JP2020007698A - Inorganic fiber paper - Google Patents

Inorganic fiber paper Download PDF

Info

Publication number
JP2020007698A
JP2020007698A JP2019189123A JP2019189123A JP2020007698A JP 2020007698 A JP2020007698 A JP 2020007698A JP 2019189123 A JP2019189123 A JP 2019189123A JP 2019189123 A JP2019189123 A JP 2019189123A JP 2020007698 A JP2020007698 A JP 2020007698A
Authority
JP
Japan
Prior art keywords
fiber
weight
inorganic
paper
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019189123A
Other languages
Japanese (ja)
Other versions
JP6752952B2 (en
Inventor
大輔 本田
Daisuke Honda
大輔 本田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KJ Specialty Paper Co Ltd
Original Assignee
KJ Specialty Paper Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KJ Specialty Paper Co Ltd filed Critical KJ Specialty Paper Co Ltd
Publication of JP2020007698A publication Critical patent/JP2020007698A/en
Application granted granted Critical
Publication of JP6752952B2 publication Critical patent/JP6752952B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Paper (AREA)

Abstract

To provide an inorganic fiber paper with its density controlled in a favored range while improving impregnation property before firing.SOLUTION: The inorganic fiber paper is a sheeted substrate obtained by wet type sheet making using a living matter solubility ceramic fiber, a glass fiber with its blending ratio in the fiber content being 0 weight% or over and 70 weight% or under, an organic fiber with an average fiber diameter of 17 μm or over and 25 μm or under, at least one kind or over of a cationic inorganic binder selected from aluminium sulfate, polyaluminum chloride, cationic colloidal silica, and alumina sol, and sepiolite with its blending ratio toward the fiber content being 20 weight% or over and 60 weight% or under.SELECTED DRAWING: None

Description

生体溶解性セラミック繊維を用いた無機繊維紙に関する。   The present invention relates to an inorganic fiber paper using a biosoluble ceramic fiber.

セラミック繊維は工業材料として優れた特性を有しており、鉄鋼、石油、化学、電気、自動車、建材、航空宇宙などのあらゆる産業界での利用が定着し、耐熱触媒担持材、断熱材、耐熱濾過材、耐熱絶縁材、耐熱シール材、耐熱パッキン材、耐熱緩衝材、耐熱クッション材等の様々な用途に利用されている。   Ceramic fiber has excellent properties as an industrial material, and its use in all industries such as steel, petroleum, chemical, electricity, automobiles, building materials, aerospace, etc. has become established. It is used in various applications such as filtration materials, heat-resistant insulation materials, heat-resistant seal materials, heat-resistant packing materials, heat-resistant cushioning materials, and heat-resistant cushion materials.

セラミック繊維としては、主として常用温度1,250℃以下で使用される非晶質のリフラクトリーセラミックファイバー(以下、RCFと称する。)と、1,250℃より高温で使用されるアルミナ質の結晶質セラミック繊維が知られている。これらRCFと結晶質セラミック繊維は、製造方法や性能、価格が大きく異なっており、それぞれの特性によって使い分けがなされている。しかしながら、セラミック繊維は、人体に与える影響が懸念されており、特にRCFは、「労働安全衛生法施行令の一部を改正する政令」(平成27年政令第294号)や「労働安全衛生規則等の一部を改正する省令」(平成27年厚生労働省令第141号)において、特定化学物質の第2類物質に追加されるなどの規制もなされている。そのため、RCFに代えて、人体に対して影響の少ない生体溶解性セラミック繊維を用いた無機繊維紙が提案されている(例えば、特許文献1等参照)。   As the ceramic fiber, an amorphous refractory ceramic fiber (hereinafter referred to as RCF) mainly used at a normal temperature of 1,250 ° C. or lower, and an alumina crystalline material used at a temperature higher than 1,250 ° C. Ceramic fibers are known. These RCFs and crystalline ceramic fibers have greatly different production methods, performances, and prices, and are properly used depending on their characteristics. However, there are concerns about the effects of ceramic fibers on the human body. In particular, the RCF has issued a "decree that partially revises the Ordinance for Enforcement of the Industrial Safety and Health Law" (2015 Cabinet Order No. 294) and "Occupational Safety and Health Regulations". Regulations such as the amendment of some of the specified chemical substances are specified in the Ministry of Health, Labor and Welfare Order No. 141 (2015). Therefore, instead of RCF, an inorganic fiber paper using a biosoluble ceramic fiber having little effect on the human body has been proposed (for example, see Patent Document 1).

特開2003−105662号公報JP 2003-105662 A

しかしながら、生体溶解性セラミック繊維は、酸化カルシウム(CaO)や酸化マグネシウム(MgO)等を修飾酸化物として含み、シリカ(SiO2)とアルミナ(Al2O3)から構成されるRCFとは、化学組成に大きな違いがある。また、生体溶解性セラミック繊維は、一般的に平均繊維径がRCFに比べて太く、そのバラツキも大きいといった違いがある。これらの違いにより、生体溶解性セラミック繊維を用いた無機繊維紙は、RCFを用いた無機繊維紙に比べ密度が低くなりやすく、切断や打ち抜きなどの加工性に劣る場合がある。一方、いたずらに密度を高くすると含浸性が悪化し、触媒または吸着剤等の機能剤の粒子の分散体や、無機結合剤の分散体等からなる含浸液を含浸させにくくなり、機能剤等を十分に担持させることが困難になってしまう虞がある。   However, biosoluble ceramic fibers contain calcium oxide (CaO), magnesium oxide (MgO), and the like as modifying oxides, and have a significant difference in chemical composition from RCF composed of silica (SiO2) and alumina (Al2O3). There is. Further, biosoluble ceramic fibers generally have a difference in that the average fiber diameter is larger than that of RCF and the dispersion thereof is large. Due to these differences, the density of the inorganic fiber paper using the biosoluble ceramic fiber tends to be lower than that of the inorganic fiber paper using the RCF, and the workability such as cutting and punching may be poor. On the other hand, if the density is unnecessarily increased, the impregnating property deteriorates, and it becomes difficult to impregnate the impregnating liquid composed of the dispersion of the particles of the functional agent such as the catalyst or the adsorbent and the dispersion of the inorganic binder, and There is a risk that it will be difficult to sufficiently support it.

ここで、無機繊維紙は、焼成すると有機成分が消失するため、焼成後は強度が低下しハンドリング性が悪くなる。さらに、折り曲げ加工等の成形が施された焼成後よりも、焼成前のシート状の状態の方が含浸液を含浸させやすい。これらの点では、焼成後の無機繊維紙に含浸液を含浸させるよりも焼成前の無機繊維紙に含浸液を含浸させる方が有利であるが、有機成分が消失し空隙が生じる焼成後に比べて焼成前は含浸性を確保しにくく、焼成前の含浸性は考慮されていないのが実情である。   Here, the inorganic fiber paper loses its organic components when fired, so that the strength is reduced after firing and the handling properties are deteriorated. Furthermore, the impregnating liquid is easier to impregnate in a sheet-like state before firing than after firing after forming such as bending. In these respects, it is more advantageous to impregnate the inorganic fiber paper before firing with the impregnating liquid than to impregnate the inorganic fiber paper after firing with the impregnating liquid. It is difficult to ensure the impregnation before firing, and the fact is that the impregnation before firing is not considered.

本発明は、人体に対して影響の少ない生体溶解性セラミック繊維を用いた無機繊維紙において焼成前に含浸液を含浸させる点に着目し、密度を好適な範囲に調整しつつ焼成前の含浸性を向上させた無機繊維紙を提供することを目的とする。   The present invention focuses on impregnating an impregnating liquid before firing in inorganic fiber paper using biosoluble ceramic fibers having little effect on the human body, and adjusting the density to a suitable range while impregnating the impregnating property before firing. It is an object of the present invention to provide an inorganic fiber paper having improved properties.

上記目的を解決する本発明の無機繊維紙は、生体溶解性セラミック繊維と、
繊維分における配合比が0重量%以上70重量%以下のガラス繊維と、
平均繊維径が17μm以上25μm以下の有機繊維と、
硫酸アルミニウム、ポリ塩化アルミニウム、カチオン性コロイダルシリカ、アルミナゾルから選ばれる少なくとも1種以上のカチオン性無機バインダーと、
前記繊維分に対する配合比が20重量%以上60重量%以下のセピオライトと、を用いて湿式抄造することにより得られるシート化した基材であることを特徴とする。
The inorganic fiber paper of the present invention to solve the above object, a biosoluble ceramic fiber,
A glass fiber having a blending ratio of 0% by weight or more and 70% by weight or less in a fiber content,
Organic fibers having an average fiber diameter of 17 μm or more and 25 μm or less,
Aluminum sulfate, polyaluminum chloride, cationic colloidal silica, at least one or more cationic inorganic binders selected from alumina sol,
It is characterized in that it is a sheet-form base material obtained by wet papermaking using sepiolite having a blending ratio of 20% by weight or more and 60% by weight or less with respect to the fiber content.

また、本発明の無機繊維紙において、焼成前の保液量が100g/m以上であることが好ましい。 Further, in the inorganic fiber paper of the present invention, the liquid retention amount before firing is preferably 100 g / m 2 or more.

本発明によれば、密度を好適な範囲に調整しつつ焼成前の含浸性を向上させた無機繊維紙を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the inorganic fiber paper which improved the impregnation property before baking, adjusting a density in a suitable range can be provided.

以下、本発明の無機繊維紙について詳説する。本発明の無機繊維紙は、生体溶解性セラミック繊維、ガラス繊維、有機繊維、無機バインダーとしてカチオン性無機バインダーとセピオライトを用いて湿式抄造することにより得られるシート化した基材である。また、本発明の無機繊維紙は、耐熱触媒担持材、断熱材、耐熱濾過材、耐熱絶縁材、耐熱シール材、耐熱パッキン材、耐熱緩衝材、耐熱クッション材等に好適に用いることができる。   Hereinafter, the inorganic fiber paper of the present invention will be described in detail. The inorganic fiber paper of the present invention is a sheet-form base material obtained by wet papermaking using a biosoluble ceramic fiber, a glass fiber, an organic fiber, a cationic inorganic binder as an inorganic binder and sepiolite. Further, the inorganic fiber paper of the present invention can be suitably used as a heat-resistant catalyst supporting material, a heat-insulating material, a heat-resistant filter material, a heat-resistant insulating material, a heat-resistant seal material, a heat-resistant packing material, a heat-resistant cushioning material, a heat-resistant cushion material, and the like.

本発明に用いられる生体溶解性セラミック繊維は、「EU指令97/69/EC」規制におけるカテゴリー0(適用除外物質)に分類される繊維から選択される。そのためには、NotaQ「生体内溶解性繊維判定基準」により下記4種類の動物実験のどれかで安全性を証明されるか、またはNotaR「吸入性繊維でないことの判定基準」により長さ加重幾何平均繊維径から標準偏差の2倍を差し引いた数値が6μmを越える繊維であることが必要である。   The biosoluble ceramic fibers used in the present invention are selected from fibers classified into Category 0 (exempt substances) in the regulation of the EU Directive 97/69 / EC. For that purpose, safety is proved in one of the following four types of animal tests by NotaQ “criterion for dissolving fiber in vivo”, or length-weighted geometry by NotaR “criterion for non-respirable fiber”. It is necessary that the value of the fiber obtained by subtracting twice the standard deviation from the average fiber diameter exceeds 6 μm.

(1)短期吸入による生体内滞留性試験で、20μmより長い繊維が10日未満の荷重半減期をもつこと、
(2)短期気管内注入による生体内滞留試験で、20μmより長い繊維が40日未満の荷重半減期を持つこと、
(3)腹腔内投与試験により過大な発がん性の証拠がないこと、
(4)長期間吸入試験で、関連ある病原性変化もしくは腫瘍性変化がないこと。
(1) In a living body retention test by short-term inhalation, a fiber longer than 20 μm has a load half-life of less than 10 days;
(2) In a living body retention test by short-term endotracheal injection, a fiber longer than 20 μm has a load half-life of less than 40 days;
(3) no evidence of excessive carcinogenicity by intraperitoneal administration test;
(4) No relevant pathogenic or neoplastic changes in long-term inhalation studies.

上記の安全性が確認された生体溶解性セラミック繊維であれば、その製造方法、化学組成、平均繊維径あるいは平均繊維長に特に制限はなく、例えば、生体溶解性ロックウールを使用することも出来る。   As long as the biosoluble ceramic fiber has been confirmed to have the above safety, its production method, chemical composition, average fiber diameter or average fiber length is not particularly limited, and for example, biosoluble rock wool can be used. .

また、生体溶解性セラミック繊維の多くには、製法上の問題から、繊維の先端に非繊維状物(球形に近い粒状物で通常「ショット」と呼ばれる)を含んでいる。このショットの含有率が多いと物理強度が低下すると共に、湿式抄造時においてピンホールや粉落ちなどの問題が発生しやすく安定生産が難しい。そのため、本発明の無機繊維紙では生体溶解性セラミック繊維に含まれる45μm以上のショット含有率は4%以上20%以下であることが好ましく、5%以上18%以下であることがより好ましく、5%以上15%以下であることが更に好ましい。45μm以上のショット含有率を4%未満にするには、脱ショット処理を繰り返し行う必要があり、処理を繰り返し行う影響で繊維長が短くなり物理強度に劣る場合があり、コスト的にも好ましくない。一方、45μm以上の含有率が20%を超えると強度に寄与しない非繊維状物が増えるため物理強度に劣る場合があり、また無機繊維紙からの粉落ちが多くなり好ましくない。ショットを除去する方法は特に限定されないが、高剪断力をかけてショットと繊維を切断する方法や、スクリーンやサイクロンなどの除去装置を用いてショットを繊維から分離するなどの方法により達成される。   In addition, many of the biosoluble ceramic fibers include a non-fibrous material (a granular material close to a sphere, usually called "shot") at the fiber tip due to a manufacturing problem. If the content of the shot is high, the physical strength is reduced, and problems such as pinholes and powder dropping are liable to occur during wet papermaking, and stable production is difficult. Therefore, in the inorganic fiber paper of the present invention, the shot content of 45 μm or more contained in the biosoluble ceramic fibers is preferably 4% or more and 20% or less, more preferably 5% or more and 18% or less. % Or more and 15% or less. In order to reduce the content of shots of 45 μm or more to less than 4%, it is necessary to repeatedly perform the de-shot processing, and the effect of the repeated processing may shorten the fiber length and deteriorate the physical strength, which is not preferable in terms of cost. . On the other hand, if the content of 45 μm or more exceeds 20%, non-fibrous materials that do not contribute to the strength increase, and thus the physical strength may be poor. The method of removing the shot is not particularly limited, but is achieved by a method of cutting the shot and the fiber by applying a high shear force, or a method of separating the shot from the fiber using a removing device such as a screen or a cyclone.

本発明の無機繊維紙では、繊維分における生体溶解性セラミック繊維の配合比は、10重量%以上95重量%以下であることが好ましく、20重量%以上80重量%以下であることがより好ましく、30重量%以上80重量%以下であることが更に好ましく、40重量%以上80重量%以下であることが更により好ましい。配合比が10重量%未満では、無機繊維紙の物理強度に劣る場合があり、また無機繊維紙の密度が低下することで最終製品に微細なピンホールが生じる場合がある。一方、配合比が95重量%を超えると物理強度が低下する場合がある。   In the inorganic fiber paper of the present invention, the blending ratio of the biosoluble ceramic fiber in the fiber content is preferably from 10% by weight to 95% by weight, more preferably from 20% by weight to 80% by weight, It is still more preferably from 30% by weight to 80% by weight, and still more preferably from 40% by weight to 80% by weight. If the compounding ratio is less than 10% by weight, the physical strength of the inorganic fiber paper may be poor, and fine pinholes may be generated in the final product due to the decrease in the density of the inorganic fiber paper. On the other hand, if the compounding ratio exceeds 95% by weight, the physical strength may decrease.

本発明の無機繊維紙では、繊維分におけるガラス繊維の配合比は、0重量%以上70重量%以下である。ガラス繊維の配合比が70重量%を超えると、無機繊維紙の地合が悪くなって品質にバラツキが生じたり、微細な孔によるピンホールが生じたりする場合がある。また、耐熱性を向上させたい場合には、ガラス繊維の配合比を0重量%(ガラス繊維を配合しない態様)としてもよい。   In the inorganic fiber paper of the present invention, the compounding ratio of glass fiber in the fiber content is 0% by weight or more and 70% by weight or less. If the mixing ratio of the glass fibers exceeds 70% by weight, the formation of the inorganic fiber paper may be poor, causing variations in the quality or pinholes due to fine holes. When it is desired to improve the heat resistance, the mixing ratio of the glass fibers may be 0% by weight (an embodiment in which no glass fibers are mixed).

また、本発明におけるガラス繊維は、繊維長が1mm以上30mm以下が好ましく、2mm以上15mm以下がより好ましく、3mm以上10mm以下が更に好ましい。繊維長が1mm未満では、物理強度が不十分となる場合がある。一方、繊維長が30mmを超えると、無機繊維紙の地合が悪くなり、品質にバラつきが生じる場合がある。また、本発明におけるガラス繊維の平均繊維径は5μm以上15μm以下であることが好ましく、5μm以上11μm以下がより好ましく、5μm以上9μm以下が更に好ましい。平均繊維径が5μm未満では、繊維が細すぎて保液性を悪化させる場合がある。一方、平均繊維径が15μmを超えると太くなりすぎて繊維間の間隙が大きくなり、物理強度に劣り、さらに皮膚への刺激性がある等、作業性に支障をきたして利用しにくくなる場合がある。   Further, the glass fiber in the present invention preferably has a fiber length of 1 mm to 30 mm, more preferably 2 mm to 15 mm, still more preferably 3 mm to 10 mm. If the fiber length is less than 1 mm, the physical strength may be insufficient. On the other hand, if the fiber length exceeds 30 mm, the formation of the inorganic fiber paper becomes poor, and the quality may vary. Further, the average fiber diameter of the glass fibers in the present invention is preferably 5 μm or more and 15 μm or less, more preferably 5 μm or more and 11 μm or less, and still more preferably 5 μm or more and 9 μm or less. If the average fiber diameter is less than 5 μm, the fibers may be too thin to deteriorate the liquid retention. On the other hand, if the average fiber diameter exceeds 15 μm, it becomes too thick, the gap between the fibers becomes large, the physical strength is inferior, the skin is irritating, and the workability is hindered. is there.

本発明における有機繊維としてはセルロース繊維からなるパルプ状物、合成樹脂短繊維を用いることができ、それぞれ単独もしくは両者を配合して用いることができる。ただし、有機繊維をセルロース繊維のみから構成することで、物理強度を向上させ、コストを抑えることができる。   As the organic fiber in the present invention, a pulp-like material made of cellulose fiber and synthetic resin short fiber can be used, and each can be used alone or in combination of both. However, when the organic fibers are composed only of the cellulose fibers, the physical strength can be improved and the cost can be suppressed.

また、本発明における有機繊維は、平均繊維径が17μm以上25μm以下のものであることを特徴とする。有機繊維の平均繊維径が17μm未満では、無機繊維紙の密度が高くなりすぎて焼成前の含浸性を悪化させてしまう虞がある。一方、有機繊維の平均繊維径が25μmを超えると、無機繊維紙の密度が低くなりすぎて切断や打ち抜きなどの加工性の悪化や物理強度の低下を招く虞がある。   Further, the organic fiber according to the present invention has an average fiber diameter of 17 μm or more and 25 μm or less. If the average fiber diameter of the organic fibers is less than 17 μm, the density of the inorganic fiber paper becomes too high, and the impregnation before firing may be deteriorated. On the other hand, when the average fiber diameter of the organic fibers exceeds 25 μm, the density of the inorganic fiber paper becomes too low, and there is a possibility that the workability such as cutting and punching and the physical strength may be reduced.

本発明に用いられるセルロース繊維からなるパルプ状物は、針葉樹晒しクラフトパルプ(以下、NBKPと称する。)、広葉樹晒しクラフトパルプ(以下、LBKPと称する。)、針葉樹サルファイトパルプ、広葉樹サルファイトパルプ、エスパルトその他いずれの種類のパルプでも何ら限定されるものではないが、湿式抄造時の無機繊維紙の物理強度の点からNBKPがより好ましい。また、ろ水度(カナダ標準ろ水度)は、特に限定しないが、200mlCSF以上700mlCSF以下の範囲内であることが好ましく、300mlCSF以上700mlCSF以下の範囲内であることがより好ましく、400mlCSF以上700mlCSF以下の範囲内であることが更に好ましい。ろ水度が、200mlCSF未満であると、湿式抄造法による無機繊維紙の形成段階で目が詰まって、濾水性が悪くなり、均一な地合いが得られない場合があり、また無機繊維紙の密度が高くなりすぎてしまう場合がある。一方、700mlCSFより高いと、繊維の微細化具合が悪く、絡み合いが劣り、物理強度が劣り、無機繊維紙を上手く抄造できない場合がある。   The pulp-like material composed of cellulose fibers used in the present invention includes softwood bleached kraft pulp (hereinafter, referred to as NBKP), hardwood bleached kraft pulp (hereinafter, referred to as LBKP), softwood sulfite pulp, hardwood sulfite pulp, Esparto or any other type of pulp is not limited at all, but NBKP is more preferable from the viewpoint of the physical strength of the inorganic fiber paper during wet papermaking. The freeness (Canadian standard freeness) is not particularly limited, but is preferably in the range of 200 ml CSF or more and 700 ml CSF or less, more preferably in the range of 300 ml CSF or more and 700 ml CSF or less, and more preferably 400 ml CSF or more and 700 ml CSF or less. Is more preferably within the range. When the freeness is less than 200 ml CSF, the clogging occurs at the stage of forming the inorganic fiber paper by the wet papermaking method, the drainage becomes poor, and a uniform formation may not be obtained. May be too high. On the other hand, if it is higher than 700 ml CSF, the fineness of the fiber is poor, the entanglement is poor, the physical strength is poor, and the inorganic fiber paper may not be successfully formed.

本発明に用いられる合成樹脂短繊維を構成する樹脂としては、ポリビニルアルコール系樹脂(以下、PVAと称する。)、ポリエステル系樹脂、ポリオレフィン系樹脂、アクリル系樹脂、ポリ酢酸ビニル系樹脂、エチレン−酢酸ビニル共重合体樹脂、ポリアミド系樹脂、ポリ塩化ビニル系樹脂、ポリ塩化ビニリデン系樹脂、ポリビニルエーテル系樹脂、ポリビニルケトン系樹脂、ポリエーテル系樹脂、ジエン系樹脂、ポリウレタン系樹脂、フェノール系樹脂、メラミン系樹脂、フラン系樹脂、尿素系樹脂、アニリン系樹脂、不飽和ポリエステル系樹脂、アルキド樹脂、フッ素系樹脂、シリコーン系樹脂、ポリアミドイミド系樹脂、ポリフェニレンスルフィド樹脂、ポリイミド樹脂、これらの樹脂の誘導体等が挙げられる。   Examples of the resin constituting the synthetic resin short fiber used in the present invention include polyvinyl alcohol resin (hereinafter, referred to as PVA), polyester resin, polyolefin resin, acrylic resin, polyvinyl acetate resin, ethylene-acetic acid. Vinyl copolymer resin, polyamide resin, polyvinyl chloride resin, polyvinylidene chloride resin, polyvinyl ether resin, polyvinyl ketone resin, polyether resin, diene resin, polyurethane resin, phenol resin, melamine Resin, furan resin, urea resin, aniline resin, unsaturated polyester resin, alkyd resin, fluorine resin, silicone resin, polyamideimide resin, polyphenylene sulfide resin, polyimide resin, derivatives of these resins, etc. Is mentioned.

無機バインダーとしてはカチオン性無機バインダーとセピオライトが必須成分である。カチオン性無機バインダーとしては硫酸アルミニウム、ポリ塩化アルミニウム、カチオン性コロイダルシリカ、アルミナゾルから選ばれる少なくとも1種以上を使用することができる。アルミナゾルの安定化剤としては塩酸、酢酸、硝酸などが挙げられるが、何れを使用してもよい。アルミナゾルの形状は羽毛状、板状構造などが挙げられるが、何れを使用してもよい。本発明におけるカチオン性無機バインダーの配合比としては繊維重量の合計量に対して0.1重量%以上5重量%以下が好ましく、0.1重量%以上3重量%以下がより好ましく、0.1重量%以上1重量%以下がさらに好ましい。カチオン性無機バインダーの配合比が0.1重量%未満の場合には、湿潤引張り強さが劣る場合がある。一方、カチオン性無機バインダーの配合比が5重量%を超えると凝集が強くなりすぎて地合不良や、吸液性が悪化する場合がある。   As the inorganic binder, a cationic inorganic binder and sepiolite are essential components. As the cationic inorganic binder, at least one selected from aluminum sulfate, polyaluminum chloride, cationic colloidal silica, and alumina sol can be used. Examples of the stabilizer for alumina sol include hydrochloric acid, acetic acid, and nitric acid, and any of them may be used. The shape of the alumina sol may be a feather-like or plate-like structure, and any of them may be used. The compounding ratio of the cationic inorganic binder in the present invention is preferably 0.1% by weight or more and 5% by weight or less, more preferably 0.1% by weight or more and 3% by weight or less based on the total weight of the fibers. More preferably, the amount is from 1% by weight to 1% by weight. When the compounding ratio of the cationic inorganic binder is less than 0.1% by weight, the wet tensile strength may be poor. On the other hand, when the compounding ratio of the cationic inorganic binder exceeds 5% by weight, cohesion becomes too strong, and formation failure may be caused or liquid absorbing property may be deteriorated.

本発明におけるセピオライトは、含水ケイ酸マグネシウムからなる表面に多数の活性水酸基を有する粘土性鉱物で、その形状において何ら限定されるものではなく、繊維状のほか、塊状、泥状、粉末状、いずれも用いることができる。また、母岩や間入石としてのタルク、カルサイト、ドロマイト、マグネサイト、塩基性炭酸マグネシウム、ケイ酸成分等が含まれていてもよい。また、スペイン産、トルコ産、中国産など原産国による制限は特にない。   Sepiolite in the present invention is a clay mineral having a large number of active hydroxyl groups on the surface thereof made of hydrous magnesium silicate, and is not limited in its shape at all.Other than fibrous, bulk, mud, powder, Can also be used. In addition, talc, calcite, dolomite, magnesite, basic magnesium carbonate, a silicate component and the like as host rocks and intercalation stones may be contained. There are no particular restrictions on countries of origin such as Spanish, Turkish and Chinese.

本発明に用いられるセピオライトの配合比は、無機繊維紙を構成する繊維(生体溶解性セラミック繊維、ガラス繊維、有機繊維)分に対して20重量%以上60重量%以下であることが好ましく、25重量%以上55重量%以下であることがより好ましく、45重量%以上55重量%以下であることが更に好ましい。配合比が20重量%未満では、物理強度が不十分となる場合があり、配合比が60重量%を超えると、無機繊維紙からの粉落ちが悪くなる場合がある。   The mixing ratio of sepiolite used in the present invention is preferably 20% by weight or more and 60% by weight or less with respect to the fibers (biosoluble ceramic fibers, glass fibers, and organic fibers) constituting the inorganic fiber paper. The content is more preferably not less than 55% by weight and more preferably not less than 55% by weight. When the compounding ratio is less than 20% by weight, the physical strength may be insufficient, and when the compounding ratio is more than 60% by weight, powder falling off the inorganic fiber paper may be deteriorated.

また、天然鉱物繊維の1つであるセピオライトとともに、ウォラストナイトやアタパルジャイトといった他の天然鉱物繊維を配合してもよい。なお、その他に例えば、パリゴルスカイトといった、通常、マウンテン・コルク、マウンテン・レザー、マウンテン・ウツド等と呼ばれている粘土性鉱物やコロイダルシリカ、リチウムシリケートなどを適宜選択して使用してもよい。   Further, other natural mineral fibers such as wollastonite and attapulgite may be blended together with sepiolite, which is one of the natural mineral fibers. In addition, for example, a clay mineral such as palygorskite, which is usually called mountain cork, mountain leather, mountain wood, or the like, colloidal silica, lithium silicate, or the like may be appropriately selected and used.

この無機繊維紙の坪量は、剛度が400mg以下であれば任意に設定できる。この無機繊維紙は、密度が0.25g/cm3以上0.40g/cm3以下である。また、無機繊維紙の密度は、0.28g/cm3以上0.39g/cm3以下であることが好ましい。密度が0.25g/cm3未満であると、繊維が毛羽立ってしまい切断や打ち抜きなどの加工性が悪化してしまう場合がある。一方、密度が0.40g/cm3を超えると、焼成前の含浸性を十分に確保することが難しくなる。   The basis weight of the inorganic fiber paper can be arbitrarily set as long as the rigidity is 400 mg or less. This inorganic fiber paper has a density of 0.25 g / cm3 or more and 0.40 g / cm3 or less. Further, the density of the inorganic fiber paper is preferably from 0.28 g / cm3 to 0.39 g / cm3. If the density is less than 0.25 g / cm3, the fibers may become fluffy and the workability such as cutting and punching may be deteriorated. On the other hand, when the density exceeds 0.40 g / cm 3, it is difficult to sufficiently secure impregnation before firing.

この無機繊維紙の厚みは、密度が0.25g/cm3以上0.40g/cm3以下であれば、坪量に対して任意に設定できる。   The thickness of the inorganic fiber paper can be arbitrarily set with respect to the basis weight as long as the density is 0.25 g / cm3 or more and 0.40 g / cm3 or less.

この無機繊維紙は、焼成前の保液量が100g/m2以上である。また、焼成前の保液量は、120g/m2以上であることが好ましい。焼成前の保液量が100g/m2未満の場合は、機能剤や結合剤等の担持が不十分になり、吸着性能等の機能や物理的強度が劣る場合がある。   This inorganic fiber paper has a liquid retention amount before firing of 100 g / m 2 or more. Further, the liquid retention amount before firing is preferably 120 g / m2 or more. If the liquid retention amount before firing is less than 100 g / m 2, the loading of the functional agent, the binder and the like becomes insufficient, and the function such as the adsorption performance and the physical strength may be inferior.

本発明の無機繊維紙は、円網抄紙機、長網抄紙機、短網抄紙機、傾斜型抄紙機、これらの中から同種または異種の抄紙機を組み合わせてなるコンビネーション抄紙機などを用いて抄造する方法によって製造することができる。原料スラリーには、必須成分の他に、本発明の所望の効果を損なわない範囲で、必要に応じて、各種アニオン性、ノニオン性、カチオン性又は両性の歩留り向上剤、濾水剤、分散剤、紙力向上剤や粘剤を適宜選択して添加することができる。原料スラリーは、0.1〜5重量%程度の固形分濃度に調整される。なお、pH調整剤、消泡剤、ピッチコントロール剤、スライムコントロール剤等の内添助剤を目的に応じて適宜添加することも可能である。   The inorganic fiber paper of the present invention is manufactured by using a round paper machine, a fourdrinier paper machine, a short net paper machine, an inclined paper machine, a combination paper machine made of a combination of the same or different kinds of paper machines among these. It can be manufactured by a method. In the raw material slurry, in addition to the essential components, various anionic, nonionic, cationic or amphoteric retention improvers, drainage agents, dispersants, as necessary, as long as the desired effects of the present invention are not impaired. A paper strength improver and a viscosity agent can be appropriately selected and added. The raw material slurry is adjusted to a solid content concentration of about 0.1 to 5% by weight. In addition, it is also possible to appropriately add an internal additive such as a pH adjuster, an antifoaming agent, a pitch control agent, and a slime control agent according to the purpose.

この原料スラリーをさらに所定濃度に希釈して抄造する。また、無機バインダーは、その形状に応じて凝集剤を用いて凝集体を形成しても良く、生体溶解性セラミック繊維、ガラス繊維や有機繊維と凝集体を形成してもよい。凝集剤は、高分子凝集剤、無機系凝集剤などがあるが、無機バインダーの成分や表面電荷を考慮して適宜選択することができる。凝集剤の添加量は、無機バインダーの種類や欲する凝集体の大きさによって変えることができる。凝集体の大きさをコントロールすることによって、小さい粒状の無機バインダーでも抄造ワイヤーから抜け落ちることなく抄造が可能となる。次いで、抄造されたウェブは、余分な水分を吸引あるいはウェットプレスなどの方法で取り除いた後、乾燥させる。乾燥には、ヤンキードライヤー、シリンダードライヤー、エアドライヤー、赤外線ドライヤー、サクションドライヤー等の乾燥装置を用いることができる。   This raw material slurry is further diluted to a predetermined concentration to form a paper. The inorganic binder may form an aggregate using a coagulant depending on its shape, or may form an aggregate with a biosoluble ceramic fiber, glass fiber, or organic fiber. The coagulant includes a polymer coagulant and an inorganic coagulant, and can be appropriately selected in consideration of the components of the inorganic binder and the surface charge. The amount of the coagulant added can be changed depending on the type of the inorganic binder and the size of the desired aggregate. By controlling the size of the agglomerate, it is possible to make a paper without a small granular inorganic binder falling off from a papermaking wire. Next, the formed web is dried after removing excess moisture by a method such as suction or wet pressing. For drying, a drying device such as a Yankee dryer, a cylinder dryer, an air dryer, an infrared dryer, and a suction dryer can be used.

得られた無機繊維紙は、触媒または吸着剤等の粒子や無機結合剤を分散させた含浸液に含浸させる。含浸液としては、シリカゾル、ケイ酸塩水溶液、アルミナゾル、ジルコニアゾル等を用いることができる。   The obtained inorganic fiber paper is impregnated with an impregnation liquid in which particles such as a catalyst or an adsorbent and an inorganic binder are dispersed. As the impregnating liquid, silica sol, silicate aqueous solution, alumina sol, zirconia sol and the like can be used.

以下に実施例を挙げて本発明を更に具体的に説明するが、本発明は、実施例に限定されるものではない。なお、実施例中の「%」は、特に断りのない限り「重量%」を示す。実施例及び比較例に記載した物性の測定方法、ならびに平均繊維径の測定方法を以下に示した。   Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to the examples. In the examples, “%” indicates “% by weight” unless otherwise specified. The methods for measuring physical properties and the methods for measuring the average fiber diameter described in Examples and Comparative Examples are shown below.

1)坪量
JIS P8124記載の方法にて測定した。単位はg/m2である。
1) Basis weight Measured according to the method described in JIS P8124. The unit is g / m2.

2)厚み
JIS P8118記載の方法にて測定した。単位はμmである。
2) Thickness The thickness was measured by the method described in JIS P8118. The unit is μm.

3)通気度
JIS L1096記載の方法にて測定した。測定機には、株式会社東洋精機製作所製の通気性試験機No.869を用いた。単位はcm3/cm2/secである。
3) Air permeability Measured according to the method described in JIS L1096. As a measuring device, a permeability tester No. manufactured by Toyo Seiki Seisaku-sho, Ltd. was used. 869 was used. The unit is cm3 / cm2 / sec.

4)ガーレ剛度
JIS L1096、JIS L1085記載の方法にて測定した。測定機には、株式会社東洋精機製作所製のガーレ剛軟度試験機No.825を用いた。単位はmgである。
4) Gurley stiffness Measured by the method described in JIS L1096 and JIS L1085. As a measuring device, Gurley rigidity tester No. manufactured by Toyo Seiki Seisaku-sho, Ltd. was used. 825 was used. The unit is mg.

5)MD方向(紙の流れ方向)の引張強さ
JIS P8113記載の方法に準拠してMD方向の引張強さを測定した。具体的には、15mm幅×250mm長さ(長さ方向がMD方向)の短冊サンプルの引張強さを測定した。単位はkN/mである。
5) Tensile strength in the MD direction (paper flow direction) The tensile strength in the MD direction was measured according to the method described in JIS P8113. Specifically, the tensile strength of a strip sample having a width of 15 mm and a length of 250 mm (the length direction is the MD direction) was measured. The unit is kN / m.

6)MD方向(紙の流れ方向)の湿潤引張強さ
JIS P8135記載の方法に準拠してMD方向の湿潤引張強さを測定した。15mm幅×250mm長さ(長さ方向がMD方向)の短冊サンプルを25℃の純水に3分浸漬する。浸漬処理した短冊サンプル4片をまとめて湿潤引張強さを測定し、短冊サンプル4片まとめて測定したデータから1片当たりの値を算出した。単位はkN/mである。
6) Wet tensile strength in MD direction (paper flow direction) Wet tensile strength in MD direction was measured according to the method described in JIS P8135. A strip sample having a width of 15 mm and a length of 250 mm (the length direction is the MD direction) is immersed in pure water at 25 ° C. for 3 minutes. The wet tensile strength of four strip samples subjected to the immersion treatment was measured together, and a value per one piece was calculated from the data measured for the four strip samples. The unit is kN / m.

7)焼成前保液量
100mm×100mmサイズのサンプルの乾燥重量(W1)を測定する。バットに張った25℃の純水に15秒間浸漬して取り出し、ガラス棒で表面の水滴を掻き落とした後、湿潤重量(W2)を測定し、W1とW2から保液量を求めた。単位はg/m2である。この無機繊維紙は、焼成前保液量が100g/m2以上である。
7) Liquid holding amount before firing The dry weight (W1) of a sample having a size of 100 mm x 100 mm is measured. It was immersed in pure water at 25 ° C. placed on a vat for 15 seconds, taken out, and water droplets on the surface were scraped off with a glass rod, and the wet weight (W2) was measured. The unit is g / m2. This inorganic fiber paper has a liquid retention amount before firing of 100 g / m 2 or more.

8)平均繊維径
ISO−16065−2に準拠した方法にて測定した。測定機にはメッツォオートメーション株式会社製のファイバー分析計Metso FS5を用いた。単位はμmである。
8) Average fiber diameter Measured by a method based on ISO-16065-2. As a measuring machine, a fiber analyzer Metso FS5 manufactured by Metso Automation Co., Ltd. was used. The unit is μm.

実施例1〜5、比較例1〜7の無機繊維紙について、各成分の配合を表1に示し、上述した評価試験により評価した結果を表2に示す。   With respect to the inorganic fiber papers of Examples 1 to 5 and Comparative Examples 1 to 7, the composition of each component is shown in Table 1, and the results evaluated by the above-described evaluation tests are shown in Table 2.

Figure 2020007698
Figure 2020007698

Figure 2020007698
Figure 2020007698

(実施例1)
表1に示すように、生体溶解性セラミック繊維(組成:SiO2/CaO/MgO=65/30/5;平均繊維径3μm×長さ600μm、45μm以上ショット含有率10%)、ガラス繊維として6μm径×6mm長のチョップドストランドガラス繊維、有機繊維としてNBKP(平均繊維径20μm、400mlCSF)をそれぞれ40/40/20とする配合で水中に順次添加混合し、さらに、無機バインダーとしてポリ塩化アルミニウム(以下、PACと称する)を繊維重量の合計量に対して0.5%添加し、セピオライト粉体平均粒径7μm)を繊維重量の合計量に対して45%添加し、3%濃度の原料スラリーを調成した。この原料スラリーを用いてウェブを長網抄紙機で希釈抄造し、湿式ウェブをプレスロールで脱水した後、130℃で加熱乾燥処理し、実施例1の無機繊維紙を得た。
(Example 1)
As shown in Table 1, biosoluble ceramic fibers (composition: SiO2 / CaO / MgO = 65/30/5; average fiber diameter 3 μm × length 600 μm, 45 μm or more shot content 10%), glass fiber 6 μm diameter × 6 mm length chopped strand glass fiber, NBKP as organic fiber (average fiber diameter 20 μm, 400 ml CSF) are added and mixed in water in a ratio of 40/40/20, and further, polyaluminum chloride (hereinafter, referred to as PAC) is added to the total fiber weight of 0.5%, sepiolite powder average particle diameter 7 μm) is added to the total fiber weight of 45%, and a 3% concentration raw material slurry is prepared. Done. The web was diluted with a Fourdrinier paper machine using this raw material slurry, the wet web was dehydrated with a press roll, and then heated and dried at 130 ° C. to obtain the inorganic fiber paper of Example 1.

(実施例2)
生体溶解性セラミック繊維、ガラス繊維、有機繊維の配合比をそれぞれ95/0/5とし、セピオライト粉体を繊維重量の合計量に対して55%添加した以外は実施例1と同じ方法で抄造を行い、実施例2の無機繊維紙を得た。
(Example 2)
The paper-making was performed in the same manner as in Example 1 except that the mixing ratio of the biosoluble ceramic fiber, glass fiber, and organic fiber was set to 95/0/5, and sepiolite powder was added at 55% to the total weight of the fiber. Then, the inorganic fiber paper of Example 2 was obtained.

(実施例3)
有機繊維として平均繊維径が17μmのNBKPを用い、生体溶解性セラミック繊維、ガラス繊維、有機繊維の配合比をそれぞれ20/25/55とした以外は実施例1と同じ方法で抄造を行い、実施例3の無機繊維紙を得た。
(Example 3)
Papermaking was performed in the same manner as in Example 1 except that NBKP having an average fiber diameter of 17 μm was used as the organic fiber, and the mixing ratio of the biosoluble ceramic fiber, glass fiber, and organic fiber was 20/25/55, respectively. The inorganic fiber paper of Example 3 was obtained.

(実施例4)
有機繊維として、平均繊維径が25μmのPVA(繊維長3mm)を用いた以外は実施例1と同じ方法で抄造を行い、実施例4の無機繊維紙を得た。
(Example 4)
Papermaking was performed in the same manner as in Example 1 except that PVA (fiber length: 3 mm) having an average fiber diameter of 25 μm was used as the organic fiber, to obtain an inorganic fiber paper of Example 4.

(実施例5)
生体溶解性セラミック繊維、ガラス繊維、有機繊維の配合比をそれぞれ10/70/20とした以外は実施例1と同じ方法で抄造を行い、実施例5の無機繊維紙を得た。
(Example 5)
Papermaking was performed in the same manner as in Example 1 except that the mixing ratio of the biosoluble ceramic fiber, glass fiber, and organic fiber was 10/70/20, respectively, to obtain an inorganic fiber paper of Example 5.

(比較例1)
セピオライト粉体に代えてカオリン粉体を添加した以外は実施例3と同じ方法で抄造を行い、比較例1の無機繊維紙を得た。
(Comparative Example 1)
Papermaking was performed in the same manner as in Example 3 except that kaolin powder was added instead of the sepiolite powder, to obtain an inorganic fiber paper of Comparative Example 1.

(比較例2)
セピオライト粉体に代えてタルク粉体を添加した以外は実施例3と同じ方法で抄造を行い、比較例2の無機繊維紙を得た。
(Comparative Example 2)
Papermaking was performed in the same manner as in Example 3 except that talc powder was added instead of the sepiolite powder, and an inorganic fiber paper of Comparative Example 2 was obtained.

(比較例3)
セピオライト粉体に代えてウォラストナイト粉体を添加した以外は実施例3と同じ方法で抄造を行い、比較例3の無機繊維紙を得た。
(Comparative Example 3)
Papermaking was performed in the same manner as in Example 3 except that wollastonite powder was added instead of sepiolite powder, to obtain an inorganic fiber paper of Comparative Example 3.

(比較例4)
有機繊維として平均繊維径が10μmのLBKPを用いた以外は実施例1と同じ方法で抄造を行い、比較例4の無機繊維紙を得た。
(Comparative Example 4)
Papermaking was performed in the same manner as in Example 1 except that LBKP having an average fiber diameter of 10 μm was used as the organic fiber, to obtain an inorganic fiber paper of Comparative Example 4.

(比較例5)
有機繊維として、平均繊維径が40μmのPVA(繊維長3mm)を用い、生体溶解性セラミック繊維、ガラス繊維、有機繊維の配合比をそれぞれ40/50/40とするとともに、セピオライト粉体を繊維重量の合計量に対して20%添加した以外は実施例1と同じ方法で抄造を行い、比較例5の無機繊維紙を得た。
(Comparative Example 5)
As the organic fibers, PVA having an average fiber diameter of 40 μm (fiber length 3 mm) was used, and the mixing ratio of the biosoluble ceramic fibers, glass fibers, and organic fibers was set to 40/50/40, and the sepiolite powder was mixed with the fiber weight. Papermaking was performed in the same manner as in Example 1 except that 20% was added to the total amount of the above, to obtain an inorganic fiber paper of Comparative Example 5.

(比較例6)
有機繊維として平均繊維径が17μmのNBKPを用い、生体溶解性セラミック繊維、ガラス繊維、有機繊維の配合比をそれぞれ20/25/55とするとともに、セピオライト粉体を添加しなかったこと以外は実施例1と同じ方法で抄造を行い、比較例6の無機繊維紙を得た。
(Comparative Example 6)
Performed except that NBKP having an average fiber diameter of 17 μm was used as the organic fiber, the blending ratio of the biosoluble ceramic fiber, glass fiber, and organic fiber was 20/25/55, respectively, and no sepiolite powder was added. Papermaking was performed in the same manner as in Example 1 to obtain an inorganic fiber paper of Comparative Example 6.

(比較例7)
有機繊維として平均繊維径が7μmのエスパルトを用い、生体溶解性セラミック繊維、ガラス繊維、有機繊維の配合比をそれぞれ20/25/55とした以外は実施例1と同じ方法で抄造を行い、比較例7の無機繊維紙を得た。
(Comparative Example 7)
Papermaking was performed in the same manner as in Example 1 except that esparto having an average fiber diameter of 7 μm was used as the organic fiber, and the mixing ratio of the biosoluble ceramic fiber, glass fiber, and organic fiber was 20/25/55, respectively. The inorganic fiber paper of Example 7 was obtained.

表2に示すように、実施例1〜5では、密度が好適な範囲に調整され、焼成前の含浸性に優れていることがわかる。また、有機繊維として、NBKPに代えてPVAを配合した実施例4では、引張強さがやや低くなっており、有機繊維としては、セルロース繊維のみを配合する方がより好ましいことがわかる。   As shown in Table 2, it can be seen that in Examples 1 to 5, the density was adjusted to a suitable range and the impregnation before firing was excellent. Moreover, in Example 4 in which PVA was blended instead of NBKP as the organic fiber, the tensile strength was slightly lower, and it is understood that it is more preferable to blend only the cellulose fiber as the organic fiber.

一方、セピオライトに代えてカオリンを添加した比較例1と、セピオライトに代えてタルクを添加した比較例2は、共に密度が高くなりすぎて、焼成前の保液量100g/m2以上を満足せず含浸性に劣ることがわかる。また、セピオライトに代えてウォラストナイトを添加した比較例3と、セピオライトを添加しない比較例6は、密度と焼成前の保液量100g/m2以上を満足しているが、通気度が非常に高く、シール性が要求される製品に適用することが難しいことがわかる。   On the other hand, Comparative Example 1 in which kaolin was added instead of sepiolite and Comparative Example 2 in which talc was added instead of sepiolite both had too high densities and did not satisfy the liquid retention amount of 100 g / m 2 or more before firing. It turns out that impregnation is inferior. Comparative Example 3 in which wollastonite was added instead of sepiolite and Comparative Example 6 in which sepiolite was not added satisfied the density and the liquid retention before firing of 100 g / m2 or more, but had a very low air permeability. It turns out that it is difficult to apply to a product which requires high sealing performance.

比較例4と比較例7は、共に有機繊維の平均繊維径が17μm未満であり、密度が高くなりすぎて、焼成前の保液量100g/m2以上を満足せず含浸性に劣ることがわかる。一方、有機繊維の平均繊維径が25μmを超える比較例5は、焼成前の保液量100g/m2以上は満足するものの、密度が0.25g/cm3未満になり、湿潤引張強さが非常に低く、通気度も高くなってしまい、さらにガーレ剛度が400mgを越えてしまうことがわかる。   In both Comparative Examples 4 and 7, the average fiber diameter of the organic fibers was less than 17 μm, the density was too high, and the impregnating property was poor because the liquid retention amount before firing was not more than 100 g / m 2. . On the other hand, Comparative Example 5 in which the average fiber diameter of the organic fibers exceeds 25 μm satisfies a liquid retention amount of 100 g / m 2 or more before firing, but has a density of less than 0.25 g / cm 3 and a very low wet tensile strength. It is understood that the air permeability is high, and the Gurley stiffness exceeds 400 mg.

以上説明した無機繊維紙は、生体溶解性セラミック繊維と、
繊維分における配合比が0重量%以上70重量%以下のガラス繊維と、
平均繊維径が17μm以上25μm以下の有機繊維と、
硫酸アルミニウム、ポリ塩化アルミニウム、カチオン性コロイダルシリカ、アルミナゾルから選ばれる少なくとも1種以上のカチオン性無機バインダーと、
セピオライトと、を用いて湿式抄造することにより得られるシート化した基材であって、
密度が0.25g/cm3以上0.40g/cm3未満、焼成前の保液量が100g/m2以上であることを特徴とする。
The inorganic fiber paper described above is a biosoluble ceramic fiber,
A glass fiber having a blending ratio of 0% by weight or more and 70% by weight or less in a fiber content,
Organic fibers having an average fiber diameter of 17 μm or more and 25 μm or less,
Aluminum sulfate, polyaluminum chloride, cationic colloidal silica, at least one or more cationic inorganic binders selected from alumina sol,
Sepiolite, and a sheet-formed substrate obtained by wet papermaking using,
It is characterized in that the density is 0.25 g / cm3 or more and less than 0.40 g / cm3, and the liquid retention amount before firing is 100 g / m2 or more.

この無機繊維紙によれば、密度を0.40g/cm3未満に抑えることで、焼成前の保液量を100g/m2以上として焼成前の含浸性を向上させることができる。さらに、密度が0.25g/cm3以上であるため切断や打ち抜きなどの加工性の悪化を抑えることができる。また、前記有機繊維の平均繊維径を17μm以上とすることで密度が高くなりすぎることを抑える一方、該有機繊維の平均繊維径を25μm以下にすることで密度が低くなりすぎることを防ぐことができる。   According to this inorganic fiber paper, by suppressing the density to less than 0.40 g / cm 3, the liquid retention amount before firing is set to 100 g / m 2 or more, and the impregnation property before firing can be improved. Furthermore, since the density is 0.25 g / cm3 or more, it is possible to suppress deterioration in workability such as cutting and punching. Moreover, while suppressing the density from becoming too high by setting the average fiber diameter of the organic fiber to 17 μm or more, it is possible to prevent the density from becoming too low by setting the average fiber diameter of the organic fiber to 25 μm or less. it can.

前記セピオライトは、密度が高くなりすぎることを抑えるとともに通気度を低くする無機バインダーである。前記ガラス繊維は、密度を低くする点で有効であるが、耐熱性が必要な場合には、繊維分における配合比を0重量%とすることができる。なお、前記繊維分には、生体溶解性セラミック繊維、ガラス繊維および有機繊維が含まれる。   The sepiolite is an inorganic binder that suppresses the density from becoming too high and lowers the air permeability. The glass fiber is effective in reducing the density, but when heat resistance is required, the mixing ratio in the fiber content can be set to 0% by weight. The fiber content includes biosoluble ceramic fibers, glass fibers, and organic fibers.

また、この無機繊維紙において、前記有機繊維が、セルロース繊維のみからなるものであることが好ましい。   Further, in this inorganic fiber paper, it is preferable that the organic fibers are made of only cellulose fibers.

前記有機繊維を前記セルロース繊維のみから構成し合成樹脂繊維を配合しないことにより、物理的強度(引張強さや湿潤引張強さ)の低下や材料コストを抑えることができる。   By forming the organic fiber only from the cellulose fiber and not compounding the synthetic resin fiber, it is possible to suppress a decrease in physical strength (tensile strength or wet tensile strength) and material cost.

さらに、この無機繊維紙において、ガーレ剛度が、400mg以下であることが好ましい。   Further, in this inorganic fiber paper, the Gurley stiffness is preferably 400 mg or less.

ガーレ剛度を400mg以下にすることで、折り曲げ加工がしやすくなる。   By setting the Gurley stiffness to 400 mg or less, bending becomes easy.

また、この無機繊維紙において、通気度が、3.5cm3/cm2/sec以下であることが好ましい。   Further, in this inorganic fiber paper, it is preferable that the air permeability is 3.5 cm3 / cm2 / sec or less.

こうすることで、特にシール性が必要な製品により好適に用いることができる。   By doing so, it can be more suitably used especially for a product requiring a sealing property.

さらに、この無機繊維紙において、含浸液を含浸させたものであってもよい。   Further, the inorganic fiber paper may be impregnated with an impregnating liquid.

ここでいう含浸液は、揮発性有機化合物(VOC)、アンモニア等の塩基性ガス、硫黄酸化物(SOx)、窒素酸化物(NOx)、塩素等の酸性ガスを除去するための触媒や吸着剤等の機能剤の粒子における分散体や、無機結合剤の分散体等である。具体的には、シリカゾル、ケイ酸塩水溶液、アルミナゾル、ジルコニアゾル等を例示することができる。   The impregnating liquid referred to here is a catalyst or an adsorbent for removing acidic gases such as volatile organic compounds (VOC), basic gases such as ammonia, sulfur oxides (SOx), nitrogen oxides (NOx), and chlorine. And the like, and dispersions of particles of a functional agent such as an inorganic binder. Specifically, silica sol, silicate aqueous solution, alumina sol, zirconia sol and the like can be exemplified.

Claims (2)

生体溶解性セラミック繊維と、
繊維分における配合比が0重量%以上70重量%以下のガラス繊維と、
平均繊維径が17μm以上25μm以下の有機繊維と、
硫酸アルミニウム、ポリ塩化アルミニウム、カチオン性コロイダルシリカ、アルミナゾルから選ばれる少なくとも1種以上のカチオン性無機バインダーと、
前記繊維分に対する配合比が20重量%以上60重量%以下のセピオライトと、を用いて湿式抄造することにより得られるシート化した基材であることを特徴とする無機繊維紙。
A biosoluble ceramic fiber;
A glass fiber having a blending ratio of 0% by weight or more and 70% by weight or less in a fiber content,
Organic fibers having an average fiber diameter of 17 μm or more and 25 μm or less,
Aluminum sulfate, polyaluminum chloride, cationic colloidal silica, at least one or more cationic inorganic binders selected from alumina sol,
An inorganic fiber paper, which is a sheet-formed base material obtained by wet papermaking using sepiolite having a blend ratio of 20% by weight or more and 60% by weight or less with respect to the fiber content.
焼成前の保液量が100g/m以上であることを特徴とする請求項1記載の無機繊維紙。
Inorganic fiber paper of claim 1, wherein the liquid retaining amount before firing is 100 g / m 2 or more.
JP2019189123A 2016-12-26 2019-10-16 Inorganic fiber paper Active JP6752952B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016251452 2016-12-26
JP2016251452 2016-12-26

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2017247303A Division JP6605569B2 (en) 2016-12-26 2017-12-25 Inorganic fiber paper

Publications (2)

Publication Number Publication Date
JP2020007698A true JP2020007698A (en) 2020-01-16
JP6752952B2 JP6752952B2 (en) 2020-09-09

Family

ID=62787665

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2017247303A Active JP6605569B2 (en) 2016-12-26 2017-12-25 Inorganic fiber paper
JP2019189123A Active JP6752952B2 (en) 2016-12-26 2019-10-16 Inorganic fiber paper

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2017247303A Active JP6605569B2 (en) 2016-12-26 2017-12-25 Inorganic fiber paper

Country Status (1)

Country Link
JP (2) JP6605569B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2618722C1 (en) * 2015-11-19 2017-05-11 Евгений Владимирович Дубовой Paper-like nanocomposite material based on mineral fibers for air cooling systems of evaporative type
CN116334957A (en) * 2021-12-15 2023-06-27 山东鲁阳节能材料股份有限公司 Soluble fiber paper and preparation method thereof
CN115613392B (en) * 2022-11-02 2023-11-17 山东鲁阳节能材料股份有限公司 Soluble fiber fireproof paper and preparation method thereof
CN115679746B (en) * 2022-11-02 2024-04-05 山东鲁阳节能材料股份有限公司 Soluble fiber paper and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003105662A (en) * 2001-09-28 2003-04-09 Nichias Corp Biodissolvable honeycomb structure
US20120247695A1 (en) * 2011-03-31 2012-10-04 Nichias Corporation Inorganic fiber paper and method of producing the same
JP2013234410A (en) * 2012-05-10 2013-11-21 Kj Specialty Paper Co Ltd Heat-resistant inorganic fiber sheet substrate
DE102013111275A1 (en) * 2013-10-11 2015-04-16 Thyssenkrupp Ag module
JP2017025458A (en) * 2015-07-28 2017-02-02 王子ホールディングス株式会社 Method for manufacturing inorganic fiber sheet, fired body, and honeycomb filter

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003105662A (en) * 2001-09-28 2003-04-09 Nichias Corp Biodissolvable honeycomb structure
US20120247695A1 (en) * 2011-03-31 2012-10-04 Nichias Corporation Inorganic fiber paper and method of producing the same
JP2012211417A (en) * 2011-03-31 2012-11-01 Nichias Corp Inorganic fibrous paper and method for producing the same
JP2013234410A (en) * 2012-05-10 2013-11-21 Kj Specialty Paper Co Ltd Heat-resistant inorganic fiber sheet substrate
DE102013111275A1 (en) * 2013-10-11 2015-04-16 Thyssenkrupp Ag module
JP2017025458A (en) * 2015-07-28 2017-02-02 王子ホールディングス株式会社 Method for manufacturing inorganic fiber sheet, fired body, and honeycomb filter

Also Published As

Publication number Publication date
JP2018104879A (en) 2018-07-05
JP6752952B2 (en) 2020-09-09
JP6605569B2 (en) 2019-11-13

Similar Documents

Publication Publication Date Title
JP6752952B2 (en) Inorganic fiber paper
JP5558518B2 (en) Heat resistant inorganic fiber sheet substrate
DK153895B (en) CELLULOSE FIBER CONTAINED PRODUCT AND PROCEDURE FOR MANUFACTURING SUCH A PRODUCT
GB2130263A (en) Non-asbestos sheet material
MX2010007774A (en) Coalescence media for separation of water-hydrocarbon emulsions.
KR101669387B1 (en) Method of making a thin filtration media
EA027215B1 (en) Method for manufacturing inorganic board
EP2969113B1 (en) Filtration media
FI118092B (en) Fiber-containing web and process for its preparation
JP7252435B2 (en) Method for producing low-density fiber paper containing hydrophobic nanofibers
JP2020122228A (en) Inorganic fiber sheet and manufacturing method of inorganic fiber sheet
JP3275187B2 (en) Heat-resistant paper and catalyst carrier comprising the same
JP2024032705A (en) Adsorption sheet and method for producing the same
JP3624377B2 (en) Diatomaceous earth containing diatomaceous earth, high-filler paper containing diatomaceous earth and inorganic materials, and methods for producing them
JP2018115408A (en) Inorganic fiber paper
JPS6492B2 (en)
JP2010174415A (en) Method of production of moisture absorbing/releasing paper and moisture absorbing/releasing paper
EP0027706A1 (en) Latex bound non-asbestos paper
JPH0138533B2 (en)
JP2017089042A (en) Unwoven fiber for wall paper backing
Nunes et al. Cellulose nanofibrills in papermaking—Filler retention, wet web resistance and printability
JPH0747287A (en) Catalyst
JP3351599B2 (en) Foam board
GB2061344A (en) Paper
JP2005097755A (en) Inorganic filler-filled low density paper

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191016

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200818

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200819

R150 Certificate of patent or registration of utility model

Ref document number: 6752952

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350