JP2019167443A - Epoxy resin composition and prepreg for fiber-reinforced composite material - Google Patents

Epoxy resin composition and prepreg for fiber-reinforced composite material Download PDF

Info

Publication number
JP2019167443A
JP2019167443A JP2018056097A JP2018056097A JP2019167443A JP 2019167443 A JP2019167443 A JP 2019167443A JP 2018056097 A JP2018056097 A JP 2018056097A JP 2018056097 A JP2018056097 A JP 2018056097A JP 2019167443 A JP2019167443 A JP 2019167443A
Authority
JP
Japan
Prior art keywords
component
epoxy resin
resin composition
prepreg
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018056097A
Other languages
Japanese (ja)
Other versions
JP7338130B2 (en
Inventor
敦 野原
Atsushi Nohara
敦 野原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Mitsubishi Chemical Group Corp
Original Assignee
Mitsubishi Chemical Corp
Mitsubishi Chemical Holdings Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Mitsubishi Chemical Holdings Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2018056097A priority Critical patent/JP7338130B2/en
Publication of JP2019167443A publication Critical patent/JP2019167443A/en
Application granted granted Critical
Publication of JP7338130B2 publication Critical patent/JP7338130B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Epoxy Resins (AREA)
  • Reinforced Plastic Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

To provide an epoxy resin composition that is excellent in storage stability and is also excellent in heat resistance and an elastic modulus of a cured product and retention of the elastic modulus in a high temperature region while having low-temperature and high-speed curability and to provide a prepreg for a fiber-reinforced composite material that comprises the epoxy resin composition.SOLUTION: The epoxy resin composition includes (A) component, (B) component and (C) component as given below: (A) component: a glycidyl amine type epoxy resin having at least three glycidyl groups in one molecule; (B) component: an epoxy resin having an oxazolidone ring in the molecule; and (C) component: an imidazole compound represented by formula (1).SELECTED DRAWING: None

Description

本発明は、繊維強化複合材料用プリプレグに用いられるエポキシ樹脂組成物、および該エポキシ樹脂組成物を用いた繊維強化複合材料用プリプレグに関する。   The present invention relates to an epoxy resin composition used for a prepreg for a fiber reinforced composite material, and a prepreg for a fiber reinforced composite material using the epoxy resin composition.

強化繊維とマトリックス樹脂とからなる繊維強化複合材料は、軽量で優れた機械特性を有するため、航空宇宙用途(航空機部材等)、自動車用途(自動車部材)、スポーツ用途(自転車部材等)、一般産業用途等に広く用いられている。繊維強化複合材料は、中間材料である繊維強化複合材料用プリプレグを加熱成型することによって得られる。   Fiber reinforced composite materials consisting of reinforced fibers and matrix resins are lightweight and have excellent mechanical properties, so they are aerospace applications (aircraft members, etc.), automotive applications (automobile members), sports applications (bicycle members, etc.), general industries Widely used for applications. The fiber reinforced composite material can be obtained by heat-molding a prepreg for fiber reinforced composite material, which is an intermediate material.

プリプレグは、強化繊維に熱硬化性樹脂または熱可塑性樹脂を含浸させたものである。プリプレグ用の樹脂としては、繊維強化複合材料の耐熱性、強度の点から、主として熱硬化性樹脂が用いられ、耐熱性、弾性率、低硬化収縮性、耐薬品性等に優れた繊維強化複合材料が得られる点から、エポキシ樹脂が最もよく用いられる。特に、航空宇宙用途や産業用途などの耐熱性が求められる用途においては、180℃硬化型のエポキシ樹脂がよく用いられる。   The prepreg is obtained by impregnating a reinforcing fiber with a thermosetting resin or a thermoplastic resin. As the prepreg resin, a thermosetting resin is mainly used from the viewpoint of heat resistance and strength of the fiber reinforced composite material, and the fiber reinforced composite having excellent heat resistance, elastic modulus, low curing shrinkage, chemical resistance, etc. Epoxy resins are most often used because of the material. In particular, 180 ° C. type epoxy resin is often used in applications requiring heat resistance such as aerospace applications and industrial applications.

しかしながら、一般的な180℃硬化型エポキシ樹脂は、硬化のために180℃で2時間以上の加熱が必要である。そのため、(i)プリプレグの成型に用いる加熱炉に十分な加熱能力が必要となる、(ii)成形時間が長くなる、(iii)副資材にも同程度の耐熱性が要求される、など繊維強化複合材料の製造コストが高くなるという問題がある。   However, a general 180 ° C. curable epoxy resin requires heating at 180 ° C. for 2 hours or longer for curing. Therefore, (i) the heating furnace used for molding the prepreg requires sufficient heating capacity, (ii) the molding time is prolonged, (iii) the auxiliary material is required to have the same heat resistance, etc. There exists a problem that the manufacturing cost of a reinforced composite material becomes high.

この問題を解決する方法として、例えば、エポキシ樹脂組成物を80〜140℃の低温で一次硬化させて脱型した後、180℃以上の高温でポストキュアする方法が知られている(特許文献1参照)。また、150℃、60分で完全硬化可能なエポキシ樹脂組成物も提案されている(特許文献2参照)。   As a method for solving this problem, for example, a method is known in which an epoxy resin composition is primarily cured at a low temperature of 80 to 140 ° C. and demolded, and then post-cured at a high temperature of 180 ° C. or more (Patent Document 1). reference). An epoxy resin composition that can be completely cured at 150 ° C. for 60 minutes has also been proposed (see Patent Document 2).

特許第4396274号公報Japanese Patent No. 4396274 特許第5326435号公報Japanese Patent No. 5326435

しかしながら、特許文献1に記載のように、低温での一次硬化と高温でのポストキュアを組み合わせる方法の場合、2回の成形硬化プロセスが必要なため、成形硬化時間やプロセス時間が長くなり、製造コストが高くなるという問題を抱えている。
また、特許文献2に記載のエポキシ樹脂組成物は、150℃という低温ながら60分間の加熱が必要であり、製造コストは依然高い。さらには得られる硬化物が、航空宇宙、自動車、自転車分野等において要求される耐熱性(具体的には180℃以上のガラス転移点)を達成することが困難である。
However, as described in Patent Document 1, in the case of a method in which primary curing at a low temperature and post-curing at a high temperature are combined, two molding curing processes are required. There is a problem of high costs.
Moreover, the epoxy resin composition described in Patent Document 2 requires heating for 60 minutes at a low temperature of 150 ° C., and the production cost is still high. Furthermore, it is difficult for the obtained cured product to achieve heat resistance (specifically, a glass transition point of 180 ° C. or higher) required in the aerospace, automobile, bicycle field and the like.

本発明は、低温・高速硬化性を有するにもかかわらず、硬化物の耐熱性および弾性率、高温領域での弾性率保持、機械特性にも優れるエポキシ樹脂組成物、および該エポキシ樹脂組成物を用いた繊維強化複合材料用プリプレグを提供する。   The present invention relates to an epoxy resin composition excellent in heat resistance and elastic modulus of a cured product, elastic modulus retention in a high temperature region, and mechanical properties despite having low temperature and high speed curability, and the epoxy resin composition. A prepreg for a fiber-reinforced composite material used is provided.

本発明者等は、上記課題を解決すべく鋭意検討した結果、特定のエポキシ樹脂、イミダゾール化合物および熱顔性樹脂を組み合わせることにより上記課題をかいけるできることを見出し、本発明を完成するに至った。即ち本発明の要旨は以下の(1)から(10)に存する。
(1) 下記(A)成分、(B)成分および(C)成分を含んでなるエポキシ樹脂組成物。
(A)成分:一分子内に少なくとも3つのグリシジル基を有するグリシジルアミン型エポキシ樹脂
(B)成分:分子内にオキサゾリドン環を有するエポキシ樹脂
(C)成分:式(1)で表されるイミダゾール化合物

Figure 2019167443
・・・式(1)
(2) 前記成分(A)と前記成分(B)の割合が質量比で30:70〜40:60である、上記(1)に記載のエポキシ樹脂組成物。
(3) 更に、下記成分(D)を含む、上記(1)または(2)に記載のエポキシ樹脂組成物。
(D)成分:熱可塑性樹脂
(4) 150℃で30分間加熱して得られる硬化物の動的粘弾性試験におけるガラス転移温度が180℃以上である、上記(1)から(3)のいずれかに記載のエポキシ樹脂組成物。
(5) 150℃で30分間加熱して得られる硬化物の動的粘弾性試験における35℃での貯蔵弾性率が2,900MPa以上、150℃での貯蔵弾性率が2,000MPa以上である、上記(1)から(4)のいずれかに記載のエポキシ樹脂組成物。
(6) 150℃で30分間加熱して得られる硬化物の示差走査熱量測定における反応発熱ピークの半値幅が12℃以下である、上記(1)から(5)のいずれかに記載のエポキシ樹脂組成物。
(7) 強化繊維とマトリクス樹脂を含むプリプレグであって、マトリクス樹脂が下記(A)成分、(B)成分および(C)成分を含んでなるエポキシ樹脂組成物であるプリプレグ。
(A)成分:一分子内に少なくとも3つのグリシジル基を有するグリシジルアミン型エポキシ樹脂
(B)成分:分子内にオキサゾリドン環を有するエポキシ樹脂(B)
(C)成分:式(1)で表されるイミダゾール化合物(C)
Figure 2019167443
・・・式(1)
(8) 前記成分(A)と前記成分(B)の割合が質量比で30:70〜40:60である、上記(7)に記載のプリプレグ。
(9) 前記マトリクス樹脂が更に下記成分(D)を含む、上記(7)または(8)に記載のプリプレグ。
(D)成分:熱可塑性樹脂
(10) 前記強化繊維が炭素繊維である、上記(7)から(9)のいずれかに記載のプリプレグ。 As a result of intensive studies to solve the above problems, the present inventors have found that the above problems can be solved by combining a specific epoxy resin, imidazole compound and thermophilic resin, and have completed the present invention. . That is, the gist of the present invention resides in the following (1) to (10).
(1) An epoxy resin composition comprising the following component (A), component (B) and component (C).
(A) Component: Glycidylamine type epoxy resin having at least three glycidyl groups in one molecule (B) Component: Epoxy resin having an oxazolidone ring in the molecule (C) Component: Imidazole compound represented by formula (1)
Figure 2019167443
... Formula (1)
(2) The epoxy resin composition as described in said (1) whose ratio of the said component (A) and the said component (B) is 30: 70-40: 60 by mass ratio.
(3) The epoxy resin composition according to (1) or (2), further comprising the following component (D).
Component (D): Thermoplastic resin (4) Any of (1) to (3) above, wherein the glass transition temperature in a dynamic viscoelasticity test of a cured product obtained by heating at 150 ° C. for 30 minutes is 180 ° C. or higher. An epoxy resin composition according to claim 1.
(5) The storage elastic modulus at 35 ° C. in a dynamic viscoelasticity test of a cured product obtained by heating at 150 ° C. for 30 minutes is 2,900 MPa or more, and the storage elastic modulus at 150 ° C. is 2,000 MPa or more. The epoxy resin composition according to any one of (1) to (4) above.
(6) The epoxy resin according to any one of (1) to (5) above, wherein the half-value width of the reaction exothermic peak in differential scanning calorimetry of the cured product obtained by heating at 150 ° C. for 30 minutes is 12 ° C. or less. Composition.
(7) A prepreg comprising reinforcing fibers and a matrix resin, wherein the matrix resin is an epoxy resin composition comprising the following components (A), (B) and (C).
Component (A): Glycidylamine type epoxy resin having at least three glycidyl groups in one molecule (B) Component: Epoxy resin having an oxazolidone ring in the molecule (B)
(C) Component: Imidazole compound (C) represented by formula (1)
Figure 2019167443
... Formula (1)
(8) The prepreg as described in said (7) whose ratio of the said component (A) and the said component (B) is 30: 70-40: 60 by mass ratio.
(9) The prepreg according to (7) or (8) above, wherein the matrix resin further contains the following component (D).
(D) Component: Thermoplastic resin (10) The prepreg according to any one of (7) to (9), wherein the reinforcing fiber is a carbon fiber.

本発明によれば、低温、高速硬化性を有するにもかかわらず、硬化物の耐熱性および弾性率、高温領域での弾性率保持、機械特性にも優れるエポキシ樹脂組成物、および該エポキシ樹脂組成物を用いた繊維強化複合材料用プリプレグを提供できる。   According to the present invention, an epoxy resin composition excellent in heat resistance and elastic modulus of a cured product, elastic modulus retention in a high temperature region, and mechanical properties despite having low temperature and high-speed curability, and the epoxy resin composition It is possible to provide a prepreg for a fiber-reinforced composite material using a product.

以下の用語の定義は、本明細書および特許請求の範囲にわたって適用される。
「エポキシ樹脂組成物の反応発熱ピークの半値幅」とは、示差走査熱量計(DSC)を用いて測定された反応発熱ピークの高さの半分となる位置における、ピークのX軸方向の幅(単位:℃)を意味する。
「硬化物のガラス転移点」は、樹脂硬化物から長さ:55mm、幅:12.7mm、厚さ:2mmの試験片を切り出し、動的粘弾性測定装置(DMA)を用い、ASTM D7028に従い、周波数:1Hz、昇温レート:5℃/分の条件で曲げモードでの貯蔵弾性率(E’)を測定し、logE’を温度に対してプロットし、logE’の転移する前の平坦領域の接線とlogE’が転移する領域の変曲点における接線との交点の温度である。
The following definitions of terms apply throughout this specification and the claims.
“Half width of reaction exothermic peak of epoxy resin composition” means the width in the X-axis direction of the peak at a position that is half the height of the reaction exothermic peak measured using a differential scanning calorimeter (DSC) ( Unit: ° C).
The “glass transition point of the cured product” is obtained by cutting a test piece having a length of 55 mm, a width of 12.7 mm, and a thickness of 2 mm from a resin cured product, and using a dynamic viscoelasticity measuring apparatus (DMA) according to ASTM D7028. , Frequency: 1 Hz, temperature rising rate: measured storage elastic modulus (E ′) in bending mode under conditions of 5 ° C./min, plotted log E ′ against temperature, flat region before log E ′ transition And the temperature at the intersection of the tangent at the inflection point in the region where logE ′ is transferred.

<エポキシ樹脂組成物>
本発明のエポキシ樹脂組成物は、 下記(A)成分、(B)成分および(C)成分を含んでなるエポキシ樹脂組成物である。
(A)成分:一分子内に少なくとも3つのグリシジル基を有するグリシジルアミン型エポキシ樹脂
(B)成分:分子内にオキサゾリドン環を有するエポキシ樹脂
(C)成分:式(1)で表されるイミダゾール化合物下記

Figure 2019167443
・・・式(1) <Epoxy resin composition>
The epoxy resin composition of the present invention is an epoxy resin composition comprising the following component (A), component (B) and component (C).
(A) Component: Glycidylamine type epoxy resin having at least three glycidyl groups in one molecule (B) Component: Epoxy resin having an oxazolidone ring in the molecule (C) Component: Imidazole compound represented by formula (1) following
Figure 2019167443
... Formula (1)

本発明のエポキシ樹脂組成物は、更に(D)成分として、熱可塑性樹脂を含んでいることが好ましい。また、本発明の効果を損なわない範囲内で必要に応じて、(A)成分、(B)成分、(C)成分、(D)成分以外の他の成分を含んでもよい。他の成分としては、(A)成分および(B)成分以外のエポキシ樹脂、特定の機能を付与する任意の添加剤などが挙げられる。   The epoxy resin composition of the present invention preferably further contains a thermoplastic resin as the component (D). Moreover, you may contain other components other than (A) component, (B) component, (C) component, and (D) component as needed within the range which does not impair the effect of this invention. Examples of the other components include epoxy resins other than the components (A) and (B), and optional additives that impart a specific function.

<(A)成分>
(A)成分は、一分子内に少なくとも3つのグリシジル基を有するグリシジルアミン型のエポキシ樹脂であり、エポキシ樹脂組成物の硬化物に必要な耐熱性を付与する成分である。
<(A) component>
The component (A) is a glycidylamine type epoxy resin having at least three glycidyl groups in one molecule, and is a component that imparts heat resistance necessary for a cured product of the epoxy resin composition.

(A)成分としては、例えば、テトラグリシジルアミン型エポキシ樹脂、トリグリシジルアミノフェノール型エポキシ樹脂が挙げられる。これらは1種を単独で用いてもよいし、2種以上を併用してもよい。   Examples of the component (A) include a tetraglycidylamine type epoxy resin and a triglycidylaminophenol type epoxy resin. These may be used individually by 1 type and may use 2 or more types together.

(A)成分の市販品としては、例えば、Araldite(登録商標)MY720、MY721、MY9663、MY9634、MY9655、MY0500、MY0510、MY0600、三菱ケミカル社製のjER(登録商標)604、jER630、住友化学社製のスミエポキシ(登録商標)ELM−434、ELM−100などが挙げられるが、これらに限定されない。   Examples of commercially available components (A) include Araldite (registered trademark) MY720, MY721, MY9663, MY9634, MY9655, MY0500, MY0510, MY0600, jER (registered trademark) 604, jER630 manufactured by Mitsubishi Chemical Corporation, Sumitomo Chemical Co., Ltd. Examples thereof include, but are not limited to, Sumiepoxy (registered trademark) ELM-434 and ELM-100.

<(B)成分)>
(B)成分は、分子内にオキサゾリドン環を有するエポキシ樹脂であり、エポキシ樹脂組成物の硬化物に高い靭性を与える成分である。
<(B) component)>
(B) A component is an epoxy resin which has an oxazolidone ring in a molecule | numerator, and is a component which gives high toughness to the hardened | cured material of an epoxy resin composition.

(B)成分の市販品としては、例えばDIC社製のTSR−400が挙げられる。   (B) As a commercial item of a component, TSR-400 made from DIC is mentioned, for example.

<(C)成分>
(C)成分は、下記式(1)で表される2−フェニル−4,5−ジヒドロキシメチルイミダゾールである。
<(C) component>
The component (C) is 2-phenyl-4,5-dihydroxymethylimidazole represented by the following formula (1).

(C)成分は、エポキシ樹脂の硬化剤、硬化触媒であり、室温でのポットライフに優れ、且つエポキシ樹脂の硬化物に高い耐熱性と高い靱性を与える成分である。

Figure 2019167443
・・・式(1) Component (C) is an epoxy resin curing agent and curing catalyst, and is a component that is excellent in pot life at room temperature and imparts high heat resistance and high toughness to the cured epoxy resin.
Figure 2019167443
... Formula (1)

(C)成分の市販品としては、例えば四国化成工業社製の2PHZ−PWが挙げられる。   Examples of the commercially available component (C) include 2PHZ-PW manufactured by Shikoku Kasei Kogyo Co., Ltd.

<(D)成分>
(D)成分は、熱可塑性樹脂である。(D)成分は、エポキシ樹脂組成物の硬化物に高い靱性を付与する他、エポキシ樹脂組成物のべたつきを抑えて、プリプレグのタックを適正レベルに調整したり、高温時、硬化直前の樹脂フローを抑制したりする効果を有する。
<(D) component>
(D) A component is a thermoplastic resin. In addition to imparting high toughness to the cured product of the epoxy resin composition, the component (D) suppresses stickiness of the epoxy resin composition to adjust the tack of the prepreg to an appropriate level, or at high temperature, the resin flow immediately before curing. It has the effect of suppressing.

(D)成分としては、例えばポリエーテルスルフォン、ポリビニルホルマール、フェノキシ樹脂、ポリアミド、アクリル系のブロック共重合物などが挙げられる。これらは1種を単独で用いてもよいし、2種以上を併用してもよい。   Examples of the component (D) include polyether sulfone, polyvinyl formal, phenoxy resin, polyamide, acrylic block copolymer, and the like. These may be used individually by 1 type and may use 2 or more types together.

(D)成分の市販品としては、住友化学社製PES5003MPS、BASF社製UltrasonE2020P−SRmicro、Slovay社製Virantage VW−10200、チッソ社製ビニレックE、新日鉄住金化学社製YP−70、YP−50、EMSケミー社製2AP0−35、TR55、TR90、Evonik社製Vestosint2158、2159、Alkema社製M52N、M22Nなどが挙げられるが、これらに限定されない。   (D) Component commercial products include PES5003MPS manufactured by Sumitomo Chemical, Ultrason E2020P-SRmicro manufactured by BASF, Virantage VW-10200 manufactured by Slovay, Vinylec E manufactured by Chisso, YP-70 manufactured by Nippon Steel & Sumitomo Chemical, YP-50, EMS Chemie 2AP0-35, TR55, TR90, Evonik Vestosint 2158, 2159, Alkema M52N, M22N, etc. are mentioned, but are not limited thereto.

<その他のエポキシ樹脂>
エポキシ樹脂組成物の粘度、繊維強化複合材料用プリプレグにした際のタック、ドレープ性等を調整する他、エポキシ樹脂の硬化物に適度な強靭性を与える目的として、エポキシ樹脂(A)および(B)成分以外のエポキシ樹脂を必要に応じて添加することが出来る。
<Other epoxy resins>
In addition to adjusting the viscosity of the epoxy resin composition, the tack and draping properties of the fiber-reinforced composite material prepreg, the epoxy resins (A) and (B) are used for the purpose of imparting appropriate toughness to the cured epoxy resin. ) An epoxy resin other than the component can be added as necessary.

例えばビスフェノールAジグリシジルエーテル、ビスフェノールFジグリシジルエーテル、ビスフェノールSジグリシジルエーテル、フェノールノボラック型、クレゾールノボラック型のグリシジルエーテル樹脂、ナフタレン型、ジシクロペンタジエン型グリシジルエーテル樹脂などが好ましい。これらは1種を単独で用いてもよいし、2種以上を併用してもよい。   For example, bisphenol A diglycidyl ether, bisphenol F diglycidyl ether, bisphenol S diglycidyl ether, phenol novolac type, cresol novolac type glycidyl ether resin, naphthalene type, dicyclopentadiene type glycidyl ether resin and the like are preferable. These may be used individually by 1 type and may use 2 or more types together.

その他のエポキシ樹脂の市販品としては、三菱ケミカル社製jER(登録商標)828、827、807、1001、1002、1004、4004、4007、1032H60、DIC社製EPICLON(登録商標)830、850、N673、N675、N770、N775、HP4032、HP4700、HP4770、EXA−1514、Huntsman Advanced Materials社製のTactix(登録商標)742、556、などが挙げられるが、これらに限定されない。   Other commercially available epoxy resins include jER (registered trademark) 828, 827, 807, 1001, 1002, 1004, 4004, 4007, 1032H60 manufactured by Mitsubishi Chemical Corporation, EPICLON (registered trademark) 830, 850, N673 manufactured by DIC. , N675, N770, N775, HP4032, HP4700, HP4770, EXA-1514, Tactix (registered trademark) 742, 556 manufactured by Huntsman Advanced Materials, etc., but are not limited thereto.

<その他の添加剤>
本発明のエポキシ樹脂組成物には、公知の添加剤(充填材、希釈剤、溶剤、顔料、可塑剤、酸化防止剤、安定化剤等)などを必要に応じて添加することが出来る。
<Other additives>
Known additives (fillers, diluents, solvents, pigments, plasticizers, antioxidants, stabilizers, etc.) can be added to the epoxy resin composition of the present invention as necessary.

例えば、顔料としてカーボンブラックやグラフェンなどが挙げられる。カーボンブラックやグラフェンは、エポキシ樹脂を黒色に着色し、後述する繊維強化複合材料を成形した際の樹脂の色目を隠し、特にスポーツ製品に適用した際に高品位な外観を付与する効果を有すると共に、紫外線吸収能力や、放熱機能も併せ持つ。   Examples of the pigment include carbon black and graphene. Carbon black and graphene have the effect of coloring the epoxy resin black, hiding the color of the resin when the fiber reinforced composite material described later is formed, and giving a high-grade appearance especially when applied to sports products. In addition, it has ultraviolet absorption capability and heat dissipation function.

<樹脂組成>
本発明のエポキシ樹脂組成物は、(A)成分と、(B)成分と、(C)成分が必須である。前記成分(A)と前記成分(B)の割合は、質量比で30:70〜40:60であることが好ましい。(A)成分の含有量が当該質量比であれば、エポキシ樹脂組成物の硬化物の耐熱性が高まる。また(B)成分の含有量が当該質量比であれば、エポキシ樹脂組成物の硬化物の破断伸度が十分となる。(C)成分の含有量は、エポキシ樹脂組成物に含まれる全てのエポキシ樹脂の総質量(すなわち、(A)成分と(B)成分、及びその他のエポキシ樹脂との合計)100質量%に対して、2質量%以上添加することが好ましく、3質量%以上がより好ましい。(C)成分の含有量が2質量%以上であれば、エポキシ樹脂組成物の硬化物に十分な耐熱性を与えることができる。(D)成分の含有量は、エポキシ樹脂組成物に含まれる全てのエポキシ樹脂(すなわち、(A)成分と(B)成分、及びその他のエポキシ樹脂との合計)100質量%に対して、2〜30質量%が好ましく、3〜20質量%がより好ましい。(D)成分の含有量が2質量%以上であれば、エポキシ樹脂に十分な靱性を与えることができる。30質量%以下であれば、繊維強化複合材料用プリプレグ用途としてエポキシ樹脂組成物を強化繊維に十分に含浸させることが出来るとともに、繊維強化複合材料用プリプレグとした際に、適度な表面タックを与えることができる。
<Resin composition>
In the epoxy resin composition of the present invention, the component (A), the component (B), and the component (C) are essential. It is preferable that the ratio of the said component (A) and the said component (B) is 30: 70-40: 60 by mass ratio. If content of (A) component is the said mass ratio, the heat resistance of the hardened | cured material of an epoxy resin composition will increase. Moreover, if content of (B) component is the said mass ratio, the breaking elongation of the hardened | cured material of an epoxy resin composition will become enough. The content of the component (C) is 100% by mass of the total mass of all the epoxy resins contained in the epoxy resin composition (that is, the total of the components (A), (B), and other epoxy resins). Therefore, it is preferable to add 2% by mass or more, and more preferably 3% by mass or more. If content of (C) component is 2 mass% or more, sufficient heat resistance can be given to the hardened | cured material of an epoxy resin composition. The content of the component (D) is 2% with respect to 100% by mass of all the epoxy resins contained in the epoxy resin composition (that is, the total of the components (A), (B), and other epoxy resins). -30 mass% is preferable, and 3-20 mass% is more preferable. If content of (D) component is 2 mass% or more, sufficient toughness can be given to an epoxy resin. If it is 30% by mass or less, the reinforced fiber can be sufficiently impregnated with the epoxy resin composition for use as a prepreg for a fiber reinforced composite material, and an appropriate surface tack is given when a prepreg for a fiber reinforced composite material is obtained. be able to.

<反応発熱の半値幅>
エポキシ樹脂組成物の、示差走査熱量測定(DSC)における反応発熱(Heat Flow)の半値幅は12℃以下が好ましく、10℃以下がより好ましい。反応発熱の半値幅が10℃以下であれば、エポキシ樹脂組成物の速硬化性、硬化物の耐熱性付与に優れる。
<Half width of reaction exotherm>
The half width of the reaction exotherm (Heat Flow) in differential scanning calorimetry (DSC) of the epoxy resin composition is preferably 12 ° C. or less, and more preferably 10 ° C. or less. When the half-value width of the reaction exotherm is 10 ° C. or less, the epoxy resin composition is excellent in rapid curability and imparting heat resistance to the cured product.

<硬化物のガラス転移点>
エポキシ樹脂組成物を150℃で30分間加熱して得られる硬化物の、動的粘弾性測定によるガラス転移点は、180℃以上が好ましい。硬化物のガラス転移点が180℃以上であれば、航空機用途、自動車用途、自転車用途として十分な耐熱性を有する。
<Glass transition point of cured product>
As for the glass transition point by the dynamic viscoelasticity measurement of the hardened | cured material obtained by heating an epoxy resin composition for 30 minutes at 150 degreeC, 180 degreeC or more is preferable. If the glass transition point of hardened | cured material is 180 degreeC or more, it has sufficient heat resistance for an aircraft use, a motor vehicle use, and a bicycle use.

<作用効果>
以上説明した本発明のエポキシ樹脂組成物にあっては、上述した成分(A)(B)(C)(D)を含むので、低温・高速硬化性を有する。具体的には、エポキシ樹脂組成物が150℃、30分以内での加熱によって十分に硬化する。
また、本発明のエポキシ樹脂組成物は、硬化物の耐熱性、高温領域での弾性率保持、及び機械特性に優れる。耐熱性については具体的には150℃、30分間の硬化によって硬化物が180℃以上のガラス転移点を有する。高温領域での弾性率保持について具体的には、150℃、30分間の硬化により得られる硬化物の貯蔵弾性率が150℃で2,000MPa以上となる。機械特性については、150℃、30分間の硬化により得られる硬化物の3点曲げ試験における破断時の伸度が5%以上となる。
<Effect>
Since the epoxy resin composition of the present invention described above includes the components (A), (B), (C), and (D) described above, it has low temperature and high speed curability. Specifically, the epoxy resin composition is sufficiently cured by heating at 150 ° C. within 30 minutes.
Moreover, the epoxy resin composition of this invention is excellent in the heat resistance of hardened | cured material, the elasticity modulus maintenance in a high temperature area | region, and a mechanical characteristic. Regarding heat resistance, specifically, the cured product has a glass transition point of 180 ° C. or higher by curing at 150 ° C. for 30 minutes. Specifically, the elastic modulus retention in the high temperature region is as follows. The storage elastic modulus of the cured product obtained by curing at 150 ° C. for 30 minutes is 2,000 MPa or more at 150 ° C. Regarding mechanical properties, the elongation at break in a three-point bending test of a cured product obtained by curing at 150 ° C. for 30 minutes is 5% or more.

<プリプレグ>
本発明のプリプレグは、強化繊維とマトリクス樹脂を含むプリプレグであって、マトリクス樹脂が下記(A)成分、(B)成分、(C)成分および(D)成分を含んでなるエポキシ樹脂組成物であって、前記エポキシ樹脂組成物に含まれる全エポキシ樹脂100質量部中に前記成分(A)を30質量部以上60質量部以下、前記成分(B)を25質量部以上55質量部以下含むエポキシ樹脂組成物であるプリプレグである。
(A)成分:一分子内に少なくとも3つのグリシジル基を有するグリシジルアミン型エポキシ樹脂
(B)成分:分子内にオキサゾリドン環を有するエポキシ樹脂(B)
(C)成分:式(1)で表されるイミダゾール化合物(C)

Figure 2019167443
・・・式(1)
(D)成分:熱可塑性樹脂 <Prepreg>
The prepreg of the present invention is an prepreg containing reinforcing fibers and a matrix resin, and the matrix resin is an epoxy resin composition comprising the following components (A), (B), (C) and (D). And the epoxy which contains the said component (A) 30-30 mass parts and the said component (B) 25-55 mass parts in 100 mass parts of all the epoxy resins contained in the said epoxy resin composition. It is a prepreg which is a resin composition.
Component (A): Glycidylamine type epoxy resin having at least three glycidyl groups in one molecule (B) Component: Epoxy resin having an oxazolidone ring in the molecule (B)
(C) Component: Imidazole compound (C) represented by formula (1)
Figure 2019167443
... Formula (1)
(D) component: thermoplastic resin

<強化繊維>
強化繊維としては、例えば、炭素繊維、アラミド繊維、ナイロン繊維、高強度ポリエステル繊維、ガラス繊維、ボロン繊維、アルミナ繊維、窒化珪素繊維などが挙げられる。これらの中でも、難燃性に優れる点から、炭素繊維、アラミド繊維、ガラス繊維、ボロン繊維、アルミナ繊維、窒化珪素繊維が好ましく、比強度および比弾性に優れる点から、炭素繊維が特に好ましい。強化繊維の形態としては、一方向に引き揃えられたもの、織物、ノンクリンプファブリック、不織布等が挙げられる。
<Reinforcing fiber>
Examples of the reinforcing fiber include carbon fiber, aramid fiber, nylon fiber, high-strength polyester fiber, glass fiber, boron fiber, alumina fiber, and silicon nitride fiber. Among these, carbon fiber, aramid fiber, glass fiber, boron fiber, alumina fiber, and silicon nitride fiber are preferable from the viewpoint of excellent flame retardancy, and carbon fiber is particularly preferable from the viewpoint of excellent specific strength and specific elasticity. Examples of the form of the reinforcing fiber include those that are aligned in one direction, woven fabric, non-crimp fabric, and non-woven fabric.

本発明の繊維強化複合材料用プリプレグにおけるエポキシ樹脂組成物の含有率は、15〜65質量%が好ましく、20〜60質量%がより好ましい。
本発明の繊維強化複合材料用プリプレグは、本発明のエポキシ樹脂組成物と強化繊維とを用いて、公知の方法で製造することができる。
15-65 mass% is preferable and, as for the content rate of the epoxy resin composition in the prepreg for fiber reinforced composite materials of this invention, 20-60 mass% is more preferable.
The prepreg for fiber-reinforced composite material of the present invention can be produced by a known method using the epoxy resin composition of the present invention and reinforcing fibers.

以上説明した本発明の繊維強化複合材料用プリプレグにあっては、本発明のエポキシ樹脂組成物を含んでいるので、低温(150℃)かつ短時間(30分)で硬化させることが可能でありながら、1か月以上の室温保存安定性を有する。さらにその硬化物は高いガラス転移点(180℃以上)を示すとともに、耐熱性、高温領域での弾性率保持、及び機械特性に優れる。   Since the prepreg for fiber-reinforced composite material of the present invention described above contains the epoxy resin composition of the present invention, it can be cured at a low temperature (150 ° C.) and in a short time (30 minutes). However, it has room temperature storage stability for more than one month. Further, the cured product exhibits a high glass transition point (180 ° C. or higher), and is excellent in heat resistance, elastic modulus retention in a high temperature region, and mechanical properties.

<繊維強化複合材料>
本発明における繊維強化複合材料は、本発明のプリプレグを用いて公知の方法で製造することができる。例えば、所定の表面形状を有する下型と上型との間にプリプレグを挟み、加圧および加熱して所望の形状の硬化物を得る方法が挙げられる。本発明における繊維強化複合材料は、本発明のプリプレグを硬化してなるものであるため、耐熱性、高温領域での弾性率保持、及び機械特性に優れる。
<Fiber reinforced composite material>
The fiber reinforced composite material in the present invention can be produced by a known method using the prepreg of the present invention. For example, there is a method in which a prepreg is sandwiched between a lower mold and an upper mold having a predetermined surface shape, and a cured product having a desired shape is obtained by pressing and heating. Since the fiber-reinforced composite material in the present invention is formed by curing the prepreg of the present invention, it is excellent in heat resistance, elastic modulus retention in a high temperature region, and mechanical properties.

以下、本発明を実施例により具体的に説明するが、本発明はこれらに限定されるものではない。   Hereinafter, the present invention will be specifically described by way of examples, but the present invention is not limited thereto.

<各成分>
(A)成分
(A)成分として、以下に示す化合物を用いた。
・A−1:トリグリシジル−p−アミノフェノール(Huntsman Advanced Materials社製MY0510)。
・A−2:テトラグリシジルジアミノジフェニルメタン(三菱ケミカル社製:jER604)。
<Each component>
(A) Component As the component (A), the following compounds were used.
A-1: Triglycidyl-p-aminophenol (MY0510 manufactured by Huntsman Advanced Materials).
A-2: Tetraglycidyldiaminodiphenylmethane (Mitsubishi Chemical Corporation: jER604).

(B)成分
(B)成分として、以下に示す化合物を用いた。
・オキサゾリドン環変性エポキシ樹脂(DIC社製TSR−400)
(B) Component The compound shown below was used as (B) component.
・ Oxazolidone ring-modified epoxy resin (DIC-made TSR-400)

(C)成分
(C)成分として、以下に示す化合物を用いた。
・C−1:2−フェニル−4,5−ジヒドロキシメチルイミダゾール(四国化成工業社製2PHZ−PW)。
・C−2:2−フェニル−4−メチル−5−ヒドロキシメチルイミダゾール(四国化成工業社製2P4MHZ−PW)。
・C−3:1−(4,6−ジアミノ−s−トリアジン−2−イル)エチル−2−メチルイミダゾール(四国化成工業社製2MZA−PW)。
(C) Component The compound shown below was used as (C) component.
C-1: 2-phenyl-4,5-dihydroxymethylimidazole (2PHZ-PW manufactured by Shikoku Chemicals).
C-2: 2-phenyl-4-methyl-5-hydroxymethylimidazole (2P4MHZ-PW manufactured by Shikoku Chemicals).
C-3: 1- (4,6-diamino-s-triazin-2-yl) ethyl-2-methylimidazole (2MZA-PW manufactured by Shikoku Chemicals).

(D)成分
(D)成分として、以下に示す化合物を用いた。
・D−1:ポリエーテルスルフォン(住友化学社製スミカエクセルPES5003MPS)。
・D−2:ポリビニルホルマール(チッソ社製ビニレックE)。
(D) Component The compound shown below was used as (D) component.
D-1: Polyether sulfone (Sumitomo Chemical Co., Ltd. Sumika Excel PES5003MPS).
D-2: Polyvinyl formal (Vinylec E manufactured by Chisso Corporation).

(その他のエポキシ樹脂)
その他のエポキシ樹脂として、以下に示す化合物を用いた。
・液状ビスフェノールA型エポキシ樹脂(三菱ケミカル社製jER828)
・固形ビスフェノールA型エポキシ樹脂(三菱ケミカル社製jER1002)
・固形ビスフェノールF型エポキシ樹脂(三菱ケミカル社製jER4004)
・固形クレゾールノボラック型エポキシ樹脂(DIC社製EPICLON N673)
・固形フェノールノボラック型エポキシ樹脂(DIC社製EPICLON N775)
・固形多官能ナフタレン型エポキシ樹脂(DIC社製EPICLON HP4770)
・固形ビスフェノールS型エポキシ樹脂(DIC社製EXA1514)
(Other epoxy resins)
As other epoxy resins, the following compounds were used.
・ Liquid bisphenol A type epoxy resin (JER828 manufactured by Mitsubishi Chemical Corporation)
・ Solid bisphenol A type epoxy resin (Mitsubishi Chemical Corporation jER1002)
・ Solid bisphenol F epoxy resin (jER4004 manufactured by Mitsubishi Chemical Corporation)
Solid cresol novolac type epoxy resin (EPICLON N673 manufactured by DIC)
・ Solid phenol novolac epoxy resin (EPICLON N775 manufactured by DIC)
・ Solid polyfunctional naphthalene type epoxy resin (EPICLON HP4770 manufactured by DIC)
・ Solid bisphenol S type epoxy resin (EXA1514 manufactured by DIC)

<測定・評価>
(樹脂板の作製)
エポキシ樹脂組成物を、離型処理された2枚の4mm厚のガラス板の間に2mm厚のポリテトラフルオロエチレン(PTFE)製スペーサーを介して注入し、150℃で30分間加熱して硬化樹脂板を得た。これを三点曲げ物性およびガラス転移点測定用の樹脂元板とした。
<Measurement / Evaluation>
(Production of resin plate)
The epoxy resin composition is injected between two 4 mm-thick glass plates that have been subjected to mold release treatment via a 2 mm-thick polytetrafluoroethylene (PTFE) spacer and heated at 150 ° C. for 30 minutes to form a cured resin plate. Obtained. This was used as a resin base plate for three-point bending properties and glass transition point measurement.

(反応発熱量の測定)
硬化前のエポキシ樹脂組成物を1〜10mg採取し(この範囲の量を採取すれば測定が可能)、示差走査熱量計(ティー・エイ・インスツルメント社製、DSC−Q100)を用いて、10℃/分の昇温レートにて300℃まで昇温して反応発熱量、反応開始温度、反応ピーク温度を測定した。
(Measurement of reaction calorific value)
1-10 mg of the epoxy resin composition before curing is collected (measurement is possible if the amount in this range is collected), and using a differential scanning calorimeter (manufactured by TA Instruments, DSC-Q100), The temperature was raised to 300 ° C. at a temperature rising rate of 10 ° C./min, and the reaction calorific value, reaction start temperature, and reaction peak temperature were measured.

(反応発熱ピークの半値幅の測定)
上記の反応発熱量測定において、反応発熱ピークの高さの半分となる位置における、ピークのX軸方向の幅(℃)を反応発熱ピークの半値幅(℃)として求めた。
(Measurement of half-value width of reaction exothermic peak)
In the above reaction calorific value measurement, the width (° C.) of the peak in the X-axis direction at a position that is half the height of the reaction exothermic peak was determined as the half-value width (° C.) of the reaction exothermic peak.

(曲げ物性の評価)
硬化樹脂板から長さ:60mm、幅:8mm、厚さ:2mmの試験片を切り出した。三点曲げ治具(圧子、サポートとも3.2mmR、サポート間距離=試験片の厚さの16倍)を設置したインストロン社製万能試験機を用い、クロスヘッドスピード:2mm/分にて三点曲げ物性(曲げ強度、曲げ弾性率および最大荷重時の曲げ伸度、破断時の曲げ伸度)を測定した。
(Evaluation of bending properties)
A test piece having a length of 60 mm, a width of 8 mm, and a thickness of 2 mm was cut out from the cured resin plate. Using an Instron universal testing machine equipped with a three-point bending jig (3.2 mmR for both indenter and support, distance between supports = 16 times the thickness of the test piece), crosshead speed: 2 mm / min. Point bending properties (bending strength, flexural modulus, bending elongation at maximum load, bending elongation at break) were measured.

(ガラス転移点の測定)
硬化樹脂板から長さ:60mm、幅:12.7mm、厚さ:2mmの試験片を切り出した。動的粘弾性測定装置(ティー・エイ・インスツルメント社製、「DMA−Q800」)を用いて、ASTM D7028に従い、周波数:1Hz、昇温レート:5℃/分の条件で曲げモードでの貯蔵弾性率E’を測定した。logE’を温度に対してプロットし、logE’の転移する前の平坦領域の接線とlogE’が転移する領域の変曲点における接線との交点の温度をガラス転移点とした。
(Measurement of glass transition point)
A test piece having a length of 60 mm, a width of 12.7 mm, and a thickness of 2 mm was cut out from the cured resin plate. Using a dynamic viscoelasticity measuring apparatus (manufactured by TA Instruments, "DMA-Q800") according to ASTM D7028, in a bending mode under the conditions of frequency: 1 Hz, temperature rising rate: 5 ° C / min. The storage elastic modulus E ′ was measured. Log E ′ was plotted against temperature, and the temperature at the intersection of the tangent of the flat region before the transition of log E ′ and the tangent at the inflection point of the region of transition of log E ′ was taken as the glass transition point.

<実施例1>
(A)成分と(D)成分とを、表1の組成でガラスフラスコに計量し、140℃で溶解混合させ、マスターバッチを調製した。
得られたマスターバッチに(B)成分を表1の配合量を計量、投入し、140℃で撹拌混合した。これを65℃に徐冷し、(C)成分及び残りの成分を表1に示す量添加し、均一になるまで撹拌混合した。その後真空脱泡し、エポキシ樹脂組成物を得た。
得られたエポキシ樹脂組成物を用いて各種測定・評価を行った。結果を表1に示す。
<Example 1>
The component (A) and the component (D) were weighed into a glass flask with the composition shown in Table 1, and dissolved and mixed at 140 ° C. to prepare a master batch.
The blended amount of component (B) in Table 1 was weighed and added to the obtained master batch, and stirred and mixed at 140 ° C. This was gradually cooled to 65 ° C., and the components (C) and the remaining components were added in the amounts shown in Table 1, and stirred and mixed until uniform. Thereafter, vacuum degassing was performed to obtain an epoxy resin composition.
Various measurements and evaluations were performed using the obtained epoxy resin composition. The results are shown in Table 1.

<実施例2〜5>
各成分の量を表1の実施例2〜5に示す量に変更した以外は、実施例1と同様にしてエポキシ樹脂組成物を調製し、各測定・評価を行った。結果を表1に示す。
<Examples 2 to 5>
Except having changed the quantity of each component into the quantity shown in Examples 2-5 of Table 1, the epoxy resin composition was prepared like Example 1, and each measurement and evaluation were performed. The results are shown in Table 1.

<比較例1〜14>
各成分の量を表2に示す量に変更した以外は、実施例1と同様にしてエポキシ樹脂組成物を調製し、各測定・評価を行った。結果を表2に示す。
<Comparative Examples 1-14>
Except having changed the quantity of each component into the quantity shown in Table 2, the epoxy resin composition was prepared like Example 1, and each measurement and evaluation were performed. The results are shown in Table 2.

Figure 2019167443
Figure 2019167443

Figure 2019167443
Figure 2019167443

表1の結果から明らかなように、各実施例で得られたエポキシ樹脂組成物は、低温・高速硬化性を有するにもかかわらず、硬化物の耐熱性、弾性率及び高温領域での弾性率の保持、機械特性に優れていた。   As is apparent from the results in Table 1, the epoxy resin composition obtained in each example has low temperature and high speed curability, but the cured product has heat resistance, elastic modulus and elastic modulus in a high temperature region. It was excellent in retention and mechanical properties.

一方、表2の結果から明らかなように、(A)成分の含有量が30%未満である比較例1のエポキシ樹脂組成物は、ガラス転移点が180℃未満であった。
(B)成分の代わりに他のエポキシ樹脂を用いた比較例2〜9のエポキシ樹脂組成物は、ガラス転移点、150℃での弾性率、曲げ破断時伸度、保存安定性のいずれかが劣る結果となった。
(C)成分として2−フェニル−4−メチル−5−ヒドロキシメチルイミダゾールを用いた比較例10は、示差走査熱量測定における反応発熱の半値幅が12℃以上であった。
(C)成分の2−フェニル−4,5−ジヒドロキシメチルイミダゾールの量が少ない比較例11は、ガラス転移点が180℃未満となるばかりでなく、示差走査熱量測定における反応発熱の半値幅が12℃以上となった。
(C)成分として2−フェニル−4,5−ジヒドロキシメチルイミダゾールに代えて2MZA−PWを用いる比較例12は、ガラス転移点と保存安定性に劣る結果となる。
(D)成分としてポリビニルホルマールを用いた比較例13は高温での弾性率保持に劣る結果となった。
(A)成分として3官能以上のグリシジル基を有するグリシジルアミン型エポキシ樹脂に代えて2官能のグリシジルエーテル型エポキシを用いる比較例14は、ガラス転移点に劣る結果となる。
On the other hand, as is clear from the results in Table 2, the epoxy resin composition of Comparative Example 1 in which the content of the component (A) is less than 30% had a glass transition point of less than 180 ° C.
The epoxy resin compositions of Comparative Examples 2 to 9 using other epoxy resins instead of the component (B) have any of glass transition point, elastic modulus at 150 ° C., elongation at bending fracture, and storage stability. The result was inferior.
In Comparative Example 10 using 2-phenyl-4-methyl-5-hydroxymethylimidazole as the component (C), the half value width of the reaction exotherm in the differential scanning calorimetry was 12 ° C. or more.
Comparative Example 11 having a small amount of the component (C) 2-phenyl-4,5-dihydroxymethylimidazole not only has a glass transition point of less than 180 ° C., but also has a half-value width of reaction exotherm in differential scanning calorimetry. It was over ℃.
Comparative Example 12 using 2MZA-PW instead of 2-phenyl-4,5-dihydroxymethylimidazole as the component (C) results in poor glass transition point and storage stability.
Comparative Example 13 using polyvinyl formal as the component (D) resulted in inferior elasticity retention at high temperatures.
Comparative Example 14 using a bifunctional glycidyl ether type epoxy instead of the glycidyl amine type epoxy resin having a trifunctional or higher glycidyl group as the component (A) results in inferior glass transition point.

本発明のエポキシ樹脂組成物を用いて得られる繊維強化複合材料は、航空機部材、自動車部材、自転車部材、スポーツ用品部材、鉄道車両部材、船舶部材、建築部材、オイルライザ等に好適に用いられ、特に高い耐熱性や機械特性が要求される航空機部材、自動車部材、自転車部材に好適に用いられる。   The fiber reinforced composite material obtained by using the epoxy resin composition of the present invention is suitably used for aircraft members, automobile members, bicycle members, sports equipment members, railway vehicle members, ship members, building members, oil risers, etc. Particularly, it is suitably used for aircraft members, automobile members, and bicycle members that require high heat resistance and mechanical properties.

Claims (10)

下記(A)成分、(B)成分および(C)成分を含んでなるエポキシ樹脂組成物。
(A)成分:一分子内に少なくとも3つのグリシジル基を有するグリシジルアミン型エポキシ樹脂
(B)成分:分子内にオキサゾリドン環を有するエポキシ樹脂
(C)成分:式(1)で表されるイミダゾール化合物
Figure 2019167443
・・・式(1)
An epoxy resin composition comprising the following component (A), component (B) and component (C).
(A) Component: Glycidylamine type epoxy resin having at least three glycidyl groups in one molecule (B) Component: Epoxy resin having an oxazolidone ring in the molecule (C) Component: Imidazole compound represented by formula (1)
Figure 2019167443
... Formula (1)
前記成分(A)と前記成分(B)の割合が質量比で30:70〜40:60である、請求項1に記載のエポキシ樹脂組成物。   The epoxy resin composition of Claim 1 whose ratio of the said component (A) and the said component (B) is 30: 70-40: 60 by mass ratio. 更に、下記成分(D)を含む、請求項1または2に記載のエポキシ樹脂組成物。
(D)成分:熱可塑性樹脂
Furthermore, the epoxy resin composition of Claim 1 or 2 containing the following component (D).
(D) component: thermoplastic resin
150℃で30分間加熱して得られる硬化物の動的粘弾性試験におけるガラス転移温度が180℃以上である、請求項1から3のいずれかに記載のエポキシ樹脂組成物。   The epoxy resin composition according to any one of claims 1 to 3, wherein a glass transition temperature in a dynamic viscoelasticity test of a cured product obtained by heating at 150 ° C for 30 minutes is 180 ° C or higher. 150℃で30分間加熱して得られる硬化物の動的粘弾性試験における35℃での貯蔵弾性率が2,900MPa以上、150℃での貯蔵弾性率が2,000MPa以上である、請求項1から4のいずれかに記載のエポキシ樹脂組成物。   The storage elastic modulus at 35 ° C in a dynamic viscoelasticity test of a cured product obtained by heating at 150 ° C for 30 minutes is 2,900 MPa or more, and the storage elastic modulus at 150 ° C is 2,000 MPa or more. The epoxy resin composition in any one of 4 to 4. 150℃で30分間加熱して得られる硬化物の示差走査熱量測定における反応発熱ピークの半値幅が12℃以下である、請求項1から5のいずれかに記載のエポキシ樹脂組成物。   The epoxy resin composition according to any one of claims 1 to 5, wherein a half-value width of a reaction exothermic peak in differential scanning calorimetry of a cured product obtained by heating at 150 ° C for 30 minutes is 12 ° C or less. 強化繊維とマトリクス樹脂を含むプリプレグであって、マトリクス樹脂が下記(A)成分、(B)成分および(C)成分を含んでなるエポキシ樹脂組成物であるプリプレグ。
(A)成分:一分子内に少なくとも3つのグリシジル基を有するグリシジルアミン型エポキシ樹脂
(B)成分:分子内にオキサゾリドン環を有するエポキシ樹脂(B)
(C)成分:式(1)で表されるイミダゾール化合物(C)
Figure 2019167443
・・・式(1)
A prepreg comprising reinforcing fibers and a matrix resin, wherein the matrix resin is an epoxy resin composition comprising the following components (A), (B) and (C).
Component (A): Glycidylamine type epoxy resin having at least three glycidyl groups in one molecule (B) Component: Epoxy resin having an oxazolidone ring in the molecule (B)
(C) Component: Imidazole compound (C) represented by formula (1)
Figure 2019167443
... Formula (1)
前記成分(A)と前記成分(B)の割合が質量比で30:70〜40:60である、請求項7に記載のプリプレグ。   The prepreg of Claim 7 whose ratio of the said component (A) and the said component (B) is 30: 70-40: 60 by mass ratio. 前記マトリクス樹脂が更に下記成分(D)を含む、請求項7または8に記載のプリプレグ。
(D)成分:熱可塑性樹脂
The prepreg according to claim 7 or 8, wherein the matrix resin further contains the following component (D).
(D) component: thermoplastic resin
前記強化繊維が炭素繊維である、請求項7から9のいずれかに記載のプリプレグ。   The prepreg according to any one of claims 7 to 9, wherein the reinforcing fibers are carbon fibers.
JP2018056097A 2018-03-23 2018-03-23 Epoxy resin composition and prepreg for fiber reinforced composites Active JP7338130B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018056097A JP7338130B2 (en) 2018-03-23 2018-03-23 Epoxy resin composition and prepreg for fiber reinforced composites

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018056097A JP7338130B2 (en) 2018-03-23 2018-03-23 Epoxy resin composition and prepreg for fiber reinforced composites

Publications (2)

Publication Number Publication Date
JP2019167443A true JP2019167443A (en) 2019-10-03
JP7338130B2 JP7338130B2 (en) 2023-09-05

Family

ID=68108074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018056097A Active JP7338130B2 (en) 2018-03-23 2018-03-23 Epoxy resin composition and prepreg for fiber reinforced composites

Country Status (1)

Country Link
JP (1) JP7338130B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021241734A1 (en) * 2020-05-29 2021-12-02 東レ株式会社 Epoxy resin composition, fiber-reinforced composite material, and method for producing same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010100834A (en) * 2008-09-29 2010-05-06 Toray Ind Inc Epoxy resin composition, prepreg, and fiber-reinforced composite material
JP2010539287A (en) * 2007-09-11 2010-12-16 ダウ グローバル テクノロジーズ インコーポレイティド Isocyanate-modified epoxy resin for fused epoxy foam
WO2015083714A1 (en) * 2013-12-02 2015-06-11 三菱レイヨン株式会社 Epoxy resin composition, and film, prepreg, and fiber-reinforced plastic using same
CN105315614A (en) * 2014-07-31 2016-02-10 太阳油墨(苏州)有限公司 Porefilling thermosetting resin composition for printed circuit board, cured product and printed circuit board
WO2017126307A1 (en) * 2016-01-19 2017-07-27 三菱ケミカル株式会社 Epoxy resin composition, prepreg for fiber-reinforced composite material, and fiber-reinforced composite material
JP2017206615A (en) * 2016-05-18 2017-11-24 三菱ケミカル株式会社 Method for producing fiber-reinforced composite material
WO2018043490A1 (en) * 2016-08-29 2018-03-08 三菱ケミカル株式会社 Thermosetting resin composition, prepreg, fiber-reinforced plastic molded body and method for producing same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010539287A (en) * 2007-09-11 2010-12-16 ダウ グローバル テクノロジーズ インコーポレイティド Isocyanate-modified epoxy resin for fused epoxy foam
JP2010100834A (en) * 2008-09-29 2010-05-06 Toray Ind Inc Epoxy resin composition, prepreg, and fiber-reinforced composite material
WO2015083714A1 (en) * 2013-12-02 2015-06-11 三菱レイヨン株式会社 Epoxy resin composition, and film, prepreg, and fiber-reinforced plastic using same
CN105315614A (en) * 2014-07-31 2016-02-10 太阳油墨(苏州)有限公司 Porefilling thermosetting resin composition for printed circuit board, cured product and printed circuit board
WO2017126307A1 (en) * 2016-01-19 2017-07-27 三菱ケミカル株式会社 Epoxy resin composition, prepreg for fiber-reinforced composite material, and fiber-reinforced composite material
JP2017206615A (en) * 2016-05-18 2017-11-24 三菱ケミカル株式会社 Method for producing fiber-reinforced composite material
WO2018043490A1 (en) * 2016-08-29 2018-03-08 三菱ケミカル株式会社 Thermosetting resin composition, prepreg, fiber-reinforced plastic molded body and method for producing same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021241734A1 (en) * 2020-05-29 2021-12-02 東レ株式会社 Epoxy resin composition, fiber-reinforced composite material, and method for producing same

Also Published As

Publication number Publication date
JP7338130B2 (en) 2023-09-05

Similar Documents

Publication Publication Date Title
US10920027B2 (en) Epoxy resin composition, molding material, and fiber-reinforced composite material
JP6977842B2 (en) Methods for manufacturing thermosetting resin compositions, prepregs, fiber-reinforced composites, fiber-reinforced composites, automotive materials, and prepregs.
RU2574054C2 (en) Epoxy resin-based curable compositions and composite materials obtained therefrom
JP6617559B2 (en) Two-component epoxy resin composition for fiber reinforced composite material and fiber reinforced composite material
JP5768893B2 (en) Epoxy resin composition and film, prepreg, fiber reinforced plastic using the same
JP6771883B2 (en) Epoxy resin compositions, prepregs and fiber reinforced composites
KR102389775B1 (en) Epoxy resin composition, prepreg, and fiber-reinforced composite material
JP6771885B2 (en) Epoxy resin compositions, prepregs and fiber reinforced composites
JP2013253194A (en) Epoxy resin composition
JP2019048954A (en) Epoxy resin composition and fiber-reinforced composite material
JP5842395B2 (en) Epoxy resin composition for fiber reinforced composite materials
JP2018053065A (en) Epoxy resin composition for fiber-reinforced composite material and fiber-reinforced composite material
JP2016210860A (en) Epoxy resin composition and prepreg for fiber-reinforced composite material
US20230279219A1 (en) Epoxy resin composition, prepreg, and fiber-reinforced composite material
JP6409951B2 (en) Epoxy resin composition, prepreg for fiber reinforced composite material, and fiber reinforced composite material
JP7338130B2 (en) Epoxy resin composition and prepreg for fiber reinforced composites
WO2020217894A1 (en) Epoxy resin composition, intermediate substrate, and fiber-reinforced composite material
TW201938628A (en) Resin composition for fiber-reinforced composite materials, and fiber-reinforced composite material using same
JP5297607B2 (en) RESIN COMPOSITION FOR FIBER-REINFORCED COMPOSITE MATERIAL, PROCESS FOR PRODUCING THE SAME AND COMPOSITE MATERIAL INTERMEDIATE
JP2018135496A (en) Two-liquid type epoxy resin composition for fiber-reinforced composite material, and fiber-reinforced composite material
JP6421897B1 (en) Epoxy resin composition, prepreg, fiber reinforced composite material and method for producing the same
CN114728488A (en) PEO-PPO-PEO triblock copolymers as additives for epoxide-anhydride systems
RU2792592C1 (en) Composition and method for producing a binder based on an epoxy-benzoxazine composition
JP2019116545A (en) Method for curing epoxy resin composition
JP2023049239A (en) Prepreg and fiber-reinforced composite material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201012

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210817

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220315

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220712

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20221108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230118

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20230118

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20230125

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20230131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230328

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20230511

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230725

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230807

R151 Written notification of patent or utility model registration

Ref document number: 7338130

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151