JP2019158480A - PREDICTION METHOD, PREDICTION DEVICE AND PREDICTION PROGRAM FOR SOLIDIFICATION CRACKING SUSCEPTIBILITY OF Al ALLOY - Google Patents

PREDICTION METHOD, PREDICTION DEVICE AND PREDICTION PROGRAM FOR SOLIDIFICATION CRACKING SUSCEPTIBILITY OF Al ALLOY Download PDF

Info

Publication number
JP2019158480A
JP2019158480A JP2018043597A JP2018043597A JP2019158480A JP 2019158480 A JP2019158480 A JP 2019158480A JP 2018043597 A JP2018043597 A JP 2018043597A JP 2018043597 A JP2018043597 A JP 2018043597A JP 2019158480 A JP2019158480 A JP 2019158480A
Authority
JP
Japan
Prior art keywords
solidification
alloy
temperature
solidification rate
susceptibility
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018043597A
Other languages
Japanese (ja)
Other versions
JP7132727B2 (en
Inventor
兼一 谷口
Kenichi Taniguchi
兼一 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MA Aluminum Corp
Original Assignee
Mitsubishi Aluminum Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Aluminum Co Ltd filed Critical Mitsubishi Aluminum Co Ltd
Priority to JP2018043597A priority Critical patent/JP7132727B2/en
Publication of JP2019158480A publication Critical patent/JP2019158480A/en
Application granted granted Critical
Publication of JP7132727B2 publication Critical patent/JP7132727B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

To provide a method for predicting a susceptibility to solidification cracking of an Al alloy.SOLUTION: A method includes a solidification rate curvilinear decision step for finding a solidification rate curve which shows a relation between the temperature found and the solidification rate for a phase change at a temperature given from the liquid phase to the solid phase using composition of aluminum alloy that should be predicted; an area calculation step which finds a straight line that connects a first position and second position, determines the area S of a domain surrounded with a straight line and a solidification rate curve found previously, and decides upon the first position where a solidification rate of aluminum alloy is optional within the limits of 0.6-0.8 in a solidification rate curve; and a judgment step for judging that aluminum alloy with the larger area S that tends to generate a solidification crack in a position in which the crystallization of the first crystallization is completed and shows a turning point at which the slope is discontinued in the solidification rate curve by deciding the position of the earlier one when not producing a turning point in the case a solidification rate is set to 0.95 as the second position by contrast of two or more areas S determined according to the composition of two or more aluminum alloys which should be predicted to tend to generate cracks due to solidification.SELECTED DRAWING: Figure 10

Description

本発明は、Al合金の凝固割れ感受性の予測方法および予測装置と予測プログラムに関する。   The present invention relates to a prediction method, prediction apparatus, and prediction program for solidification cracking susceptibility of an Al alloy.

Al合金はAlを主成分としてFe、Si、Mn、Mg、Cu、Znなどの様々な添加元素が含まれている。Al合金を製造する場合はこれら添加元素が溶質元素として共晶反応を伴うことがあり、凝固過程で残留融液中に添加元素が濃縮されると、亜共晶領域では濃縮が進むにつれてAl合金の凝固温度が低下する。また、冷却過程で熱収縮に伴う熱応力が作用するが、濃縮の進行に伴って凝固温度が低下すると冷却に伴って発生した熱収縮によるひずみによって凝固部分に割れを生じるおそれがある。   The Al alloy contains Al as a main component and includes various additive elements such as Fe, Si, Mn, Mg, Cu, and Zn. When producing an Al alloy, these additive elements may be accompanied by eutectic reactions as solute elements. When the additive elements are concentrated in the residual melt during the solidification process, the Al alloy is concentrated as the concentration progresses in the hypoeutectic region. The solidification temperature of the liquid drops. In addition, thermal stress accompanying thermal contraction acts during the cooling process, but if the solidification temperature decreases as the concentration progresses, there is a risk that cracks may occur in the solidified portion due to strain caused by thermal contraction that occurs with cooling.

このような凝固割れを生じた鋳造品は、後工程に利用することが難しいから、スクラップとして再溶融して利用することとなり、甚大なロスを生じる。従って、Al合金の成分による凝固割れの影響や鋳造工程における凝固割れ発生の有無はAl合金の製造工程における解決するべき重要な課題と考えられる。   Since it is difficult to use the cast product in which such solidification cracks occur in a subsequent process, it is used after being remelted as scrap, resulting in a significant loss. Therefore, the influence of solidification cracking due to the Al alloy components and the presence or absence of solidification cracking in the casting process are considered to be important issues to be solved in the Al alloy manufacturing process.

例えば、以下の特許文献1あるいは非特許文献1には、Al合金の凝固割れ感受性を予測する方法が開示されている。
特許文献1に記載の技術では、凝固観察領域を複数に区切り、1区分ずつ凝固が進行すると仮定し、液体組成から液相線温度と固相分配係数を算出する工程と、固相分配係数を基に生成する固相とそれに隣接した液相の成分を算出する工程を有する。そして、これらの工程で求められた隣接液相の成分組成から液相の凝固温度を算出する工程と、想定合金温度が凝固温度を下回った時点で新たに生成する固相および液相について上述の計算を繰り返す工程を備えている。
特許文献1に記載の技術は、凝固シミュレーションを用いて偏析を考慮し、液相線温度と固相線温度の差を求め、凝固割れの傾向を求める技術と考えられる。
For example, the following Patent Document 1 or Non-Patent Document 1 discloses a method for predicting the susceptibility to solidification cracking of an Al alloy.
In the technique described in Patent Document 1, it is assumed that the solidification observation region is divided into a plurality of regions, and solidification proceeds one by one, the liquidus temperature and the solid phase distribution coefficient are calculated from the liquid composition, and the solid phase distribution coefficient is calculated. A step of calculating the components of the solid phase generated in the base and the liquid phase adjacent thereto. Then, the above-described steps for calculating the solidification temperature of the liquid phase from the component composition of the adjacent liquid phase obtained in these steps and the solid phase and the liquid phase newly generated when the assumed alloy temperature falls below the solidification temperature are described above. A step of repeating the calculation.
The technique described in Patent Document 1 is considered to be a technique for determining the tendency of solidification cracking by determining the difference between the liquidus temperature and the solidus temperature in consideration of segregation using solidification simulation.

非特許文献1に記載の技術では、ある程度の強度を持ち、かつ、その強度が低く容易に変形し、固相が破断しても融液が補給されない領域を固相率0.75〜0.95の領域と設定し、この固相率領域でのひずみとひずみ速度の差で割れが起きると定義する。そして、鋳塊表面の鋳造方向位置では、鋳造初期表面部が拘束部となり、固相率領域のデンドライトが収縮することでひずみが生じて割れると仮定している。また、鋳塊表面の厚さ方向では、固相率領域に固相率が異なる半凝固部が存在し、低固相率部が拘束となって高固相率部が割れると仮定している。
非特許文献1に記載の技術では、固相率と強度発生の相関、偏析の計算、ひずみを考慮し、固相率0.75と0.95の場合において、温度変化に対するひずみ発生の速度差を指標として用いている。
In the technique described in Non-Patent Document 1, a solid phase ratio of 0.75 to 0. 0 is a region that has a certain degree of strength, is low in strength, easily deforms, and is not replenished with melt even when the solid phase breaks. The region is set to 95, and it is defined that cracking occurs due to the difference between strain and strain rate in the solid phase region. Then, it is assumed that at the position in the casting direction on the surface of the ingot, the initial casting surface portion becomes a restraint portion, and the dendrite in the solid phase rate region contracts to cause strain and crack. In addition, in the thickness direction of the ingot surface, it is assumed that there are semi-solidified portions with different solid fractions in the solid fraction region, and the low solid fraction is constrained and the high solid fraction is cracked. .
In the technique described in Non-Patent Document 1, in consideration of the correlation between the solid phase rate and the intensity generation, the calculation of segregation, and the strain, the difference in the rate of strain generation with respect to the temperature change when the solid phase rate is 0.75 and 0.95. Is used as an indicator.

特開2005―062108号公報Japanese Patent Laying-Open No. 2005-062108

森下誠他、「DC鋳造におけるAl−Mn系およびAl−Mg系アルミニウム合金の割れ感受性予測方法」、軽金属、第59巻、第8号、(2009)、P417〜P423Makoto Morishita et al., “Method for predicting crack sensitivity of Al—Mn and Al—Mg aluminum alloys in DC casting”, Light Metal, Vol. 59, No. 8, (2009), P417 to P423.

特許文献1に記載されている技術は、凝固シミュレーションを用いて偏析を考慮し、液相線温度と固相線温度の差を求め、凝固割れの傾向を求めている。しかし、この技術では凝固の際のひずみの発生を考慮しておらず、温度情報のみに基づいて解析しているので、凝固割れ発生の検出感度を高くできない問題がある。
非特許文献1に記載されている技術は、固相率と強度発生の相関、偏析の計算、ひずみの影響を考慮することで予測精度を向上させていると考えられるが、本願出願人が種々のアルミニウム合金の鋳造について研究したところ、非特許文献1の技術によっても鋳造時の割れ発生状況を十分には把握できないと認識している。
Al合金は、種々の要望に応じて様々な添加元素を加え、新規組成の合金を鋳造する機会も多いが、新たな組成比のAl合金において鋳造前に割れやすい合金であるのか、割れ難い合金であるのかの方向性を把握できることは重要な課題であると考えられる。
The technique described in Patent Document 1 considers segregation using solidification simulation, obtains the difference between the liquidus temperature and the solidus temperature, and seeks the tendency of solidification cracking. However, this technique does not consider the generation of strain during solidification, and analyzes based only on temperature information. Therefore, there is a problem that the detection sensitivity of occurrence of solidification cracks cannot be increased.
The technique described in Non-Patent Document 1 is considered to improve the prediction accuracy by considering the correlation between the solid phase ratio and the intensity generation, the calculation of segregation, and the influence of strain. As a result of research on the casting of aluminum alloys, it has been recognized that even with the technique of Non-Patent Document 1, it is not possible to sufficiently grasp the occurrence of cracks during casting.
Al alloys have many opportunities to cast alloys with a new composition by adding various additive elements according to various demands. Al alloys with new composition ratios are easily cracked before casting, or alloys that are difficult to crack. It is thought that it is an important subject to be able to grasp the direction of whether or not.

本願発明は、これらの背景に鑑み、新規組成のAl合金であっても凝固割れ感受性をこれまで以上の高い精度で予測できる方法および凝固割れ感受性を改善したAl合金の製造方法の提供を目的とする。また、本願発明は、新規組成のAl合金であっても凝固割れ感受性を予測できる装置と凝固割れ感受性予測プログラムの提供を目的とする。   In view of these backgrounds, the present invention aims to provide a method for predicting susceptibility to solidification cracking with a higher accuracy than ever, and a method for producing an Al alloy with improved susceptibility to solidification cracking, even for an Al alloy having a new composition. To do. Another object of the present invention is to provide a device capable of predicting solidification cracking susceptibility and a solidification cracking sensitivity prediction program even for an Al alloy having a new composition.

(1)本発明に係るAl合金の凝固割れ感受性の予測方法は、組成に応じた複数のAl合金の凝固時の割れの発生のし易さを予測する方法であって、予測するべきAl合金の組成を用い、液相から固相までの温度毎の相変化を求め、求めた温度と凝固率の関係を示す凝固率曲線を求める凝固率曲線策定ステップと、前記凝固率曲線において当該Al合金の凝固率が0.6〜0.8の範囲内で任意の第1の位置を策定し、初晶の晶出が終了して前記凝固率曲線にその勾配が不連続な変化点を示す位置か、該変化点を生じない場合は凝固率が0.95となる場合の早い方の位置を第2の位置として策定し、前記第1の位置と前記第2の位置を結ぶ直線を求め、該直線と先に求めた凝固率曲線とで囲まれる領域の面積Sを求める面積算出ステップと、予測するべき複数のAl合金の組成に応じて求めた前記複数の面積Sの対比により、前記面積Sの大きい方のAl合金が凝固割れを発生し易いと判断する判断ステップを具備することを特徴とする。 (1) The method for predicting the susceptibility to solidification cracking of an Al alloy according to the present invention is a method for predicting the ease of occurrence of cracks during solidification of a plurality of Al alloys according to the composition. A solidification rate curve formulation step for obtaining a solidification rate curve indicating a relationship between the obtained temperature and a solidification rate, and determining the phase change at each temperature from the liquid phase to the solid phase, and the Al alloy in the solidification rate curve The arbitrary solid position within the range of 0.6 to 0.8 is determined, and the primary crystallization is finished, and the solidification rate curve has a discontinuous change point. If the change point does not occur, the earlier position when the coagulation rate is 0.95 is defined as the second position, and a straight line connecting the first position and the second position is obtained, An area calculating step for determining an area S of a region surrounded by the straight line and the previously determined solidification rate curve; A judgment step of judging that the Al alloy having the larger area S is more likely to cause solidification cracks by comparing the plurality of areas S determined according to the composition of the plurality of Al alloys to be predicted. And

(2)本発明に係るAl合金の凝固割れ感受性の予測方法において、温度と固相率との関係を示す熱力学データベースに基づき、凝固計算にScheil-Gulliverの偏析モデルを用いて液相から固相までの温度毎の相変化を計算する方法に基づいて前記凝固曲線策定ステップを行うか、示差走査熱量計による測定結果に基づいて前記凝固曲線策定ステップを行うか、示差熱分析結果に基づいて前記凝固曲線策定ステップを行うことができる。
(3)本発明に係るAl合金の凝固割れ感受性の予測方法において、前記面積Sは熱力学的データベースによる凝固率を示す関数fdと前記直線を示す関数flとの差の足し算であり、前記fdと前記flは温度Tの関数であり、凝固率0.6〜0.8の際の温度をT0.6〜0.8、初晶晶出終了時の温度をTeとして以下の(1)式の関係を有することが好ましい。
(2) In the method for predicting the susceptibility to solidification cracking of an Al alloy according to the present invention, based on a thermodynamic database showing the relationship between temperature and solid phase rate, solidification is calculated from the liquid phase using the Scheil-Gulliver segregation model. The solidification curve formulation step is performed based on the method of calculating the phase change for each temperature up to the phase, the solidification curve formulation step is performed based on the measurement result by the differential scanning calorimeter, or based on the differential thermal analysis result The solidification curve formulation step can be performed.
(3) In the method for predicting susceptibility to solidification cracking of an Al alloy according to the present invention, the area S is an addition of a difference between a function fd indicating a solidification rate according to a thermodynamic database and a function fl indicating the straight line. And fl is a function of the temperature T, where the temperature at the solidification rate of 0.6 to 0.8 is T 0.6 to 0.8 , and the temperature at the end of primary crystal crystallization is Te. It is preferable to have a formula relationship.

Figure 2019158480
Figure 2019158480

(4)本発明に係るAl合金の凝固割れ感受性の予測方法において、前記Al合金が、質量%でSi:0.0001〜3.3%、Fe:0.0001〜2.0%、Cu:0.0001〜10.0%、Mn:0.0001〜10.0%、Mg:0.0001〜10.0%、Cr:0.0001〜1.0%、Zn:0.0001〜10.0%、Ti:0.0001〜1.0%、Ni:0.0001〜1.5%、Li:0.0001〜5.0%、Zr:0.0001〜1.0%、B:0.0001〜1.0%、Pb:0.0001〜0.5%、Bi:0.0001〜0.5%、V:0.0001〜0.5%のうち、1種または2種以上を含み、残部Al及び不可避不純物からなり、凝固後のAl合金のα相の体積率が80%以上であるAl合金を適用できる。 (4) In the method for predicting susceptibility to solidification cracking of an Al alloy according to the present invention, the Al alloy is Si: 0.0001-3.3%, Fe: 0.0001-2.0%, Cu: 0.0001-10.0%, Mn: 0.0001-10.0%, Mg: 0.0001-10.0%, Cr: 0.0001-1.0%, Zn: 0.0001-10. 0%, Ti: 0.0001-1.0%, Ni: 0.0001-1.5%, Li: 0.0001-5.0%, Zr: 0.0001-1.0%, B: 0 One or more of 0.0001 to 1.0%, Pb: 0.0001 to 0.5%, Bi: 0.0001 to 0.5%, and V: 0.0001 to 0.5%. Al alloy containing the balance Al and inevitable impurities, and the volume fraction of the α phase of the solidified Al alloy being 80% or more is suitable. It can be.

(5)本発明に係るAl合金の凝固割れ感受性の予測装置は、組成に応じた複数のAl合金の凝固時の割れの発生のし易さを予測する装置であって、予測するべきAl合金の組成を用い、液相から固相までの温度毎の相変化を求め、求めた温度と凝固率の関係を示す凝固率曲線を求める凝固率曲線策定手段と、前記凝固率曲線において当該Al合金の凝固率が0.6〜0.8の範囲内で任意の第1の位置を策定し、初晶の晶出が終了して前記凝固率曲線にその勾配が不連続な変化点を示す位置か、該変化点を生じない場合は凝固率が0.95となる場合の早い方の位置を第2の位置として策定し、前記第1の位置と前記第2の位置を結ぶ直線を求め、該直線と先に求めた凝固率曲線とで囲まれる領域の面積Sを求める面積算出手段と、予測するべき複数のAl合金の組成に応じて求めた前記複数の面積Sの対比により、前記面積Sの大きい方のAl合金が凝固割れを発生し易いと判断する判断手段を具備することを特徴とする。 (5) The prediction device for solidification cracking susceptibility of an Al alloy according to the present invention is a device for predicting the ease of occurrence of cracking during solidification of a plurality of Al alloys according to the composition, and is an Al alloy to be predicted A solidification rate curve formulating means for obtaining a solidification rate curve indicating a relationship between the obtained temperature and a solidification rate, and determining the phase change at each temperature from the liquid phase to the solid phase, and the Al alloy in the solidification rate curve The arbitrary solid position within the range of 0.6 to 0.8 is determined, and the primary crystallization is finished, and the solidification rate curve has a discontinuous change point. If the change point does not occur, the earlier position when the coagulation rate is 0.95 is defined as the second position, and a straight line connecting the first position and the second position is obtained, An area calculating means for determining an area S of a region surrounded by the straight line and the previously determined solidification rate curve; And determining means for determining that the Al alloy having a larger area S is more likely to cause solidification cracks, by comparing the plurality of areas S determined according to the composition of the plurality of power Al alloys. .

(6)本発明に係るAl合金の凝固割れ感受性の予測装置において、前記凝固曲線策定手段が、温度と固相率との関係を示す熱力学データベースに基づき、凝固計算にScheil-Gulliverの偏析モデルを用いて液相から固相までの温度毎の相変化を計算する手段であることが好ましい。
(7)本発明に係るAl合金の凝固割れ感受性の予測装置において、前記面積Sは熱力学的データベースによる凝固率を示す関数fdと前記直線を示す関数flとの差の足し算であり、前記fdと前記flは温度Tの関数であり、凝固率0.6〜0.8の際の温度をT0.6〜0.8、初晶晶出終了時の温度をTeとして以下の(1)式の関係を有することが好ましい。
(6) In the prediction device for the susceptibility to solidification cracking of an Al alloy according to the present invention, the solidification curve formulation means is based on a thermodynamic database showing the relationship between temperature and solid fraction, and is based on a Scheil-Gulliver segregation model Is preferably a means for calculating the phase change at each temperature from the liquid phase to the solid phase.
(7) In the prediction device for solidification cracking susceptibility of an Al alloy according to the present invention, the area S is an addition of a difference between a function fd indicating a solidification rate according to a thermodynamic database and a function fl indicating the straight line, and the fd And fl is a function of the temperature T, where the temperature at the solidification rate of 0.6 to 0.8 is T 0.6 to 0.8 , and the temperature at the end of primary crystal crystallization is Te. It is preferable to have a formula relationship.

Figure 2019158480
Figure 2019158480

(8)本発明に係るAl合金の凝固割れ感受性の予測装置において、前記Al合金が、質量%でSi:0.0001〜3.3%、Fe:0.0001〜2.0%、Cu:0.0001〜10.0%、Mn:0.0001〜10.0%、Mg:0.0001〜10.0%、Cr:0.0001〜1.0%、Zn:0.0001〜10.0%、Ti:0.0001〜1.0%、Ni:0.0001〜1.5%、Li:0.0001〜5.0%、Zr:0.0001〜1.0%、B:0.0001〜1.0%、Pb:0.0001〜0.5%、Bi:0.0001〜0.5%、V:0.0001〜0.5%のうち、1種または2種以上を含み、残部Al及び不可避不純物からなり、凝固後のAl合金のα相の体積率が80%以上であるAl合金を適用することができる。 (8) In the prediction device for solidification cracking susceptibility of an Al alloy according to the present invention, the Al alloy is Si: 0.0001-3.3%, Fe: 0.0001-2.0%, Cu: 0.0001-10.0%, Mn: 0.0001-10.0%, Mg: 0.0001-10.0%, Cr: 0.0001-1.0%, Zn: 0.0001-10. 0%, Ti: 0.0001-1.0%, Ni: 0.0001-1.5%, Li: 0.0001-5.0%, Zr: 0.0001-1.0%, B: 0 One or more of 0.0001 to 1.0%, Pb: 0.0001 to 0.5%, Bi: 0.0001 to 0.5%, and V: 0.0001 to 0.5%. Al alloy containing the balance Al and inevitable impurities, and the volume fraction of the α phase of the solidified Al alloy being 80% or more is suitable. It can be.

(9)本発明に係るAl合金の凝固割れ感受性の予測プログラムは、組成に応じた複数のAl合金の凝固時の割れの発生のし易さを予測するプログラムであって、コンピューターを、
予測するべきAl合金の組成を用い、液相から固相までの温度毎の相変化を求め、求めた温度と凝固率の関係を示す凝固率曲線を求める凝固率曲線策定手段と、
前記凝固率曲線において当該Al合金の凝固率が0.6〜0.8の範囲内で任意の第1の位置を策定し、初晶の晶出が終了して前記凝固率曲線にその勾配が不連続な変化点を示す位置か、該変化点を生じない場合は凝固率が0.95となる場合の早い方の位置を第2の位置として策定し、前記第1の位置と前記第2の位置を結ぶ直線を求め、該直線と先に求めた凝固率曲線とで囲まれる領域の面積Sを求める面積算出手段と、予測するべき複数のAl合金の組成に応じて求めた前記複数の面積Sの対比により、前記面積Sの大きい方のAl合金が凝固割れを発生し易いと判断する判断手段として機能させることを特徴とする。
(9) A prediction program for susceptibility to solidification cracking of an Al alloy according to the present invention is a program for predicting the ease of occurrence of cracks during solidification of a plurality of Al alloys according to the composition,
Using the composition of the Al alloy to be predicted, the phase change for each temperature from the liquid phase to the solid phase is obtained, and a solidification rate curve formulation means for obtaining a solidification rate curve indicating the relationship between the obtained temperature and the solidification rate;
In the solidification rate curve, an arbitrary first position is established within the solidification rate of the Al alloy within the range of 0.6 to 0.8, and the crystallization of the primary crystal is completed, and the gradient of the solidification rate curve has the gradient. The position indicating the discontinuous change point, or if the change point does not occur, the earlier position when the coagulation rate becomes 0.95 is determined as the second position, and the first position and the second position are determined. An area calculation means for obtaining an area S of a region surrounded by the straight line and the solidification rate curve obtained previously, and the plurality of the plurality of pieces obtained according to the compositions of the plurality of Al alloys to be predicted. By comparing the area S, the Al alloy having the larger area S functions as a determination unit that determines that solidification cracking is likely to occur.

(10)本発明に係るAl合金の凝固割れ感受性の予測プログラムにおいて、前記凝固曲線策定手段が、温度と固相率との関係を示す熱力学データベースに基づき、凝固計算にScheil-Gulliverの偏析モデルを用いて液相から固相までの温度毎の相変化を計算する手段であることが好ましい。
(11)本発明に係るAl合金の凝固割れ感受性の予測プログラムにおいて、前記面積Sは熱力学的データベースによる凝固率を示す関数fdと前記直線を示す関数flとの差の足し算であり、前記fdと前記flは温度Tの関数であり、凝固率0.6〜0.8の際の温度をT0.6〜0.8、初晶晶出終了時の温度をTeとして以下の(1)式の関係を有することが好ましい。
(10) In the prediction program for the susceptibility to solidification cracking of an Al alloy according to the present invention, the solidification curve formulation means is based on a thermodynamic database showing the relationship between temperature and solid fraction, and is based on a Scheil-Gulliver segregation model Is preferably a means for calculating the phase change at each temperature from the liquid phase to the solid phase.
(11) In the prediction program for susceptibility to solidification cracking of an Al alloy according to the present invention, the area S is an addition of a difference between a function fd indicating a solidification rate according to a thermodynamic database and a function fl indicating the straight line. And fl is a function of the temperature T, where the temperature at the solidification rate of 0.6 to 0.8 is T 0.6 to 0.8 , and the temperature at the end of primary crystal crystallization is Te. It is preferable to have a formula relationship.

Figure 2019158480
Figure 2019158480

(12)本発明に係るAl合金の凝固割れ感受性の予測プログラムにおいて、前記Al合金が、質量%でSi:0.0001〜3.3%、Fe:0.0001〜2.0%、Cu:0.0001〜10.0%、Mn:0.0001〜10.0%、Mg:0.0001〜10.0%、Cr:0.0001〜1.0%、Zn:0.0001〜10.0%、Ti:0.0001〜1.0%、Ni:0.0001〜1.5%、Li:0.0001〜5.0%、Zr:0.0001〜1.0%、B:0.0001〜1.0%、Pb:0.0001〜0.5%、Bi:0.0001〜0.5%、V:0.0001〜0.5%のうち、1種または2種以上を含み、残部Al及び不可避不純物からなり、凝固後のAl合金のα相の体積率が80%以上であるAl合金に適用することができる。 (12) In the prediction program for solidification cracking susceptibility of an Al alloy according to the present invention, the Al alloy is Si: 0.0001-3.3%, Fe: 0.0001-2.0%, Cu: 0.0001-10.0%, Mn: 0.0001-10.0%, Mg: 0.0001-10.0%, Cr: 0.0001-1.0%, Zn: 0.0001-10. 0%, Ti: 0.0001-1.0%, Ni: 0.0001-1.5%, Li: 0.0001-5.0%, Zr: 0.0001-1.0%, B: 0 One or more of 0.0001 to 1.0%, Pb: 0.0001 to 0.5%, Bi: 0.0001 to 0.5%, and V: 0.0001 to 0.5%. Including the remaining Al and inevitable impurities, the volume fraction of the α phase of the Al alloy after solidification is 80% or more It can be applied to the gold.

本発明によれば、凝固率曲線において凝固率0.6〜0.8の間の第1の位置と、初晶の晶出終了時の凝固率曲線の勾配が不連続な変化点か凝固率0.95の第2の位置とを結ぶ直線を策定し、凝固率曲線と直線とで囲まれる面積Sを算出し、比較するAl合金どうしの面積Sの大きさを比較することで比較したAl合金の中で面積Sが大きいものを凝固割れが発生し易い合金であると予測することができる。
Al合金において第1の位置は凝固時の強度を持ち始める位置であり、この第1の位置と第2の位置との間の潜熱発生の非線形性の積分値がAl合金凝固時の割れやすさの指標になると考えられる。
Al合金が一定の冷却速度で冷却されると、早くても、遅くても冷却による熱応力は発生しないが、潜熱発生による線形差からのズレの積分値が凝固割れを生じさせるひずみの原因であると考えることができ、このズレの積分値、即ち、面積Sの大小を比較することでAl合金の割れやすさの比較ができる。
According to the present invention, in the solidification rate curve, the first position between the solidification rates of 0.6 to 0.8 and the gradient of the solidification rate curve at the end of crystallization of the primary crystal are discontinuous change points. A straight line connecting the second position of 0.95 was formulated, the area S surrounded by the solidification rate curve and the straight line was calculated, and the compared Al alloys were compared by comparing the size of the area S between the Al alloys to be compared. It can be predicted that an alloy having a large area S is likely to cause solidification cracking.
In the Al alloy, the first position is a position where the strength at the time of solidification starts, and the integral value of the non-linearity of the latent heat generation between the first position and the second position is easy to crack when the Al alloy is solidified. It is considered to be an indicator of
When the Al alloy is cooled at a constant cooling rate, thermal stress due to cooling does not occur, whether it is fast or slow, but the integrated value of the deviation from the linear difference due to latent heat generation is the cause of strain that causes solidification cracking. By comparing the integrated value of this deviation, that is, the size of the area S, the easiness of cracking of the Al alloy can be compared.

Al合金の鋳塊を縦型半連続鋳造装置にて鋳造する状態の一例を示す概略図。Schematic which shows an example of the state which casts the ingot of Al alloy with a vertical semi-continuous casting apparatus. 本発明の第1実施形態に係る凝固割れ感受性の予測方法のフローを示すフローチャート。The flowchart which shows the flow of the prediction method of the solidification cracking sensitivity which concerns on 1st Embodiment of this invention. 第1実施形態のフローにおいて多元系合金の物性値計算ソフトウエアを適用して凝固率曲線を策定し、面積Sを算出する場合のフローを示すフローチャート。The flowchart which shows the flow in the case of calculating the area S by formulating the solidification rate curve by applying the physical property value calculation software of the multicomponent alloy in the flow of the first embodiment. 第1実施形態に係る凝固割れ感受性の予測装置及び凝固割れ感受性の予測プログラムの一実施形態を示すブロック図。The block diagram which shows one Embodiment of the prediction apparatus of the solidification crack sensitivity which concerns on 1st Embodiment, and the prediction program of solidification crack sensitivity. 実施例において多元系合金の物性値計算ソフトウエアを用いて特定組成のAl合金の凝固率曲線を策定した一例を示すグラフ。The graph which shows an example which formulated the solidification rate curve of Al alloy of a specific composition using the physical-property-value calculation software of a multicomponent system alloy in an Example. 同多元系合金の物性値計算ソフトウエアを用いてAl合金の凝固率曲線を策定する場合に得られる凝固率と温度の関係の一例を示すグラフ。The graph which shows an example of the relationship between the solidification rate and temperature obtained when formulating the solidification rate curve of Al alloy using the physical property value calculation software of the multicomponent alloy. 凝固率曲線において凝固率0.95付近に特異点が生じた場合の一例を示すグラフ。The graph which shows an example when a singular point arises in the coagulation rate 0.95 vicinity in the coagulation rate curve. 同特異点の部分を拡大して示すグラフ。The graph which expands and shows the part of the same singularity. 凝固率曲線を算出したデータを表計算ソフトにはき出して得た数列の一例と温度幅および凝固率曲線の傾きを計算する過程を説明するための説明図であり、(A)は700〜682℃における温度の列と勾配の列と0.75との差の列と線形y座標の列と非線形の差のdtの列の数値を示す図、(B)は635〜625℃における同列の数値を示す図、(C)は558〜548℃における同列の数値を示す図、(D)はこれらの数値を用いてT1、T2、R1、R2、T1−T2、R1−R2、|R1−R2|/dtなどの値を計算した結果の数値を示す図。It is explanatory drawing for demonstrating the process which calculates an example of the numerical sequence obtained by exposing the data which calculated the solidification rate curve to spreadsheet software, the temperature range, and the inclination of a solidification rate curve, (A) is 700-682 degreeC. The figure which shows the numerical value of the row | line | column of the temperature row | line | column, the row | line | column of gradient in 0.75, the row | line | column of difference of 0.75, the row | line | column of a linear y coordinate, and the dt row | line | column of a nonlinear difference, (B) (C) is a figure which shows the numerical value of the same row in 558-548 degreeC, (D) is T1, T2, R1, R2, T1-T2, R1-R2, | R1-R2 | using these numerical values. The figure which shows the numerical value of the result of calculating values, such as / dt. 複数の組成のAl合金について、物性値計算ソフトウエアを用いて算出した各Al合金の凝固率曲線を対比して示すグラフ。The graph which contrasts and shows the solidification rate curve of each Al alloy computed using physical property value calculation software about Al alloy of a some composition. 図10に示す各合金の凝固率曲線の対比から、面積Sを算出した結果を対比して示す説明図。Explanatory drawing which compares and shows the result of having calculated area S from the contrast of the solidification rate curve of each alloy shown in FIG. 図10に示す各Al合金において、凝固率0.75〜0.95の領域IIにおけるひずみ速度差とΔTIIの関係を示すグラフ。In each Al alloy shown in FIG. 10, a graph showing the relationship between strain rate difference and [Delta] T II in the region II of the coagulation rate 0.75 to 0.95. 図7に示す特異点が生じた場合に該当するAl合金の凝固率曲線において晶出直前の傾きを手動で採用した場合に得られた補正結果を示すグラフ。The graph which shows the correction result obtained when the inclination just before crystallization is employ | adopted manually in the solidification rate curve of Al alloy applicable when the specific point shown in FIG. 7 arises.

以下、本発明に係る凝固割れ感受性の予測方法、及び、これを用いた凝固割れ感受性の予測装置と凝固割れ感受性の予測プログラムについて、添付図面に示す実施形態に基づき詳細に説明する。
本発明の第1実施形態に係る凝固割れ感受性の予測方法は、Al合金の鋳塊を半連続鋳造方法により製造する場合に凝固過程でみられる凝固割れ発生の難易を予測する方法に関する。
ここで、本実施形態に係る凝固割れ感受性の予測方法の詳細について説明する前に、半連続鋳造方法を実施する場合に用いる縦型水冷式の半連続鋳造装置(DC鋳造装置)について図1を参照しつつ説明する。
Hereinafter, a solidification crack sensitivity prediction method, a solidification crack sensitivity prediction apparatus and a solidification crack sensitivity prediction program using the same according to the present invention will be described in detail based on embodiments shown in the accompanying drawings.
The solidification cracking susceptibility prediction method according to the first embodiment of the present invention relates to a method for predicting the difficulty of occurrence of solidification cracking seen in the solidification process when an Al alloy ingot is produced by a semi-continuous casting method.
Here, before explaining the details of the method for predicting solidification cracking susceptibility according to this embodiment, FIG. 1 shows a vertical water-cooled semi-continuous casting apparatus (DC casting apparatus) used in carrying out the semi-continuous casting method. This will be described with reference to FIG.

図1に示す半連続鋳造装置1は、Al合金の溶湯2が収容されているローンダー3と、ローンダー3の下に設けられているノズル5と、ノズル5の下方を囲むように設けられた鋳型6と、図示略の油圧シリンダー等により鋳型6の下方において上下方向に移動自在に設けられたボトムブロック7を備えて構成されている。
前記鋳型6内には冷却水Wが満たされており、鋳型6の下方に移動する溶湯2の周囲に鋳型下部の吐出部6aから冷却水Wを供給することで溶湯2を冷却し、所定形状の鋳塊9としてボトムブロック7の上に連続的に鋳造することができるようになっている。
鋳塊9が所定の長さになると、鋳型6への溶湯2の注入とボトムブロック7の引き下げを停止することで所定の形状、大きさの鋳塊9を得ることができる。
なお、ノズル5の先端側周囲部分に図示略のフロート型の湯面制御システムを設けて鋳塊9の上方に形成されている溶湯プール10の流れを制御しても良い。
A semi-continuous casting apparatus 1 shown in FIG. 1 includes a launder 3 in which an Al alloy melt 2 is accommodated, a nozzle 5 provided under the launder 3, and a mold provided so as to surround the lower side of the nozzle 5. 6 and a bottom block 7 movably provided in the vertical direction below the mold 6 by a hydraulic cylinder (not shown) or the like.
The mold 6 is filled with the cooling water W, and the molten water 2 is cooled by supplying the cooling water W from the discharge part 6a below the mold around the molten metal 2 moving below the mold 6. The ingot 9 can be continuously cast on the bottom block 7.
When the ingot 9 has a predetermined length, the ingot 9 having a predetermined shape and size can be obtained by stopping the injection of the molten metal 2 into the mold 6 and the lowering of the bottom block 7.
In addition, a float-type molten metal surface control system (not shown) may be provided around the tip side of the nozzle 5 to control the flow of the molten pool 10 formed above the ingot 9.

本発明に係る凝固割れ感受性の予測方法は、このようなDC鋳造を行うにあたり、例えば、新規あるいは所望する組成成分を有するAl合金を用いて鋳塊9を鋳造する場合に先立って、当該Al合金からなる鋳塊9が凝固割れし易いものであるか否かを予測するための方法と装置およびプログラムを提供するものである。   The method for predicting the susceptibility to solidification cracking according to the present invention is such that, when performing such DC casting, for example, prior to casting the ingot 9 using an Al alloy having a new or desired composition component, the Al alloy is concerned. A method, an apparatus, and a program for predicting whether or not an ingot 9 made of is likely to be solidified and cracked are provided.

図2に示すように、本発明の第1実施形態に係る凝固割れ感受性の予測方法は、入力ステップS1と凝固率曲線策定ステップS2と面積S算出ステップS3と判断ステップS4と出力ステップS5を含み、この手順に基づいて実行される。
以下、入力ステップS1と凝固率曲線策定ステップS2を実施する場合に用いて好適な物性値計算ソフトウエアについて説明する。
本実施形態においては、株式会社ユーイーエス・ソフトウエア・アジアが市販している物性値計算ソフトウエアのJmatPro(商品名)を用いて入力ステップS1と凝固率曲線策定ステップS2の主要な部分を実施することができる。
As shown in FIG. 2, the solidification cracking susceptibility prediction method according to the first embodiment of the present invention includes an input step S1, a solidification rate curve formulation step S2, an area S calculation step S3, a determination step S4, and an output step S5. , Executed based on this procedure.
Hereinafter, physical property value calculation software suitable for performing the input step S1 and the coagulation rate curve formulation step S2 will be described.
In this embodiment, the main steps of the input step S1 and the coagulation rate curve formulation step S2 are performed using JmatPro (product name), a physical property value calculation software marketed by UES Software Asia Co., Ltd. can do.

JmatPro(商品名)は、合金の温度、冷却速度、ひずみ速度依存性の物理的、熱力学的物性値および機械的物性値をその化学成分より計算するソフトウエアとして広く知られている。適用されている熱力学データベース、物性値データベースは、現在、Al合金、Mg合金、鋳鉄、一般鋼、ステンレス鋼、Cu合金、Ni合金、Ti合金、Co合金、はんだ用合金、Zr合金など多岐に渡っている。
この物性値計算ソフトウエア(JmatPro:商品名)では、凝固物性(凝固率、密度、熱伝導率、エンタルピー、比熱、粘性)を計算によって求めることができる。
この物性値計算ソフトウエアでは、多元系合金の状態図計算として確立された手法として知られるCALPHAD法(CAL-culation of PHAse Diagram)を使用し、合金系に依存する各相のギブスの自由エネルギーを数学的に表現し、エネルギーが最少になる混合状態を計算し、相境界を求め、ギブスの自由エネルギーを表す熱力学パラメーターを実験から求めて熱力学データベースに登録している。
JmatPro (trade name) is widely known as software for calculating the physical, thermodynamic and mechanical properties of alloy based on temperature, cooling rate and strain rate, from its chemical components. Currently, there are a wide variety of thermodynamic database and physical property database, such as Al alloy, Mg alloy, cast iron, general steel, stainless steel, Cu alloy, Ni alloy, Ti alloy, Co alloy, solder alloy, Zr alloy, etc. Crossing.
With this physical property value calculation software (JmatPro: trade name), solidification properties (solidification rate, density, thermal conductivity, enthalpy, specific heat, viscosity) can be obtained by calculation.
This physical property value calculation software uses the CAL-HAD method (CAL-culation of PHAse Diagram), which is a well-established method for calculating the phase diagram of multi-component alloys, and calculates the Gibbs free energy of each phase depending on the alloy system. It expresses mathematically, calculates the mixed state where the energy is minimized, obtains the phase boundary, obtains the thermodynamic parameter representing the Gibbs free energy from the experiment, and registers it in the thermodynamic database.

図3にこの物性値計算ソフトウエアを用いる場合のスタートプロセスから凝固率計算までの主要プロセスについてフローチャートを示す。
まず、ステップS1において合金成分組成を入力する。この物性値計算ソフトウエアはこの合金成分入力情報に応じて熱力学データベース(サーモテック社データーベース)DB1に基づき、ステップS21において凝固計算にSheile-Gulliver(SG)モデルあるいはScheilの式を使用し、液相から固相までの各温度毎の相変化をCALPHAD法とリンクさせて詳細に計算することができる。
この物性値計算ソフトウエアにおいては、凝固が完了すると、凝固中に形成された固相についての相分率を保持し、固相線以下は鉄合金を除いて相変化はしないものとして各物性値を計算する。
FIG. 3 shows a flowchart of the main process from the start process to the calculation of the solidification rate when using the physical property value calculation software.
First, in step S1, an alloy component composition is input. This physical property value calculation software uses the Sheile-Gulliver (SG) model or Scheil formula for solidification calculation in step S21 based on the thermodynamic database (Thermotech database) DB1 according to the alloy composition input information. The phase change at each temperature from the liquid phase to the solid phase can be calculated in detail by linking with the CALPHAD method.
In this physical property value calculation software, when solidification is completed, the phase fraction of the solid phase formed during solidification is maintained, and the physical property values are assumed that no phase change occurs except for the iron alloy below the solid phase line. Calculate

本実施形態においては、Al合金として、質量%でSi:0.0001〜3.3%、Fe:0.0001〜2.0%、Cu:0.0001〜10.0%、Mn:0.0001〜10.0%、Mg:0.0001〜10.0%、Cr:0.0001〜1.0%、Zn:0.0001〜10.0%、Ti:0.0001〜1.0%、Ni:0.0001〜1.5%、Li:0.0001〜5.0%、Zr:0.0001〜1.0%、B:0.0001〜1.0%、Pb:0.0001〜0.5%、Bi:0.0001〜0.5%、V:0.0001〜0.5%のうち、1種または2種以上を含み、、残部Al及び不可避不純物からなり、凝固後のAl合金のα相の体積率が80%以上であるAl合金に適用することができる。   In this embodiment, as an Al alloy, Si: 0.0001-3.3%, Fe: 0.0001-2.0%, Cu: 0.0001-10.0%, Mn: 0.00% by mass. 0001 to 10.0%, Mg: 0.0001 to 10.0%, Cr: 0.0001 to 1.0%, Zn: 0.0001 to 10.0%, Ti: 0.0001 to 1.0% , Ni: 0.0001 to 1.5%, Li: 0.0001 to 5.0%, Zr: 0.0001 to 1.0%, B: 0.0001 to 1.0%, Pb: 0.0001 -0.5%, Bi: 0.0001-0.5%, V: One or more of 0.0001-0.5%, consisting of remaining Al and inevitable impurities, after solidification The Al alloy can be applied to an Al alloy having an α phase volume fraction of 80% or more.

以下に本発明の第1実施形態に係る凝固割れ感受性の予測方法に適用可能なAl合金の成分元素について個々に説明する。以下の説明において%と表記するのは質量%を意味する。
「Si:0.0001〜3.3%」
SiはAl合金の固溶強化、析出強化に寄与する成分であり、0.0001%未満は不可避不純物レベルであり、3.3%を超えて含有する場合は25%を超える共晶相が発生し、凝固率0.75がすべて共晶凝固以降となり本予測方法の適用が難しい。凝固割れ感受性の予測方法に適用する場合により望ましいSi含有量は、1.68%以下である。
Al合金において比較的多くの量のSiが入る合金が存在する。多くのSiが入ると共晶相が増加し、強度発現の固相率が合致しなくなる。具体的には、共晶組成が12.6%Si、固溶限は1.1%であり、Siの濃度をX%とし、状態図の液相線を直線と近似すれば、α相と残存液相の比率は、X>1.1において、(12.6−X):(X−1.1)である。本実施形態では固相率0.75〜0.95の範囲について論議するが、3.3%Siを超えると共晶温度直上での固相率が0.75を下回るため、本発明で用いる論理が成立しにくくなる。本実施形態の凝固割れ感受性の予測方法に適用する場合、より望ましくは固相率0.95まで共晶が発生しないSi含有量1.68%以下の範囲である。
The component elements of the Al alloy that can be applied to the solidification cracking sensitivity prediction method according to the first embodiment of the present invention will be described individually below. In the following description, “%” means mass%.
"Si: 0.0001-3.3%"
Si is a component that contributes to the solid solution strengthening and precipitation strengthening of Al alloys, and the content of less than 0.0001% is an inevitable impurity level, and when it exceeds 3.3%, an eutectic phase exceeding 25% is generated. However, since the solidification rate of 0.75 is all after eutectic solidification, it is difficult to apply this prediction method. The Si content is more preferably 1.68% or less when applied to a method for predicting solidification cracking sensitivity.
There is an alloy containing a relatively large amount of Si in an Al alloy. When a large amount of Si enters, the eutectic phase increases, and the solid phase ratio of strength development does not match. Specifically, if the eutectic composition is 12.6% Si, the solid solubility limit is 1.1%, the Si concentration is X%, and the liquidus in the phase diagram is approximated to a straight line, The ratio of the remaining liquid phase is (12.6-X) :( X-1.1) when X> 1.1. In the present embodiment, the range of the solid phase ratio of 0.75 to 0.95 will be discussed. However, if it exceeds 3.3% Si, the solid phase ratio immediately above the eutectic temperature is less than 0.75, and therefore used in the present invention. It becomes difficult to establish logic. When applied to the solidification cracking susceptibility prediction method of this embodiment, the Si content is more preferably in the range of 1.68% or less until eutectic is not generated up to a solid phase ratio of 0.95.

「Fe:0.0001〜2.0%」
FeはAl合金の析出強化に寄与する成分であり、0.0001%未満は不可避不純物レベルであり、2.0%を超えて含有する場合は針状晶出物による強度低下、圧延割れを生じるおそれが高くなる。
“Fe: 0.0001 to 2.0%”
Fe is a component that contributes to precipitation strengthening of the Al alloy, and the content of less than 0.0001% is an inevitable impurity level, and if it exceeds 2.0%, the strength decreases due to needle-like crystals and rolling cracks occur. The fear increases.

「Cu:0.0001〜10.0%」
CuはAl合金の析出強化、電位調整に寄与する成分であり、0.0001%未満は不可避不純物レベルであり、10.0%を超えて含有する場合は脆性的な金属間化合物晶出による耐食性低下を生じるおそれが高くなる。さらに、共晶相の割合も25%に近づくことから、本予測手法の適用が困難となる。
Cuの固溶限は4.9%であるが、共晶組成が33%Cuであり、共晶になる残存液相が増え難いため、後述するMgと同じく上述の理由が優先される。
“Cu: 0.0001 to 10.0%”
Cu is a component that contributes to precipitation strengthening and potential adjustment of the Al alloy. Less than 0.0001% is an unavoidable impurity level, and when it exceeds 10.0%, corrosion resistance due to brittle intermetallic compound crystallization. There is a high risk of a decrease. Furthermore, since the ratio of the eutectic phase approaches 25%, it is difficult to apply this prediction method.
Although the solid solubility limit of Cu is 4.9%, the eutectic composition is 33% Cu, and the residual liquid phase that becomes eutectic is difficult to increase.

「Mn:0.0001〜10.0%」
MnはAl合金の固溶強化、析出強化に寄与する成分であり、0.0001%未満は不可避不純物レベルであり、10.0%を超えて含有する場合は粗大晶出物による加工性の悪化を生じるおそれが高くなる。
Mnの固溶限は1.82%と小さいが、共晶組成も1.95%であり、Mn亜共晶では固相率が低下する問題は起きない。Mn過共晶では一般的な平衡相とされるAl6Mnが晶出するが、Mnの増加によってAl6Mnの晶出温度が高くなり過ぎてしまう。10.0%Mnでの融点が800℃であり、Al合金の溶解温度としては限界に近くなる。Al合金nの溶解温度が800℃より高いと、ガス吸収、酸化物発生量の増加などの問題が起きやすい。
“Mn: 0.0001 to 10.0%”
Mn is a component that contributes to solid solution strengthening and precipitation strengthening of the Al alloy. Less than 0.0001% is an unavoidable impurity level, and when it exceeds 10.0%, workability deteriorates due to coarse crystals. Is likely to occur.
Although the solid solubility limit of Mn is as small as 1.82%, the eutectic composition is also 1.95%, and the problem of lowering the solid phase ratio does not occur in Mn hypoeutectic. In Mn hypereutectic, Al6Mn, which is a general equilibrium phase, crystallizes, but the crystallization temperature of Al6Mn becomes too high due to an increase in Mn. The melting point at 10.0% Mn is 800 ° C., and the melting temperature of the Al alloy is close to the limit. If the melting temperature of the Al alloy n is higher than 800 ° C., problems such as gas absorption and an increase in the amount of oxide generated are likely to occur.

「Mg:0.0001〜10.0%」
MgはAl合金の固溶強化、析出強化、軽量化に寄与する成分であり、0.0001%未満は不可避不純物レベルであり、10.0%を超えて含有する場合は溶湯流動性悪化を生じ、加工性の悪化を生じるおそれが高くなる。
MgはSiと異なり、固溶限が高く18.9%であり、Siでの事象が起きる前に、上述の理由で10.0%を超える範囲が選択されない。
「Cr:0.0001〜1.0%」
CrはAl合金の固溶強化、析出強化に寄与する成分であり、0.0001%未満は不可避不純物レベルであり、1.0%を超えて含有する場合は加工性の悪化を生じるおそれが高くなる。
“Mg: 0.0001 to 10.0%”
Mg is a component that contributes to solid solution strengthening, precipitation strengthening, and weight reduction of Al alloys. Less than 0.0001% is an unavoidable impurity level, and when it exceeds 10.0%, the melt fluidity deteriorates. There is a high risk that processability will deteriorate.
Mg, unlike Si, has a high solid solubility limit of 18.9%, and a range exceeding 10.0% is not selected for the reasons described above before an event occurs in Si.
“Cr: 0.0001 to 1.0%”
Cr is a component that contributes to solid solution strengthening and precipitation strengthening of the Al alloy, and the content of less than 0.0001% is an unavoidable impurity level. Become.

「Zn:0.0001〜10.0%」
ZnはAl合金の固溶強化、析出強化、電位調整に寄与する成分であり、0.0001%未満は不可避不純物レベルであり、10.0%を超えて含有する場合は加工性の悪化を生じるおそれが高くなる。Znは固溶限が50%近くと極めて大きく、添加する場合に問題を生じ難い。
「Ti:0.0001〜1.0%」
TiはAl合金の固溶強化に寄与し、微細化剤として寄与する成分であり、0.0001%未満は不可避不純物レベルであり、1.0%を超えて含有する場合は粗大晶出物(TiAl)を生じ、加工性の悪化を生じるおそれが高くなり、溶湯に溶けきらないおそれがある。
“Zn: 0.0001 to 10.0%”
Zn is a component that contributes to solid solution strengthening, precipitation strengthening, and potential adjustment of the Al alloy, and the content of less than 0.0001% is an inevitable impurity level, and when it exceeds 10.0%, workability deteriorates. The fear increases. Zn has an extremely large solid solubility limit of nearly 50%, and is unlikely to cause problems when added.
“Ti: 0.0001 to 1.0%”
Ti is a component that contributes to solid solution strengthening of the Al alloy and contributes as a finening agent. Less than 0.0001% is an inevitable impurity level, and when it contains more than 1.0%, a coarse crystallized product ( TiAl 3 ) is generated, and there is a high risk that workability will be deteriorated, and there is a possibility that it will not be completely dissolved in the molten metal.

「Ni:0.0001〜1.5%」
NiはAl合金の固溶強化、析出強化に寄与する成分であり、0.0001%未満は不可避不純物レベルであり、1.5%を超えて含有する場合は25%を超える共晶相が発生し、凝固率0.75がすべて共晶凝固以降となり本予測方法の適用が難しい。
「Li:0.00001〜5.0%」
LiはAl合金の固溶強化、析出強化、軽量化に寄与する成分であり、0.00001%未満は不可避不純物レベルであり、5.0%を超えて含有する場合は酸化膜が生成され易く、DC鋳造装置の耐火材への侵食の問題を生じやすくなる。
"Ni: 0.0001-1.5%"
Ni is a component that contributes to the solid solution strengthening and precipitation strengthening of Al alloys. Less than 0.0001% is an inevitable impurity level, and when it exceeds 1.5%, an eutectic phase exceeding 25% is generated. However, since the solidification rate of 0.75 is all after eutectic solidification, it is difficult to apply this prediction method.
"Li: 0.00001-5.0%"
Li is a component that contributes to solid solution strengthening, precipitation strengthening, and weight reduction of an Al alloy. Less than 0.00001% is an inevitable impurity level, and when it exceeds 5.0%, an oxide film is easily generated. The problem of erosion of the refractory material of the DC casting apparatus is likely to occur.

「Zr:0.0001〜1.0%」
ZrはAl合金の析出強化に寄与する成分であり、0.0001%未満は不可避不純物レベルであり、1.0%を超えて含有する場合は加工性の悪化を生じるおそれが高くなる。
「B:0.0001〜1.0%」
BはAl合金の微細化剤として有用な成分であり、0.0001%未満は不可避不純物レベルであり、1.0%を超えて含有する場合は粗大晶出物を生じ易く、溶湯に溶解しないおそれが高くなる。
“Zr: 0.0001 to 1.0%”
Zr is a component that contributes to precipitation strengthening of the Al alloy, and if less than 0.0001% is an unavoidable impurity level, and if it exceeds 1.0%, there is a high possibility that workability will deteriorate.
“B: 0.0001 to 1.0%”
B is a component useful as a finer agent for Al alloys, and if less than 0.0001% is an unavoidable impurity level, if it exceeds 1.0%, coarse crystallized products are likely to be formed and do not dissolve in the molten metal. The fear increases.

「Pb:0.0001〜0.5%、Bi:0.0001〜0.5%」
Pb、BiはAl合金の低融点相の生成に寄与する元素であり、0.0001%未満は不可避不純物レベルとなる。多い場合には熱処理時、時効時などの熱を加える際に容易に液相が生じ、欠陥の原因となり、鋳造時に低融点相の表面へのしみ出しが生じる場合がある。
「V:0.0001〜0.5%」
Vは、0.0001%未満は不可避不純物レベルであり、0.5%を超えて含有する場合は加工性の悪化を生じるおそれが高くなる。
“Pb: 0.0001 to 0.5%, Bi: 0.0001 to 0.5%”
Pb and Bi are elements that contribute to the generation of the low melting point phase of the Al alloy, and less than 0.0001% is an inevitable impurity level. In many cases, a liquid phase is easily generated when heat such as heat treatment or aging is applied, causing defects, and a low melting point phase may ooze out on the surface during casting.
“V: 0.0001 to 0.5%”
If V is less than 0.0001%, it is an inevitable impurity level, and if it exceeds 0.5%, there is a high possibility that workability will be deteriorated.

以上説明のAl合金に適用することができるが、Al合金として、質量%でSi:0.0001〜1.68%、Fe:0.0001〜1.5%、Cu:0.00001〜7.0%、Mn:0.0001〜3.0%、Mg:0.0001〜5.0%、Cr:0.0001〜0.5%、Zn:0.0001〜8.5%、Ti:0.0001〜0.5%、Ni:0.0001〜2.5%、Li:0.0001〜3.5%、Zr:0.0001〜0.5%、B:0.0001〜0.1%、Pb:0.0001〜0.2%、Bi:0.0001〜0.3、V:0.0001〜0.25%のうち、1種または2種以上を含み、残部Alおよび不可避不純物の組成を有し、凝固後のAl合金のα相の体積率が80%以上であるAl合金に適用することがより好ましい。   Although it can apply to the Al alloy of the above description, as an Al alloy, Si: 0.0001-1.68%, Fe: 0.0001-1.5%, Cu: 0.00001-7. 0%, Mn: 0.0001 to 3.0%, Mg: 0.0001 to 5.0%, Cr: 0.0001 to 0.5%, Zn: 0.0001 to 8.5%, Ti: 0 .0001-0.5%, Ni: 0.0001-2.5%, Li: 0.0001-3.5%, Zr: 0.0001-0.5%, B: 0.0001-0.1 %, Pb: 0.0001 to 0.2%, Bi: 0.0001 to 0.3, V: 0.0001 to 0.25%, one or two or more of the remaining Al and inevitable impurities And is applied to an Al alloy having a volume fraction of α phase of the Al alloy after solidification of 80% or more. Masui.

これら適用可能なAl合金の成分組成を入力するとJmatPro(商品名)は、ステップS22と外挿ステップS23と各相物性値計算ステップS24においてScheil-Gulliver(SG)モデルまたはScheilモデルを使用し、CALPHAD法とリンクさせて固相線温度下への外挿を行い、凝固プロセス中の各相のエンタルピー、比熱、潜熱、固相率、量、組成を物性値データベースDB2を基に各相物性値計算ステップS24において直接計算式から計算することができる。ここでの物性値データベースDB2は、各相のモル体積を熱力学的モデルとリンクした実験から得られた成分組成によるモル体積計算パラメーターを収納した物性値データベースとして知られている。   When the component composition of these applicable Al alloys is input, JmatPro (trade name) uses the Scheil-Gulliver (SG) model or Scheil model in step S22, extrapolation step S23, and each phase property value calculation step S24. Extrapolation to the solidus temperature is linked to the method, and the physical properties of each phase are calculated based on the physical property database DB2 based on the enthalpy, specific heat, latent heat, solid fraction, amount, and composition of each phase during the solidification process. In step S24, it can be calculated directly from the calculation formula. The physical property value database DB2 here is known as a physical property value database that stores a molar volume calculation parameter based on a component composition obtained from an experiment in which the molar volume of each phase is linked to a thermodynamic model.

材料物性値計算ステップS25において実験から得られた相互作用係数を導入して混合側に基づき計算し、算出ステップS26において材料凝固物性値、凝固率、密度、熱伝達係数、エンタルピー、比熱、潜熱、粘性などを計算で得ることができる。
以上説明のように、物性値計算ソフトウエアであるJmatPro(商品名)を用いることにより種々の物性値を算出できるが、これらのうち、本実施形態では凝固率を主体として求め、例えば、後述するようにデータの入力と計算により図5に例示する凝固率曲線を策定する。(凝固率曲線策定ステップ:S2)
In the material property value calculation step S25, the interaction coefficient obtained from the experiment is introduced and calculated based on the mixing side. In the calculation step S26, the material solidification property value, solidification rate, density, heat transfer coefficient, enthalpy, specific heat, latent heat, Viscosity can be obtained by calculation.
As described above, various physical property values can be calculated by using JmatPro (product name) which is physical property value calculation software. Among these, in this embodiment, the solidification rate is mainly determined, and for example, described later. Thus, the solidification rate curve illustrated in FIG. 5 is formulated by data input and calculation. (Coagulation rate curve formulation step: S2)

例えば、AA3104合金の標準的な組成を用いて計算する場合、JmatPro(商品名)の初期入力画面の組成入力欄に、Al:97.5質量%、Cu:0.15質量%、Fe:0.4質量%、Mg:1.2質量%、Mn:1.0質量%、Si:0.2質量%として、合金成分組成の入力を行う。
凝固率については、偏析をScheilの式(液相は完全拡散、固相は拡散なしと仮定)で熱力学計算する。JmatPro(商品名)の初期入力画面でスタート温度を700℃(凝固開始点以上の温度)に設定し、ステップを1℃刻みに設定し、Phases項目のTake all solid phases into account を選択し、Extend calculation 項目のCalculation strength and dendrite arm spacing を選択し、Start caluculation 釦を押して計算をスタートすることができる。
For example, when calculating using the standard composition of AA3104 alloy, in the composition input column of the initial input screen of JmatPro (trade name), Al: 97.5 mass%, Cu: 0.15 mass%, Fe: 0 The alloy component composition is input as .4 mass%, Mg: 1.2 mass%, Mn: 1.0 mass%, and Si: 0.2 mass%.
For the solidification rate, segregation is calculated thermodynamically using the Scheil equation (assuming that the liquid phase is fully diffused and the solid phase is not diffused). In the initial input screen of JmatPro (product name), set the start temperature to 700 ° C (temperature above the solidification start point), set the step in 1 ° C increments, select the Phase all item Take all solid phases into account, and click Extend. You can start the calculation by selecting Calculation strength and dendrite arm spacing in the calculation item and pressing the Start caluculation button.

Sheilの式は以下の(2)式、(3)式として知られている。なお、(2)式と(3)式において、Csは固体の組成、Cは元の合金の組成、fsは凝固率、k:平衡分配係数、T、T:平衡状態の液相線、固相線温度を示す。 Sheil's equation is known as the following equations (2) and (3). Note that in (2) and (3), Cs is the composition of the solid, C 0 is the composition of the original alloy, fs coagulation factor, k: the equilibrium distribution coefficient, T L, T f: the equilibrium liquid phase Line, solidus temperature is shown.

Figure 2019158480
Figure 2019158480

Figure 2019158480
Figure 2019158480

上述の合金成分の入力内容に応じてJmatPro(商品名)は、ステップS21〜ステップS26に従い該当組成のAl合金の凝固率を算出する。   JmatPro (trade name) calculates the solidification rate of the Al alloy having the composition according to steps S21 to S26 according to the input contents of the alloy components described above.

図4は、JmatPro(商品名)と本願に係る上述の他のステップを実施するソフトウエアが記憶された凝固割れ感受性の予測装置の一例を示す。
この例の凝固割れ感受性の予測装置12は、所謂コンピュータであって、主として入力手段13と、制御部14と、記憶手段15と、出力手段16を備えている。
入力手段13は、例えば、文字や数字を入力するキーボードなどであり、これによってAl合金の含有元素の種類や添加量などの情報を記憶手段15または制御部14に入力することができる。
制御部14は、所謂CPU(中央演算処理装置)やRAM(Random Access Memory)、ROM(Read Only Memory)などで構成されており、プログラムによって様々な数値計算や情報処理、機器制御などを行うことができる。
FIG. 4 shows an example of a prediction device for susceptibility to solidification cracking in which JmatPro (trade name) and software for executing the above-described other steps according to the present application are stored.
The prediction device 12 for susceptibility to solidification cracking in this example is a so-called computer, and mainly includes an input unit 13, a control unit 14, a storage unit 15, and an output unit 16.
The input means 13 is, for example, a keyboard for inputting letters and numbers, and by this, information such as the type and amount of elements contained in the Al alloy can be input to the storage means 15 or the control unit 14.
The control unit 14 includes a so-called CPU (Central Processing Unit), RAM (Random Access Memory), ROM (Read Only Memory), and the like, and performs various numerical calculations, information processing, device control, and the like by a program. Can do.

記憶手段15は、例えば、HDD(ハードディスクドライブ)やSSD(ソリッドステートドライブ)などの情報記録媒体であり、前記したJmatPro(商品名)などのプログラムや、算出手段17、予測手段18の実行に必要な、例えば、Al合金の組成に基づく凝固率曲線、後述する第1の位置と第2の位置の策定情報、第1の位置と第2の位置を結ぶ直線の策定情報、該直線と凝固率曲線とで囲まれる領域の面積Sの算出とその結果などの各種情報、これらによって得られた結果などを必要に応じて記憶させたり読み出したりすることができる。
出力手段14は、例えば、モニターやプリンターなどであり、JmatPro(商品名)などのプログラムから得られる各種の情報に加え、後述する凝固率と温度の関係のグラフ、凝固率と温度変化量とひずみ速度差の関係などの情報を画面上又は紙面上に必要に応じて表示または印刷することができる。
The storage means 15 is an information recording medium such as an HDD (Hard Disk Drive) or SSD (Solid State Drive), for example, and is necessary for executing the program such as the above-mentioned JmatPro (trade name), the calculation means 17 and the prediction means 18. For example, the solidification rate curve based on the composition of the Al alloy, the formulation information of the first position and the second position, which will be described later, the formulation information of the straight line connecting the first position and the second position, the straight line and the solidification rate Various information such as the calculation of the area S of the region surrounded by the curve and the results thereof, the results obtained by these, and the like can be stored and read as necessary.
The output means 14 is, for example, a monitor or a printer. In addition to various information obtained from a program such as JmatPro (trade name), the output means 14 is a graph of the relationship between the coagulation rate and temperature, the coagulation rate, the temperature change amount, and the strain described later. Information such as the speed difference relationship can be displayed or printed on the screen or paper as necessary.

なお、記憶手段15には、前記したJmatPro(商品名)などのプログラムや、後記する算出手段17、予測手段18の実行に必要な各種の情報を当該プログラム実行前に予め記憶させておくことでこれらを任意に読み出し、操作することができる。また、当該プログラムを実行することによって得られた算出結果などを必要に応じて記憶させたり読み出したりすることが可能である。なお、記憶手段15にインターネットやネットワークへの通信機能のみを備え、インターネットやネットワークに接続された他のパーソナルコンピュータに備えられた記憶手段や算出手段、予測手段を利用して予測装置12と同様に計算し結果を算出できるように構成しても良いのは勿論である。   The storage unit 15 stores in advance various programs necessary for execution of the calculation unit 17 and the prediction unit 18 described later, such as the above-described JmatPro (product name), before executing the program. These can be read and manipulated arbitrarily. In addition, calculation results obtained by executing the program can be stored or read as necessary. Note that the storage means 15 has only the function of communicating with the Internet or a network, and uses the storage means, calculation means, and prediction means provided in other personal computers connected to the Internet or the network, in the same manner as the prediction device 12. Of course, it may be configured so that the result can be calculated.

上述のAA3104合金の組成を入力すると、JmatPro(商品名)はステップS21〜ステップS26に従い該当組成のAl合金の凝固率を算出し、凝固率曲線を策定するので、出力手段16により図5に示す一例を示す凝固率曲線をモニターの画面に表示するか、プリンターにより紙面上に印刷することができる。なお、JmatPro(商品名)は必要に応じて組成を入力したAl合金の密度、熱伝達係数、エンタルピー、比熱、潜熱、粘性なども計算することができる。
また、JmatPro(商品名)から得られた凝固率曲線に基づき、図6に示すように温度変化あたりの凝固率変化を出力し、温度変化あたりのひずみとして、図6に示すグラフの傾きからひずみを求めることができる。
When the composition of the AA3104 alloy described above is input, JmatPro (trade name) calculates the solidification rate of the Al alloy of the corresponding composition in accordance with steps S21 to S26 and formulates the solidification rate curve. An example solidification rate curve can be displayed on a monitor screen or printed on paper by a printer. JmatPro (trade name) can also calculate the density, heat transfer coefficient, enthalpy, specific heat, latent heat, viscosity, etc. of the Al alloy whose composition is input as required.
Moreover, based on the solidification rate curve obtained from JmatPro (trade name), the solidification rate change per temperature change is output as shown in FIG. 6, and the strain per temperature change is determined from the slope of the graph shown in FIG. Can be requested.

例えば、凝固率0〜0.75の範囲を図6に示す領域I、0.75〜0.95の範囲を領域II、0.95〜1.0の範囲を領域IIIと仮定し、凝固率0.75の温度をT、凝固率0.75における曲線の傾きをR、凝固率0.95の温度をT、凝固率0.95における曲線の傾きをRと仮定すると、ひずみ速度差(ΔRII/ΔTII)は以下の(4)式の関係を有する。ただし、図6に示すようにΔTII=T−Tとする。ΔTは温度変化量を示すので、ΔTIIは凝固率0.75〜0.95の範囲(領域IIの範囲)の温度変化量を意味する。 For example, assuming that the range of the solidification rate 0 to 0.75 is the region I shown in FIG. 6, the range of 0.75 to 0.95 is the region II, and the range of 0.95 to 1.0 is the region III. Assuming that the temperature at 0.75 is T 1 , the slope of the curve at solidification rate 0.75 is R 1 , the temperature at solidification rate 0.95 is T 2 , and the slope of the curve at solidification rate 0.95 is R 2 , the strain The speed difference (ΔR II / ΔT II ) has the relationship of the following equation (4). However, ΔT II = T 1 −T 2 as shown in FIG. Since ΔT represents the temperature change amount, ΔT II means the temperature change amount in the range of the solidification rate of 0.75 to 0.95 (range II).

Figure 2019158480
Figure 2019158480

制御部14は、JmatPro(商品名)で計算された1℃毎の凝固率の計算結果をテキストデータではき出し、1℃毎の凝固率を記憶手段15に記憶されていて実行された表計算ソフトを利用し、その対応する列に自動入力する機能を有する。また、これらの数値が入力された列の横の列に、表計算ソフトにより自動的に1℃毎の温度勾配を入力し、その横の列に凝固率0.75との凝固率差を入力し、その横の列に線形y座標(凝固率曲線のグラフにおけるy座標)を入力し、その横の列に非線形の差のdtをとった値、がそれぞれ計算されて入力されるように表計算ソフトの自動計算列を設定しておくことが好ましい。   The control unit 14 outputs the calculation result of the solidification rate every 1 ° C. calculated by JmatPro (trade name) as text data, and the spreadsheet software executed by the solidification rate every 1 ° C. being stored in the storage means 15 And has a function of automatically inputting the corresponding column. In addition, the temperature gradient for every 1 ° C is automatically entered by the spreadsheet software in the row next to the row where these values are entered, and the coagulation rate difference from the coagulation rate of 0.75 is entered in the row next to it. Then, a linear y coordinate (y coordinate in the graph of the coagulation rate curve) is input to the horizontal column, and a value obtained by taking a non-linear difference dt is calculated and input to the horizontal column. It is preferable to set an automatic calculation sequence of calculation software.

図9(A)、(B)、(C)に制御部14が表計算ソフトにはき出したテキストデータの一部を示す。このデータは図5に示す凝固率曲線が得られた合金のデータに相当し、開始温度は融点より十分に高い温度である700℃からスタートし、常温までデータがはき出される。そのデータの内、図9(A)に700〜682℃までのデータ列を示し、図9(B)に655〜625℃までのデータ列を示し、図9(C)に558〜548℃までのデータ列を示す。また、図9(D)にこれらのデータ列から表計算ソフトで抽出したT1、T2、R1、R2の各値、T1−T2、R1−R2の計算値、|R1−R2|/dtの計算値をそれぞれ表示した。図9(E)では、|R1−R2|/dtの計算値の欄の見出しは、/dtのみ表示している。また、凝固率Fs=0.75の場合の温度(x)、凝固率(y)、Fs=0.95の場合の温度(x)、凝固率(y)を表示した。図9(E)に後述する実施例に示す各合金の値を併記した。   FIGS. 9A, 9B, and 9C show a part of the text data that the control unit 14 has displayed on the spreadsheet software. This data corresponds to the data of the alloy from which the solidification rate curve shown in FIG. 5 was obtained. The starting temperature starts from 700 ° C., which is sufficiently higher than the melting point, and the data is released to room temperature. Of these data, FIG. 9A shows a data string from 700 to 682 ° C., FIG. 9B shows a data string from 655 to 625 ° C., and FIG. 9C shows from 558 to 548 ° C. Shows the data string. FIG. 9D shows the values of T1, T2, R1, and R2, the calculated values of T1-T2, R1-R2, and the calculation of | R1-R2 | / dt extracted from these data strings by spreadsheet software. Each value was displayed. In FIG. 9E, the heading in the column of the calculated value of | R1-R2 | / dt displays only / dt. Further, the temperature (x), the solidification rate (y) when the solidification rate Fs = 0.75, the temperature (x) when the solidification rate Fs = 0.95, and the solidification rate (y) are displayed. FIG. 9E shows the values of the alloys shown in the examples described later.

これらの設定により、凝固率0.75〜0.95の温度幅とグラフの傾きを自動計算することができる。
この自動計算を行う場合、図7に示すように凝固率0.95前後の領域に凝固率変化のギャップを示すAl合金が存在する場合がある。このギャップは金属間化合物の析出などにより凝固率の特異点として生成するギャップである。図8にこのギャップGと凝固率の特異点周りを拡大して示す。
凝固率0.75〜0.95の範囲に特異点を示すAl合金の場合、ギャップ前後で曲線の傾きが大きく変わるので、この場合は、晶出直前の傾きとなるように値を補正する必要がある。制御部14は凝固率0.75〜0.95の範囲にこのようなギャップを確認すると、晶出直前の傾きを補正する。あるいは、この補正は手動で値を採用し、手作業で行っても良い。この手動補正については後に記載する比較例において詳細に説明する。
なお、JmatPro(商品名)で計算する場合、上述の如く1℃毎の温度刻みを設定しているが、新たな相が出るか、消える場合は、その温度を刻み関係なしとして連続的に計算することが望ましい。その場合、小数点以下の温度が出現することがある。図9(C)に示す552.75℃の結果はこのことを意味する。
また、図9(A)に示す#VALUE!、#DIV/0!は、固相率あるいは固相率の差が0であり、ゼロで割る割り算が発生しているため、値が算出されないことを意味し、勾配の具体値は、この例では図9(B)に示す650℃で8.07134がデータとして出され、非線形の差*dtは634℃からデータとして出される。
なお、図9(B)に示す651.02℃は凝固開始の極端な点であるため、この実施形態では通常の凝固中の温度650℃に設定している。
With these settings, the temperature range of the coagulation rate 0.75 to 0.95 and the slope of the graph can be automatically calculated.
When performing this automatic calculation, as shown in FIG. 7, there may be an Al alloy exhibiting a solidification rate change gap in a region where the solidification rate is around 0.95. This gap is generated as a singular point of the solidification rate due to precipitation of intermetallic compounds. FIG. 8 is an enlarged view around the singular point of the gap G and the solidification rate.
In the case of an Al alloy showing a singular point in the range of 0.75 to 0.95, the slope of the curve changes greatly before and after the gap. In this case, it is necessary to correct the value so that the slope is just before crystallization. There is. When the control unit 14 confirms such a gap in the range of the solidification rate of 0.75 to 0.95, the control unit 14 corrects the inclination immediately before crystallization. Alternatively, this correction may be performed manually by adopting a value manually. This manual correction will be described in detail in a comparative example described later.
In addition, when calculating with JmatPro (trade name), the temperature increment is set every 1 ° C as described above, but when a new phase appears or disappears, the temperature is continuously calculated as having no increment relationship. It is desirable to do. In that case, the temperature below the decimal point may appear. The result of 552.75 ° C. shown in FIG. 9C means this.
Also, for #VALUE! And # DIV / 0! Shown in FIG. 9A, the solid phase rate or the difference in the solid phase rate is 0, and division by zero has occurred, so values are not calculated. In this example, 8.07134 is output as data at 650 ° C. and the non-linear difference * dt is output from 634 ° C. as data.
Note that 651.02 ° C. shown in FIG. 9B is an extreme point of the start of solidification, and therefore, in this embodiment, the temperature is set to 650 ° C. during normal solidification.

制御部14は、JmatPro(商品名)が算出して求めた各Al合金の凝固率曲線に対し、凝固率0.6〜0.8の間の任意の位置、例えば、0.75の位置を第1の位置と策定して把握し、記憶手段15に記憶する機能を有する。次に制御部14は、同凝固率曲線に対し、初晶の晶出が終了して凝固率曲線にその勾配が不連続な変化点を示す位置か、該変化点を生じない場合は凝固率が0.95となる場合の早い方の位置を第2の位置として策定して把握し、記憶手段15に記憶する機能を有する(第1の位置と第2の位置の具体的な位置は後の実施例と比較例並びに図9参照)。
次に制御部14は、先に求めた複数のAl合金の凝固率曲線に対し、それぞれ第1の位置と第2の位置を策定し、第1の位置と第2の位置を結ぶ直線を描き、それぞれの凝固率曲線に対し、直線と凝固率曲線の一部が囲む領域の面積Sを計算する機能を有する。
The control unit 14 sets an arbitrary position between the solidification rates of 0.6 to 0.8, for example, a position of 0.75, with respect to the solidification rate curve of each Al alloy calculated and calculated by JmatPro (trade name). It has a function of establishing and grasping the first position and storing it in the storage means 15. Next, with respect to the solidification rate curve, the control unit 14 finishes the crystallization of the primary crystal, and at the position where the gradient of the solidification rate curve shows a discontinuous change point, or if the change point does not occur, the solidification rate Has a function of formulating and grasping the earlier position as the second position when it becomes 0.95 and storing it in the storage means 15 (the specific positions of the first position and the second position are Examples and Comparative Examples and FIG. 9).
Next, the control unit 14 formulates a first position and a second position with respect to the solidification rate curves of the plurality of Al alloys obtained previously, and draws straight lines connecting the first position and the second position. , Each solidification rate curve has a function of calculating an area S of a region surrounded by a straight line and a part of the solidification rate curve.

前記面積Sは熱力学的データベースによる凝固率を示す関数fdと前記直線を示す関数flとの差の足し算であり、前記fdと前記flは温度Tの関数であり、凝固率0.6〜0.8の際の温度をT0.6〜0.8、初晶晶出終了時の温度をTeとして以下の(1)式の関係を有する。 The area S is an addition of the difference between the function fd indicating the solidification rate according to the thermodynamic database and the function fl indicating the straight line. The fd and fl are functions of the temperature T, and the solidification rate is 0.6 to 0. .8 is T 0.6 to 0.8 , and the temperature at the end of primary crystal crystallization is Te.

Figure 2019158480
Figure 2019158480

このため、上述のAl合金において凝固率0.75〜0.95の範囲の面積Sを求める場合は、T0.75〜T0.95までの範囲として上述の(1)式の解を求めると、面積Sを算出することができる。 For this reason, when obtaining the area S in the range of 0.75 to 0.95 in the above-described Al alloy, the solution of the above-described formula (1) is obtained as the range of T 0.75 to T 0.95. And the area S can be calculated.

次に制御部14は、比較するべき複数のAl合金で個々に求めた面積Sの値を比較し、面積の大きい順に並べ、並べた結果と個々の面積Sの値を記憶手段15に記憶し、出力手段16からモニターやプリンターなどに出力し、画面に表示する、または、紙面に印刷する機能を有する(図11参照)。
図11に示すように凝固率曲線を求めたAl合金の種類に応じて面積Sの大きさ順に比較し、面積Sの大きなAl合金ほど、凝固割れ感受性が高く、DC鋳造などの鋳造時に割れが生じ易いAl合金であると把握することができる。
図11に示す例では、AA3104(5Mg)とAA7075が割れやすく、AA2024、AA3104(4Mn)、AA3104(1Si)が割れ難いと判断できる。
このうち、凝固割れ感受性が高く、割れやすいと予測されたAl合金を鋳造する場合には、鋳造割れを生じ難い条件にて該当Al合金を鋳造することが好ましい。
Next, the control unit 14 compares the values of the areas S obtained individually for the plurality of Al alloys to be compared, arranges them in order of area, and stores the arranged results and the values of the individual areas S in the storage unit 15. The output unit 16 has a function of outputting to a monitor, a printer or the like and displaying it on a screen or printing on paper (see FIG. 11).
As shown in FIG. 11, the solidification rate curve is compared in the order of the size of the area S according to the type of Al alloy. The larger the area S, the higher the solidification cracking susceptibility, and cracking during casting such as DC casting. It can be grasped that the Al alloy is likely to be generated.
In the example shown in FIG. 11, it can be determined that AA3104 (5Mg) and AA7075 are easy to break, and that AA2024, AA3104 (4Mn), and AA3104 (1Si) are hard to break.
Among these, when casting an Al alloy that is highly susceptible to solidification cracking and is predicted to be easily cracked, it is preferable to cast the corresponding Al alloy under conditions where casting cracks are unlikely to occur.

図11に示す対比において、AA3104(5Mg)とAA7075が割れやすく、AA2024、AA3104(4Mn)、AA3104(1Si)が割れ難いと判断できるのは、本発明者が把握している実際の鋳造工程において、AA3104(5Mg)とAA7075が割れやすく、AA2024、AA3104(4Mn)、AA3104(1Si)が割れ難い合金であるからである。
例えば、溶湯温度:700℃、サイズ:幅1200mm、厚さ600mm、長さ4000mm、冷却水量:2000L/min、鋳造速度50mm/minの同一条件で鋳造する場合、AA3104(5Mg)とAA7075が割れやすく、AA2024、AA3104(4Mn)、AA3104(1Si)が割れ難いが合金であると把握している。
なお、図11に示す対比に記載したAA3104(5Mg)の組成は後述する実施例に示す表1の合金9の組成に対応し、AA7075の組成は後述する実施例に示す表1の合金11の組成に対応し、AA2024の組成は後述する実施例に示す表1の合金12の組成に対応し、AA3104(4Mn)の組成は後述する実施例に示す表1の合金6の組成に対応し、AA3104(1Si)の組成は後述する実施例に示す表1の合金3の組成に対応する。
In the comparison shown in FIG. 11, it can be determined that AA3104 (5Mg) and AA7075 are easily cracked, and that AA2024, AA3104 (4Mn), and AA3104 (1Si) are difficult to crack in the actual casting process known by the present inventor. This is because AA3104 (5Mg) and AA7075 are easily cracked, and AA2024, AA3104 (4Mn), and AA3104 (1Si) are difficult to crack.
For example, when casting under the same conditions of molten metal temperature: 700 ° C., size: width 1200 mm, thickness 600 mm, length 4000 mm, cooling water amount: 2000 L / min, casting speed 50 mm / min, AA3104 (5Mg) and AA7075 are likely to break. , AA2024, AA3104 (4Mn), and AA3104 (1Si) are known to be alloys, although they are difficult to crack.
The composition of AA3104 (5Mg) described in the comparison shown in FIG. 11 corresponds to the composition of alloy 9 of Table 1 shown in the examples described later, and the composition of AA7075 is the composition of alloy 11 of Table 1 shown in the examples described later. Corresponding to the composition, the composition of AA2024 corresponds to the composition of alloy 12 of Table 1 shown in the examples described later, the composition of AA3104 (4Mn) corresponds to the composition of alloy 6 of Table 1 shown in the examples described later, The composition of AA3104 (1Si) corresponds to the composition of Alloy 3 in Table 1 shown in the examples described later.

本実施形態の凝固割れ感受性の予測プログラムは、上述した図4に示す構成の凝固割れ感受性の予測装置12を用い、上述の組成に応じた複数のAl合金の凝固時の割れの発生のし易さを予測装置12に予測させるプログラムである。
凝固割れ感受性の予測プログラムは、予測装置12を用い、作業者が予測するべきAl合金の組成をJmatPro(商品名)に入力すると、上述のステップS21〜S26に従いJmatPro(商品名:凝固率曲線策定手段)に凝固率曲線を描かせる。図9はその一例である。
次いで凝固割れ感受性の予測プログラムは、予測装置12を用い、上述のステップS3に従い、凝固率曲線に第1の位置と第2の位置を策定し、それらを結ぶ直線を描き、凝固率曲線と直線とで囲まれる面積Sを面積算出手段に算出させる。
具体的には、先の(1)式に従い、予測装置12に備えている算出手段17に面積Sを算出させる。
The solidification crack susceptibility prediction program of this embodiment uses the solidification crack susceptibility prediction device 12 having the configuration shown in FIG. 4 described above, and easily generates cracks during solidification of a plurality of Al alloys according to the above-described composition. This is a program for causing the prediction device 12 to predict the height.
The prediction program for solidification cracking sensitivity uses the prediction device 12 and inputs the composition of the Al alloy to be predicted by the operator into JmatPro (product name). Then, JmatPro (product name: solidification rate curve formulation) according to steps S21 to S26 described above. Means) to draw a coagulation rate curve. FIG. 9 shows an example.
Next, the prediction program for solidification cracking sensitivity uses the prediction device 12 and formulates the first position and the second position in the solidification rate curve according to step S3 described above, draws a straight line connecting them, and sets the solidification rate curve and the straight line. The area S surrounded by is calculated by the area calculation means.
Specifically, the area S is calculated by the calculation means 17 provided in the prediction device 12 according to the above equation (1).

次いで凝固割れ感受性の予測プログラムは、予測装置12を用い、予測するべき複数のAl合金の組成に応じて求めた前記複数の面積Sを対比する。
凝固割れ感受性の予測プログラムは、予測するべきAl合金について面積Sの大きさを出力手段16からモニターやプリンターなどに出力し、画面または紙面に面積Sの大きい順に並べて表示するか印刷する機能を有する。この表示機能や印刷機能は、面積Sの小さい順から順次並べて表示する形式でも良く、また、Al合金の種別に応じて面積Sの具体値を表示する形式でも良く、面積Sの値の大小に応じた大小の図形で表示する形式などであっても良い。
Al合金の種別と面積Sの値を図形の大きさで表示した一例を図11に示す。図11に示す例は、面積Sを確定する凝固率曲線の一部と直線をそのままの形状で大きい順に図形表示した一例であり、作業者はこれらの図形を比較参照することで、予測するべきAl合金の凝固割れ発生のし易さを対比したAl合金と比較の上、認識することができる。
Next, the prediction program for susceptibility to solidification cracks uses the prediction device 12 to compare the plurality of areas S obtained according to the compositions of the plurality of Al alloys to be predicted.
The prediction program for solidification cracking susceptibility has a function of outputting the size of the area S for the Al alloy to be predicted from the output means 16 to a monitor, a printer, or the like, and displaying or printing them in order of increasing area S on the screen or paper. . The display function and the printing function may be displayed in order from the smallest area S, or may be a form in which a specific value of the area S is displayed according to the type of the Al alloy. It may be in the form of displaying with a corresponding large or small figure.
FIG. 11 shows an example in which the type of Al alloy and the value of the area S are displayed in the size of the figure. The example shown in FIG. 11 is an example in which a part of a solidification rate curve for determining the area S and a straight line are graphically displayed in the same order as they are, and the operator should predict by comparing and referring to these figures. It can be recognized by comparing with the Al alloy that compares the ease of solidification cracking of the Al alloy.

ところで、上述した実施形態では凝固率曲線を求めるための物性値計算ソフトウエアとして、JmatPro(商品名)を用いたが、用いる物性値計算ソフトウエアはJmatPro(商品名)に限らず、サーモカルクなどの汎用熱力学データベースを用いたソフトウエアであっても良い。また、凝固率曲線を求める方法は、ソフトウエアに限らず、示差走査熱量計(DSC)を用いた熱分析結果や実際のAl合金を用いて鋳造を行う過程で得られる凝固率曲線を用いてもよい。
これら何れの方法で求めた凝固率曲線であっても本発明方法を実施する場合に適用することができる。
By the way, in the above-described embodiment, JmatPro (trade name) is used as the physical property value calculation software for obtaining the coagulation rate curve. However, the physical property value calculation software to be used is not limited to JmatPro (trade name), such as a thermocalc. Software using a general-purpose thermodynamic database may be used. In addition, the method for obtaining the solidification rate curve is not limited to software, and the result of thermal analysis using a differential scanning calorimeter (DSC) or the solidification rate curve obtained in the process of casting using an actual Al alloy is used. Also good.
Any solidification curve obtained by any of these methods can be applied when the method of the present invention is carried out.

上述の各元素含有量の望ましい範囲に基づき、複数のAl合金について、JmatPro(商品名:Ver9.1)を用いて凝固率曲線を求めた。
凝固率については、偏析をScheilの式(液相は完全拡散、固相は拡散なしと仮定)で熱力学計算する条件とした。JmatPro(商品名)の初期入力画面でスタート温度を700℃(凝固開始点以上の温度)に設定し、ステップを1℃刻みに設定し、Phases項目のTake all solid phases into account を選択し、Extend calculation 項目のCalculation strength and dendrite arm spacing を選択し、Start calculation 釦を押して計算をスタートした。
Based on the desired range of the content of each element described above, solidification rate curves were obtained for a plurality of Al alloys using JmatPro (trade name: Ver 9.1).
For the solidification rate, segregation was set as a condition for thermodynamic calculation by Scheil's formula (assuming that the liquid phase is completely diffused and the solid phase is not diffused). In the initial input screen of JmatPro (product name), set the start temperature to 700 ° C (temperature above the solidification start point), set the step in 1 ° C increments, select the Phase all item Take all solid phases into account, and click Extend. The calculation item Calculation strength and dendrite arm spacing was selected, and the calculation was started by pressing the Start calculation button.

Figure 2019158480
Figure 2019158480

表1において1〜12の各合金に対し、AA3104合金の組成との関連性を理解し易いように表1に示す各合金組成の中で代表的な元素の含有量をAA3104の後に記載する( )の中に記載し、各合金を区別しつつ以下に説明する。代表的な元素の含有量は前記表1に示す組成の中で太字で表示した数値を採用した。なお、表1の合金9はMgを5質量%含んでいるので、3000系の合金として表示するよりも5000系の合金として表示するべきであるが、この例ではあえてAA3104(5Mg)と表記している。   In Table 1, for each of the alloys 1 to 12, typical element contents in each alloy composition shown in Table 1 are described after AA3104 so that the relationship with the composition of the AA3104 alloy can be easily understood ( ) And will be described below while distinguishing each alloy. For the content of typical elements, numerical values indicated in bold in the composition shown in Table 1 were adopted. Since alloy 9 in Table 1 contains 5% by mass of Mg, it should be indicated as a 5000-based alloy rather than as a 3000-based alloy. In this example, it is indicated as AA3104 (5Mg). ing.

これら合金試料のJmatPro(商品名)による凝固率曲線の算出結果の例を図10にまとめて示す。求めた凝固率曲線に対し、図10に示すように0.75の位置を第1の位置に策定し、初晶の晶出が終了して凝固率曲線にその勾配が不連続な変化点を示す位置か、該変化点を生じない場合は凝固率が0.95となる場合の早い方の位置を第2の位置として策定した。
次に、凝固率曲線に対し前記第1の位置と第2の位置を結ぶ直線を描き、この直線と凝固率曲線の一部が囲む領域の面積Sを計算した。
面積Sの算出は、先の(1)式に従い、凝固率を示す関数fdと前記直線を示す関数flとの差の足し算を、それぞれの凝固率曲線において凝固率0.75の位置(第1の位置)からそれぞれの凝固率曲線の第2の位置まで行う算出方法により求めた。
以上の算出結果を以下の表2に示す。
また、この例の場合、面積Sの値は0.10〜2.79の範囲に分布したので、中間値の1.5を境界として、割れやすいか、割れにくいかの目安の指標とした。
また、A3104合金(合金1)の割れ率を1と仮定し、各Al合金の割れ率を相対表示した。
The example of the calculation result of the solidification rate curve by JmatPro (brand name) of these alloy samples is collectively shown in FIG. With respect to the obtained solidification rate curve, the position of 0.75 is established as the first position as shown in FIG. 10, and the transition point where the gradient is discontinuous in the solidification rate curve after the crystallization of the primary crystal is completed. The position shown or the earlier position when the coagulation rate is 0.95 when the change point does not occur was established as the second position.
Next, a straight line connecting the first position and the second position was drawn on the solidification rate curve, and the area S of the region surrounded by this straight line and a part of the solidification rate curve was calculated.
The area S is calculated by adding the difference between the function fd indicating the solidification rate and the function fl indicating the straight line according to the above equation (1), and calculating the position of the solidification rate 0.75 in each solidification rate curve (first 2) to the second position of each coagulation rate curve.
The above calculation results are shown in Table 2 below.
In this example, since the value of the area S was distributed in the range of 0.10 to 2.79, an intermediate value of 1.5 was used as a standard index as to whether it was easy to break or hard to break.
Further, assuming that the cracking rate of the A3104 alloy (alloy 1) was 1, the cracking rate of each Al alloy was displayed in relative terms.

図10に示す凝固率曲線において、AA3104(4Mn):(表1のNo.6の試料)の凝固率曲線は2箇所の変化点を有するが、初晶の晶出は最初の変化点の凝固率0.95であるので、その位置を第2の位置と策定した。
合わせて、表3に示す組成のAl合金に対し、同様の計算を行って表4の結果を得た。
In the solidification rate curve shown in FIG. 10, the solidification rate curve of AA3104 (4Mn): (Sample No. 6 in Table 1) has two changing points, but the crystallization of the primary crystal is the solidification at the first changing point. Since the rate is 0.95, the position is defined as the second position.
In addition, the same calculation was performed on the Al alloy having the composition shown in Table 3 to obtain the results shown in Table 4.

Figure 2019158480
Figure 2019158480

Figure 2019158480
Figure 2019158480

Figure 2019158480
Figure 2019158480

表2、表4に示す各合金試料の割れ率は、A3104(1):(表1のNo.1の試料)の割れ率を1と仮定し、各Al合金試料の割れ率を相対表示した。
表2、表4の割れ率は、溶湯温度:700℃、サイズ:幅1200mm、厚さ600mm、長さ4000mm、冷却水量:2000L/min、鋳造速度50mm/minの同一条件で実際に鋳造する場合の各合金の割れ率を示している。
As for the cracking rate of each alloy sample shown in Tables 2 and 4, the cracking rate of A3104 (1): (No. 1 sample in Table 1) is assumed to be 1, and the cracking rate of each Al alloy sample is displayed in relative terms. .
The crack rates in Tables 2 and 4 are as follows: molten metal temperature: 700 ° C., size: width 1200 mm, thickness 600 mm, length 4000 mm, cooling water amount: 2000 L / min, casting speed 50 mm / min. The crack rate of each alloy is shown.

次に、比較のために、先に求めた凝固率曲線からはき出した1℃毎の凝固率のテキストデータを記憶手段15に記録されている表計算ソフトにはき出し、凝固率0.75〜0.95の温度幅グラフの傾きを自動計算した。また、各Al合金の凝固率曲線から求められるΔTIIとひずみ速度差の関係を求めた。
これらの関係を求めるには、図9(A)〜(C)に示した数列を表計算ソフトに自動入力し、図9(D)に示すようにT1、T2、R1、R2を抽出し、T1−T2、R1−R2、|R1−R2|/dtの値を計算することで得ることができる。
Next, for comparison, the text data of the coagulation rate for every 1 ° C., which is extracted from the previously determined coagulation rate curve, is displayed in the spreadsheet software recorded in the storage means 15, and the coagulation rate 0.75-0. The slope of the 95 temperature range graph was automatically calculated. Further, the relationship between ΔT II obtained from the solidification rate curve of each Al alloy and the strain rate difference was obtained.
In order to obtain these relationships, the numerical sequences shown in FIGS. 9A to 9C are automatically input to the spreadsheet software, and T1, T2, R1, and R2 are extracted as shown in FIG. 9D, It can be obtained by calculating the values of T1-T2, R1-R2, | R1-R2 | / dt.

図12は各合金のひずみ速度差(ΔRII/ΔTII)の値とΔTIIとの関係についてプロットした結果を示し、図13は各合金のひずみ速度差において特異点によるギャップを有する合金の場合に、上述の補正を行った結果を示す。
図12に示す各種Al合金のうち、AA3104(1Si)、AA3104(2Mg)、AA3104(2.8Si)の試料は、いずれも特異点を有し、ひずみ速度差の値が小さすぎるので、補正を行った。
この補正は凝固中の相変化を見て、凝固終盤で共晶相の発現により、温度がほぼ一定となる点がある場合、その点が固相率0.95より前であれば、その点が固相率0.95に代わる値として補正した。
FIG. 12 shows the results of plotting the relationship between the value of the strain rate difference (ΔR II / ΔT II ) of each alloy and ΔT II, and FIG. 13 shows the case of an alloy having a gap due to a singular point in the strain rate difference of each alloy. Shows the result of the above correction.
Of the various Al alloys shown in FIG. 12, the samples AA3104 (1Si), AA3104 (2Mg), and AA3104 (2.8Si) all have singular points, and the value of the strain rate difference is too small. went.
This correction looks at the phase change during solidification, and if there is a point where the temperature becomes almost constant due to the development of the eutectic phase at the end of solidification, if that point is before the solid phase ratio of 0.95, that point Was corrected as a value to replace the solid phase ratio of 0.95.

ひずみ速度差(ΔRII/ΔTII)の値は任意の瞬間における凝固率0.75と0.95のひずみ差、即ち、ひずみ速度差であり、この値が大きいほど割れが発生し易いと非特許文献1に記載の従来技術で把握される値である。
図12と図13において、計算に用いた各合金の組成比は表1、表3に示した通りである。
The value of the strain rate difference (ΔR II / ΔT II ) is the strain difference between the solidification rates of 0.75 and 0.95 at an arbitrary moment, that is, the strain rate difference. It is a value grasped by the prior art described in Patent Document 1.
12 and 13, the composition ratio of each alloy used for the calculation is as shown in Tables 1 and 3.

図13に示す結果が示すのは、同一鋳造条件の場合、図13の右上側に記載されている合金の方がひずみ速度差が大きいので、従来技術から割れ感受性が高い、割れやすいと思われる合金である。
図10、図11に示す実施例の評価結果と照合した場合、図10、図11に示す結果から導かれて、割れやすいと評価されたAA2024、AA7075、AA3104(5Mg)のうち、図13に示す結果でもAA3104(5Mg)が割れやすいという傾向は見られたが、AA3104(4Mn)は図13の関係に基づく結果では割れやすいと判断されている。
しかし、このAA3104(4Mn)は本発明者が製造現場で実際に鋳造を行った場合に割れ難いと評価される合金である。
AA3104(1Si)は図10、図11に示す本実施形態の予測結果と図13に示す従来技術による予測結果がいずれも割れにくいという、同じ結果となった。
The results shown in FIG. 13 indicate that, under the same casting conditions, the alloy described in the upper right side of FIG. It is an alloy.
10 and 11, among the AA2024, AA7075, and AA3104 (5Mg) derived from the results shown in FIG. 10 and FIG. In the results shown, there was a tendency that AA3104 (5Mg) was easily cracked, but AA3104 (4Mn) was determined to be easily cracked based on the result shown in FIG.
However, this AA3104 (4Mn) is an alloy that is evaluated to be difficult to crack when the inventor actually casts it at the manufacturing site.
AA3104 (1Si) has the same result that the prediction result of the present embodiment shown in FIGS. 10 and 11 and the prediction result by the prior art shown in FIG.

図13に示す予測結果は、非特許文献1に記載されている従来技術に対し、本発明者が手動で行った補正結果を加味した予測結果に対応するが、先に図10、図11に示す関係から求めた割れ感受性の予測結果の方が実際のAl合金の鋳造を行った場合の状態に近く、より正確な予測が得られることが判った。   The prediction result shown in FIG. 13 corresponds to the prediction result obtained by adding the correction result manually performed by the present inventor to the prior art described in Non-Patent Document 1, but previously shown in FIGS. It was found that the prediction result of crack susceptibility obtained from the relationship shown is closer to the state of actual Al alloy casting, and more accurate prediction can be obtained.

本発明によれば、新規組成のAl合金であっても凝固割れ感受性をこれまで以上の高い精度で予測できる方法および装置とプログラムを提供できる。   According to the present invention, it is possible to provide a method, an apparatus, and a program capable of predicting the susceptibility to solidification cracking with a higher accuracy than ever even with an Al alloy having a new composition.

1…DC鋳造装置、2…溶湯、3…ローンダー、5…ノズル、6…鋳型、6a…吐出部、7…ボトムブロック、8…冷却水、9…鋳塊、10…溶湯プール。   DESCRIPTION OF SYMBOLS 1 ... DC casting apparatus, 2 ... Molten metal, 3 ... Lounder, 5 ... Nozzle, 6 ... Mold, 6a ... Discharge part, 7 ... Bottom block, 8 ... Cooling water, 9 ... Ingot, 10 ... Molten metal pool.

Claims (12)

組成に応じた複数のAl合金の凝固時の割れの発生のし易さを予測する方法であって、
予測するべきAl合金の組成を用い、液相から固相までの温度毎の相変化を求め、求めた温度と凝固率の関係を示す凝固率曲線を求める凝固率曲線策定ステップと、
前記凝固率曲線において当該Al合金の凝固率が0.6〜0.8の範囲内で任意の第1の位置を策定し、初晶の晶出が終了して前記凝固率曲線にその勾配が不連続な変化点を示す位置か、該変化点を生じない場合は凝固率が0.95となる場合の早い方の位置を第2の位置として策定し、前記第1の位置と前記第2の位置を結ぶ直線を求め、該直線と先に求めた凝固率曲線とで囲まれる領域の面積Sを求める面積算出ステップと、
予測するべき複数のAl合金の組成に応じて求めた前記複数の面積Sの対比により、前記面積Sの大きい方のAl合金が凝固割れを発生し易いと判断する判断ステップを具備することを特徴とするAl合金の凝固割れ感受性の予測方法。
A method for predicting the ease of occurrence of cracks during solidification of a plurality of Al alloys depending on the composition,
Using the composition of the Al alloy to be predicted, obtaining a phase change for each temperature from the liquid phase to the solid phase, a solidification rate curve formulation step for obtaining a solidification rate curve indicating the relationship between the obtained temperature and the solidification rate,
In the solidification rate curve, an arbitrary first position is established within the solidification rate of the Al alloy within the range of 0.6 to 0.8, and the crystallization of the primary crystal is completed, and the gradient of the solidification rate curve has the gradient. The position indicating the discontinuous change point, or if the change point does not occur, the earlier position when the coagulation rate becomes 0.95 is determined as the second position, and the first position and the second position are determined. An area calculating step for obtaining an area S of a region surrounded by the straight line and the solidification rate curve obtained earlier;
A judgment step of judging that the Al alloy having the larger area S is more likely to cause solidification cracks by comparing the plurality of areas S determined according to the composition of the plurality of Al alloys to be predicted. A method for predicting the susceptibility to solidification cracking of an Al alloy.
温度と固相率との関係を示す熱力学データベースに基づき、凝固計算にScheil-Gulliverの偏析モデルを用いて液相から固相までの温度毎の相変化を計算する方法に基づいて前記凝固曲線策定ステップを行うか、示差走査熱量計による測定結果に基づいて前記凝固曲線策定ステップを行うか、示差熱分析結果に基づいて前記凝固曲線策定ステップを行うことを特徴とする請求項1に記載のAl合金の凝固割れ感受性の予測方法。   Based on a thermodynamic database showing the relationship between temperature and solid fraction, the solidification curve based on the method of calculating the phase change at each temperature from the liquid phase to the solid phase using the Scheil-Gulliver segregation model for solidification calculation The solidification curve formulation step is performed based on a differential thermal analysis result, or the solidification curve formulation step is performed based on a differential thermal analysis result. A method for predicting the susceptibility to solidification cracking of an Al alloy. 前記面積Sは熱力学的データベースによる凝固率を示す関数fdと前記直線を示す関数flとの差の足し算であり、前記fdと前記flは温度Tの関数であり、凝固率0.6〜0.8の際の温度をT0.6〜0.8、初晶晶出終了時の温度をTeとして以下の(1)式の関係を有することを特徴とする請求項2に記載のAl合金の凝固割れ感受性の予測方法。
Figure 2019158480
The area S is an addition of the difference between the function fd indicating the solidification rate according to the thermodynamic database and the function fl indicating the straight line. The fd and fl are functions of the temperature T, and the solidification rate is 0.6 to 0. The Al alloy according to claim 2, having a relationship of the following formula (1), wherein the temperature at the time of .8 is T 0.6 to 0.8 and the temperature at the end of primary crystal crystallization is Te. Of predicting susceptibility to solidification cracking in steel.
Figure 2019158480
前記Al合金が、質量%でSi:0.0001〜3.3%、Fe:0.0001〜2.0%、Cu:0.0001〜10.0%、Mn:0.0001〜10.0%、Mg:0.0001〜10.0%、Cr:0.0001〜1.0%、Zn:0.0001〜10.0%、Ti:0.0001〜1.0%、Ni:0.0001〜1.5%、Li:0.0001〜5.0%、Zr:0.0001〜1.0%、B:0.0001〜1.0%、Pb:0.0001〜0.5%、Bi:0.0001〜0.5%、V:0.0001〜0.5%のうち、1種または2種以上を含み、残部Al及び不可避不純物からなり、凝固後のAl合金のα相の体積率が80%以上であることを特徴とする請求項1〜請求項3のいずれか一項に記載のAl合金の凝固割れ感受性の予測方法。   The Al alloy is, by mass%, Si: 0.0001-3.3%, Fe: 0.0001-2.0%, Cu: 0.0001-10.0%, Mn: 0.0001-10.0. %, Mg: 0.0001 to 10.0%, Cr: 0.0001 to 1.0%, Zn: 0.0001 to 10.0%, Ti: 0.0001 to 1.0%, Ni: 0.00. 0001 to 1.5%, Li: 0.0001 to 5.0%, Zr: 0.0001 to 1.0%, B: 0.0001 to 1.0%, Pb: 0.0001 to 0.5% Bi: 0.0001 to 0.5%, V: 0.0001 to 0.5%, including one or more, the balance being Al and inevitable impurities, the α phase of the Al alloy after solidification Solidification cracking of the Al alloy according to any one of claims 1 to 3, wherein the volume ratio of the Al alloy is 80% or more. Method for predicting susceptibility. 組成に応じた複数のAl合金の凝固時の割れの発生のし易さを予測する装置であって、
予測するべきAl合金の組成を用い、液相から固相までの温度毎の相変化を求め、求めた温度と凝固率の関係を示す凝固率曲線を求める凝固率曲線策定手段と、
前記凝固率曲線において当該Al合金の凝固率が0.6〜0.8の範囲内で任意の第1の位置を策定し、初晶の晶出が終了して前記凝固率曲線にその勾配が不連続な変化点を示す位置か、該変化点を生じない場合は凝固率が0.95となる場合の早い方の位置を第2の位置として策定し、前記第1の位置と前記第2の位置を結ぶ直線を求め、該直線と先に求めた凝固率曲線とで囲まれる領域の面積Sを求める面積算出手段と、
予測するべき複数のAl合金の組成に応じて求めた前記複数の面積Sの対比により、前記面積Sの大きい方のAl合金が凝固割れを発生し易いと判断する判断手段を具備することを特徴とするAl合金の凝固割れ感受性の予測装置。
An apparatus for predicting the ease of occurrence of cracks during solidification of a plurality of Al alloys according to the composition,
Using the composition of the Al alloy to be predicted, the phase change for each temperature from the liquid phase to the solid phase is obtained, and a solidification rate curve formulation means for obtaining a solidification rate curve indicating the relationship between the obtained temperature and the solidification rate;
In the solidification rate curve, an arbitrary first position is established within the solidification rate of the Al alloy within the range of 0.6 to 0.8, and the crystallization of the primary crystal is completed, and the gradient of the solidification rate curve has the gradient. The position indicating the discontinuous change point, or if the change point does not occur, the earlier position when the coagulation rate becomes 0.95 is determined as the second position, and the first position and the second position are determined. An area calculating means for obtaining an area S of a region surrounded by the straight line and the solidification rate curve obtained previously;
A judgment means is provided for judging that the Al alloy having the larger area S is more likely to cause solidification cracks by comparing the plurality of areas S determined according to the composition of the plurality of Al alloys to be predicted. A prediction device for susceptibility to solidification cracking of an Al alloy.
前記凝固曲線策定手段が、温度と固相率との関係を示す熱力学データベースに基づき、凝固計算にScheil-Gulliverの偏析モデルを用いて液相から固相までの温度毎の相変化を計算する手段であることを特徴とする請求項5に記載のAl合金の凝固割れ感受性の予測装置。   Based on the thermodynamic database showing the relationship between temperature and solid fraction, the solidification curve formulating means uses the Scheil-Gulliver segregation model for solidification calculation to calculate the phase change at each temperature from the liquid phase to the solid phase. 6. The apparatus for predicting the susceptibility to solidification cracking of an Al alloy according to claim 5, characterized in that the apparatus is a means. 前記面積Sは熱力学的データベースによる凝固率を示す関数fdと前記直線を示す関数flとの差の足し算であり、前記fdと前記flは温度Tの関数であり、凝固率0.6〜0.8の際の温度をT0.6〜0.8、初晶晶出終了時の温度をTeとして以下の(1)式の関係を有することを特徴とする請求項6に記載のAl合金の凝固割れ感受性の予測装置。
Figure 2019158480
The area S is an addition of the difference between the function fd indicating the solidification rate according to the thermodynamic database and the function fl indicating the straight line. The fd and fl are functions of the temperature T, and the solidification rate is 0.6 to 0. The Al alloy according to claim 6, having a relationship of the following formula (1), wherein the temperature at the time of .8 is T 0.6 to 0.8 and the temperature at the end of primary crystal crystallization is Te. Prediction device for susceptibility to solidification cracking.
Figure 2019158480
前記Al合金が、質量%でSi:0.0001〜3.3%、Fe:0.0001〜2.0%、Cu:0.0001〜10.0%、Mn:0.0001〜10.0%、Mg:0.0001〜10.0%、Cr:0.0001〜1.0%、Zn:0.0001〜10.0%、Ti:0.0001〜1.0%、Ni:0.0001〜1.5%、Li:0.0001〜5.0%、Zr:0.0001〜1.0%、B:0.0001〜1.0%、Pb:0.0001〜0.5%、Bi:0.0001〜0.5%、V:0.0001〜0.5%のうち、1種または2種以上を含み、残部Al及び不可避不純物からなり、凝固後のAl合金のα相の体積率が80%以上であることを特徴とする請求項5〜請求項7のいずれか一項に記載のAl合金の凝固割れ感受性の予測装置。   The Al alloy is, by mass%, Si: 0.0001-3.3%, Fe: 0.0001-2.0%, Cu: 0.0001-10.0%, Mn: 0.0001-10.0. %, Mg: 0.0001 to 10.0%, Cr: 0.0001 to 1.0%, Zn: 0.0001 to 10.0%, Ti: 0.0001 to 1.0%, Ni: 0.00. 0001 to 1.5%, Li: 0.0001 to 5.0%, Zr: 0.0001 to 1.0%, B: 0.0001 to 1.0%, Pb: 0.0001 to 0.5% Bi: 0.0001 to 0.5%, V: 0.0001 to 0.5%, including one or more, the balance being Al and inevitable impurities, the α phase of the Al alloy after solidification The volume fraction of Al is 80% or more, The solidification cracking of the Al alloy according to any one of claims 5 to 7, Predictor of susceptibility. 組成に応じた複数のAl合金の凝固時の割れの発生のし易さを予測するプログラムであって、コンピューターを、
予測するべきAl合金の組成を用い、液相から固相までの温度毎の相変化を求め、求めた温度と凝固率の関係を示す凝固率曲線を求める凝固率曲線策定手段と、
前記凝固率曲線において当該Al合金の凝固率が0.6〜0.8の範囲内で任意の第1の位置を策定し、初晶の晶出が終了して前記凝固率曲線にその勾配が不連続な変化点を示す位置か、該変化点を生じない場合は凝固率が0.95となる場合の早い方の位置を第2の位置として策定し、前記第1の位置と前記第2の位置を結ぶ直線を求め、該直線と先に求めた凝固率曲線とで囲まれる領域の面積Sを求める面積算出手段と、
予測するべき複数のAl合金の組成に応じて求めた前記複数の面積Sの対比により、前記面積Sの大きい方のAl合金が凝固割れを発生し易いと判断する判断手段として機能させることを特徴とするAl合金の凝固割れ感受性の予測プログラム。
A program for predicting the ease of occurrence of cracks during solidification of a plurality of Al alloys depending on the composition, comprising:
Using the composition of the Al alloy to be predicted, the phase change for each temperature from the liquid phase to the solid phase is obtained, and a solidification rate curve formulation means for obtaining a solidification rate curve indicating the relationship between the obtained temperature and the solidification rate;
In the solidification rate curve, an arbitrary first position is established within the solidification rate of the Al alloy within the range of 0.6 to 0.8, and the crystallization of the primary crystal is completed, and the gradient of the solidification rate curve has the gradient. The position indicating the discontinuous change point, or if the change point does not occur, the earlier position when the coagulation rate becomes 0.95 is determined as the second position, and the first position and the second position are determined. An area calculating means for obtaining an area S of a region surrounded by the straight line and the solidification rate curve obtained previously;
It is made to function as a judgment means for judging that the Al alloy having the larger area S is likely to cause solidification cracks, by comparing the plurality of areas S obtained according to the composition of the plurality of Al alloys to be predicted. Prediction program for susceptibility to solidification cracking of Al alloy.
前記凝固曲線策定手段が、温度と固相率との関係を示す熱力学データベースに基づき、凝固計算にScheil-Gulliverの偏析モデルを用いて液相から固相までの温度毎の相変化を計算する手段であることを特徴とする請求項9に記載のAl合金の凝固割れ感受性の予測プログラム。   Based on the thermodynamic database showing the relationship between temperature and solid fraction, the solidification curve formulating means uses the Scheil-Gulliver segregation model for solidification calculation to calculate the phase change at each temperature from the liquid phase to the solid phase. The prediction program for susceptibility to solidification cracking of an Al alloy according to claim 9, characterized in that the program is a means. 前記面積Sは熱力学的データベースによる凝固率を示す関数fdと前記直線を示す関数flとの差の足し算であり、前記fdと前記flは温度Tの関数であり、凝固率0.6〜0.8の際の温度をT0.6〜0.8、初晶晶出終了時の温度をTeとして以下の(1)式の関係を有することを特徴とする請求項10に記載のAl合金の凝固割れ感受性の予測プログラム。
Figure 2019158480
The area S is an addition of the difference between the function fd indicating the solidification rate according to the thermodynamic database and the function fl indicating the straight line. The fd and fl are functions of the temperature T, and the solidification rate is 0.6 to 0. The Al alloy according to claim 10 having a relationship of the following formula (1), wherein the temperature at the time of .8 is T 0.6 to 0.8 and the temperature at the end of primary crystal crystallization is Te. Prediction program for susceptibility to solidification cracking.
Figure 2019158480
前記Al合金が、質量%でSi:0.0001〜3.3%、Fe:0.0001〜2.0%、Cu:0.0001〜10.0%、Mn:0.0001〜10.0%、Mg:0.0001〜10.0%、Cr:0.0001〜1.0%、Zn:0.0001〜10.0%、Ti:0.0001〜1.0%、Ni:0.0001〜1.5%、Li:0.0001〜5.0%、Zr:0.0001〜1.0%、B:0.0001〜1.0%、Pb:0.0001〜0.5%、Bi:0.0001〜0.5%、V:0.0001〜0.5%のうち、1種または2種以上を含み、残部Al及び不可避不純物からなり、凝固後のAl合金のα相の体積率が80%以上であるAl合金に適用することを特徴とする請求項10または請求項11に記載のAl合金の凝固割れ感受性の予測プログラム。   The Al alloy is, by mass%, Si: 0.0001-3.3%, Fe: 0.0001-2.0%, Cu: 0.0001-10.0%, Mn: 0.0001-10.0. %, Mg: 0.0001 to 10.0%, Cr: 0.0001 to 1.0%, Zn: 0.0001 to 10.0%, Ti: 0.0001 to 1.0%, Ni: 0.00. 0001 to 1.5%, Li: 0.0001 to 5.0%, Zr: 0.0001 to 1.0%, B: 0.0001 to 1.0%, Pb: 0.0001 to 0.5% Bi: 0.0001 to 0.5%, V: 0.0001 to 0.5%, including one or more, the balance being Al and inevitable impurities, the α phase of the Al alloy after solidification The Al alloy according to claim 10 or 11, which is applied to an Al alloy having a volume fraction of 80% or more. Prediction program of the solidification cracking susceptibility.
JP2018043597A 2018-03-09 2018-03-09 Prediction Method, Prediction Apparatus, and Prediction Program for Solidification Cracking Susceptibility of Al Alloy Active JP7132727B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018043597A JP7132727B2 (en) 2018-03-09 2018-03-09 Prediction Method, Prediction Apparatus, and Prediction Program for Solidification Cracking Susceptibility of Al Alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018043597A JP7132727B2 (en) 2018-03-09 2018-03-09 Prediction Method, Prediction Apparatus, and Prediction Program for Solidification Cracking Susceptibility of Al Alloy

Publications (2)

Publication Number Publication Date
JP2019158480A true JP2019158480A (en) 2019-09-19
JP7132727B2 JP7132727B2 (en) 2022-09-07

Family

ID=67996092

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018043597A Active JP7132727B2 (en) 2018-03-09 2018-03-09 Prediction Method, Prediction Apparatus, and Prediction Program for Solidification Cracking Susceptibility of Al Alloy

Country Status (1)

Country Link
JP (1) JP7132727B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112071375A (en) * 2020-06-01 2020-12-11 南京工业大学 TiAl-based high-temperature alloy material design method
CN112111680A (en) * 2020-09-17 2020-12-22 湖南恒佳新材料科技有限公司 Aluminum alloy and preparation method of aluminum alloy plate
CN112921221A (en) * 2021-01-22 2021-06-08 佛山市南海盛达前亮铝业有限公司 High-strength aluminum material with excellent surface quality and forming method thereof
CN114855025A (en) * 2022-04-28 2022-08-05 山东博源精密机械有限公司 Method for preparing motor rotor aluminum alloy by utilizing recycled aluminum and application
CN114972187A (en) * 2022-04-20 2022-08-30 北京与子成科技有限公司 Crack defect evaluation method based on artificial intelligence

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06186181A (en) * 1992-12-16 1994-07-08 Leotec:Kk Method for measuring solid rate in alloy melt
JPH09311114A (en) * 1996-05-23 1997-12-02 Puramedeia Res:Kk Physical property predicting method of crystalline material in thermal imbalance condition
JP2009262235A (en) * 2008-03-31 2009-11-12 Kobe Steel Ltd Method for estimating solidification cracking, casting method using the same, solidification cracking estimation device, and solidification cracking estimation program
JP2010221282A (en) * 2009-03-24 2010-10-07 Kobe Steel Ltd Method for predicting solidification cracking, casting method using the same, solidification cracking prediction device, and solidification cracking prediction program
US20150072170A1 (en) * 2008-11-24 2015-03-12 Alcoa Inc. Fusion weldable filler alloys

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06186181A (en) * 1992-12-16 1994-07-08 Leotec:Kk Method for measuring solid rate in alloy melt
JPH09311114A (en) * 1996-05-23 1997-12-02 Puramedeia Res:Kk Physical property predicting method of crystalline material in thermal imbalance condition
JP2009262235A (en) * 2008-03-31 2009-11-12 Kobe Steel Ltd Method for estimating solidification cracking, casting method using the same, solidification cracking estimation device, and solidification cracking estimation program
US20150072170A1 (en) * 2008-11-24 2015-03-12 Alcoa Inc. Fusion weldable filler alloys
JP2010221282A (en) * 2009-03-24 2010-10-07 Kobe Steel Ltd Method for predicting solidification cracking, casting method using the same, solidification cracking prediction device, and solidification cracking prediction program

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
高井 量資: "アルミニウム合金およびマグネシウム合金の 鋳造時の凝固割れ感受性(その2)", 軽金属, vol. 第68巻 第2号, JPN6022003728, 2018, JP, pages 79 - 90, ISSN: 0004695190 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112071375A (en) * 2020-06-01 2020-12-11 南京工业大学 TiAl-based high-temperature alloy material design method
CN112071375B (en) * 2020-06-01 2024-03-05 南京工业大学 Design method of TiAl-based superalloy material
CN112111680A (en) * 2020-09-17 2020-12-22 湖南恒佳新材料科技有限公司 Aluminum alloy and preparation method of aluminum alloy plate
CN112921221A (en) * 2021-01-22 2021-06-08 佛山市南海盛达前亮铝业有限公司 High-strength aluminum material with excellent surface quality and forming method thereof
CN114972187A (en) * 2022-04-20 2022-08-30 北京与子成科技有限公司 Crack defect evaluation method based on artificial intelligence
CN114972187B (en) * 2022-04-20 2024-01-02 烟台大视工业智能科技有限公司 Crack defect evaluation method based on artificial intelligence
CN114855025A (en) * 2022-04-28 2022-08-05 山东博源精密机械有限公司 Method for preparing motor rotor aluminum alloy by utilizing recycled aluminum and application
CN114855025B (en) * 2022-04-28 2024-04-30 山东博源精密机械有限公司 Method for preparing motor rotor aluminum alloy by utilizing recycled aluminum and application

Also Published As

Publication number Publication date
JP7132727B2 (en) 2022-09-07

Similar Documents

Publication Publication Date Title
JP7132727B2 (en) Prediction Method, Prediction Apparatus, and Prediction Program for Solidification Cracking Susceptibility of Al Alloy
Shi et al. Solidification characteristics and segregation behavior of Ni-based superalloy K418 for auto turbocharger turbine
Wang et al. Hot tearing susceptibility of binary Mg–Y alloy castings
Garcia et al. Mechanical properties of Sn–Zn lead-free solder alloys based on the microstructure array
Zhou et al. Influence of composition on hot tearing in binary Mg–Zn alloys
Seo et al. A comparative study of quantitative microsegregation analyses performed during the solidification of the Ni-base superalloy CMSX-10
Bermingham et al. Segregation and grain refinement in cast titanium alloys
Li et al. Solidification behavior and segregation characteristics of high W-content cast Ni-Based superalloy K416B
Han et al. Effect of TiB2 addition on microstructure and fluidity of cast TiAl alloy
Ribeiro et al. The effects of Cr addition on microstructure, hardness and tensile properties of as-cast Al–3.8 wt.% Cu–(Cr) alloys
Zhang et al. Effect of hafnium on the castability of directionally solidified nickel-base superalloys
Li et al. Influences of cooling rates on delta ferrite of nuclear power 316H austenitic stainless steel
Djurdjevic et al. Determination of rigidity point/temperature using thermal analysis method and mechanical technique
JP2014043620A (en) METHOD OF MANUFACTURING INGOT OF Ni-BASED SUPERALLOY
Avazkonandeh-Gharavol et al. Effect of partition coefficient on microsegregation during solidification of aluminium alloys
Yang et al. Influence of alloying elements on hot tearing susceptibility of Mg–Zn alloys based on thermodynamic calculation and experimental
Li et al. An approach to studying the hot tearing mechanism of alloying elements in ternary Mg-Zn-Al alloys
Rosa et al. Tertiary dendrite arm spacing during downward transient solidification of Al–Cu and Al–Si alloys
Ghoncheh et al. Nonmechanical criteria proposed for prediction of hot tearing sensitivity in 2024 aluminum alloy
Xie et al. The influence of Ta on the solidification microstructure and segregation behavior of γ (Ni)/γ′(Ni3Al)–δ (Ni3Nb) eutectic Ni-base superalloys
Kozieł et al. Cooling rate evaluation during solidification in the suction casting process
Pineda et al. Columnar to equiaxed transition in directional solidification of inoculated melts
Shi et al. Solidification characteristics and hot tearing susceptibility of Ni-based superalloys for turbocharger turbine wheel
Long et al. Thermodynamic assessment of liquid composition change during solidification and its effect on freckle formation in superalloys
Djurdjevic et al. Thermodynamic calculation as a tool for thixoforming alloy and process development

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220330

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20220630

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20220630

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220802

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220826

R150 Certificate of patent or registration of utility model

Ref document number: 7132727

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150