite material connecting structure |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5189843B2 (en) | CFRP conveyance member and robot hand using the same | |
JP6212129B2 (en) | Composite bonding | |
JP5694386B2 (en) | Bonded carbon fiber reinforced composite material | |
JP4899692B2 (en) | Reinforcing fiber fabric and method for producing the same | |
WO2005117100A1 (en) | Support bar for substrate cassette | |
TWI511867B (en) | Hybrid winding method of hybrid composites that is thermoplastic-continuous fiber and high pressure vessel using the same and method for manufacturing the same | |
WO2007013204A1 (en) | Reinforcing woven fabric and process for producing the same | |
JPWO2007099825A1 (en) | Reinforcing fiber base material for preform, etc., and manufacturing method of laminated body of reinforcing fiber base material, etc. | |
JP2000343476A (en) | Carrying member | |
CN108029213A (en) | Housing | |
US10407188B2 (en) | Composite tank having joint with softening strip | |
JP2020099991A (en) | Fiber-reinforced composite material for arm member, arm member, and method of manufacturing arm member | |
US10913223B2 (en) | Fibre reinforced composites | |
JP2020023045A (en) | Fiber-reinforced composite material for arm member, arm member, and method of manufacturing arm member | |
US10399709B2 (en) | Method of making a device for controlling stress in joints at cryogenic temperatures | |
JP2010214704A (en) | Base material for preform using binder including superfine fiber, and method of manufacturing the same | |
WO2010086955A1 (en) | Conveyance member made of cfrp and robot hand employing the same | |
WO2020184163A1 (en) | Method for manufacturing fiber-reinforced resin product, and core | |
WO2020235490A1 (en) | Fiber-reinforced resin substrate, integrated molded article, and method for manufacturing fiber-reinforced resin substrate | |
JP6488584B2 (en) | Carbon fiber reinforced thermoplastic resin molded product and metal welded joint | |
JP2020082359A (en) | Method for producing laminate | |
JP2009214371A (en) | Method for manufacturing fiber-reinforced composite material and fiber-reinforced composite material, method for manufacturing integrated structural member and integrated structural member | |
JPH10272699A (en) | Manufacture of fiber reinforced resin tubular body | |
JP2009235175A (en) | Base material for preform, method for manufacturing the material, and thermosetting binder resin powder | |
WO2021095623A1 (en) | Carbon fiber tape material, and reinforced fiber laminate and molded article using same |