JP2019158001A - Valve device and shock absorber - Google Patents

Valve device and shock absorber Download PDF

Info

Publication number
JP2019158001A
JP2019158001A JP2018045348A JP2018045348A JP2019158001A JP 2019158001 A JP2019158001 A JP 2019158001A JP 2018045348 A JP2018045348 A JP 2018045348A JP 2018045348 A JP2018045348 A JP 2018045348A JP 2019158001 A JP2019158001 A JP 2019158001A
Authority
JP
Japan
Prior art keywords
valve
valve body
passage
pressure
passive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018045348A
Other languages
Japanese (ja)
Inventor
秀昌 加藤
Hidemasa Kato
秀昌 加藤
亮介 鎌倉
Ryosuke Kamakura
亮介 鎌倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KYB Corp
Original Assignee
KYB Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KYB Corp filed Critical KYB Corp
Priority to JP2018045348A priority Critical patent/JP2019158001A/en
Priority to US16/979,426 priority patent/US11566680B2/en
Priority to EP19767605.9A priority patent/EP3767126A4/en
Priority to CN201980017236.7A priority patent/CN111819370B/en
Priority to PCT/JP2019/008813 priority patent/WO2019176678A1/en
Publication of JP2019158001A publication Critical patent/JP2019158001A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Magnetically Actuated Valves (AREA)
  • Fluid-Damping Devices (AREA)

Abstract

To provide a valve device capable of preventing coming into a fail state during normal time even in the case where both pressure control and opening/closing of a passage are performed by a solenoid valve, capable of freely setting the characteristic of a passive valve in detail and capable of suppressing adsorption of a passive valve body, and to provide a shock absorber.SOLUTION: A valve device V includes: a pressure introduction passage P2; a first passage P3 and a second passage P4 connected to the downstream of the pressure introduction passage P2; a solenoid valve 4 for controlling the pressure on the upstream side by opening the first passage P3 and closing the second passage P4 during conduction time, and closing the first passage P3 and opening the second passage P4 during non-conduction time; and a passive valve 5 provided further on the downstream side than the solenoid valve 4 of the second passage P4. The passive valve 5 includes: a spherical passive valve body 50 moving onto and away from an annular passive valve seat 9f and for opening/closing the second passage P4; and a plate spring 51 for energizing the passive valve body 50 in a closing direction.SELECTED DRAWING: Figure 3

Description

本発明は、バルブ装置と、バルブ装置を備えた緩衝器に関する。   The present invention relates to a valve device and a shock absorber provided with the valve device.

バルブ装置は、例えば、車両の車体と車軸との間に介装される緩衝器の減衰力を可変にする減衰弁として利用されている。   The valve device is used, for example, as a damping valve that varies the damping force of a shock absorber interposed between a vehicle body and an axle.

このような減衰弁の中には、緩衝器の伸縮時に生じる液体の流れに抵抗を与える主弁体と、この主弁体の背面に主弁体より上流側の圧力を減圧して導く圧力導入通路と、圧力導入通路の下流に接続される第一通路と、この第一通路を開く際の開弁圧が制御される圧力制御弁弁体及びそれよりも下流を開閉する開閉弁弁体を含む電磁弁と、第一通路における圧力制御弁弁体と開閉弁弁体の間に接続される第二通路と、この第二通路に設けられるパッシブ弁とを備え、電磁弁の通電時に、開閉弁弁体を開いて圧力制御弁弁体の開弁圧を制御するとともに、電磁弁の非通電時に開閉弁弁体を閉じてパッシブ弁へ液体を流すものがある(例えば、特許文献1)。   In such a damping valve, a main valve body that provides resistance to the flow of liquid generated when the shock absorber expands and contracts, and a pressure introduction that guides the pressure upstream from the main valve body to the back of the main valve body A passage, a first passage connected downstream of the pressure introduction passage, a pressure control valve body that controls a valve opening pressure when the first passage is opened, and an on-off valve body that opens and closes downstream thereof Including a solenoid valve, a pressure control valve body in the first passage and a second passage connected between the valve body and a passive valve provided in the second passage, and opens and closes when the solenoid valve is energized. There is one that opens the valve body to control the valve opening pressure of the pressure control valve body, and closes the on-off valve body when the solenoid valve is not energized to flow liquid to the passive valve (for example, Patent Document 1).

上記構成によれば、電磁弁へ電力供給をする正常時には、圧力制御弁弁体の開弁圧を制御して、主弁体の背圧を圧力制御弁弁体の開弁圧に制御できる。主弁体の背圧を大小調節すると主弁体による抵抗が変わるので、背圧を制御すれば緩衝器の発生する減衰力を大小させて減衰力特性を変更できる。その一方、電磁弁への電力供給を断つフェール時には液体がパッシブ弁を通る。このため、フェール時には主弁体の背圧がパッシブ弁の設定により決まる。つまり、電磁弁への電力供給が断たれても緩衝器が所定の減衰力を発揮できるので、フェールセーフとなる。   According to the above configuration, when the power is normally supplied to the electromagnetic valve, the valve opening pressure of the pressure control valve body can be controlled to control the back pressure of the main valve body to the valve opening pressure of the pressure control valve body. If the back pressure of the main valve element is adjusted, the resistance of the main valve element changes. Therefore, if the back pressure is controlled, the damping force generated by the shock absorber can be increased or decreased to change the damping force characteristic. On the other hand, the liquid passes through the passive valve at the time of failure to cut off the power supply to the electromagnetic valve. For this reason, at the time of failure, the back pressure of the main valve body is determined by the setting of the passive valve. That is, even if the power supply to the electromagnetic valve is cut off, the shock absorber can exhibit a predetermined damping force, so that it becomes fail-safe.

特開2014−173716号公報JP 2014-173716 A

上記した従来の減衰弁に利用される電磁弁の弁体(電磁弁弁体)は、圧力制御弁弁体とその下流側を開閉する開閉弁弁体が一体化された構成であり、これらが同時に同方向へ直線運動するようになっている。そして、電磁弁弁体が一方へ動くと圧力制御弁弁体が対応する弁座(圧力制御弁弁座)に近づくとともに開閉弁弁体が対応する弁座(開閉弁弁座)から離れる。反対に、電磁弁弁体が他方へ動くと圧力制御弁弁体が圧力制御弁弁座から離れるとともに開閉弁弁体が開閉弁弁座に近づく。   The valve body (solenoid valve body) of the solenoid valve used in the above-described conventional damping valve has a configuration in which the pressure control valve body and the on-off valve body that opens and closes the downstream side thereof are integrated. At the same time, it moves linearly in the same direction. When the electromagnetic valve body moves to one side, the pressure control valve body approaches the corresponding valve seat (pressure control valve valve seat) and the on-off valve body leaves the corresponding valve seat (open / close valve valve seat). On the other hand, when the solenoid valve body moves to the other side, the pressure control valve body moves away from the pressure control valve valve seat and the on-off valve body approaches the on-off valve valve seat.

また、電磁弁は、圧力制御弁弁体と圧力制御弁弁座を離間して開閉弁弁体を開閉弁弁座に着座させる方向へ電磁弁弁体を押し上げるばねと、このばねとは反対方向の推力を電磁弁弁体に与えるソレノイドとを有する。そして、電磁弁の通電時には、ソレノイドの推力により電磁弁弁体がばねの附勢力に抗して押し下げられて開閉弁弁体が開き、圧力制御弁弁体の開弁圧が通電量に応じて大小調節される。その一方、電磁弁の非通電時には、ばねの附勢力により電磁弁弁体が最大限に押し上げられて、開閉弁弁体が閉じる。   The solenoid valve is a spring that pushes the solenoid valve body away from the pressure control valve body and the pressure control valve seat so that the on / off valve body is seated on the on / off valve seat, and the opposite direction to this spring And a solenoid that gives the thrust to the solenoid valve body. When the solenoid valve is energized, the solenoid valve body is pushed down against the biasing force of the spring by the thrust of the solenoid to open the on-off valve body, and the valve opening pressure of the pressure control valve body depends on the energization amount. The size is adjusted. On the other hand, when the solenoid valve is not energized, the solenoid valve body is pushed up to the maximum by the biasing force of the spring, and the on-off valve body is closed.

このように、従来、通電時における圧力制御用の圧力制御弁弁体と、非通電時に液体を第二通路へ流すための開閉弁弁体を一体化して、単一のソレノイドで圧力制御と通路の開閉の両方をできるようにしている。しかし、従来のように、第一通路における圧力制御弁弁体と開閉弁弁体の間にパッシブ弁を設けた第二通路を接続したのでは、次のような問題を指摘される虞がある。   Thus, conventionally, the pressure control valve body for pressure control during energization and the on-off valve body for flowing liquid to the second passage during non-energization are integrated into a single solenoid for pressure control and passage. Both can be opened and closed. However, if the second passage provided with the passive valve is connected between the pressure control valve body and the on-off valve body in the first passage as in the prior art, the following problems may be pointed out. .

従来の構造では、電磁弁へ供給する電流量を小さくして減衰力特性をソフトにした状態で第一通路の流量が増えた場合、開閉弁弁体の上流側と下流側の差圧が大きくなって開閉弁弁体と圧力制御弁弁体との間の圧力が上昇し、その圧力で電磁弁弁体が押し上げられることがある。そして、このように電磁弁弁体が押し上げられると正常時にも関わらず開閉弁弁体が閉じてフェール時の状態(フェール状態)になってしまう可能性があり、正常時であっても減衰弁がフェール状態になれば減衰力特性がフェール時の特性に移行してしまう。   In the conventional structure, when the flow rate of the first passage increases with the damping force characteristic softened by reducing the amount of current supplied to the solenoid valve, the differential pressure between the upstream and downstream sides of the on-off valve body increases. Thus, the pressure between the on-off valve body and the pressure control valve body increases, and the electromagnetic valve body may be pushed up by the pressure. And if the solenoid valve is pushed up in this way, the on-off valve body may be closed even when it is normal, resulting in a failure state (fail state). If becomes a fail state, the damping force characteristic shifts to the characteristic at the time of failure.

このような現象は、流量が減れば自然と解消されて正常な状態に戻るのではあるが、それまでの間、主弁体の背圧がパッシブ弁に支配されていて電磁弁による圧力制御が効かない。このため、正常状態に戻るまでの間は減衰力の調整ができなくなる。   Such a phenomenon is naturally canceled and returns to a normal state if the flow rate decreases, but until then, the back pressure of the main valve body is dominated by the passive valve, and pressure control by the solenoid valve is not performed. It does not work. For this reason, the damping force cannot be adjusted until the normal state is restored.

そうかといって、上記問題を解決するため、第一通路における圧力制御弁弁体より上流に単に第二通路を接続し直したのでは、パッシブ弁の開弁圧を圧力制御弁弁体の開弁圧の上限圧力より高く設定せざるをえなくなる。なぜなら、上記した構成ではパッシブ弁の開弁圧を圧力制御弁弁体の開弁圧の上限圧力より高く設定しておかないと、圧力制御弁弁体の開弁圧の調整幅が狭まって正常時の減衰力調整幅を狭めてしまうためである。このようにパッシブ弁の設定が制限されると、フェール時の減衰力特性を自由に設定できない。   On the other hand, in order to solve the above problem, if the second passage is simply reconnected upstream of the pressure control valve body in the first passage, the valve opening pressure of the passive valve is reduced by opening the pressure control valve body. It must be set higher than the upper limit of the valve pressure. This is because, in the above configuration, if the valve opening pressure of the passive valve is not set higher than the upper limit pressure of the valve opening pressure of the pressure control valve body, the adjustment range of the valve opening pressure of the pressure control valve body becomes narrow and normal. This is because the damping force adjustment range at the time is narrowed. If the setting of the passive valve is restricted in this way, the damping force characteristic at the time of failure cannot be freely set.

また、上記した従来の減衰弁に利用されるパッシブ弁の弁体(パッシブ弁弁体)は、リーフバルブである。このリーフバルブは、薄い環状板であり、外周側の撓みが許容された状態で装着される。そして、そのリーフバルブの外周部が対応する弁座(パッシブ弁弁座)に着座すると第二通路が閉塞される。その一方、リーフバルブが撓んで外周部がパッシブ弁弁座から離座すると第二通路が開放される。   Moreover, the valve body (passive valve body) of the passive valve used for the above-described conventional damping valve is a leaf valve. This leaf valve is a thin annular plate, and is mounted in a state in which bending on the outer peripheral side is allowed. When the outer peripheral portion of the leaf valve is seated on the corresponding valve seat (passive valve valve seat), the second passage is closed. On the other hand, when the leaf valve is bent and the outer peripheral portion is separated from the passive valve seat, the second passage is opened.

しかし、従来のように、パッシブ弁弁体としてリーフバルブを利用した場合、リーフバルブとパッシブ弁弁座が面当たりする構造となって、閉弁状態でリーフバルブがパッシブ弁弁座に吸着してしまう可能性がある。このような吸着が起こるとリーフバルブの開弁に際して動的に見て開き遅れが生じ、一瞬、背圧室の圧力がリーフバルブの開弁圧をオーバーシュートしてしまうことがある。   However, when a leaf valve is used as a passive valve body as in the past, the leaf valve and the passive valve seat are in contact with each other, and the leaf valve is attracted to the passive valve seat in the closed state. There is a possibility. When such adsorption occurs, the opening delay of the leaf valve is dynamically observed when the leaf valve is opened, and the pressure in the back pressure chamber may overshoot the opening pressure of the leaf valve for a moment.

このため、パッシブ弁弁体の吸着が起こると、その開弁時に背圧室の圧力が急変してしまう。すると、その背圧室の圧力変動によって主弁体の主流路の開度も急変してしまうので、フェール時に緩衝器が発生する減衰力も急変することになる。この緩衝器の減衰力の急変は、車体に振動を与えて異音を発生させたり、車両における乗り心地を悪化させたりする原因となる。   For this reason, when adsorption | suction of a passive valve body occurs, the pressure of a back pressure chamber will change suddenly at the time of the valve opening. Then, since the opening degree of the main flow path of the main valve body also changes suddenly due to the pressure fluctuation in the back pressure chamber, the damping force generated by the shock absorber at the time of failure also changes suddenly. This sudden change in the damping force of the shock absorber causes vibrations in the vehicle body to generate abnormal noise, or deteriorates the riding comfort in the vehicle.

さらに、パッシブ弁弁体としてリーフバルブを利用した場合には、リーフバルブの積層枚数を変えたり、リーフバルブの厚み及び外径を変更したりすればパッシブ弁の開弁圧を変更してフェール時の減衰力特性を変更できる。とはいえ、選択できるリーフバルブの厚み及び形状の選択自由度は限られている。このため、パッシブ弁の特性を細かく設定できず、フェール時の減衰力特性の微調整が難しい。   Furthermore, when a leaf valve is used as the passive valve body, the valve opening pressure of the passive valve can be changed by changing the number of stacked leaf valves or changing the thickness and outer diameter of the leaf valve. The damping force characteristic of can be changed. However, the degree of freedom in selecting the thickness and shape of the leaf valve that can be selected is limited. For this reason, the characteristics of the passive valve cannot be set finely, and it is difficult to finely adjust the damping force characteristics at the time of failure.

そして、これらの問題は、電磁弁で圧力制御されるのが主弁体の背圧である場合、及びバルブ装置が緩衝器の減衰弁に利用される場合に限らず起こり得る。そこで、本発明は、このような問題を解決するために創案されたものであり、電磁弁で圧力制御と通路の開閉の両方をする場合であっても、正常時にフェール状態になるのを防止できるとともに、パッシブ弁の特性を自由に細かく設定でき、パッシブ弁弁体の吸着を抑制できるバルブ装置、及び緩衝器の提供を目的とする。   These problems can occur not only when the pressure controlled by the electromagnetic valve is the back pressure of the main valve body, but also when the valve device is used as a damping valve for a shock absorber. Therefore, the present invention was devised to solve such a problem, and even when both the pressure control and the opening / closing of the passage are performed by a solenoid valve, it is prevented from being in a failure state during normal operation. Another object of the present invention is to provide a valve device and a shock absorber that can freely and finely set the characteristics of the passive valve and can suppress the adsorption of the passive valve body.

上記課題を解決するバルブ装置は、圧力導入通路の下流に接続される第一通路及び第二通路と、通電時に第一通路を開いて上流側の圧力を制御するとともに第二通路を閉じ、非通電時に第一通路を閉じるとともに第二通路を開く電磁弁と、第二通路の電磁弁よりも下流に設けられたパッシブ弁とを備える。そして、このパッシブ弁が環状のパッシブ弁弁座に離着座して第二通路を開閉する球状のパッシブ弁弁体と、パッシブ弁弁体を閉じ方向へ附勢する板ばねとを有する。   A valve device that solves the above problems includes a first passage and a second passage that are connected downstream of a pressure introduction passage, and controls the upstream pressure by opening the first passage when energized, and closes the second passage. The electromagnetic valve which closes a 1st channel | path while energizing and opens a 2nd channel | path, and the passive valve provided downstream from the electromagnetic valve of a 2nd channel | path are provided. The passive valve has a spherical passive valve body that opens and closes the second passage by being attached to and detached from the annular passive valve seat, and a leaf spring that biases the passive valve body in the closing direction.

上記構成によれば、電磁弁で圧力制御と通路の開閉の両方をする場合であっても、通電時にはパッシブ弁の上流を電磁弁で閉じているので、バルブ装置が正常時にフェール状態になるのを防止できる。さらに、電磁弁の通電時と非通電時とで、圧力導入通路側からの液体が通過できる通路が切換るので、パッシブ弁の特性を自由に設定できる。また、上記構成によれば、パッシブ弁弁体が球状で、パッシブ弁弁座と線接触する構造にできる。このため、パッシブ弁弁体の吸着を抑制できる。さらに、板ばねの形状は自由に変更できるので、パッシブ弁の特性を細かく設定できる。   According to the above configuration, even when both pressure control and opening and closing of the passage are performed by the electromagnetic valve, the solenoid valve is closed upstream of the passive valve when energized, so that the valve device is in a failed state when it is normal. Can be prevented. Furthermore, since the passage through which the liquid from the pressure introduction passage can pass is switched between when the solenoid valve is energized and when it is not energized, the characteristics of the passive valve can be freely set. Moreover, according to the said structure, a passive valve body can be spherical and can be made into the structure which carries out a line contact with a passive valve valve seat. For this reason, adsorption | suction of a passive valve body can be suppressed. Furthermore, since the shape of the leaf spring can be freely changed, the characteristics of the passive valve can be set finely.

また、上記バルブ装置では、電磁弁の弁体である電磁弁弁体が第一通路と第二通路を開閉する開閉弁弁体と、第一通路における開閉弁弁体よりも下流側を開閉する圧力制御弁弁体とを含み、電磁弁の通電時に開閉弁弁体が第一通路を開くとともに第二通路を閉じ、圧力制御弁弁体の開弁圧が制御されるとよい。   Further, in the above valve device, the solenoid valve body, which is a valve body of the solenoid valve, opens and closes the first passage and the second passage, and opens and closes the downstream side of the first passage in the first passage. It is preferable that the opening / closing valve body opens the first passage and closes the second passage when the solenoid valve is energized to control the valve opening pressure of the pressure control valve body.

上記構成によれば、通電時に圧力制御するための圧力制御弁弁体と、非通電時に液体を第二通路へ流すための開閉弁弁体を一体化して、単一のソレノイドで圧力制御と通路の開閉の両方をできるようにした場合であっても、バルブ装置が正常時にフェール状態になるのを防止できるとともに圧力制御弁弁体の開弁圧によらずパッシブ弁を自由に設定できる。   According to the above configuration, the pressure control valve body for controlling the pressure when energized and the on-off valve body for flowing the liquid to the second passage when not energized are integrated into a single solenoid for pressure control and passage. Even when both opening and closing can be performed, it is possible to prevent the valve device from failing when it is normal and to freely set the passive valve regardless of the valve opening pressure of the pressure control valve body.

また、上記バルブ装置が内周側に開閉弁弁体が摺動自在に挿入される筒状のバルブケースを備えていて、そのバルブケースの軸方向にずらした位置に第一通路における開閉弁弁体の開閉部となる第一ポートと、第二通路における開閉弁弁体の開閉部となる第二ポートが形成されており、バルブケースの第一ポート側の端部に圧力制御弁弁体が離着座する圧力制御弁弁座が設けられており、電磁弁が圧力制御弁弁体と圧力制御弁弁座を離間させる方向へ電磁弁弁体を附勢するばねと、ばねの附勢力とは反対方向の推力を電磁弁弁体に与えるソレノイドとを有するとよい。当該構成によれば、電磁弁の通電時に開閉弁弁体で第一通路を開くとともに第二通路を閉じ、圧力制御弁弁体の開弁圧を制御するのが容易である。   Further, the valve device includes a cylindrical valve case into which an on-off valve body is slidably inserted on the inner peripheral side, and the on-off valve valve in the first passage is positioned at a position shifted in the axial direction of the valve case. A first port serving as an opening / closing portion of the body and a second port serving as an opening / closing portion of the opening / closing valve body in the second passage are formed, and a pressure control valve valve body is provided at an end portion on the first port side of the valve case. There is provided a pressure control valve seat that is attached and detached, and a spring that biases the solenoid valve body in a direction in which the solenoid valve separates the pressure control valve body from the pressure control valve seat, and a biasing force of the spring It is good to have the solenoid which gives the thrust of an opposite direction to a solenoid valve body. According to this configuration, when the solenoid valve is energized, it is easy to control the valve opening pressure of the pressure control valve body by opening the first passage with the on-off valve body and closing the second passage.

また、上記バルブ装置では、パッシブ弁弁座がバルブケースの第二ポート側の端部に設けられているとよい。当該構成によれば、バルブケースとパッシブ弁弁座を一体化できるので、これらを一部品として一体成形すれば、バルブ装置の部品数を減らしてコストを低減できる。さらに、バルブケースとパッシブ弁をコンパクトに配置できるので、バルブ装置を小型化できる。   Moreover, in the said valve apparatus, it is good for the passive valve valve seat to be provided in the edge part by the side of the 2nd port of a valve case. According to this configuration, since the valve case and the passive valve seat can be integrated, if they are integrally formed as one part, the number of parts of the valve device can be reduced and the cost can be reduced. Furthermore, since the valve case and the passive valve can be arranged in a compact manner, the valve device can be downsized.

また、上記バルブ装置が一方室と他方室とを連通する主通路と、内周側を主通路が通る環状の弁座部材と、弁座部材に離着座して主通路を通過する液体の流れに抵抗を与える主弁体とを備えていて、圧力導入通路が一方室の圧力を減圧して主弁体の背面に背圧として導くものであり、主弁体が弁座部材に離着座する環状の第一弁体部材と、第一弁体部材の反弁座部材側に積層されて第一弁体部材に離着座する第二弁体部材とを有するとともに、この第二弁体部材にバルブケースとパッシブ弁が取り付けられていて、第一弁体部材と第二弁体部材が一方室の圧力により弁座部材から離れる方向へ附勢され、第二弁体部材が第一弁体部材の内周側の圧力により第一弁体部材から離れる方向へ附勢されるとよい。   The valve device has a main passage that communicates between the one chamber and the other chamber, an annular valve seat member that passes through the inner passage on the inner periphery side, and a liquid flow that passes through the main passage after being seated on and off the valve seat member. And a pressure introduction passage that reduces the pressure in the one chamber and guides it to the back surface of the main valve body as a back pressure, and the main valve body is attached to and detached from the valve seat member. The second valve body member has an annular first valve body member and a second valve body member that is stacked on the side opposite to the valve seat member of the first valve body member and seats on and off the first valve body member. A valve case and a passive valve are attached, the first valve body member and the second valve body member are urged away from the valve seat member by the pressure of the one chamber, and the second valve body member is the first valve body member It is good to urge in the direction which leaves | separates from a 1st valve body member with the pressure of the inner peripheral side.

上記構成によれば、正常時に一方室の圧力が高まる場合には、主弁体の背圧とソレノイドの推力を制御することで主弁体による抵抗を変更できる。反対に、正常時に他方室の圧力が高まる場合には、ソレノイドの推力を制御することで主弁体による抵抗を変更できる。   According to the above configuration, when the pressure in the one chamber increases during normal operation, the resistance by the main valve body can be changed by controlling the back pressure of the main valve body and the thrust of the solenoid. Conversely, when the pressure in the other chamber increases during normal operation, the resistance by the main valve element can be changed by controlling the thrust of the solenoid.

また、シリンダと、シリンダ内に摺動自在に挿入されるピストンと、上記バルブ装置とを備える緩衝器であって、バルブ装置がシリンダ内をピストンが移動する際に生じる液体の流れに抵抗を与える減衰弁であるとよい。   The shock absorber includes a cylinder, a piston slidably inserted into the cylinder, and the valve device. The valve device provides resistance to a flow of liquid generated when the piston moves in the cylinder. It may be a damping valve.

上記構成によれば、前述のようにバルブ装置が正常時にフェール状態になるのを防止できると、正常時の減衰力特性がフェール時の特性になるのを防止できる。さらに、前述のようにパッシブ弁の特性を自由に細かく設定できると、フェール時の減衰力特性を自由に細かく設定できる。加えて、前述のようにパッシブ弁弁体の吸着を抑制できると、フェール時における減衰力の急変を抑制し、緩衝器が車両の車体と車軸との間に介装される場合には、車両の乗り心地を良好にできる。   According to the above configuration, if the valve device can be prevented from being in a failure state at the normal time as described above, the normal damping force characteristic can be prevented from being a failure characteristic. Furthermore, if the characteristics of the passive valve can be set freely and finely as described above, the damping force characteristics at the time of failure can be set freely and finely. In addition, if the adsorption of the passive valve body can be suppressed as described above, a sudden change in the damping force at the time of failure is suppressed, and when the shock absorber is interposed between the vehicle body and the axle, the vehicle The ride comfort can be improved.

本発明のバルブ装置及び緩衝器によれば、電磁弁で圧力制御と通路の開閉の両方をする場合であっても、正常時にフェール状態になるのを防止できるとともに、パッシブ弁の特性を自由に細かく設定でき、パッシブ弁弁体の吸着を抑制できる。   According to the valve device and the shock absorber of the present invention, even when both pressure control and passage opening / closing are performed with a solenoid valve, it is possible to prevent a failure state during normal operation and to freely set the characteristics of the passive valve. It can be set finely and the adsorption of the passive valve body can be suppressed.

本発明の一実施の形態に係るバルブ装置である減衰弁を備えた緩衝器の縦断面図である。It is a longitudinal cross-sectional view of the shock absorber provided with the damping valve which is a valve apparatus which concerns on one embodiment of this invention. 図1の減衰弁部分の拡大縦断面図である。FIG. 2 is an enlarged longitudinal sectional view of a damping valve portion of FIG. 1. 図2の一部をさらに拡大して示した縦断面図である。It is the longitudinal cross-sectional view which expanded and showed a part of FIG. 本発明の一実施の形態に係るバルブ装置である減衰弁におけるパッシブ弁の板ばねを拡大して示した平面図である。It is the top view which expanded and showed the leaf | plate spring of the passive valve in the damping valve which is a valve apparatus which concerns on one embodiment of this invention. 本発明の一実施の形態に係るバルブ装置である減衰弁の電磁弁、及びパッシブ弁部分の回路図である。It is a circuit diagram of an electromagnetic valve of a damping valve which is a valve device concerning one embodiment of the present invention, and a passive valve part.

以下に本発明の実施の形態について、図面を参照しながら説明する。いくつかの図面を通して付された同じ符号は、同じ部品を示す。   Embodiments of the present invention will be described below with reference to the drawings. The same reference numerals used throughout the several drawings indicate the same parts.

図1に示すように、本発明の一実施の形態に係るバルブ装置は、緩衝器Dの減衰弁Vとして利用されている。その緩衝器Dは、本実施の形態では車両のサスペンションに利用されており、シリンダ1と、このシリンダ1内に摺動自在に挿入されるピストン10と、一端がピストン10に連結されて他端がシリンダ1外へ突出するピストンロッド11とを備える。   As shown in FIG. 1, the valve device according to one embodiment of the present invention is used as a damping valve V of a shock absorber D. The shock absorber D is used for a vehicle suspension in this embodiment, and includes a cylinder 1, a piston 10 slidably inserted into the cylinder 1, and one end connected to the piston 10 and the other end. Comprises a piston rod 11 projecting out of the cylinder 1.

そして、車両における車体と車軸の一方にシリンダ1が連結され、他方にピストンロッド11が連結される。このようにして緩衝器Dは車体と車軸との間に介装される。また、車両が凹凸のある路面を走行する等して車輪が上下に振動すると、ピストンロッド11がシリンダ1に出入りして緩衝器Dが伸縮し、ピストン10がシリンダ1内を図1中上下(軸方向)に移動する。   The cylinder 1 is connected to one of the vehicle body and the axle of the vehicle, and the piston rod 11 is connected to the other. Thus, the shock absorber D is interposed between the vehicle body and the axle. When the vehicle vibrates up and down, for example, when the vehicle travels on an uneven road surface, the piston rod 11 enters and exits the cylinder 1 and the shock absorber D expands and contracts, and the piston 10 moves up and down in the cylinder 1 in FIG. Move in the axial direction).

シリンダ1の軸方向の一端部には、ピストンロッド11の挿通を許容する環状のヘッド部材12が装着されている。このヘッド部材12は、ピストンロッド11を摺動自在に支持するとともにシリンダ1の一端を塞ぐ。その一方、シリンダ1の他端はボトムキャップ13で塞がれている。このようにしてシリンダ1内は密閉されており、そのシリンダ1内に液体と気体が封入されている。   An annular head member 12 that allows the piston rod 11 to be inserted is attached to one end of the cylinder 1 in the axial direction. The head member 12 slidably supports the piston rod 11 and closes one end of the cylinder 1. On the other hand, the other end of the cylinder 1 is closed by a bottom cap 13. In this way, the cylinder 1 is hermetically sealed, and liquid and gas are sealed in the cylinder 1.

より詳しくは、シリンダ1内には、ピストン10から見てピストンロッド11とは反対側にフリーピストン14が摺動自在に挿入されている。そして、そのフリーピストン14のピストン10側に、作動油等の液体が充填された液室Lが形成される。その一方、フリーピストン14から見てピストン10とは反対側に、圧縮気体が封入されたガス室Gが形成される。   More specifically, a free piston 14 is slidably inserted into the cylinder 1 on the side opposite to the piston rod 11 when viewed from the piston 10. A liquid chamber L filled with a liquid such as hydraulic oil is formed on the piston 10 side of the free piston 14. On the other hand, a gas chamber G in which compressed gas is sealed is formed on the side opposite to the piston 10 when viewed from the free piston 14.

このように、緩衝器Dでは、シリンダ1内の液室Lとガス室Gとがフリーピストン14で仕切られている。さらに、液室Lは、ピストン10でピストンロッド11側の伸側室L1とその反対側(反ピストンロッド側)の圧側室L2とに区画されている。また、ピストン10には減衰弁Vが取り付けられている。そして、その減衰弁Vは、伸側室L1と圧側室L2との間を行き交う液体の流れに抵抗を与える。   Thus, in the shock absorber D, the liquid chamber L and the gas chamber G in the cylinder 1 are partitioned by the free piston 14. Furthermore, the liquid chamber L is partitioned by the piston 10 into an extension side chamber L1 on the piston rod 11 side and a pressure side chamber L2 on the opposite side (counter piston rod side). Further, a damping valve V is attached to the piston 10. The damping valve V provides resistance to the flow of liquid that passes between the extension side chamber L1 and the compression side chamber L2.

上記構成によれば、緩衝器Dの伸長時に、ピストン10がシリンダ1内を図1中上側へ移動して伸側室L1を圧縮すると、伸側室L1の液体が減衰弁Vを通って圧側室L2へ移動するとともに、当該液体の流れに減衰弁Vによって抵抗が付与される。このため、緩衝器Dの伸長時には伸側室L1の圧力が上昇し、緩衝器Dがその伸長作動を妨げる伸側の減衰力を発揮する。   According to the above configuration, when the shock absorber D is extended, when the piston 10 moves in the cylinder 1 upward in FIG. 1 and compresses the expansion side chamber L1, the liquid in the expansion side chamber L1 passes through the damping valve V and becomes the compression side chamber L2. And a resistance is given to the liquid flow by the damping valve V. For this reason, when the shock absorber D extends, the pressure in the expansion side chamber L1 rises, and the shock absorber D exerts an expansion-side damping force that prevents the expansion operation.

反対に、緩衝器Dの収縮時に、ピストン10がシリンダ1内を図1中下側へ移動して圧側室L2を圧縮すると、圧側室L2の液体が減衰弁Vを通って伸側室L1へ移動するとともに、当該液体の流れに減衰弁Vによって抵抗が付与される。このため、緩衝器Dの収縮時には圧側室L2の圧力が上昇し、緩衝器Dがその収縮作動を妨げる圧側の減衰力を発揮する。   On the contrary, when the shock absorber D contracts, the piston 10 moves in the cylinder 1 downward in FIG. 1 to compress the compression side chamber L2, and the liquid in the compression side chamber L2 moves to the expansion side chamber L1 through the damping valve V. At the same time, resistance is given to the flow of the liquid by the damping valve V. For this reason, when the shock absorber D contracts, the pressure in the pressure side chamber L2 increases, and the shock absorber D exerts a pressure-side damping force that prevents the contraction operation.

さらに、緩衝器Dが伸縮する際、フリーピストン14が動いてガス室Gを拡大したり縮小したりして、シリンダ1に出入りするピストンロッド11の体積分を補償する。   Furthermore, when the shock absorber D expands and contracts, the free piston 14 moves to expand or contract the gas chamber G to compensate for the volume of the piston rod 11 entering and exiting the cylinder 1.

しかし、緩衝器Dの構成は、図示する限りではなく、適宜変更できる。例えば、ガス室Gに替えて液体と気体を収容するリザーバを設け、緩衝器の伸縮時にシリンダとリザーバとの間で液体をやり取りするようにしてもよい。さらに、緩衝器Dを両ロッド型にして、ピストンの両側にピストンロッドを設けてもよく、その場合には、ピストンロッド体積を補償するための構成を省略できる。   However, the configuration of the shock absorber D is not limited to the illustration and can be changed as appropriate. For example, a reservoir for storing liquid and gas may be provided in place of the gas chamber G, and the liquid may be exchanged between the cylinder and the reservoir when the buffer is extended or contracted. Further, the shock absorber D may be a double rod type, and piston rods may be provided on both sides of the piston. In this case, the configuration for compensating the piston rod volume can be omitted.

つづいて、図2に示すように、減衰弁Vは、伸側室L1と圧側室L2とを連通する主通路P1と、内周側を主通路P1が通る環状の弁座部材2と、この弁座部材2に離着座して主通路P1を開閉する主弁体3と、途中に絞りOが形成されて主弁体3の背面に伸側室L1の圧力を減圧して導く圧力導入通路P2と、この圧力導入通路P2の絞りOより下流(反伸側室側)に接続される第一通路P3及び第二通路P4と、これら第一通路P3と第二通路P4を開閉する電磁弁4と、第二通路P4の電磁弁4より下流に設けられるパッシブ弁5と、主通路P1における主弁体3よりも圧側室L2側を開閉する伸側バルブ6及び圧側バルブ7とを備える。   Subsequently, as shown in FIG. 2, the damping valve V includes a main passage P1 communicating with the expansion side chamber L1 and the pressure side chamber L2, an annular valve seat member 2 through which the main passage P1 passes on the inner peripheral side, A main valve body 3 that opens and closes the main passage P1 by being seated on and away from the seat member 2, and a pressure introduction passage P2 that is formed with a throttle O in the middle and reduces the pressure in the extension side chamber L1 to the back of the main valve body 3 The first passage P3 and the second passage P4 connected to the downstream side of the pressure introduction passage P2 (the side opposite to the extension side chamber), the electromagnetic valve 4 for opening and closing the first passage P3 and the second passage P4, A passive valve 5 provided downstream of the electromagnetic valve 4 in the second passage P4, and an expansion side valve 6 and a pressure side valve 7 for opening and closing the pressure side chamber L2 side of the main valve body 3 in the main passage P1 are provided.

また、ピストン10とピストンロッド11は、これらをつなぐ筒状のガイド8とともに減衰弁VのハウジングHとして機能する。より詳しくは、ピストン10は、有底筒状であり、筒部10aをピストンロッド11側へ向けている。また、ピストンロッド11の先端には、有天筒状のケース部11aが設けられており、このケース部11aは、筒部11bをピストン10側へ向けている。このように、ピストン10とケース部11aは、互いの筒部10a,11bが向かい合うように配置されている。   The piston 10 and the piston rod 11 function as a housing H for the damping valve V together with the cylindrical guide 8 that connects them. More specifically, the piston 10 has a bottomed cylindrical shape, and the cylindrical portion 10a faces the piston rod 11 side. The piston rod 11 is provided with a cylindrical case portion 11a at the tip, and this case portion 11a has the cylinder portion 11b facing the piston 10 side. Thus, the piston 10 and the case portion 11a are arranged so that the cylindrical portions 10a and 11b face each other.

そして、ケース部11aにおける筒部11bの先端部内周にガイド8の軸方向の一端部が螺合され、ピストン10における筒部10aの先端部内周にガイド8の軸方向の他端部が螺合されている。このようにしてケース部11a、ガイド8、及びピストン10が一体化されて減衰弁VのハウジングHとして機能し、そのハウジングHの内側に弁座部材2、主弁体3、電磁弁4、パッシブ弁5、及び圧側バルブ7が収容される。また、ハウジングHの外側に、伸側バルブ6が装着される。   Then, one end portion of the guide 8 in the axial direction is screwed to the inner periphery of the tip end portion of the cylindrical portion 11b in the case portion 11a, and the other end portion in the axial direction of the guide 8 is screwed to the inner periphery of the tip end portion of the cylindrical portion 10a of the piston 10. Has been. In this way, the case portion 11a, the guide 8, and the piston 10 are integrated to function as the housing H of the damping valve V. Inside the housing H, the valve seat member 2, the main valve body 3, the electromagnetic valve 4, and the passive The valve 5 and the pressure side valve 7 are accommodated. Further, the expansion side valve 6 is mounted on the outside of the housing H.

以下、減衰弁Vにおいて、そのハウジングHに収容又は装着される各部材について、詳細に説明する。以下の説明では、説明の便宜上、特別な説明がない限り、図2,3中上下を単に「上」「下」という。   Hereinafter, each member accommodated in or attached to the housing H in the damping valve V will be described in detail. In the following description, for convenience of description, unless otherwise specified, the upper and lower parts in FIGS. 2 and 3 are simply referred to as “upper” and “lower”.

ピストン10の筒部10aの内周には、突起10bが設けられている。弁座部材2は、その外周部を突起10bとガイド8との間に挟まれて固定されている。前述のように、弁座部材2は環状であり、その上端内周部に環状の第一弁座2aが形成されている。そして、その第一弁座2aに主弁体3が離着座する。この主弁体3は、上下に分割されており、下側(弁座部材2側)の第一弁体部材30と、この第一弁体部材30に積層される上側の第二弁体部材31とを有して構成されている。   A protrusion 10 b is provided on the inner periphery of the cylinder portion 10 a of the piston 10. The outer periphery of the valve seat member 2 is fixed by being sandwiched between the protrusion 10 b and the guide 8. As described above, the valve seat member 2 is annular, and the annular first valve seat 2a is formed on the inner periphery of the upper end thereof. Then, the main valve body 3 is seated on and off from the first valve seat 2a. The main valve body 3 is divided into upper and lower parts, a lower (valve seat member 2 side) first valve body member 30, and an upper second valve body member stacked on the first valve body member 30. 31.

第一弁体部材30は、環状であり、その上端に第二弁体部材31が離着座する環状の第二弁座30aが形成されている。さらに、第一弁体部材30の外周と内周には、それぞれテーパ面30b,30cが形成されている。テーパ面30b,30cの形状は、それぞれ下端へ向かうに従って径が徐々に小さくなるように円錐台形状となっている。そして、第一弁体部材30は、外周にテーパ面30bが形成された部分を弁座部材2の内側へ挿入し、テーパ面30bを第一弁座2aに離着座させる。   The 1st valve body member 30 is cyclic | annular, and the cyclic | annular 2nd valve seat 30a in which the 2nd valve body member 31 detaches | separates is formed in the upper end. Furthermore, taper surfaces 30b and 30c are formed on the outer periphery and the inner periphery of the first valve body member 30, respectively. The tapered surfaces 30b and 30c have a truncated cone shape so that the diameter gradually decreases toward the lower end. And the 1st valve body member 30 inserts the part by which the taper surface 30b was formed in the outer periphery to the inner side of the valve seat member 2, and makes the taper surface 30b seat in the 1st valve seat 2a.

その一方、第二弁体部材31は、頭部31aと、この頭部31aの下側に連なり外径が頭部31aの外径よりも大きい環状のフランジ部31bと、このフランジ部31bの下端内周部から下側へ突出して第二弁座30aに離着座する環状の脚部31cとを有し、ガイド8の内側に摺動自在に挿入されている。より詳しくは、ガイド8の内径は下側が上側よりも大きくなっている。ガイド8において、内径の小さい部分を小内径部8a、大きい部分を大内径部8bとすると、小内径部8aの内周に第二弁体部材31の頭部31aが摺接し、大内径部8bの内周に第二弁体部材31のフランジ部31bが摺接する。   On the other hand, the second valve body member 31 includes a head portion 31a, an annular flange portion 31b connected to the lower side of the head portion 31a and having an outer diameter larger than the outer diameter of the head portion 31a, and a lower end of the flange portion 31b. It has an annular leg portion 31 c that protrudes downward from the inner peripheral portion and is attached to and detached from the second valve seat 30 a, and is slidably inserted inside the guide 8. More specifically, the inner diameter of the guide 8 is larger on the lower side than on the upper side. In the guide 8, if the small inner diameter portion is the small inner diameter portion 8a and the larger portion is the large inner diameter portion 8b, the head portion 31a of the second valve body member 31 is in sliding contact with the inner periphery of the small inner diameter portion 8a, and the large inner diameter portion 8b. The flange portion 31b of the second valve body member 31 is in sliding contact with the inner periphery of the second valve body member 31.

つづいて、図3に示すように、第二弁体部材31の脚部31c及び第一弁体部材30の外周であってフランジ部31bの下側には環状隙間Kが形成されている。この環状隙間Kは、ガイド8に形成された連通孔8cにより伸側室L1と連通されており、環状隙間K内の圧力が伸側室L1の圧力と略等しくなる。そして、その伸側室L1の圧力は、主弁体3における外周側のテーパ面30b、フランジ部31bの下側面等に作用し、第一弁体部材30と第二弁体部材31が伸側室L1の圧力により上向きに附勢される。   Subsequently, as shown in FIG. 3, an annular gap K is formed on the outer periphery of the leg portion 31c and the first valve body member 30 of the second valve body member 31 and below the flange portion 31b. The annular gap K communicates with the extension side chamber L1 through a communication hole 8c formed in the guide 8, and the pressure in the annular gap K becomes substantially equal to the pressure of the extension side chamber L1. And the pressure of the extension side chamber L1 acts on the taper surface 30b of the outer peripheral side in the main valve body 3, the lower surface of the flange part 31b, etc., and the 1st valve body member 30 and the 2nd valve body member 31 are extended side chamber L1. It is biased upward by the pressure of.

より詳しくは、第一弁体部材30のテーパ面30bにおける第一弁座2aへの接触部の外径を直径a、第二弁体部材31のフランジ部31bにおける大内径部8bへの摺接部の外径を直径bとする。すると、直径bは直径aより大きく(b>a)、伸側室L1の圧力を受ける主弁体3の受圧面積は、直径bの円の面積から直径aの円の面積を除いた面積となる。そして、主弁体3は、伸側室L1の圧力にその受圧面積を乗じた力により、第一弁体部材30を第一弁座2aから離座させる方向(開く方向)へ附勢される。   More specifically, the outer diameter of the contact portion with the first valve seat 2a on the tapered surface 30b of the first valve body member 30 is the diameter a, and the sliding contact with the large inner diameter portion 8b of the flange portion 31b of the second valve body member 31 is performed. Let the outer diameter of the part be the diameter b. Then, the diameter b is larger than the diameter a (b> a), and the pressure receiving area of the main valve body 3 that receives the pressure of the expansion side chamber L1 is an area obtained by subtracting the area of the circle of the diameter a from the area of the circle of the diameter b. . And the main valve body 3 is urged | biased in the direction (opening direction) which separates the 1st valve body member 30 from the 1st valve seat 2a with the force which multiplied the pressure receiving area to the pressure of the expansion side chamber L1.

このため、緩衝器Dの伸長時に伸側室L1の圧力が上昇し、その圧力によって第一弁体部材30と第二弁体部材31が押し上げられて第一弁体部材30が開くと、伸側室L1の液体が第一弁体部材30と第一弁座2aとの間を通ってピストン10の底部10c(図2)側へと向かう。そして、第一弁体部材30は、当該液体の流れに抵抗を与えるようになっている。   For this reason, when the buffer D is extended, the pressure in the expansion side chamber L1 rises, and when the first valve body member 30 and the second valve body member 31 are pushed up by the pressure and the first valve body member 30 is opened, the expansion side chamber The liquid of L1 passes between the 1st valve body member 30 and the 1st valve seat 2a, and goes to the bottom part 10c (FIG. 2) side of the piston 10. As shown in FIG. And the 1st valve body member 30 gives resistance to the flow of the said liquid.

図2に示すように、ピストン10の底部10cには、当該底部10cを上下に貫通する伸側通路10dと圧側通路10eが形成されている。つまり、第二弁体部材31の頭部31aとピストン10の底部10cとの間であって、フランジ部31b、脚部31c、第一弁体部材30、弁座部材2、及びピストン10の筒部10aの内周側を中央室L3とすると、伸側通路10dと圧側通路10eはその中央室L3と圧側室L2とを連通できるようになっている。   As shown in FIG. 2, an extension side passage 10 d and a pressure side passage 10 e are formed in the bottom portion 10 c of the piston 10 so as to penetrate the bottom portion 10 c vertically. That is, between the head portion 31a of the second valve body member 31 and the bottom portion 10c of the piston 10, the flange portion 31b, the leg portion 31c, the first valve body member 30, the valve seat member 2, and the cylinder of the piston 10 are provided. When the inner peripheral side of the portion 10a is a central chamber L3, the extension side passage 10d and the pressure side passage 10e can communicate with the central chamber L3 and the pressure side chamber L2.

伸側通路10dの入口は常に中央室L3と連通され、伸側通路10dの出口は底部10cの下側に積層された伸側バルブ6で開閉される。この伸側バルブ6は、緩衝器Dの伸長時に開弁して伸側通路10dを中央室L3から圧側室L2へ向かう液体の流れに抵抗を与えるとともに、収縮時には閉じてその逆方向の流れを阻止する。   The inlet of the extension side passage 10d is always communicated with the central chamber L3, and the outlet of the extension side passage 10d is opened and closed by the extension side valve 6 stacked below the bottom portion 10c. The expansion side valve 6 is opened when the shock absorber D is extended to provide resistance to the flow of the liquid from the expansion side passage 10d toward the compression side chamber L2 from the central chamber L3, and closes when contracting to flow in the opposite direction. Stop.

その一方、圧側通路10eの入口は常に圧側室L2と連通され、圧側通路10eの出口は底部10cの上側に積層された圧側バルブ7で開閉される。この圧側バルブ7は、緩衝器Dの収縮時に開弁して圧側通路10eを圧側室L2から中央室L3へ向かう液体の流れに抵抗を与えるとともに、伸長時には閉じてその逆方向の流れを阻止する。そして、緩衝器Dの収縮時に圧側室L2から中央室L3へ流入した液体は、主弁体3側へと向かう。   On the other hand, the inlet of the pressure side passage 10e is always in communication with the pressure side chamber L2, and the outlet of the pressure side passage 10e is opened and closed by a pressure side valve 7 stacked on the upper side of the bottom portion 10c. The pressure side valve 7 opens when the shock absorber D is contracted to provide resistance to the flow of the liquid from the pressure side passage 10e toward the central chamber L3 from the pressure side chamber L2 and closes when extended to prevent the flow in the opposite direction. . And the liquid which flowed into the central chamber L3 from the pressure side chamber L2 at the time of shrinkage | contraction of the buffer D heads for the main valve body 3 side.

中央室L3の圧力は、第二弁体部材31における脚部31cの下側面等に作用し、第二弁体部材31が中央室L3の圧力により上向きに附勢される。さらに、中央室L3の圧力は、第一弁体部材30の内周側のテーパ面30c等に作用し、第一弁体部材30が中央室L3の圧力により下向きに附勢される。このように、第一弁体部材30と第二弁体部材31は、中央室L3の圧力によって逆向きに附勢される。   The pressure in the central chamber L3 acts on the lower surface of the leg portion 31c in the second valve body member 31 and the second valve body member 31 is biased upward by the pressure in the central chamber L3. Further, the pressure in the central chamber L3 acts on the tapered surface 30c on the inner peripheral side of the first valve body member 30, and the first valve body member 30 is urged downward by the pressure in the central chamber L3. Thus, the 1st valve body member 30 and the 2nd valve body member 31 are urged | biased by the reverse direction with the pressure of the center chamber L3.

より詳しくは、第二弁体部材31の頭部31aの上下は、後述する縦孔31fにより連通されていて、これらの圧力が等しくなる。そして、図3に示すように、第二弁体部材31の頭部31aにおける小内径部8aへの摺接部の外径を直径c、第二弁体部材31の脚部31cにおける第二弁座30aへの接触部の内径を直径dとする。すると、直径dは直径cより大きく(d>c)、中央室L3の圧力を受ける第二弁体部材31の受圧面積は、直径dの円の面積から直径cの円の面積を除いた面積となる。そして、第二弁体部材31は、中央室L3の圧力にその受圧面積を乗じた力により、第二弁座30aから離座する方向(開く方向)へ附勢される。   More specifically, the top and bottom of the head portion 31a of the second valve body member 31 are in communication with each other through a vertical hole 31f described later, and these pressures are equal. As shown in FIG. 3, the outer diameter of the sliding contact portion with the small inner diameter portion 8 a in the head portion 31 a of the second valve body member 31 is the diameter c, and the second valve in the leg portion 31 c of the second valve body member 31. The inner diameter of the contact portion with the seat 30a is defined as a diameter d. Then, the diameter d is larger than the diameter c (d> c), and the pressure receiving area of the second valve body member 31 receiving the pressure of the central chamber L3 is an area obtained by subtracting the area of the circle of the diameter c from the area of the circle of the diameter d. It becomes. And the 2nd valve body member 31 is urged | biased in the direction (opening direction) which separates from the 2nd valve seat 30a with the force which multiplied the pressure receiving area to the pressure of the center chamber L3.

また、第一弁体部材30の外周側のテーパ面30bにおける第一弁座2aへの接触部の内径を直径eとすると、前述の直径dは直径eより大きく(d>e)、中央室L3の圧力を受ける第一弁体部材30の受圧面積は、直径dの円の面積から直径eの円の面積を除いた面積となる。そして、第一弁体部材30は、中央室L3の圧力にその受圧面積を乗じた力により、第一弁座2aへ着座する方向(閉じる方向)へ附勢される。   Further, when the inner diameter of the contact portion with the first valve seat 2a in the tapered surface 30b on the outer peripheral side of the first valve body member 30 is a diameter e, the diameter d is larger than the diameter e (d> e), and the central chamber The pressure receiving area of the first valve body member 30 that receives the pressure of L3 is an area obtained by subtracting the area of the circle of the diameter e from the area of the circle of the diameter d. And the 1st valve body member 30 is urged | biased by the direction (closed direction) seated on the 1st valve seat 2a with the force which multiplied the pressure receiving area to the pressure of the center chamber L3.

このため、緩衝器Dの収縮時に圧側バルブ7(図2)が開いて液体が圧側室L2から中央室L3へ流入してその圧力が上昇し、この圧力によって第二弁体部材31が押し上げられて第一弁体部材30から離れると、中央室L3の液体が第二弁体部材31と第二弁座30aとの間を通って伸側室L1へ移動する。そして、第二弁体部材31は、当該液体の流れに対して抵抗を与えるようになっている。   For this reason, when the shock absorber D is contracted, the pressure side valve 7 (FIG. 2) is opened, the liquid flows from the pressure side chamber L2 to the central chamber L3, the pressure rises, and the second valve body member 31 is pushed up by this pressure. When the first valve body member 30 is separated from the first valve body member 30, the liquid in the central chamber L3 moves between the second valve body member 31 and the second valve seat 30a and moves to the extension side chamber L1. And the 2nd valve body member 31 gives resistance with respect to the flow of the said liquid.

以上からわかるように、連通孔8c、環状隙間K、中央室L3、並びに、伸側通路10d及び圧側通路10eは、それぞれ伸側室L1と圧側室L2とを連通する主通路P1の一部となっており、その主通路P1を主弁体3で開閉する。さらに、主通路P1における主弁体3の開閉部よりも圧側室L2側が伸側通路10dと圧側通路10eに分岐して、それぞれに伸側バルブ6又は圧側バルブ7が設けられている(図2)。換言すると、伸側バルブ6と圧側バルブ7は、主弁体3の圧側室L2側に並列に接続されている。   As can be seen from the above, the communication hole 8c, the annular gap K, the central chamber L3, the extension side passage 10d and the pressure side passage 10e are part of the main passage P1 that connects the extension side chamber L1 and the pressure side chamber L2. The main passage P1 is opened and closed by the main valve body 3. Further, the pressure side chamber L2 side of the main passage P1 from the opening / closing portion of the main valve body 3 branches into the extension side passage 10d and the pressure side passage 10e, and the extension side valve 6 or the pressure side valve 7 is provided respectively (FIG. 2). ). In other words, the expansion side valve 6 and the pressure side valve 7 are connected in parallel to the pressure side chamber L2 side of the main valve body 3.

そして、緩衝器Dの伸長時には、主通路P1を伸側室L1から圧側室L2へ向かう液体の流れに第一弁体部材30と伸側バルブ6で抵抗を与え、緩衝器Dがその抵抗に起因する伸側の減衰力を発揮する。反対に、緩衝器Dの収縮時には、主通路P1を圧側室L2から伸側室L1へ向かう液体の流れに第二弁体部材31と圧側バルブ7で抵抗を与え、緩衝器Dがその抵抗に起因する圧側の減衰力を発揮する。   When the shock absorber D is extended, the first valve body member 30 and the expansion side valve 6 provide resistance to the liquid flow from the expansion side chamber L1 to the compression side chamber L2 through the main passage P1, and the shock absorber D is caused by the resistance. Exhibits the damping force on the extending side. On the other hand, when the shock absorber D is contracted, the second valve body member 31 and the pressure side valve 7 provide resistance to the liquid flow from the pressure side chamber L2 to the expansion side chamber L1 through the main passage P1, and the shock absorber D is caused by the resistance. Demonstrate the damping force on the compression side.

また、本実施の形態では、第二弁体部材31の脚部31cの下端に切欠き31d(図3)が形成されている。そして、当該切欠き31dによりオリフィスが形成されている。このため、主弁体3が閉じた状態、即ち、第一弁体部材30と第二弁体部材31の両方が閉じた状態であっても、伸側室L1と中央室L3がオリフィスを介して連通される。   Moreover, in this Embodiment, the notch 31d (FIG. 3) is formed in the lower end of the leg part 31c of the 2nd valve body member 31. As shown in FIG. An orifice is formed by the notch 31d. For this reason, even when the main valve body 3 is closed, that is, when both the first valve body member 30 and the second valve body member 31 are closed, the extension side chamber L1 and the central chamber L3 are connected via the orifice. Communicated.

つづいて、第二弁体部材31における頭部31aとガイド8の大内径部8bとの間であってフランジ部31bの上側には、環状の背圧室L4が形成されている。この背圧室L4と伸側室L1は、ガイド8に形成された圧力導入通路P2により連通されている。この圧力導入通路P2には絞りOが設けられており、伸側室L1の圧力が減圧されて背圧室L4へと導かれるようになっている。   Subsequently, an annular back pressure chamber L4 is formed between the head portion 31a of the second valve body member 31 and the large inner diameter portion 8b of the guide 8 and above the flange portion 31b. The back pressure chamber L4 and the extension side chamber L1 are communicated with each other by a pressure introduction passage P2 formed in the guide 8. The pressure introducing passage P2 is provided with a throttle O, so that the pressure in the expansion side chamber L1 is reduced and led to the back pressure chamber L4.

そして、背圧室L4の圧力は、伸側室L1の圧力が高まる緩衝器Dの伸長時に上昇して主弁体3の背面となるフランジ部31bの上側面に作用し、第一弁体部材30と第二弁体部材31が背圧室L4の圧力により下向きに附勢される。より詳しくは、背圧室L4の圧力を受ける主弁体3の受圧面積は、前述の直径b(図3)の円の面積から直径c(図3)の円の面積を除いた面積となる。そして、主弁体3は、背圧室L4の圧力にその受圧面積を乗じた力により、第一弁体部材30と第二弁体部材31をそれぞれ第一弁座2aと第二弁座30aに着座させる方向(閉じる方向)へ附勢される。   Then, the pressure in the back pressure chamber L4 rises when the shock absorber D in which the pressure in the expansion side chamber L1 is increased and acts on the upper surface of the flange portion 31b which becomes the back surface of the main valve body 3, and the first valve body member 30 The second valve body member 31 is urged downward by the pressure of the back pressure chamber L4. More specifically, the pressure receiving area of the main valve body 3 that receives the pressure of the back pressure chamber L4 is an area obtained by subtracting the area of the circle of the diameter c (FIG. 3) from the area of the circle of the diameter b (FIG. 3). . And the main valve body 3 makes the 1st valve body member 30 and the 2nd valve body member 31 respectively the 1st valve seat 2a and the 2nd valve seat 30a by the force which multiplied the pressure receiving area to the pressure of the back pressure chamber L4. It is urged in the direction to be seated (closed direction).

また、図3に示すように、第二弁体部材31の頭部31aには、その頭部31aの中心部を上下に貫通する取付孔31eと、この取付孔31eの外周側に形成されて頭部31aの上下を連通する縦孔31fと、一端が背圧室L4に開口するとともに他端が取付孔31eに開口する横穴31gが形成されている。さらに、取付孔31eには、第一ポート9aと第二ポート9bを含むバルブケース9が装着されている。そして、第一ポート9aと第二ポート9bが電磁弁4で開閉される。   Further, as shown in FIG. 3, the head 31a of the second valve body member 31 is formed on the outer peripheral side of the mounting hole 31e and the mounting hole 31e passing through the center of the head 31a up and down. A vertical hole 31f communicating with the top and bottom of the head 31a and a horizontal hole 31g having one end opened in the back pressure chamber L4 and the other end opened in the mounting hole 31e are formed. Further, a valve case 9 including a first port 9a and a second port 9b is mounted in the mounting hole 31e. The first port 9a and the second port 9b are opened and closed by the electromagnetic valve 4.

より詳しくは、バルブケース9は、軸方向の一端を上側へ向けて配置される筒状のガイド部9cと、このガイド部9cの上端から径方向外側へ張り出す環状の鍔部9dと、この鍔部9dの上端から上側へ突出する環状の圧力制御弁弁座9eとを有する。このように、バルブケース9の形状は、全体として略筒状となっている。   More specifically, the valve case 9 includes a cylindrical guide portion 9c that is arranged with one end in the axial direction facing upward, an annular flange portion 9d that protrudes radially outward from the upper end of the guide portion 9c, An annular pressure control valve seat 9e protruding upward from the upper end of the flange 9d. Thus, the shape of the valve case 9 is substantially cylindrical as a whole.

前述の第一ポート9aと第二ポート9bは、ガイド部9cの上下(軸方向)にずれた位置に、ガイド部9cの肉厚をそれぞれ貫通するように形成されている。そして、第一ポート9aは、第二ポート9bより上側(圧力制御弁弁座9e側)に位置する。また、ガイド部9cの外径は、取付孔31eの径よりも小さく、ガイド部9cの外周に上下を閉塞された環状の隙間が形成される。そして、その環状の隙間に横穴31gが開口している。このため、背圧室L4の液体は、横穴31gと、第一ポート9a又は第二ポート9bを通ってガイド部9cの内周側へ流入できる。   The first port 9a and the second port 9b described above are formed so as to penetrate the thickness of the guide portion 9c at positions shifted vertically (in the axial direction) of the guide portion 9c. The first port 9a is located above the second port 9b (on the pressure control valve seat 9e side). Moreover, the outer diameter of the guide part 9c is smaller than the diameter of the attachment hole 31e, and the cyclic | annular space | gap closed up and down was formed in the outer periphery of the guide part 9c. A lateral hole 31g is opened in the annular gap. For this reason, the liquid in the back pressure chamber L4 can flow into the inner peripheral side of the guide portion 9c through the lateral hole 31g and the first port 9a or the second port 9b.

つづいて、電磁弁4は、第一ポート9aと第二ポート9bを開閉するとともに圧力制御弁弁座9eに離着座する電磁弁弁体40を有する。この電磁弁弁体40は、バルブケース9のガイド部9c内に摺動自在に挿入されて第一ポート9aと第二ポート9bの一方を開放して他方を閉塞する開閉弁弁体40aと、この開閉弁弁体40aからバルブケース9の上側へ突出し、外径が開閉弁弁体40aの外径より小さい軸部40bと、バルブケース9外へ突出した軸部40bの上端から横方向へ張り出して圧力制御弁弁座9eに離着座する圧力制御弁弁体40cと、この圧力制御弁弁体40cからさらに横方向へ張り出すばね受け部40dを含む。   Subsequently, the electromagnetic valve 4 includes an electromagnetic valve valve body 40 that opens and closes the first port 9a and the second port 9b and is attached to and detached from the pressure control valve seat 9e. The solenoid valve body 40 is slidably inserted into the guide portion 9c of the valve case 9 to open one of the first port 9a and the second port 9b and close the other, The on-off valve body 40a protrudes to the upper side of the valve case 9 and protrudes laterally from the shaft 40b whose outer diameter is smaller than the outer diameter of the on-off valve body 40a and the upper end of the shaft 40b that protrudes outside the valve case 9. A pressure control valve valve body 40c that is attached to and detached from the pressure control valve valve seat 9e, and a spring receiving portion 40d that protrudes further laterally from the pressure control valve valve body 40c.

さらに、電磁弁4は、電磁弁弁体40を上向き、即ち、圧力制御弁弁体40cを圧力制御弁弁座9eから離座させる方向へ附勢するばね41を有する。なお、このばね41は、如何なるばねでもよいが、本実施の形態ではコイルばねである。そして、このばね41の上端は、電磁弁弁体40のばね受け部40dで支えられている。その一方、ばね41の下端は、バルブケース9の鍔部9dにおける圧力制御弁弁座9eよりも外周側で支えられている。このようにしてばね41は電磁弁弁体40とバルブケース9との間に介装されている。   Furthermore, the solenoid valve 4 has a spring 41 that urges the solenoid valve body 40 upward, that is, in a direction for separating the pressure control valve body 40c from the pressure control valve seat 9e. The spring 41 may be any spring, but is a coil spring in the present embodiment. The upper end of the spring 41 is supported by a spring receiving portion 40 d of the electromagnetic valve body 40. On the other hand, the lower end of the spring 41 is supported on the outer peripheral side of the pressure control valve seat 9e in the flange portion 9d of the valve case 9. Thus, the spring 41 is interposed between the solenoid valve body 40 and the valve case 9.

また、電磁弁4は、電磁弁弁体40に下向き、即ち、圧力制御弁弁体40cを圧力制御弁弁座9eへ着座させる方向へ推力を与えるソレノイドSを有する。このソレノイドSは、図2に示すように、ピストンロッド11のケース部11a内に収容されており、巻線42とその巻線42に通電するハーネス43とをモールド樹脂で一体化したモールドステータ44と、このモールドステータ44の内周に嵌合される有天筒状の第一固定鉄心45と、モールドステータ44の下端に積層される環状の第二固定鉄心46と、第一固定鉄心45と第二固定鉄心46との間に介装されてこれらの間に磁気的な空隙を形成するフィラーリング47と、第一固定鉄心45と第二固定鉄心46の内周側に軸方向移動可能に配置される筒状の可動鉄心48と、この可動鉄心48の内周に固定されて先端が電磁弁弁体40に当接するシャフト49とを有する。   The solenoid valve 4 has a solenoid S that applies thrust to the solenoid valve body 40 downward, that is, in a direction in which the pressure control valve body 40c is seated on the pressure control valve seat 9e. As shown in FIG. 2, the solenoid S is housed in the case portion 11a of the piston rod 11, and a molded stator 44 in which a winding 42 and a harness 43 that energizes the winding 42 are integrated with a molding resin. A tentative cylindrical first fixed iron core 45 fitted to the inner periphery of the mold stator 44, an annular second fixed iron core 46 laminated on the lower end of the mold stator 44, and a first fixed iron core 45, A filler ring 47 interposed between the second fixed iron core 46 and forming a magnetic gap therebetween, and axially movable toward the inner peripheral side of the first fixed iron core 45 and the second fixed iron core 46. A cylindrical movable iron core 48 disposed and a shaft 49 fixed to the inner periphery of the movable iron core 48 and having a tip abutting against the electromagnetic valve body 40 are provided.

そして、巻線42が励磁されると、磁路が第一固定鉄心45、可動鉄心48、第二固定鉄心46、及びケース部11aを通過するように形成されて、可動鉄心48が第二固定鉄心46側へ吸引されるようになっている。このように可動鉄心48が吸引されると、電磁弁弁体40がシャフト49で下向きに押される。つまり、通電時においてソレノイドSは、ばね41の附勢力とは反対方向の推力を電磁弁弁体40に与えるようになっている。   When the winding 42 is excited, the magnetic path is formed so as to pass through the first fixed iron core 45, the movable iron core 48, the second fixed iron core 46, and the case portion 11a. It is sucked toward the iron core 46 side. When the movable iron core 48 is sucked in this way, the electromagnetic valve body 40 is pushed downward by the shaft 49. That is, when energized, the solenoid S applies a thrust force in the direction opposite to the biasing force of the spring 41 to the solenoid valve body 40.

このようなソレノイドSからの推力を電磁弁弁体40が受けると、電磁弁弁体40がばね41を圧縮しつつ下向きに進み、開閉弁弁体40aが第一ポート9aの下側へ移動して第一ポート9aを開放するとともに第二ポート9bを閉塞する。また、開閉弁弁体40aで第一ポート9aを開放した状態では、圧力制御弁弁体40cが圧力制御弁弁座9eに着座又は接近するとともに、背圧室L4の圧力が第一ポート9aを通じて圧力制御弁弁体40cの下側面に作用して、電磁弁弁体40を上向きに附勢する。   When the solenoid valve body 40 receives such thrust from the solenoid S, the solenoid valve body 40 advances downward while compressing the spring 41, and the on-off valve body 40a moves to the lower side of the first port 9a. The first port 9a is opened and the second port 9b is closed. When the first port 9a is opened by the on-off valve body 40a, the pressure control valve body 40c is seated on or approaches the pressure control valve seat 9e, and the pressure in the back pressure chamber L4 is passed through the first port 9a. Acting on the lower surface of the pressure control valve body 40c, the electromagnetic valve body 40 is biased upward.

このため、ソレノイドSの通電時において、電磁弁弁体40を上向きに附勢する背圧室L4の圧力による力とばね41の附勢力の合力が、電磁弁弁体40を下向きに附勢するソレノイドSの推力を上回るようになると圧力制御弁弁体40cが圧力制御弁弁座9eから離れる。そして、このように圧力制御弁弁体40cが開くと、液体が圧力制御弁弁体40cと圧力制御弁弁座9eとの間を通って頭部31aの上側へ移動し、縦孔31fを通って頭部31aの上側から中央室L3へと移動する。圧力制御弁弁体40cの開弁圧は、ソレノイドSへ供給する電流量に比例し、供給電流量を大きくすればするほど圧力制御弁弁体40cの開弁圧が大きくなる。   Therefore, when the solenoid S is energized, the resultant force of the pressure of the back pressure chamber L4 that biases the solenoid valve body 40 upward and the biasing force of the spring 41 biases the solenoid valve valve body 40 downward. When the thrust of the solenoid S is exceeded, the pressure control valve body 40c moves away from the pressure control valve seat 9e. When the pressure control valve body 40c is thus opened, the liquid moves between the pressure control valve body 40c and the pressure control valve valve seat 9e and moves to the upper side of the head 31a, and passes through the vertical hole 31f. Then, the head moves from the upper side of the head 31a to the central chamber L3. The valve opening pressure of the pressure control valve body 40c is proportional to the amount of current supplied to the solenoid S, and the valve opening pressure of the pressure control valve body 40c increases as the supply current amount increases.

その一方、ソレノイドSへの通電を断つと、電磁弁弁体40がばね41の附勢力により最大限に押し上げられる。すると、開閉弁弁体40aが第二ポート9bの上側へ移動して第二ポート9bを開放するとともに第一ポート9aを閉塞する。図2,3には、非通電時における電磁弁弁体40の状態を示している。   On the other hand, when the energization to the solenoid S is cut off, the solenoid valve body 40 is pushed up to the maximum by the urging force of the spring 41. Then, the on-off valve body 40a moves to the upper side of the second port 9b to open the second port 9b and close the first port 9a. 2 and 3 show the state of the electromagnetic valve body 40 when no power is supplied.

また、取付孔31eにおけるバルブケース9の下側には、パッシブ弁5が装着されている。このパッシブ弁5は、図3に示すように、バルブケース9におけるガイド部9cの下端に設けた環状のパッシブ弁弁座9fに離着座してガイド部9cの下端を開閉する球状のパッシブ弁弁体50と、このパッシブ弁弁体50をパッシブ弁弁座9fに着座させる方向(閉じ方向)へ附勢する板ばね51とを有する。   A passive valve 5 is mounted on the lower side of the valve case 9 in the mounting hole 31e. As shown in FIG. 3, the passive valve 5 is a spherical passive valve valve that opens and closes a lower end of the guide portion 9 c by being seated on an annular passive valve seat 9 f provided at the lower end of the guide portion 9 c in the valve case 9. And a leaf spring 51 that urges the passive valve body 50 in a direction (closing direction) in which the passive valve body 50 is seated on the passive valve seat 9f.

板ばね51は、図4に示すように、環状の取付部51aと、この取付部51aから中心側へ突出する複数の支持部51bを有する。これら支持部51bは、取付部51aの周方向に等間隔で配置されている。この板ばね51は、取付部51aが第二弁体部材31に固定され、支持部51bの先端でパッシブ弁弁体50の下側を支えるようになっている。   As shown in FIG. 4, the leaf spring 51 has an annular attachment portion 51 a and a plurality of support portions 51 b protruding from the attachment portion 51 a toward the center side. These support parts 51b are arrange | positioned at equal intervals in the circumferential direction of the attaching part 51a. The plate spring 51 is configured such that the mounting portion 51a is fixed to the second valve body member 31, and the lower end of the passive valve valve body 50 is supported by the tip of the support portion 51b.

そして、開閉弁弁体40aにより第二ポート9bが開放されるソレノイドSの非通電時には、背圧室L4の圧力が第二ポート9bを通じてパッシブ弁弁体50の上側面に作用して、パッシブ弁弁体50を下向き、即ち、パッシブ弁弁体50をパッシブ弁弁座9fから離座させる方向へ附勢する。このため、ソレノイドSの非通電時には、背圧室L4の液体が第二ポート9bから開閉弁弁体40aの下側へ流入し、板ばね51の附勢力に抗してパッシブ弁弁体50を押し下げると、パッシブ弁弁体50とパッシブ弁弁座9fとの間、及び隣り合う支持部51b,51bの間を通って中央室L3へ移動する。   When the solenoid S, which opens the second port 9b by the on-off valve body 40a, is de-energized, the pressure in the back pressure chamber L4 acts on the upper side surface of the passive valve body 50 through the second port 9b. The valve body 50 is biased downward, that is, in a direction in which the passive valve body 50 is separated from the passive valve valve seat 9f. Therefore, when the solenoid S is not energized, the liquid in the back pressure chamber L4 flows into the lower side of the on-off valve body 40a from the second port 9b, and the passive valve body 50 is moved against the urging force of the leaf spring 51. When pushed down, it moves to the central chamber L3 between the passive valve body 50 and the passive valve valve seat 9f and between the adjacent support portions 51b and 51b.

以上からわかるように、第一ポート9a、頭部31aの上側、及び縦孔31fは、それぞれ圧力導入通路P2の下流に接続される第一通路P3の一部となっている。そして、ソレノイドSの通電時には開閉弁弁体40aが第一ポート9aを開き、第一通路P3と背圧室L4とを連通するとともに、圧力制御弁弁体40cの開弁圧が制御される。このため、背圧室L4の圧力が高まる緩衝器Dの伸長時に電磁弁4への通電がなされている場合、背圧室L4の圧力が圧力制御弁弁体40cの開弁圧に制御される。   As can be seen from the above, the first port 9a, the upper side of the head portion 31a, and the vertical hole 31f are part of the first passage P3 connected to the downstream side of the pressure introduction passage P2. When the solenoid S is energized, the on-off valve body 40a opens the first port 9a, connects the first passage P3 and the back pressure chamber L4, and controls the valve opening pressure of the pressure control valve body 40c. For this reason, when the solenoid valve 4 is energized when the shock absorber D in which the pressure in the back pressure chamber L4 increases, the pressure in the back pressure chamber L4 is controlled to the valve opening pressure of the pressure control valve body 40c. .

その一方、第二ポート9b、及び取付孔31eにおけるバルブケース9の下側は、それぞれ圧力導入通路P2の下流に接続される第二通路P4の一部となっている。そして、ソレノイドSの非通電時には開閉弁弁体40aが第二ポート9bを開き、第二通路P4と背圧室L4とを連通する。この第二通路P4にはパッシブ弁5が設けられている。このため、背圧室L4の圧力が高まる緩衝器Dの伸長時に電磁弁4への通電が断たれている場合、背圧室L4の圧力がパッシブ弁5の開弁圧となる。   On the other hand, the lower side of the valve case 9 in the second port 9b and the mounting hole 31e is a part of the second passage P4 connected downstream of the pressure introduction passage P2. When the solenoid S is not energized, the on-off valve body 40a opens the second port 9b and connects the second passage P4 and the back pressure chamber L4. A passive valve 5 is provided in the second passage P4. For this reason, when energization to the electromagnetic valve 4 is interrupted when the shock absorber D in which the pressure in the back pressure chamber L4 increases, the pressure in the back pressure chamber L4 becomes the valve opening pressure of the passive valve 5.

前述のように、背圧室L4の圧力は、主弁体3を閉じる方向へ作用する。加えて、電磁弁4の通電時にはソレノイドSの推力も電磁弁弁体40とバルブケース9を介して主弁体3を閉じる方向へ作用する。このため、電磁弁4へ通電する正常時において緩衝器Dが伸長する場合、主弁体3の第一弁体部材30を開く方向へ附勢する伸側室L1の圧力による力が、主弁体3を閉じる方向へ附勢する背圧室L4の圧力による力と、ソレノイドSの推力の合力を上回るようになると第一弁体部材30が開く。   As described above, the pressure in the back pressure chamber L4 acts in the direction in which the main valve body 3 is closed. In addition, when the solenoid valve 4 is energized, the thrust of the solenoid S also acts in the direction of closing the main valve body 3 via the solenoid valve valve body 40 and the valve case 9. For this reason, when the shock absorber D expands when the solenoid valve 4 is energized normally, the force due to the pressure of the expansion side chamber L1 that biases the first valve body member 30 of the main valve body 3 in the opening direction is the main valve body. When the force resulting from the pressure of the back pressure chamber L4 energizing 3 in the closing direction exceeds the resultant force of the solenoid S, the first valve body member 30 opens.

そして、正常時において緩衝器Dが伸長する場合、ソレノイドSの推力を調整するとともに電磁弁4で背圧室L4の圧力を制御すれば、主弁体3を閉じ方向へ附勢する力を調整し、主通路P1を伸側室L1から中央室L3へ向かう液体の流れに付与される第一弁体部材30による抵抗が変更される。このため、正常時には、緩衝器Dの伸長時の減衰力(伸側の減衰力)を調節できる。   When the shock absorber D is extended in a normal state, adjusting the thrust of the solenoid S and controlling the pressure of the back pressure chamber L4 with the electromagnetic valve 4 adjusts the force for energizing the main valve body 3 in the closing direction. And the resistance by the 1st valve body member 30 provided to the flow of the liquid which goes through the main channel | path P1 from the expansion side chamber L1 to the center chamber L3 is changed. For this reason, at the time of normality, the damping force (extension side damping force) when the shock absorber D is extended can be adjusted.

具体的には、電磁弁4へ供給する電流量を増やすと、伸長時にはソレノイドSの推力が大きくなるとともに背圧室L4の圧力が高くなり、主弁体3を閉じ方向へ附勢する力が大きくなるので、伸側の減衰力を大きくして減衰力特性をハードにできる。反対に、電磁弁4へ供給する電流量を減らすと、伸長時にはソレノイドSの推力が小さくなるとともに背圧室L4の圧力が低くなり、主弁体3を閉じ方向へ附勢する力が小さくなるので、伸側の減衰力を小さくして減衰力特性をソフトにできる。   Specifically, if the amount of current supplied to the solenoid valve 4 is increased, the thrust of the solenoid S increases and the pressure of the back pressure chamber L4 increases during extension, and the force that biases the main valve body 3 in the closing direction is increased. Since it becomes large, the damping force characteristic can be made hard by increasing the damping force on the extension side. On the other hand, if the amount of current supplied to the solenoid valve 4 is reduced, the thrust of the solenoid S becomes small and the pressure in the back pressure chamber L4 becomes low at the time of extension, and the force for energizing the main valve body 3 in the closing direction becomes small. Therefore, the damping force characteristic can be made soft by reducing the damping force on the extension side.

その一方、電磁弁4への電力供給を断つフェール時において緩衝器Dが伸長する場合、背圧室L4の圧力がパッシブ弁5の開弁圧になる。このため、フェール時の伸側の減衰力は、パッシブ弁5の設定により決定される。さらに、正常時には、パッシブ弁5を設けた第二通路P4と背圧室L4との連通が遮断されているので、正常時にも関わらず緩衝器Dの減衰力特性がフェール時の特性になることがない。   On the other hand, when the shock absorber D extends during a failure in which the power supply to the electromagnetic valve 4 is cut off, the pressure in the back pressure chamber L4 becomes the valve opening pressure of the passive valve 5. For this reason, the extension side damping force at the time of failure is determined by the setting of the passive valve 5. Further, since the communication between the second passage P4 provided with the passive valve 5 and the back pressure chamber L4 is cut off at the normal time, the damping force characteristic of the shock absorber D becomes the characteristic at the time of the failure despite the normal time. There is no.

なお、背圧室L4の圧力が高まらない緩衝器Dの収縮時には、第一ポート9aが開いていても圧力制御弁弁体40cが開かず、電磁弁4による背圧室L4の圧力制御が効かなくなる。とはいえ、通電時には、ソレノイドSの推力が電磁弁弁体40とバルブケース9を介して主弁体3を閉じる方向へ作用している。このため、ソレノイドSの推力を調整すれば、主通路P1を中央室L3から伸側室L1へ向かう液体の流れに付与される第二弁体部材31による抵抗が変更されるので、正常時には緩衝器Dの収縮時の減衰力(圧側の減衰力)も調整できる。   When the shock absorber D is contracted so that the pressure in the back pressure chamber L4 does not increase, the pressure control valve body 40c does not open even if the first port 9a is open, and the pressure control of the back pressure chamber L4 by the electromagnetic valve 4 is effective. Disappear. However, during energization, the thrust of the solenoid S acts in the direction of closing the main valve body 3 via the electromagnetic valve body 40 and the valve case 9. For this reason, if the thrust of the solenoid S is adjusted, the resistance by the second valve body member 31 applied to the liquid flow from the central chamber L3 toward the extension side chamber L1 through the main passage P1 is changed. The damping force at the time of contraction of D (the damping force on the compression side) can also be adjusted.

具体的には、電磁弁4へ供給する電流量を増やすと、収縮時にもソレノイドSの推力が大きくなり、主弁体3を閉じ方向へ附勢する力が大きくなるので、圧側の減衰力を大きくして減衰力特性をハードにできる。反対に、電磁弁4へ供給する電流量を減らすと、収縮時にもソレノイドSの推力が小さくなり、主弁体3を閉じ方向へ附勢する力が小さくなるので、圧側の減衰力を小さくして減衰力特性をソフトにできる。   Specifically, when the amount of current supplied to the solenoid valve 4 is increased, the thrust of the solenoid S is increased even during contraction, and the force that biases the main valve body 3 in the closing direction is increased. The damping force characteristic can be made hard by increasing the value. On the other hand, if the amount of current supplied to the solenoid valve 4 is reduced, the thrust of the solenoid S is reduced even during contraction, and the force that biases the main valve body 3 in the closing direction is reduced, so the damping force on the compression side is reduced. The damping force characteristics can be softened.

その一方、ソレノイドSの非通電時には、ばね41の附勢力を受けて電磁弁弁体40が最大限に後退する。このとき、主弁体3は、バルブケース9とともにばね41で閉じ方向へ附勢されるのみとなる。このため、緩衝器Dの圧側の減衰力はフェール時に最も小さくなり、減衰力特性がフルソフトになる。   On the other hand, when the solenoid S is not energized, the solenoid valve body 40 is retracted to the maximum by receiving the urging force of the spring 41. At this time, the main valve body 3 is only urged together with the valve case 9 by the spring 41 in the closing direction. For this reason, the damping force on the pressure side of the shock absorber D becomes the smallest during a failure, and the damping force characteristic becomes full soft.

以下、本実施の形態に係るバルブ装置である減衰弁Vの作用効果について説明する。   Hereinafter, the effect of the damping valve V which is the valve device according to the present embodiment will be described.

本実施の形態において、減衰弁(バルブ装置)Vは、圧力導入通路P2と、この圧力導入通路P2の下流に接続される第一通路P3及び第二通路P4と、通電時に第一通路P3を開いて上流側の圧力を制御するとともに第二通路P4を閉じ、非通電時に第一通路P3を閉じるとともに第二通路P4を開く電磁弁4と、第二通路P4の電磁弁4よりも下流に設けられたパッシブ弁5とを備える。そして、そのパッシブ弁5が環状のパッシブ弁弁座9fに離着座して第二通路P4を開閉する球状のパッシブ弁弁体50と、このパッシブ弁弁体50を閉じ方向へ附勢する板ばね51とを有して構成される。   In the present embodiment, the damping valve (valve device) V includes the pressure introduction passage P2, the first passage P3 and the second passage P4 connected downstream of the pressure introduction passage P2, and the first passage P3 when energized. Open and control the upstream pressure, close the second passage P4, close the first passage P3 when not energized and open the second passage P4, and downstream of the electromagnetic valve 4 in the second passage P4 And a passive valve 5 provided. Then, the passive valve 5 is separated from and seated on the annular passive valve seat 9f so as to open and close the second passage P4, and a leaf spring for biasing the passive valve body 50 in the closing direction. 51.

上記構成によれば、電磁弁4で圧力制御と通路の開閉の両方をする場合であっても、通電時にはパッシブ弁5の上流を電磁弁4で閉じているので、減衰弁(バルブ装置)Vが正常時にフェール状態になるのを防止できる。さらに、電磁弁4の通電時と非通電時とで、圧力導入通路P2側からの液体が通過できる通路が切換るので、パッシブ弁5の特性を自由に設定できる。   According to the above configuration, even when both pressure control and passage opening / closing are performed by the electromagnetic valve 4, the upstream side of the passive valve 5 is closed by the electromagnetic valve 4 when energized, so that the damping valve (valve device) V Can be prevented from failing during normal operation. Furthermore, since the passage through which the liquid from the pressure introduction passage P2 can pass is switched between when the solenoid valve 4 is energized and when it is not energized, the characteristics of the passive valve 5 can be freely set.

また、上記構成によれば、パッシブ弁弁体50が球状で、パッシブ弁弁座9fと線接触する構造にできる。このため、パッシブ弁弁体50の吸着を抑制できる。さらに、板ばね51は、その板厚、支持部51bの数、長さ、周方向の幅等を自由に変更できる。このように、板ばね51の形状は自由に変更できるので、パッシブ弁5の特性を細かく設定できる。加えて、パッシブ弁弁体50が球状であるので、例えば、パッシブ弁弁体50をパッシブ弁弁座9f上に落とせば自然と調心される。このため、上記構成によれば、パッシブ弁5の組立を容易にできる。   Moreover, according to the said structure, the passive valve body 50 can be spherical and can be made into the structure which carries out line contact with the passive valve valve seat 9f. For this reason, adsorption | suction of the passive valve body 50 can be suppressed. Furthermore, the leaf | plate spring 51 can change the board | plate thickness, the number of the support parts 51b, length, the width | variety of the circumferential direction, etc. freely. Thus, since the shape of the leaf | plate spring 51 can be changed freely, the characteristic of the passive valve 5 can be set finely. In addition, since the passive valve body 50 is spherical, for example, if the passive valve body 50 is dropped on the passive valve valve seat 9f, it is naturally aligned. For this reason, according to the said structure, the assembly of the passive valve 5 can be made easy.

また、本実施の形態の減衰弁(バルブ装置)Vでは、図4に示すように、電磁弁4の弁体である電磁弁弁体40が第一通路P3と第二通路P4を開閉する開閉弁弁体40aと、第一通路P3における開閉弁弁体40aよりも下流側を開閉する圧力制御弁弁体40cとを含む。そして、電磁弁4の通電時に開閉弁弁体40aが第一通路P3を開くとともに第二通路P4を閉じ、圧力制御弁弁体40cの開弁圧が制御される。   Further, in the damping valve (valve device) V of the present embodiment, as shown in FIG. 4, the solenoid valve body 40 that is the valve body of the solenoid valve 4 opens and closes the first passage P3 and the second passage P4. It includes a valve body 40a and a pressure control valve body 40c that opens and closes the downstream side of the opening / closing valve body 40a in the first passage P3. When the solenoid valve 4 is energized, the on-off valve body 40a opens the first passage P3 and closes the second passage P4, and the valve opening pressure of the pressure control valve body 40c is controlled.

上記電磁弁4によれば、通電時に上流側の圧力を圧力制御弁弁体40cの開弁圧に制御できる。また、電磁弁4では、電磁弁弁体40の開閉弁弁体40aが圧力制御弁弁体40cよりも上流側を開閉する。つまり、従来のように圧力制御弁弁体より下流を開閉弁弁体で開閉する構成になってはいない。このため、開閉弁弁体40aと圧力制御弁弁体40cを一体化してこれらを単一のソレノイドSで駆動し、電磁弁4で圧力制御と通路の開閉の両方をする場合であっても、減衰弁(バルブ装置)Vが正常時にフェール状態になるのを防止できる。   According to the electromagnetic valve 4, the upstream pressure can be controlled to the valve opening pressure of the pressure control valve body 40c when energized. In the solenoid valve 4, the on-off valve body 40a of the solenoid valve body 40 opens and closes the upstream side of the pressure control valve body 40c. That is, it is not configured to open and close the downstream side of the pressure control valve body with the opening and closing valve body as in the prior art. Therefore, even when the on-off valve body 40a and the pressure control valve body 40c are integrated and driven by a single solenoid S, both pressure control and passage opening / closing are performed by the electromagnetic valve 4, It is possible to prevent the damping valve (valve device) V from failing when it is normal.

さらに、パッシブ弁5が機能する非通電時には開閉弁弁体40aで第一通路P3が閉じられていて圧力制御弁弁体40cが作動せず、圧力制御弁弁体40cが作動する通電時には第二通路P4が閉じられていてパッシブ弁5が機能しない。このため、開閉弁弁体40aと圧力制御弁弁体40cを一体化してこれらを単一のソレノイドSで駆動し、電磁弁4で圧力制御と通路の開閉の両方をする場合であっても、圧力制御弁弁体40cの開弁圧を考慮してパッシブ弁5を設定する必要がなく、パッシブ弁5の特性を自由に設定できる。   In addition, when the energization is performed when the passive valve 5 is functioning, the first passage P3 is closed by the on-off valve body 40a so that the pressure control valve body 40c is not activated, and when the pressure control valve body 40c is activated, the second passage is activated. Passage P4 is closed and passive valve 5 does not function. Therefore, even when the on-off valve body 40a and the pressure control valve body 40c are integrated and driven by a single solenoid S, both pressure control and passage opening / closing are performed by the electromagnetic valve 4, It is not necessary to set the passive valve 5 in consideration of the valve opening pressure of the pressure control valve body 40c, and the characteristics of the passive valve 5 can be freely set.

また、本実施の形態において、本発明に係るバルブ装置は緩衝器Dの減衰弁Vとして利用されており、シリンダ1内をピストン10が移動する際に生じる液体の流れに抵抗を与える。このため、緩衝器Dは、減衰弁Vの抵抗に起因する減衰力を発揮できる。   In the present embodiment, the valve device according to the present invention is used as the damping valve V of the shock absorber D, and provides resistance to the liquid flow generated when the piston 10 moves in the cylinder 1. For this reason, the shock absorber D can exhibit a damping force due to the resistance of the damping valve V.

そして、電磁弁4の通電時に圧力制御弁弁体40cの開弁圧を大小させると減衰力を大きくしたり小さくしたりできる。このため、前述のように、減衰弁(バルブ装置)Vが正常時にフェール状態になるのを防止すれば、正常時にも関わらず減衰力特性がフェール時の特性になって減衰力が調整されなくなるのを防止できる。   When the solenoid valve 4 is energized, the damping force can be increased or decreased by increasing or decreasing the valve opening pressure of the pressure control valve body 40c. For this reason, as described above, if the damping valve (valve device) V is prevented from failing when it is normal, the damping force characteristic becomes the characteristic at the time of failure regardless of the normal state, and the damping force is not adjusted. Can be prevented.

さらに、フェール時の減衰力特性は、パッシブ弁5の設定により決まる。よって、前述のように、パッシブ弁5の特性を自由に細かく設定できると、フェール時の減衰力特性を自由に細かく設定できる。加えて、前述のように、パッシブ弁弁体50の吸着を抑制すると、フェール時の減衰力の急変を抑制し、緩衝器Dが車両の車体と車軸との間に介装される場合には、車両の乗り心地を良好にできる。   Further, the damping force characteristic at the time of failure is determined by the setting of the passive valve 5. Therefore, as described above, if the characteristic of the passive valve 5 can be set freely and finely, the damping force characteristic at the time of failure can be set freely and finely. In addition, as described above, when the adsorption of the passive valve body 50 is suppressed, a sudden change in the damping force at the time of failure is suppressed, and the shock absorber D is interposed between the vehicle body and the axle. The ride comfort of the vehicle can be improved.

また、本実施の形態の減衰弁(バルブ装置)Vは、内周側に開閉弁弁体40aが摺動自在に挿入される筒状のバルブケース9を備えている。そして、このバルブケース9の軸方向にずらした位置に、第一通路P3における開閉弁弁体40aの開閉部となる第一ポート9aと、第二通路P4における開閉弁弁体40aの開閉部となる第二ポート9bが形成されている。   Further, the damping valve (valve device) V of the present embodiment includes a cylindrical valve case 9 into which the on-off valve body 40a is slidably inserted on the inner peripheral side. Then, at a position shifted in the axial direction of the valve case 9, a first port 9a serving as an opening / closing portion of the opening / closing valve body 40a in the first passage P3, and an opening / closing portion of the opening / closing valve body 40a in the second passage P4, A second port 9b is formed.

さらに、バルブケース9の第一ポート9a側の端部には、圧力制御弁弁体40cが離着座する圧力制御弁弁座9eが設けられている。そして、電磁弁4は、圧力制御弁弁体40cと圧力制御弁弁座9eを離間させる方向へ電磁弁弁体40を附勢するばね41と、ばね41の附勢力とは反対方向の推力を電磁弁弁体40に与えるソレノイドSとを有する。   Further, a pressure control valve valve seat 9e to which the pressure control valve body 40c is attached and detached is provided at the end of the valve case 9 on the first port 9a side. The solenoid valve 4 has a spring 41 that biases the solenoid valve body 40 in a direction to separate the pressure control valve body 40c and the pressure control valve seat 9e, and a thrust in a direction opposite to the biasing force of the spring 41. A solenoid S provided to the solenoid valve body 40.

上記構成によれば、電磁弁4の通電時に開閉弁弁体40aで第一通路P3を開くとともに第二通路P4を閉じ、圧力制御弁弁体40cの開弁圧を制御するのが容易である。さらに、上記構成によれば、電磁弁4の非通電時に開閉弁弁体40aで第一通路P3を閉じるとともに第二通路P4を開くのも容易である。   According to the above configuration, when the solenoid valve 4 is energized, it is easy to control the valve opening pressure of the pressure control valve body 40c by opening the first passage P3 with the on-off valve body 40a and closing the second passage P4. . Furthermore, according to the said structure, it is also easy to open the 2nd channel | path P4 while closing the 1st channel | path P3 with the on-off valve body 40a when the solenoid valve 4 is not energized.

とはいえ、電磁弁4の構成は上記の限りではなく、通電時に第一通路P3を開いて上流側の圧力を制御するとともに第二通路P4を閉じ、非通電時に第一通路P3を閉じるとともに第二通路P4を開くようになっている限り、適宜変更できる。   However, the configuration of the solenoid valve 4 is not limited to the above, and the first passage P3 is opened to control the upstream pressure when energized, the second passage P4 is closed, and the first passage P3 is closed when not energized. As long as the 2nd channel | path P4 is opened, it can change suitably.

また、本実施の形態では、パッシブ弁弁座9fがバルブケース9の第二ポート9b側の端部に設けられている。当該構成によれば、バルブケース9とパッシブ弁弁座9fを一体化できるので、これらを一部品として一体成形すれば、減衰弁(バルブ装置)Vの部品数を減らしてコストを低減できる。   In the present embodiment, the passive valve seat 9 f is provided at the end of the valve case 9 on the second port 9 b side. According to this configuration, since the valve case 9 and the passive valve seat 9f can be integrated, if these are integrally formed as one part, the number of parts of the damping valve (valve device) V can be reduced and the cost can be reduced.

さらに、上記構成によれば、バルブケース9とパッシブ弁5をコンパクトに設置できるので、本実施の形態の減衰弁Vのようにバルブケース9とパッシブ弁5を主弁体3に装着する場合にその主弁体3が嵩張らず、ひいては減衰弁(バルブ装置)Vを小型化できる。とはいえ、パッシブ弁弁座9fをバルブケース9とは別に設けてもよい。そして、このような変更は、電磁弁4の構成によらず可能である。   Furthermore, according to the above configuration, since the valve case 9 and the passive valve 5 can be installed in a compact manner, when the valve case 9 and the passive valve 5 are mounted on the main valve body 3 like the damping valve V of the present embodiment. The main valve body 3 is not bulky, and the damping valve (valve device) V can be downsized. However, the passive valve valve seat 9f may be provided separately from the valve case 9. Such a change is possible regardless of the configuration of the electromagnetic valve 4.

また、本実施の形態の減衰弁(バルブ装置)Vは、伸側室L1と圧側室L2とを連通する主通路P1と、内周側を主通路P1が通る環状の弁座部材2と、この弁座部材2に離着座して主通路P1を通過する液体の流れに抵抗を与える主弁体3とを備える。そして、圧力導入通路P2により、伸側室L1の圧力が減圧されて主弁体3の背面に背圧として導かれるようになっている。   Further, the damping valve (valve device) V of the present embodiment includes a main passage P1 communicating with the expansion side chamber L1 and the pressure side chamber L2, an annular valve seat member 2 through which the main passage P1 passes on the inner peripheral side, And a main valve body 3 that is separated from and seated on the valve seat member 2 and provides resistance to the flow of liquid passing through the main passage P1. Then, the pressure in the extension side chamber L1 is reduced by the pressure introduction passage P2 and guided to the back surface of the main valve body 3 as a back pressure.

さらに、主弁体3は、弁座部材2に離着座する環状の第一弁体部材30と、この第一弁体部材30の反弁座部材側に積層されて第一弁体部材30に離着座する第二弁体部材31とを備え、この第二弁体部材31にバルブケース9とパッシブ弁5が取り付けられている。そして、第一弁体部材30と第二弁体部材31は、伸側室L1の圧力により弁座部材2から離れる方向へ附勢される。その一方、第二弁体部材31は、第一弁体部材30の内周側の圧力により第一弁体部材30から離れる方向へ附勢される。   Further, the main valve body 3 is laminated on the first valve body member 30 by being laminated on the annular valve body member 30 that is separated from the valve seat member 2 and on the counter valve seat member side of the first valve body member 30. The second valve body member 31 that is separated and seated is provided, and the valve case 9 and the passive valve 5 are attached to the second valve body member 31. And the 1st valve body member 30 and the 2nd valve body member 31 are urged | biased in the direction which leaves | separates from the valve seat member 2 with the pressure of the expansion side chamber L1. On the other hand, the second valve body member 31 is biased in a direction away from the first valve body member 30 by the pressure on the inner peripheral side of the first valve body member 30.

上記構成によれば、電磁弁4の通電時において、緩衝器Dが伸長して伸側室L1の圧力が高まる場合には、主弁体3の背圧を圧力制御弁弁体40cの開弁圧に制御でき、その背圧とソレノイドSの推力を制御することで、主通路P1を伸側室L1から圧側室L2へ向かう液体の流れに付与される第一弁体部材30による抵抗を変更できる。   According to the above configuration, when the electromagnetic valve 4 is energized, if the shock absorber D extends and the pressure in the expansion chamber L1 increases, the back pressure of the main valve body 3 is reduced to the valve opening pressure of the pressure control valve body 40c. By controlling the back pressure and the thrust force of the solenoid S, it is possible to change the resistance by the first valve body member 30 applied to the liquid flow from the expansion side chamber L1 to the pressure side chamber L2 through the main passage P1.

また、電磁弁4の通電時において、緩衝器Dが収縮して圧側室L2の圧力が高まる場合には、ソレノイドSの推力を制御することで主通路P1を圧側室L2から伸側室L1へ向かう液体の流れに付与される第二弁体部材31による抵抗を変更できる。   Further, when the electromagnetic valve 4 is energized, when the shock absorber D contracts and the pressure in the compression side chamber L2 increases, the thrust of the solenoid S is controlled to move the main passage P1 from the compression side chamber L2 to the expansion side chamber L1. The resistance by the second valve body member 31 applied to the liquid flow can be changed.

その一方、電磁弁4の非通電時において、緩衝器Dが伸長して伸側室L1の圧力が高まる場合には、主弁体3の背圧がパッシブ弁5の設定により決まるので、パッシブ弁5の設定により第一弁体部材30による抵抗を決められる。また、電磁弁4の非通電時において、緩衝器Dが収縮して圧側室L2の圧力が高まる場合には、ばね41の設定により第二弁体部材31による抵抗を決められる。   On the other hand, when the shock absorber D expands and the pressure in the expansion side chamber L1 increases when the solenoid valve 4 is not energized, the back pressure of the main valve body 3 is determined by the setting of the passive valve 5, so that the passive valve 5 The resistance by the first valve body member 30 can be determined by the setting. Further, when the shock absorber D contracts and the pressure in the pressure side chamber L2 increases when the solenoid valve 4 is not energized, the resistance of the second valve body member 31 can be determined by the setting of the spring 41.

なお、本実施の形態では、主通路P1により連通される一方室と他方室が、それぞれ緩衝器Dの伸側室L1と圧側室L2である。しかし、主通路P1により連通する部屋は、必ずしも伸側室L1と圧側室L2に限られない。例えば、前述のように、緩衝器がリザーバを備える場合には、主通路P1が伸側室又は圧側室とリザーバとを連通する通路であってもよい。   In the present embodiment, the one chamber and the other chamber communicated by the main passage P1 are the extension side chamber L1 and the pressure side chamber L2 of the shock absorber D, respectively. However, the room communicated by the main passage P1 is not necessarily limited to the extension side chamber L1 and the compression side chamber L2. For example, as described above, when the shock absorber includes a reservoir, the main passage P1 may be a passage communicating the extension side chamber or the pressure side chamber and the reservoir.

さらに、本実施の形態では、伸側室L1の圧力が圧力導入通路P2を通じて背圧室L4へ導かれるようになっていて、正常時に緩衝器Dが伸長する場合に、主弁体3の背圧が圧力制御弁弁体40cの開弁圧に制御されるようになっている。しかし、緩衝器Dの伸長時と収縮時の両方で主通路P1における主弁体3の上流側の圧力が背圧室L4へ導かれるようにしてもよい。   Furthermore, in the present embodiment, when the pressure in the expansion side chamber L1 is guided to the back pressure chamber L4 through the pressure introduction passage P2, and the shock absorber D expands in a normal state, the back pressure of the main valve body 3 is increased. Is controlled by the valve opening pressure of the pressure control valve body 40c. However, the pressure on the upstream side of the main valve body 3 in the main passage P1 may be guided to the back pressure chamber L4 both when the shock absorber D is extended and contracted.

また、本発明に係るバルブ装置は、主通路P1及び主弁体3を必ずしも備えていなくてもよい。さらに、本実施の形態では、主通路P1における主弁体3の圧側室L2側に伸側バルブ6と圧側バルブ7を並列に接続しているが、これらを廃してもよい。加えて、本発明に係るバルブ装置の用途は、緩衝器Dの減衰弁に限られず、適宜変更できる。そして、これらの変更は、電磁弁4の構成、及びパッシブ弁5の構成によらず可能である。   The valve device according to the present invention does not necessarily include the main passage P1 and the main valve body 3. Further, in the present embodiment, the expansion side valve 6 and the pressure side valve 7 are connected in parallel to the pressure side chamber L2 side of the main valve body 3 in the main passage P1, but these may be eliminated. In addition, the use of the valve device according to the present invention is not limited to the damping valve of the shock absorber D, and can be changed as appropriate. These changes can be made regardless of the configuration of the electromagnetic valve 4 and the configuration of the passive valve 5.

以上、本発明の好ましい実施の形態を詳細に説明したが、特許請求の範囲から逸脱しない限り、改造、変形、及び変更が可能である。   The preferred embodiments of the present invention have been described above in detail, but modifications, changes and modifications can be made without departing from the scope of the claims.

D・・・緩衝器、L1・・・伸側室(一方室)、L2・・・圧側室(他方室)、P1・・・主通路、P2・・・圧力導入通路、P3・・・第一通路、P4・・・第二通路、S・・・ソレノイド、V・・・減衰弁(バルブ装置)、1・・・シリンダ、2・・・弁座部材、3・・・主弁体、4・・・電磁弁、5・・・パッシブ弁、9・・・バルブケース、9a・・・第一ポート、9b・・・第二ポート、9e・・・圧力制御弁弁座、9f・・・パッシブ弁弁座、10・・・ピストン、30・・・第一弁体部材、31・・・第二弁体部材、40・・・電磁弁弁体、40a・・・開閉弁弁体、40c・・・圧力制御弁弁体、41・・・ばね、50・・・パッシブ弁弁体、51・・・板ばね
D ... shock absorber, L1 ... extension side chamber (one chamber), L2 ... pressure side chamber (other chamber), P1 ... main passage, P2 ... pressure introduction passage, P3 ... first Passage, P4 ... second passage, S ... solenoid, V ... damping valve (valve device), 1 ... cylinder, 2 ... valve seat member, 3 ... main valve body, 4 ... Solenoid valve, 5 ... Passive valve, 9 ... Valve case, 9a ... First port, 9b ... Second port, 9e ... Pressure control valve valve seat, 9f ... Passive valve seat, 10 ... piston, 30 ... first valve body member, 31 ... second valve body member, 40 ... solenoid valve body, 40a ... open / close valve body, 40c ... Pressure control valve disc, 41 ... Spring, 50 ... Passive valve disc, 51 ... Leaf spring

Claims (6)

圧力導入通路と、
前記圧力導入通路の下流に接続される第一通路及び第二通路と、
通電時に前記第一通路を開いて上流側の圧力を制御するとともに前記第二通路を閉じ、非通電時に前記第一通路を閉じるとともに前記第二通路を開く電磁弁と、
前記第二通路の前記電磁弁よりも下流に設けられたパッシブ弁とを備え、
前記パッシブ弁は、環状のパッシブ弁弁座に離着座して前記第二通路を開閉する球状のパッシブ弁弁体と、前記パッシブ弁弁体を閉じ方向へ附勢する板ばねとを有する
ことを特徴とするバルブ装置。
A pressure introduction passage;
A first passage and a second passage connected downstream of the pressure introduction passage;
An electromagnetic valve that opens the first passage when energized and controls the pressure on the upstream side and closes the second passage; closes the first passage and closes the second passage when not energized; and
A passive valve provided downstream of the electromagnetic valve of the second passage,
The passive valve includes a spherical passive valve body that opens and closes the second passage by being attached to and detached from an annular passive valve valve seat, and a leaf spring that biases the passive valve body in a closing direction. A characteristic valve device.
前記電磁弁は、前記第一通路と前記第二通路を開閉する開閉弁弁体と、前記第一通路における前記開閉弁弁体よりも下流側を開閉する圧力制御弁弁体とを含む電磁弁弁体を有し、
前記電磁弁の通電時には、前記開閉弁弁体が前記第一通路を開くとともに前記第二通路を閉じ、前記圧力制御弁弁体の開弁圧が制御される
ことを特徴とする請求項1に記載のバルブ装置。
The solenoid valve includes an on-off valve valve body that opens and closes the first passage and the second passage, and a pressure control valve body that opens and closes a downstream side of the on-off valve body in the first passage. Having a disc,
The open / close valve body opens the first passage and closes the second passage when the solenoid valve is energized, and the valve opening pressure of the pressure control valve body is controlled. The valve device as described.
内周側に前記開閉弁弁体が摺動自在に挿入される筒状のバルブケースを備え、
前記バルブケースの軸方向にずらした位置に、前記第一通路における前記開閉弁弁体の開閉部となる第一ポートと、前記第二通路における前記開閉弁弁体の開閉部となる第二ポートが形成されており、
前記バルブケースの第一ポート側の端部に、前記圧力制御弁弁体が離着座する圧力制御弁弁座が設けられており、
前記電磁弁は、前記圧力制御弁弁体と前記圧力制御弁弁座を離間させる方向へ前記電磁弁弁体を附勢するばねと、前記ばねの附勢力とは反対方向の推力を前記電磁弁弁体に与えるソレノイドとを有する
ことを特徴とする請求項2に記載のバルブ装置。
A cylindrical valve case in which the on-off valve body is slidably inserted on the inner peripheral side,
A first port serving as an opening / closing portion of the on-off valve valve body in the first passage and a second port serving as an opening / closing portion of the on-off valve valve body in the second passage at positions shifted in the axial direction of the valve case. Is formed,
A pressure control valve valve seat on which the pressure control valve body is detached is provided at an end portion on the first port side of the valve case,
The solenoid valve includes a spring that biases the solenoid valve body in a direction that separates the pressure control valve body and the pressure control valve valve seat, and a thrust in a direction opposite to the biasing force of the spring. The valve device according to claim 2, further comprising a solenoid provided to the valve body.
前記パッシブ弁弁座は、前記バルブケースの第二ポート側の端部に設けられている
ことを特徴とする請求項3に記載のバルブ装置。
The valve device according to claim 3, wherein the passive valve seat is provided at an end portion of the valve case on a second port side.
一方室と他方室とを連通する主通路と、
内周側を前記主通路が通る環状の弁座部材と、
前記弁座部材に離着座して前記主通路を通過する液体の流れに抵抗を与える主弁体とを備え、
前記圧力導入通路は、前記一方室の圧力を減圧して前記主弁体の背面に背圧として導くものであり、
前記主弁体は、前記弁座部材に離着座する環状の第一弁体部材と、前記第一弁体部材の反弁座部材側に積層されて前記第一弁体部材に離着座する第二弁体部材とを有し、
前記バルブケースと前記パッシブ弁は、前記第二弁体部材に取り付けられており、
前記第一弁体部材と前記第二弁体部材は、前記一方室の圧力により前記弁座部材から離れる方向へ附勢され、
前記第二弁体部材は、前記第一弁体部材の内周側の圧力により前記第一弁体部材から離れる方向へ附勢される
ことを特徴とする請求項3又は4に記載のバルブ装置。
A main passage communicating between the one chamber and the other chamber;
An annular valve seat member through which the main passage passes on the inner peripheral side;
A main valve body that is separated from and seated on the valve seat member and gives resistance to a flow of liquid passing through the main passage,
The pressure introducing passage is for reducing the pressure in the one chamber and introducing it as a back pressure to the back surface of the main valve body,
The main valve body is an annular first valve body member that is attached to and detached from the valve seat member; A dual valve body member,
The valve case and the passive valve are attached to the second valve body member,
The first valve body member and the second valve body member are urged in a direction away from the valve seat member by the pressure of the one chamber,
5. The valve device according to claim 3, wherein the second valve body member is biased in a direction away from the first valve body member by a pressure on an inner peripheral side of the first valve body member. .
シリンダと、
前記シリンダ内に摺動自在に挿入されるピストンと、
請求項1から5の何れか一項に記載のバルブ装置とを備え、
前記バルブ装置は、前記シリンダ内を前記ピストンが移動する際に生じる液体の流れに抵抗を与える
ことを特徴とする緩衝器。
A cylinder,
A piston slidably inserted into the cylinder;
A valve device according to any one of claims 1 to 5,
The said valve | bulb apparatus gives resistance to the flow of the liquid produced when the said piston moves in the said cylinder. The shock absorber characterized by the above-mentioned.
JP2018045348A 2018-03-13 2018-03-13 Valve device and shock absorber Pending JP2019158001A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2018045348A JP2019158001A (en) 2018-03-13 2018-03-13 Valve device and shock absorber
US16/979,426 US11566680B2 (en) 2018-03-13 2019-03-06 Valve device and shock absorber
EP19767605.9A EP3767126A4 (en) 2018-03-13 2019-03-06 Valve device and buffer
CN201980017236.7A CN111819370B (en) 2018-03-13 2019-03-06 Valve device and damper
PCT/JP2019/008813 WO2019176678A1 (en) 2018-03-13 2019-03-06 Valve device and buffer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018045348A JP2019158001A (en) 2018-03-13 2018-03-13 Valve device and shock absorber

Publications (1)

Publication Number Publication Date
JP2019158001A true JP2019158001A (en) 2019-09-19

Family

ID=67993322

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018045348A Pending JP2019158001A (en) 2018-03-13 2018-03-13 Valve device and shock absorber

Country Status (1)

Country Link
JP (1) JP2019158001A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019158000A (en) * 2018-03-13 2019-09-19 Kyb株式会社 Valve device and shock absorber

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019158000A (en) * 2018-03-13 2019-09-19 Kyb株式会社 Valve device and shock absorber
JP6997655B2 (en) 2018-03-13 2022-01-17 Kyb株式会社 Valve device and shock absorber

Similar Documents

Publication Publication Date Title
EP3767649B1 (en) Solenoid, electromagnetic valve, and buffer
EP3225875B1 (en) Damping valve and shock absorber
JP7377036B2 (en) Solenoids, solenoid valves, and shock absorbers
WO2017047499A1 (en) Damping valve and shock absorber
WO2016084797A1 (en) Attenuation valve and shock absorber
JP2018013208A (en) Attenuation force adjustable buffer
JP2023157937A (en) Solenoid, solenoid valve, and shock absorber
WO2019176678A1 (en) Valve device and buffer
WO2021049396A1 (en) Solenoid, solenoid valve, and shock absorber
JP6018517B2 (en) Solenoid valve
JP2019158001A (en) Valve device and shock absorber
WO2020179682A1 (en) Shock absorber
JP2019158000A (en) Valve device and shock absorber
JP6059549B2 (en) Solenoid valve
JP6059548B2 (en) Solenoid valve
JP2018004026A (en) Damping valve and buffer
WO2021049394A1 (en) Solenoid, solenoid valve, and shock absorber
JP7381243B2 (en) Solenoids, solenoid valves, and shock absorbers
JP6262977B2 (en) Hydraulic buffer
JP6514492B2 (en) Damping valve and shock absorber
JP2020143677A (en) Spool valve and damper
JP2018004025A (en) Attenuation valve and shock absorber