JP2019142017A - Additive manufacturing apparatus - Google Patents
Additive manufacturing apparatus Download PDFInfo
- Publication number
- JP2019142017A JP2019142017A JP2018025901A JP2018025901A JP2019142017A JP 2019142017 A JP2019142017 A JP 2019142017A JP 2018025901 A JP2018025901 A JP 2018025901A JP 2018025901 A JP2018025901 A JP 2018025901A JP 2019142017 A JP2019142017 A JP 2019142017A
- Authority
- JP
- Japan
- Prior art keywords
- material powder
- manufacturing apparatus
- blade
- additive manufacturing
- unit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 119
- 239000000654 additive Substances 0.000 title claims abstract description 62
- 230000000996 additive effect Effects 0.000 title claims abstract description 62
- 239000000463 material Substances 0.000 claims abstract description 271
- 239000000843 powder Substances 0.000 claims abstract description 160
- 230000006835 compression Effects 0.000 claims abstract description 63
- 238000007906 compression Methods 0.000 claims abstract description 63
- 239000002344 surface layer Substances 0.000 claims abstract description 63
- 238000003892 spreading Methods 0.000 claims abstract description 14
- 230000007480 spreading Effects 0.000 claims abstract description 14
- 230000004927 fusion Effects 0.000 claims abstract description 6
- 230000007246 mechanism Effects 0.000 claims description 16
- 238000003825 pressing Methods 0.000 claims description 13
- 238000000034 method Methods 0.000 claims description 6
- 230000001154 acute effect Effects 0.000 claims description 2
- 239000010410 layer Substances 0.000 description 15
- 230000004048 modification Effects 0.000 description 8
- 238000012986 modification Methods 0.000 description 8
- 239000002245 particle Substances 0.000 description 6
- 230000005540 biological transmission Effects 0.000 description 5
- 230000006837 decompression Effects 0.000 description 5
- 238000010894 electron beam technology Methods 0.000 description 5
- 238000009826 distribution Methods 0.000 description 4
- 239000007769 metal material Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 238000013459 approach Methods 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 244000126211 Hericium coralloides Species 0.000 description 1
- 229910000990 Ni alloy Inorganic materials 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 229910001069 Ti alloy Inorganic materials 0.000 description 1
- WAIPAZQMEIHHTJ-UHFFFAOYSA-N [Cr].[Co] Chemical class [Cr].[Co] WAIPAZQMEIHHTJ-UHFFFAOYSA-N 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000003252 repetitive effect Effects 0.000 description 1
- 239000013077 target material Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/10—Sintering only
- B22F3/105—Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/12—Both compacting and sintering
- B22F3/16—Both compacting and sintering in successive or repeated steps
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B28—WORKING CEMENT, CLAY, OR STONE
- B28B—SHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
- B28B1/00—Producing shaped prefabricated articles from the material
- B28B1/30—Producing shaped prefabricated articles from the material by applying the material on to a core or other moulding surface to form a layer thereon
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/10—Processes of additive manufacturing
- B29C64/141—Processes of additive manufacturing using only solid materials
- B29C64/153—Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/10—Processes of additive manufacturing
- B29C64/188—Processes of additive manufacturing involving additional operations performed on the added layers, e.g. smoothing, grinding or thickness control
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/20—Apparatus for additive manufacturing; Details thereof or accessories therefor
- B29C64/205—Means for applying layers
- B29C64/214—Doctor blades
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/20—Apparatus for additive manufacturing; Details thereof or accessories therefor
- B29C64/205—Means for applying layers
- B29C64/218—Rollers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y30/00—Apparatus for additive manufacturing; Details thereof or accessories therefor
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Ceramic Engineering (AREA)
- Powder Metallurgy (AREA)
- Producing Shaped Articles From Materials (AREA)
Abstract
Description
本発明は、付加製造装置に関する。 The present invention relates to an additive manufacturing apparatus.
従来から、付加製造技術が知られている。付加製造は、材料を付着することによって物体を三次元形状の数値表現から作成するプロセスであり、除去的な製造とは対照をなすものである。付加製造は、「3Dプリンター」や「積層造形」とも呼ばれ、多くの場合、複数の層を積層させることによって実現される。付加製造を行う装置の一例として、リコータにより材料粉末を運び、その薄層を形成し、材料粉末の薄層にエネルギービームを選択的に照射して3次元造形物を作製する粉末積層造形装置に関する発明が知られている(下記特許文献1を参照)。 Conventionally, an additive manufacturing technique is known. Additive manufacturing is the process of creating an object from a numerical representation of a three-dimensional shape by depositing material, in contrast to repetitive manufacturing. Additive manufacturing is also called “3D printer” or “laminated modeling”, and is often realized by laminating a plurality of layers. As an example of an apparatus for performing addition manufacturing, the present invention relates to a powder additive manufacturing apparatus for carrying a material powder by a recoater, forming a thin layer thereof, and selectively irradiating a thin layer of the material powder with an energy beam to produce a three-dimensional structure. The invention is known (see Patent Document 1 below).
特許文献1に記載された粉末積層造形装置は、昇降台と、第1運搬部材および第2運搬部材と、押圧ローラと、加熱用エネルギービーム出射手段とを有している(同文献、請求項2等を参照)。第1運搬部材および第2運搬部材は、材料粉末を均しながら昇降台上に運ぶ。押圧ローラは、第1運搬部材と第2運搬部材の間に配置され、第1運搬部材および第2運搬部材のそれぞれの下面よりも低い位置に下面があり、均した材料粉末を押圧して材料粉末の薄層を形成する。加熱用エネルギービーム出射手段は、材料粉末の薄層を加熱する。 The powder additive manufacturing apparatus described in Patent Document 1 includes a lifting platform, a first transport member and a second transport member, a pressing roller, and an energy beam emitting means for heating (the same document, claim). (See 2 etc.). The first transport member and the second transport member transport the material powder onto the lifting platform while leveling the material powder. The pressing roller is disposed between the first conveying member and the second conveying member, has a lower surface at a position lower than the lower surfaces of the first conveying member and the second conveying member, and presses the uniform material powder to form the material. A thin layer of powder is formed. The energy beam emitting means for heating heats a thin layer of material powder.
上記従来の粉末積層造形装置は、第1運搬部材または第2運搬部材で表面を均しながら材料粉末を昇降台上に運び、次いで、均した材料粉末を押圧ローラで押圧して材料粉末の薄層を形成するため、高い分布密度の材料粉末の薄層を得ることができる。このため、その薄層を加熱して、溶融し、固化したときに薄層の体積の収縮を抑制することができ、これによって、固化層の形状変化を抑制することができる(同文献、第0010段落等を参照)。 The conventional powder additive manufacturing apparatus conveys the material powder onto the lifting platform while leveling the surface with the first conveying member or the second conveying member, and then presses the leveled material powder with a pressing roller to thin the material powder. Since a layer is formed, a thin layer of material powder with a high distribution density can be obtained. For this reason, when the thin layer is heated, melted, and solidified, the shrinkage of the volume of the thin layer can be suppressed, and thereby the shape change of the solidified layer can be suppressed (the same document, the first (See paragraph 0010 etc.).
上記従来の粉末積層造形装置において、第1運搬部材または第2運搬部材によって昇降台上に運ばれて均された材料粉末の薄層は、押圧ローラによって押圧されることで密度分布が向上する。しかし、押圧ローラによって押圧された材料粉末の薄層は、厚さが不均一になるおそれがある。材料粉末の薄層の厚さのばらつきは、付加製造によって製造される製品の品質を低下させるおそれがある。 In the above-described conventional powder additive manufacturing apparatus, the thin layer of the material powder that has been transported and leveled by the first transport member or the second transport member is pressed by the pressing roller to improve the density distribution. However, the thin layer of the material powder pressed by the pressing roller may have a non-uniform thickness. Variations in the thickness of the thin layer of material powder may reduce the quality of the product produced by additive manufacturing.
本開示は、材料粉末を高密度かつ均一な厚さに敷き詰めて製品の品質を向上させることが可能な付加製造装置を提供する。 The present disclosure provides an additive manufacturing apparatus capable of improving the quality of a product by spreading a material powder with a high density and a uniform thickness.
本開示の一態様は、粉末床溶融結合方式の付加製造装置であって、材料粉末を均しながら敷き詰める材料敷詰部と、前記材料敷詰部によって敷き詰められた前記材料粉末を圧縮する材料圧縮部と、前記材料圧縮部によって圧縮された前記材料粉末の表層部を削り取る表層除去部と、を備えることを特徴とする付加製造装置である。 One aspect of the present disclosure is an additive manufacturing apparatus of a powder bed melt-bonding method, in which a material spreader that spreads material powder while leveling the material powder, and material compression that compresses the material powder spread by the material spreader And a surface layer removing unit that scrapes off a surface layer portion of the material powder compressed by the material compression unit.
上記一態様によれば、材料粉末を高密度かつ均一な厚さに敷き詰めて製品の品質を向上させることが可能な付加製造装置を提供することができる。 According to the above aspect, it is possible to provide an additional manufacturing apparatus capable of improving the quality of a product by spreading the material powder with a high density and a uniform thickness.
以下、図面を参照して本開示に係る付加製造装置の一実施形態を説明する。 Hereinafter, an embodiment of an additive manufacturing apparatus according to the present disclosure will be described with reference to the drawings.
図1は、本開示の一実施形態に係る付加製造装置1の概略構成を示す模式的な断面図である。本実施形態の付加製造装置1は、たとえば、レーザや電子ビームなどの高エネルギービームBにより材料粉末Pを溶融結合させて造形物Mを製造する粉末床溶融結合方式の付加製造装置である。 FIG. 1 is a schematic cross-sectional view illustrating a schematic configuration of an additive manufacturing apparatus 1 according to an embodiment of the present disclosure. The additive manufacturing apparatus 1 of the present embodiment is an additive manufacturing apparatus of a powder bed fusion bonding system that manufactures a shaped article M by melting and bonding material powder P with a high energy beam B such as a laser or an electron beam.
詳細については後述するが、本実施形態の粉末床溶融結合方式の付加製造装置1は、材料粉末Pを均しながら敷き詰める材料敷詰部71と、この材料敷詰部71によって敷き詰められた材料粉末Pを圧縮する材料圧縮部72と、この材料圧縮部72によって圧縮された材料粉末Pの表層部を削り取る表層除去部73と、を備えることを特徴とする(図2および図3を参照)。以下、本実施形態の付加製造装置1の各部の構成について詳細に説明する。 Although details will be described later, the powder bed fusion bonding type additive manufacturing apparatus 1 according to the present embodiment includes a material spreader 71 that spreads the material powder P while leveling the material powder, and a material powder spread by the material spreader 71. A material compressing unit 72 that compresses P, and a surface layer removing unit 73 that scrapes off the surface layer part of the material powder P compressed by the material compressing unit 72 (see FIGS. 2 and 3). Hereinafter, the structure of each part of the additional manufacturing apparatus 1 of this embodiment is demonstrated in detail.
付加製造装置1は、たとえば、チャンバー2と、減圧部3と、材料供給部4と、付加製造部5と、回収部6と、リコータ7と、ビーム源8と、を備えている。 The additional manufacturing apparatus 1 includes, for example, a chamber 2, a decompression unit 3, a material supply unit 4, an additional manufacturing unit 5, a recovery unit 6, a recoater 7, and a beam source 8.
チャンバー2は、たとえば、ビーム源8および減圧部3を除く付加製造装置1の各部を収容している。チャンバー2は、たとえば、保護ガラス21がはめ込まれた透過窓22を有している。透過窓22は、チャンバー2の外部に配置されたビーム源8から照射される高エネルギービームBを透過させ、チャンバー2の内部の付加製造部5のステージ51に載置された材料粉末Pに到達させる。 The chamber 2 accommodates each part of the additive manufacturing apparatus 1 excluding the beam source 8 and the decompression part 3, for example. The chamber 2 has, for example, a transmission window 22 in which a protective glass 21 is fitted. The transmission window 22 transmits the high energy beam B irradiated from the beam source 8 arranged outside the chamber 2 and reaches the material powder P placed on the stage 51 of the additional manufacturing unit 5 inside the chamber 2. Let
減圧部3は、たとえば、真空ポンプによって構成され、チャンバー2に設けられた真空引き用の配管23に接続される。減圧部3は、たとえば、真空引き用の配管23を介して、チャンバー2内の空気を排出することで、チャンバー2の内圧を大気圧よりも減圧された真空圧にして、チャンバー2内を真空状態にする。 The decompression unit 3 is constituted by a vacuum pump, for example, and is connected to a vacuuming pipe 23 provided in the chamber 2. The decompression unit 3 evacuates the inside of the chamber 2 by discharging the air in the chamber 2 through, for example, the vacuuming pipe 23, thereby setting the internal pressure of the chamber 2 to a vacuum pressure reduced from the atmospheric pressure. Put it in a state.
材料供給部4は、たとえば、側壁と底壁とによって囲まれた凹状の部分である。材料供給部4は、材料粉末Pを供給するためのステージ41を有している。材料供給部4の底壁は、材料供給用のステージ41によって構成されている。材料供給部4は、上方が開放されて側壁の上端に開口部を有し、材料供給用のステージ41上に材料粉末Pが載置される。材料供給用のステージ41は、たとえば、適宜の昇降機構によって、所定のピッチで昇降可能に設けられている。 The material supply unit 4 is, for example, a concave part surrounded by a side wall and a bottom wall. The material supply unit 4 has a stage 41 for supplying the material powder P. The bottom wall of the material supply unit 4 is configured by a material supply stage 41. The material supply unit 4 is open at the top and has an opening at the upper end of the side wall, and the material powder P is placed on the material supply stage 41. The material supply stage 41 is provided so as to be movable up and down at a predetermined pitch by an appropriate lifting mechanism, for example.
造形物Mの付加製造に用いられる材料粉末Pとしては、特に限定されないが、たとえば、銅、チタン合金、ニッケル合金、アルミニウム合金、コバルトクロム合金、ステンレス鋼などの金属材料の粉末、ポリアミドなどの樹脂材料の粉末、セラミックスの粉末などを用いることができる。本実施形態の付加製造装置1は、材料粉末Pとして、たとえば、平均粒径が約30μm程度で、粒径の範囲が約20μmから約40μmの金属材料の粉末を使用する。 Although it does not specifically limit as material powder P used for addition manufacture of the molded article M, For example, powder of metal materials, such as copper, a titanium alloy, a nickel alloy, an aluminum alloy, a cobalt chromium alloy, stainless steel, resin, such as polyamide Material powder, ceramic powder, or the like can be used. The additive manufacturing apparatus 1 of the present embodiment uses, as the material powder P, for example, a metal material powder having an average particle size of about 30 μm and a particle size range of about 20 μm to about 40 μm.
付加製造部5は、たとえば、前述の材料供給部4と同様に、側壁と底壁とによって囲まれた凹状の部分である。付加製造部5は、付加製造用のステージ51を有している。付加製造部5の底壁は、付加製造用のステージ51によって構成されている。付加製造部5は、材料供給部4と同様に、上方が開放されて側壁の上端に開口部を有し、付加製造用のステージ51上に、材料供給部4から供給される材料粉末Pと、付加製造によって製造される造形物Mが載置される。付加製造部5の開口部と材料供給部4の開口部は、たとえば、鉛直方向の高さがおおむね等しく、おおむね水平方向に並んでいる。付加製造用のステージ51は、前述の材料供給用のステージ41と同様に、たとえば、適宜の昇降機構によって、所定のピッチで昇降可能に設けられている。 The additional manufacturing unit 5 is, for example, a concave part surrounded by a side wall and a bottom wall, like the material supply unit 4 described above. The additional manufacturing unit 5 includes a stage 51 for additional manufacturing. The bottom wall of the additional manufacturing section 5 is configured by a stage 51 for additional manufacturing. Like the material supply unit 4, the additional manufacturing unit 5 has an opening at the upper end of the side wall and an opening at the upper end of the side wall. On the stage 51 for additional manufacturing, the material powder P supplied from the material supply unit 4 and The modeled object M manufactured by addition manufacture is mounted. The opening of the additional manufacturing unit 5 and the opening of the material supply unit 4 are, for example, substantially equal in height in the vertical direction and are generally aligned in the horizontal direction. The stage 51 for additional manufacture is provided so as to be able to be raised and lowered at a predetermined pitch by, for example, an appropriate lifting mechanism, similarly to the stage 41 for material supply described above.
回収部6は、たとえば、側壁と底壁によって囲まれた凹状の部分である。図示の例において、回収部6の底壁は、側壁の下端部に固定されているが、材料供給部4および付加製造部5と同様に、昇降可能なステージによって構成されていてもよい。回収部6は、上部が開放されて側壁の上端に開口部を有している。回収部6の開口部と、付加製造部5の開口部は、鉛直方向の高さがおおむね等しく、おおむね水平方向に並んでいる。回収部6は、たとえば、リコータ7によって材料供給部4から付加製造部5に供給された余分な材料粉末Pを収容して回収する。 The collection part 6 is a concave part surrounded by a side wall and a bottom wall, for example. In the illustrated example, the bottom wall of the recovery unit 6 is fixed to the lower end of the side wall, but may be configured by a stage that can be raised and lowered, like the material supply unit 4 and the additional manufacturing unit 5. The collection unit 6 is open at the top and has an opening at the upper end of the side wall. The opening of the collection unit 6 and the opening of the additional manufacturing unit 5 are approximately equal in height in the vertical direction and are generally aligned in the horizontal direction. The collection unit 6 accommodates and collects excess material powder P supplied from the material supply unit 4 to the additional production unit 5 by the recoater 7, for example.
ビーム源8は、たとえば、真空中で数kW程度の出力の電子ビームを発生させる電子ビーム源や、数百Wから数kW程度の出力のレーザを発生させるレーザ光源を用いることができる。本実施形態の付加製造装置1のビーム源8は、たとえば、波長が1080nm、出力が500Wのシングルモードファイバーレーザ、すなわちエネルギー強度がガウス分布のファイバーレーザを発生させるレーザ光源である。なお、ビーム源8が電子ビーム源である場合、ビーム源8は、チャンバー2内に配置されていてもよい。 As the beam source 8, for example, an electron beam source that generates an electron beam with an output of about several kW in a vacuum or a laser light source that generates a laser with an output of about several hundred watts to several kW can be used. The beam source 8 of the additive manufacturing apparatus 1 of the present embodiment is a laser light source that generates, for example, a single mode fiber laser having a wavelength of 1080 nm and an output of 500 W, that is, a fiber laser having a Gaussian energy intensity distribution. When the beam source 8 is an electron beam source, the beam source 8 may be arranged in the chamber 2.
図2は、本実施形態の付加製造装置1のリコータ7の一例を示す斜視図である。リコータ7は、たとえば、材料敷詰部71と、材料圧縮部72と、表層除去部73と、を備えている。材料敷詰部71は、材料供給部4から供給される材料粉末Pを付加製造部5のステージ51上に運んで均しながら敷き詰める。材料圧縮部72は、材料敷詰部71によって付加製造部5のステージ51上に敷き詰められた材料粉末Pを圧縮する。表層除去部73は、付加製造部5のステージ51上で材料圧縮部72によって圧縮された材料粉末Pの表層部を削り取って回収部6まで運ぶ。 FIG. 2 is a perspective view showing an example of the recoater 7 of the additive manufacturing apparatus 1 of the present embodiment. The recoater 7 includes, for example, a material spreader 71, a material compressor 72, and a surface layer remover 73. The material spreading unit 71 carries the material powder P supplied from the material supply unit 4 onto the stage 51 of the additional manufacturing unit 5 and spreads it while leveling. The material compression unit 72 compresses the material powder P spread on the stage 51 of the additional manufacturing unit 5 by the material spreading unit 71. The surface layer removing unit 73 scrapes the surface layer portion of the material powder P compressed by the material compressing unit 72 on the stage 51 of the additional manufacturing unit 5 and carries it to the collecting unit 6.
本実施形態の付加製造装置1において、材料敷詰部71は、たとえば、板状の敷詰ブレード71Bによって構成されている。材料圧縮部72は、たとえば、円柱状または円筒状の圧縮ローラ72Rによって構成されている。表層除去部73は、たとえば、板状の除去ブレード73Bによって構成されている。敷詰ブレード71B、圧縮ローラ72Rおよび除去ブレード73Bは、たとえば、進行方向Dにおおむね直交する水平方向に延在している。 In the additive manufacturing apparatus 1 of the present embodiment, the material spreader 71 is constituted by, for example, a plate-shaped spreader blade 71B. The material compression part 72 is comprised by the columnar or cylindrical compression roller 72R, for example. The surface layer removal part 73 is comprised by the plate-shaped removal blade 73B, for example. The spreading blade 71B, the compression roller 72R, and the removal blade 73B extend, for example, in a horizontal direction generally orthogonal to the traveling direction D.
敷詰ブレード71B、圧縮ローラ72Rおよび除去ブレード73Bは、たとえば、ステンレス鋼などの金属材料またはセラミック材料などの硬質の材料によって製作されている。なお、敷詰ブレード71B、圧縮ローラ72Rおよび除去ブレード73Bの材料は、特に限定されず、たとえば樹脂材料によって製作されていてもよい。また、敷詰ブレード71B、圧縮ローラ72Rおよび除去ブレード73Bは、同一の材料によって製作されていてもよいし、異なる材料によって製作されていてもよい。 The laying blade 71B, the compression roller 72R, and the removal blade 73B are made of, for example, a metal material such as stainless steel or a hard material such as a ceramic material. In addition, the material of the spreading blade 71B, the compression roller 72R, and the removal blade 73B is not particularly limited, and may be made of, for example, a resin material. Further, the laying blade 71B, the compression roller 72R, and the removal blade 73B may be made of the same material, or may be made of different materials.
本実施形態の付加製造装置1において、リコータ7は、たとえば、材料敷詰部71、材料圧縮部72および表層除去部73を進行方向Dに並べて支持する支持部74と、この支持部74を進行方向Dに移動させる移動機構75(図1参照)と、を有している。支持部74は、たとえば、材料敷詰部71、材料圧縮部72および表層除去部73を支持するフレーム部76と、このフレーム部76の一端に設けられてフレーム部76を支持するとともに、材料圧縮部72を駆動させる駆動部77とを備えている。 In the additive manufacturing apparatus 1 of the present embodiment, the recoater 7 advances, for example, a support part 74 that supports the material spreader 71, the material compression part 72, and the surface layer removal part 73 side by side in the travel direction D, and the support part 74. And a moving mechanism 75 (see FIG. 1) for moving in the direction D. For example, the support part 74 is provided with a frame part 76 that supports the material filling part 71, the material compression part 72, and the surface layer removal part 73, and is provided at one end of the frame part 76 to support the frame part 76. And a drive unit 77 that drives the unit 72.
フレーム部76は、リコータ7の進行方向Dすなわち材料敷詰部71、材料圧縮部72および表層除去部73の進行方向Dにおおむね直交する方向に延び、下端が開放された矩形の箱状または枠状の部材である。フレーム部76は、進行方向Dの前方を向く正面に、材料敷詰部71である敷詰ブレード71Bが、たとえばボルトなどの締結部材によって、着脱可能に固定されている。また、フレーム部76は、進行方向Dの後方を向く背面に、表層除去部73である除去ブレード73Bが、たとえばボルトなどの締結部材によって、着脱可能に固定されている。 The frame portion 76 extends in a direction substantially orthogonal to the traveling direction D of the recoater 7, that is, the traveling direction D of the material laying portion 71, the material compressing portion 72, and the surface layer removing portion 73, and is a rectangular box or frame having a lower end opened Shaped member. The frame portion 76 has a laying blade 71B, which is a material laying portion 71, detachably fixed to a front surface facing the front in the traveling direction D by a fastening member such as a bolt. The frame 76 has a removal blade 73B, which is a surface layer removal portion 73, detachably fixed to a back surface facing the rear in the traveling direction D by a fastening member such as a bolt.
フレーム部76は、たとえば、正面および背面に、それぞれ、敷詰ブレード71Bの先端71aの高さ位置H1および除去ブレード73Bの先端73aの高さ位置H3を調節するための調節機構78を有している。すなわち、敷詰ブレード71Bの先端71aの高さ位置H1および除去ブレード73Bの先端73aの高さ位置H3(図3を参照)は、それぞれ、調節機構78によって調節することが可能である。また、フレーム部76は、たとえば、長手方向の両端部に設けられた一対の軸受部76aによって圧縮ローラ72Rの両端部を支持することで、材料圧縮部72を構成する圧縮ローラ72Rを回転可能に支持している。 For example, the frame portion 76 has an adjustment mechanism 78 for adjusting the height position H1 of the tip 71a of the laying blade 71B and the height position H3 of the tip 73a of the removal blade 73B on the front surface and the back surface, respectively. Yes. In other words, the height position H1 of the tip 71a of the laying blade 71B and the height position H3 (see FIG. 3) of the tip 73a of the removal blade 73B can be adjusted by the adjustment mechanism 78, respectively. Further, the frame portion 76 can rotate the compression roller 72R constituting the material compression portion 72 by supporting both ends of the compression roller 72R by a pair of bearing portions 76a provided at both ends in the longitudinal direction, for example. I support it.
駆動部77は、矩形の筐体部77aと、筐体部77aに固定されたモータ77bと、筐体部77aに収容された図示を省略する動力伝達機構とを備えている。駆動部77は、筐体部77aに固定されたフレーム部76を支持するとともに、モータ77bの動力を筐体部77aに収容された動力伝達機構を介して圧縮ローラ72Rに伝達し、圧縮ローラ72Rを回転させる。圧縮ローラ72Rの回転方向は、たとえば、材料粉末Pに接する圧縮ローラ72Rの先端72aすなわち圧縮ローラ72Rの下端において、圧縮ローラ72Rの進行方向Dの前方を向く方向である(図3参照)。 The drive unit 77 includes a rectangular casing 77a, a motor 77b fixed to the casing 77a, and a power transmission mechanism (not shown) housed in the casing 77a. The drive unit 77 supports the frame unit 76 fixed to the housing unit 77a, and transmits the power of the motor 77b to the compression roller 72R via a power transmission mechanism housed in the housing unit 77a. Rotate. The rotation direction of the compression roller 72R is, for example, a direction facing the front in the traveling direction D of the compression roller 72R at the tip 72a of the compression roller 72R in contact with the material powder P, that is, the lower end of the compression roller 72R (see FIG. 3).
移動機構75は、図1に示すように、たとえば、リコータ7の進行方向Dに延在して、リコータ7を進行方向Dの前後に移動させる。すなわち、移動機構75は、フレーム部76および駆動部77を進行方向Dの前後に移動させる。これにより、移動機構75は、フレーム部76に支持された材料敷詰部71、材料圧縮部72および表層除去部73としての敷詰ブレード71B、圧縮ローラ72Rおよび除去ブレード73Bを、進行方向Dの前後に移動させる。移動機構75の構成は、特に限定されないが、たとえば、モータ等の動力発生部、ギヤや減速機などの動力伝達部、またはボールねじやレールなど各部材を適宜組み合わせることによって構成することができる。 As shown in FIG. 1, the moving mechanism 75 extends in the traveling direction D of the recoater 7 and moves the recoater 7 back and forth in the traveling direction D, for example. That is, the moving mechanism 75 moves the frame portion 76 and the driving portion 77 back and forth in the traveling direction D. As a result, the moving mechanism 75 causes the material spreader 71 supported by the frame portion 76, the material compression unit 72, the spreader blade 71B as the surface layer removal unit 73, the compression roller 72R, and the removal blade 73B to move in the traveling direction D. Move back and forth. Although the structure of the moving mechanism 75 is not specifically limited, For example, it can comprise by combining suitably each members, such as power generation parts, such as a motor, power transmission parts, such as a gear and a reduction gear, or a ball screw and a rail.
図3は、材料敷詰部71、材料圧縮部72および表層除去部73の模式的な側面図である。本実施形態の付加製造装置1において、材料粉末Pに接する材料圧縮部72の先端72aの高さ位置H2は、材料粉末Pに接する材料敷詰部71の先端71aの高さ位置H1よりも低い。また、材料粉末Pに接する表層除去部73の先端73aの高さ位置H3は、材料粉末Pに接する材料圧縮部72の先端72aの高さ位置H2よりも低い。ここで、高さ位置H1,H2,H3は、たとえば、鉛直方向における高さ位置H1,H2,H3であり、付加製造装置1の任意の水平な基準面からの高さ位置H1,H2,H3である。 FIG. 3 is a schematic side view of the material spreader 71, the material compressor 72, and the surface layer remover 73. In the additive manufacturing apparatus 1 of the present embodiment, the height position H2 of the tip 72a of the material compression portion 72 that contacts the material powder P is lower than the height position H1 of the tip 71a of the material laying portion 71 that contacts the material powder P. . Further, the height position H3 of the tip 73a of the surface layer removing portion 73 in contact with the material powder P is lower than the height position H2 of the tip 72a of the material compression portion 72 in contact with the material powder P. Here, the height positions H1, H2, and H3 are, for example, the height positions H1, H2, and H3 in the vertical direction, and the height positions H1, H2, and H3 from any horizontal reference plane of the additive manufacturing apparatus 1 It is.
すなわち、進行方向Dの前方から後方へ、材料敷詰部71、材料圧縮部72、および表層除去部73が、この順に並んで配置されている。また、進行方向Dの前方から後方へ、材料敷詰部71の先端71aの高さ位置H1、材料圧縮部72の先端72aの高さ位置H2、および表層除去部73の先端73aの高さ位置H3が、漸次、低くなっている。 That is, from the front to the rear in the traveling direction D, the material laying part 71, the material compressing part 72, and the surface layer removing part 73 are arranged in this order. Further, from the front to the rear in the traveling direction D, the height position H1 of the tip 71a of the material laying portion 71, the height position H2 of the tip 72a of the material compression portion 72, and the height position of the tip 73a of the surface layer removal portion 73 H3 is gradually lower.
また、本実施形態の付加製造装置1において、敷詰ブレード71Bは、材料粉末Pに接する先端部に傾斜面71bを有している。傾斜面71bは、敷詰ブレード71Bの進行方向Dの後方側ほど敷詰ブレード71Bの先端71aに近付くように進行方向Dに対して傾斜している。また、本実施形態の付加製造装置1において、除去ブレード73Bは、材料粉末Pに接する先端部に傾斜面73bを有している。傾斜面73bは、除去ブレード73Bの進行方向Dの後方側ほど除去ブレード73Bの先端73aから離れるように進行方向Dに対して傾斜している。 Further, in the additive manufacturing apparatus 1 of the present embodiment, the laying blade 71B has an inclined surface 71b at the tip that contacts the material powder P. The inclined surface 71b is inclined with respect to the traveling direction D so that the rear side in the traveling direction D of the laying blade 71B approaches the tip 71a of the laying blade 71B. Further, in the additive manufacturing apparatus 1 of the present embodiment, the removal blade 73B has an inclined surface 73b at the tip that contacts the material powder P. The inclined surface 73b is inclined with respect to the traveling direction D so that the rear side in the traveling direction D of the removal blade 73B is away from the tip 73a of the removal blade 73B.
図3に示す例において、敷詰ブレード71Bの進行方向Dにおける厚さT1は、除去ブレード73Bの進行方向Dにおける厚さT3よりも厚くされている。なお、敷詰ブレード71Bの厚さT1は、特に限定されず、除去ブレード73Bの厚さT3と等しくてもよいし、除去ブレード73Bの厚さT3よりも薄くされていてもよい。 In the example shown in FIG. 3, the thickness T1 in the traveling direction D of the laying blade 71B is thicker than the thickness T3 in the traveling direction D of the removal blade 73B. The thickness T1 of the spread blade 71B is not particularly limited, and may be equal to the thickness T3 of the removal blade 73B or may be thinner than the thickness T3 of the removal blade 73B.
以下、本実施形態の付加製造装置1の作用について説明する。 Hereinafter, the operation of the additive manufacturing apparatus 1 of the present embodiment will be described.
本実施形態の付加製造装置1によって造形物Mの付加製造を行うには、まず、減圧部3によってチャンバー2の内部の空気を排出し、チャンバー2の内部を大気圧よりも減圧して真空状態にする。次に、付加製造部5のステージ51を側壁の上端部の開口部から所定のピッチで下降させ、付加製造部5に所定量の付加製造用の材料粉末Pを収容可能な状態にする。 In order to perform the additive manufacturing of the shaped article M by the additional manufacturing apparatus 1 of the present embodiment, first, the air inside the chamber 2 is discharged by the decompression unit 3, and the inside of the chamber 2 is depressurized from the atmospheric pressure to be in a vacuum state. To. Next, the stage 51 of the additional manufacturing unit 5 is lowered from the opening at the upper end of the side wall at a predetermined pitch so that a predetermined amount of the material powder P for additional manufacturing can be accommodated in the additional manufacturing unit 5.
次に、材料供給部4のステージ41を所定のピッチで上昇させ、開口部よりも上方に所定量の付加製造用の材料粉末Pを押し上げる。次に、材料供給部4の開口部を横断するようにリコータ7を進行方向Dの前方へ移動させ、材料供給部4の開口部の上方に押し上げられた材料粉末Pをリコータ7によって付加製造部5に移動させる。 Next, the stage 41 of the material supply unit 4 is raised at a predetermined pitch, and a predetermined amount of the material powder P for additive manufacturing is pushed up above the opening. Next, the recoater 7 is moved forward in the traveling direction D so as to cross the opening of the material supply unit 4, and the material powder P pushed up above the opening of the material supply unit 4 is added by the recoater 7. Move to 5.
ここで、本実施形態の粉末床溶融結合方式の付加製造装置1は、前述のように、材料粉末Pを均しながら敷き詰める材料敷詰部71と、この材料敷詰部71によって敷き詰められた材料粉末Pを圧縮する材料圧縮部72と、この材料圧縮部72によって圧縮された材料粉末Pの表層部を削り取る表層除去部73と、を備えている。 Here, as described above, the additive manufacturing apparatus 1 of the powder bed fusion bonding method of the present embodiment includes the material spreader 71 that spreads the material powder P while leveling the material, and the material spread by the material spreader 71. A material compressing unit 72 that compresses the powder P and a surface layer removing unit 73 that scrapes off the surface layer of the material powder P compressed by the material compressing unit 72 are provided.
この構成により、図3に示すように、まず、材料敷詰部71によって付加製造部5のステージ51上に目標とする材料粉末Pの厚さTp3よりも厚い厚さTp1で材料粉末Pを均しながら敷き詰めることができる。さらに、材料敷詰部71によって敷き詰められた材料粉末Pを材料圧縮部72によって圧縮することができる。これにより、材料粉末Pを付加製造部5のステージ51上で厚さTp1よりも薄い厚さTp2に圧縮して密度分布を向上させることができる。したがって、材料粉末Pを付加製造部5のステージ51上に高密度に敷き詰めることができる。 With this configuration, as shown in FIG. 3, the material powder P is first averaged by the material laying part 71 on the stage 51 of the additional manufacturing part 5 at a thickness Tp1 that is thicker than the target thickness Tp3 of the material powder P. While laying down. Furthermore, the material powder P spread by the material spreader 71 can be compressed by the material compression unit 72. Thereby, the material powder P can be compressed on the stage 51 of the additional manufacturing unit 5 to a thickness Tp2 that is thinner than the thickness Tp1, thereby improving the density distribution. Therefore, the material powder P can be spread on the stage 51 of the additional manufacturing unit 5 with high density.
しかし、材料粉末Pは、圧縮されることで密度が向上する一方、圧縮後の材料粉末Pの表層部に、たとえば、凹凸、波打ち、または筋などの不均一な形状が形成される場合がある。このような場合、従来の粉末床溶融結合方式の付加製造装置では、敷き詰められた材料粉末の厚さが不均一になり、敷き詰められた材料粉末を溶融結合させることで製造される製品の品質を低下させるおそれがある。 However, while the material powder P is compressed, the density is improved. On the surface layer portion of the compressed material powder P, for example, uneven shapes such as irregularities, undulations, or streaks may be formed. . In such a case, with the conventional powder bed fusion bonding type additive manufacturing apparatus, the thickness of the spread material powder becomes uneven, and the quality of the product manufactured by melting and bonding the spread material powder is improved. May decrease.
これに対し、本実施形態の付加製造装置1は、前述のように、材料圧縮部72によって圧縮された材料粉末Pの表層部を削り取る表層除去部73を備えている。これにより、材料圧縮部72によって圧縮された材料粉末Pの表層部に凹凸などの不均一な形状が形成された場合でも、材料粉末Pの表層部を表層除去部73によって削り取ることができる。 On the other hand, the additive manufacturing apparatus 1 of this embodiment includes the surface layer removing unit 73 that scrapes off the surface layer portion of the material powder P compressed by the material compressing unit 72 as described above. Thus, even when a non-uniform shape such as irregularities is formed on the surface layer portion of the material powder P compressed by the material compression portion 72, the surface layer portion of the material powder P can be scraped off by the surface layer removing portion 73.
したがって、本実施形態の付加製造装置1によれば、圧縮後の材料粉末Pの高い密度を維持しつつ、圧縮後の材料粉末Pの厚さTp2よりも薄く、極めて平坦かつ均一な厚さTp3で、付加製造部5のステージ51上に材料粉末Pを敷き詰めることができる。また、材料敷詰部71および表層除去部73によって回収部6まで運ばれた余分な材料粉末は、回収部6の開口部へ導入され、回収部6に収容されて回収される。 Therefore, according to the additive manufacturing apparatus 1 of the present embodiment, while maintaining the high density of the compressed material powder P, it is thinner than the thickness Tp2 of the compressed material powder P, and has an extremely flat and uniform thickness Tp3. Thus, the material powder P can be spread on the stage 51 of the additional manufacturing section 5. Further, excess material powder conveyed to the collecting unit 6 by the material spreader 71 and the surface layer removing unit 73 is introduced into the opening of the collecting unit 6, accommodated in the collecting unit 6 and collected.
次に、造形物Mの三次元形状のデータに基づいて、ビーム源8から、付加製造部5のステージ51に載置された材料粉末Pの所定の領域に、レーザや電子ビームなどの高エネルギービームBを照射する。これにより、所定の領域の材料粉末Pが溶融結合されて造形物Mの一部が形成される。このとき、材料粉末Pは、材料敷詰部71、材料圧縮部72および表層除去部73によって、付加製造部5のステージ51上に高密度かつ均一な厚さTp3に敷き詰められている。 Next, based on the three-dimensional shape data of the model M, a high energy such as a laser or an electron beam is applied from the beam source 8 to a predetermined region of the material powder P placed on the stage 51 of the additional manufacturing unit 5. Irradiate beam B. As a result, the material powder P in a predetermined region is melt-bonded to form a part of the shaped object M. At this time, the material powder P is spread on the stage 51 of the additional manufacturing unit 5 at a high density and a uniform thickness Tp3 by the material spreading unit 71, the material compression unit 72, and the surface layer removing unit 73.
これにより、材料粉末Pが溶融結合されて形成された造形物Mの一部に意図しない空洞や凹凸が発生することが防止される。その後、リコータ7を移動機構75によって進行方向Dの後方へ移動させて元の位置に戻し、再度、前述の手順を繰り返す。これにより、欠陥の少ない高品質の造形物Mを三次元形状のデータに基づいて高い精度で製造することができる。したがって、本実施形態によれば、材料粉末Pを高密度かつ均一な厚さTp3に敷き詰めて製品の品質を向上させることが可能な付加製造装置1を提供することができる。 Thereby, it is possible to prevent unintended cavities and irregularities from being generated in a part of the model M formed by melting and bonding the material powder P. Thereafter, the recoater 7 is moved backward in the traveling direction D by the moving mechanism 75 to return to the original position, and the above-described procedure is repeated again. Thereby, the high-quality molded object M with few defects can be manufactured with high accuracy based on the three-dimensional shape data. Therefore, according to the present embodiment, it is possible to provide the additional manufacturing apparatus 1 capable of improving the quality of the product by spreading the material powder P on the high-density and uniform thickness Tp3.
なお、本実施形態の付加製造装置1は、材料粉末Pとして、前述のように粒径にばらつきを有する金属材料の粉末を使用した場合にも、優れた効果を発揮することができる。より具体的には、材料粉末Pとして、平均粒径が約30μm程度で、粒径の範囲が約20μmから約40μm程度の金属材料の粉末を使用し、約40μm程度の均一な厚さで材料粉末Pを付加製造部5のステージ51上に敷き詰める場合を想定する。 Note that the additive manufacturing apparatus 1 of the present embodiment can also exhibit an excellent effect even when the metal powder having a variation in particle diameter is used as the material powder P as described above. More specifically, as the material powder P, a metal material powder having an average particle diameter of about 30 μm and a particle diameter range of about 20 μm to about 40 μm is used, and the material powder P has a uniform thickness of about 40 μm. The case where powder P is spread on the stage 51 of the additional manufacturing part 5 is assumed.
この場合、前記従来の粉末積層造形装置では、第1運搬部材または第2運搬部材で表面を均しながら材料粉末を昇降台上に運び、次いで、均した材料粉末を押圧ローラで押圧して材料粉末の薄層を形成する。しかし、上記のような材料粉末Pを押圧ローラで押圧して約40μm程度の均一な厚さに調節することは、極めて困難である。そのため、前記従来の粉末積層造形装置によって敷き詰められた材料粉末Pの薄層は、所々で途切れたり、局所的に材料粉末Pが集まったりして、極めて不均一な状態になる。 In this case, in the conventional powder additive manufacturing apparatus, the material powder is carried on the lifting platform while the surface is leveled by the first conveying member or the second conveying member, and then the leveled material powder is pressed by the pressing roller to form the material. A thin layer of powder is formed. However, it is extremely difficult to adjust the material powder P as described above to a uniform thickness of about 40 μm by pressing it with a pressing roller. For this reason, the thin layer of the material powder P spread by the conventional powder additive manufacturing apparatus is interrupted in some places or the material powder P is locally gathered, resulting in a very uneven state.
これに対し、本実施形態の付加製造装置1は、付加製造部5のステージ51上に敷き詰められた材料粉末Pを圧縮した後も、材料粉末Pの厚さTp2が目標とする材料粉末Pの厚さTp3よりも厚くなっている。そして、圧縮後の密度が上昇した材料粉末Pの表層部を表層除去部73によって削り取ることで、材料粉末Pの厚さTp3を圧縮後の厚さTp2よりも薄い約40μm程度の均一な厚さに調整することができる。 On the other hand, the additional manufacturing apparatus 1 of this embodiment compresses the material powder P spread on the stage 51 of the additional manufacturing unit 5, and the thickness Tp2 of the material powder P is the target material powder P. It is thicker than the thickness Tp3. Then, the surface layer portion of the material powder P whose density after compression has been increased is scraped off by the surface layer removing portion 73, so that the thickness Tp3 of the material powder P is a uniform thickness of about 40 μm which is thinner than the thickness Tp2 after compression. Can be adjusted.
したがって、本実施形態の付加製造装置1は、上記のような粒径のばらつきがある材料粉末Pを使用した場合にも、圧縮によって材料粉末Pの密度を向上させつつ、材料粉末Pを約40μm程度の均一な厚さTp3で付加製造部5のステージ51上に敷き詰めることが可能である。これにより、材料粉末Pのコストを低減しつつ、高品質の造形物Mを製品として製造することができる。 Therefore, the additive manufacturing apparatus 1 of the present embodiment can improve the density of the material powder P by compression and improve the density of the material powder P by about 40 μm even when the material powder P having a variation in particle diameter as described above is used. It can be spread on the stage 51 of the additional manufacturing section 5 with a uniform thickness Tp3. Thereby, while reducing the cost of the material powder P, a high-quality molded article M can be manufactured as a product.
また、本実施形態の付加製造装置1は、前述のように、材料圧縮部72の先端72aの高さ位置H2は、材料敷詰部71の先端71aの高さ位置H1よりも低くなっている。また、表層除去部73の先端73aの高さ位置H3は、材料圧縮部72の先端72aの高さ位置H2よりも低くなっている。 In addition manufacturing apparatus 1 of this embodiment, as mentioned above, height position H2 of tip 72a of material compression part 72 is lower than height position H1 of tip 71a of material laying part 71. . In addition, the height position H3 of the tip 73a of the surface layer removal unit 73 is lower than the height position H2 of the tip 72a of the material compression unit 72.
この構成により、本実施形態の付加製造装置1は、材料敷詰部71によって敷き詰められた厚さTp1の材料粉末Pを、材料圧縮部72によって厚さTp1よりも薄い厚さTp2まで厚さ方向に圧縮して、材料粉末Pの密度を向上させることができる。さらに、材料圧縮部72によって圧縮された厚さTp2の材料粉末Pの表層部を、表層除去部73によって厚さTp2よりも薄い厚さTp3まで削り取ることができる。したがって、材料粉末Pを高密度かつ均一な厚さTp3に敷き詰めて、製品の品質を向上させることできる。 With this configuration, the additive manufacturing apparatus 1 according to this embodiment allows the material powder P having a thickness Tp1 laid by the material laying portion 71 to be thinned by the material compression portion 72 to a thickness Tp2 that is thinner than the thickness Tp1. And the density of the material powder P can be improved. Furthermore, the surface layer portion of the material powder P having the thickness Tp2 compressed by the material compressing portion 72 can be scraped off by the surface layer removing portion 73 to a thickness Tp3 that is smaller than the thickness Tp2. Therefore, it is possible to improve the quality of the product by spreading the material powder P in a high density and uniform thickness Tp3.
また、本実施形態の付加製造装置1において、材料敷詰部71は、板状の敷詰ブレード71Bによって構成されている。これにより、材料敷詰部71の構成を簡潔にして、交換やメンテナンスを容易にすることができる。また、板状の敷詰ブレード71Bを進行方向Dの前方へ移動させることで、敷詰ブレード71Bによって材料供給部4のステージ41上の材料粉末Pを、付加製造部5のステージ51上に押し運んで均しながら敷き詰めることができる。 In addition manufacturing material 1 of this embodiment, material spread part 71 is constituted by plate-shaped spread blade 71B. Thereby, the structure of the material covering part 71 can be simplified, and replacement | exchange and a maintenance can be made easy. Further, by moving the plate-shaped spreader blade 71B forward in the traveling direction D, the material powder P on the stage 41 of the material supply unit 4 is pushed onto the stage 51 of the additional manufacturing unit 5 by the spreader blade 71B. It can be carried and leveled.
また、本実施形態の付加製造装置1において、材料圧縮部72は、圧縮ローラ72Rによって構成され、表層除去部73は、板状の除去ブレード73Bによって構成されている。この構成により、材料敷詰部71によって付加製造部5のステージ51上に敷き詰められた材料粉末Pを、圧縮ローラ72Rによって確実に安定して圧縮することができ、材料粉末Pを高密度に圧縮することができる。また、高密度に圧縮された材料粉末Pの表層部を板状の除去ブレード73Bによって正確かつ均一に削り取ることができる。なお、圧縮ローラ72Rは、回転させずに固定することも可能であるが、回転させることでより安定した圧縮が可能になる。 Moreover, in the additive manufacturing apparatus 1 of this embodiment, the material compression part 72 is comprised by the compression roller 72R, and the surface layer removal part 73 is comprised by the plate-shaped removal blade 73B. With this configuration, the material powder P spread on the stage 51 of the additional manufacturing unit 5 by the material spreader 71 can be reliably and stably compressed by the compression roller 72R, and the material powder P is compressed to a high density. can do. Further, the surface layer portion of the material powder P compressed at high density can be accurately and uniformly scraped by the plate-shaped removal blade 73B. The compression roller 72R can be fixed without being rotated, but can be more stably compressed by being rotated.
また、本実施形態の付加製造装置1において、敷詰ブレード71Bは、材料粉末Pに接する先端部に傾斜面71bを有している。傾斜面71bは、敷詰ブレード71Bの進行方向Dの後方側ほど敷詰ブレード71Bの先端71aに近付くように進行方向Dに対して傾斜している。この構成により、敷詰ブレード71Bによって付加製造部5のステージ51上に均されて敷き詰められた材料粉末Pは、敷詰ブレード71Bの進行方向Dの前方への移動により、傾斜面71bによってステージ51に向けて押しつけられて圧縮される。これにより、敷詰ブレード71Bによって、材料粉末Pの密度を向上させることができる。 Further, in the additive manufacturing apparatus 1 of the present embodiment, the laying blade 71B has an inclined surface 71b at the tip that contacts the material powder P. The inclined surface 71b is inclined with respect to the traveling direction D so that the rear side in the traveling direction D of the laying blade 71B approaches the tip 71a of the laying blade 71B. With this configuration, the material powder P leveled and spread on the stage 51 of the additional manufacturing unit 5 by the spreader blade 71B is moved by the inclined surface 71b to the stage 51 by the forward movement of the spreader blade 71B in the traveling direction D. It is pressed and compressed toward. Thereby, the density of the material powder P can be improved by the spreading blade 71B.
また、本実施形態の付加製造装置1において、除去ブレード73Bは、材料粉末Pに接する先端部に傾斜面73bを有している。傾斜面73bは、除去ブレード73Bの進行方向Dの後方側ほど除去ブレード73Bの先端73aから離れるように進行方向Dに対して傾斜している。この構成により、圧縮ローラ72Rによって圧縮されて密度が上昇し、除去ブレード73Bによって表層部が削り取られた後の材料粉末Pの表面が乱れるのを防止して、付加製造部5のステージ51上に材料粉末Pをより均一な厚さTp3で敷き詰めることができる。 Further, in the additive manufacturing apparatus 1 of the present embodiment, the removal blade 73B has an inclined surface 73b at the tip that contacts the material powder P. The inclined surface 73b is inclined with respect to the traveling direction D so that the rear side in the traveling direction D of the removal blade 73B is away from the tip 73a of the removal blade 73B. With this configuration, the density is increased by being compressed by the compression roller 72R, and the surface of the material powder P after the surface layer portion is scraped off by the removal blade 73B is prevented from being disturbed. The material powder P can be spread with a more uniform thickness Tp3.
より具体的には、除去ブレード73Bの先端部の傾斜面73bによって、材料粉末Pに接する除去ブレード73Bの先端73aの進行方向Dの後方側に逃げを形成することができる。これにより、除去ブレード73Bの刃先に相当する先端73aによって材料粉末Pの表層部が削り取られた後に、材料粉末Pに除去ブレード73Bの一部が接触するのを防止して、材料粉末Pの表面の乱れを防止できる。したがって、付加製造部5のステージ51上に材料粉末Pをより均一な厚さTp3で敷き詰めることができる。 More specifically, the inclined surface 73b at the tip of the removal blade 73B can form a relief on the rear side in the traveling direction D of the tip 73a of the removal blade 73B in contact with the material powder P. Thereby, after the surface layer portion of the material powder P is scraped off by the tip 73a corresponding to the cutting edge of the removal blade 73B, the surface of the material powder P is prevented from contacting a part of the removal blade 73B with the material powder P. Can be prevented. Therefore, the material powder P can be spread on the stage 51 of the additional manufacturing unit 5 with a more uniform thickness Tp3.
また、本実施形態の付加製造装置1は、材料敷詰部71、材料圧縮部72および表層除去部73を進行方向Dに並べて支持する支持部74と、この支持部74を進行方向Dに移動させる移動機構75と、を有している。この構成により、材料敷詰部71、材料圧縮部72および表層除去部73を進行方向Dに同時に移動させ、材料粉末Pの敷き詰め、圧縮、および表層部の削り取りを、連続的に行うことができる。また、材料敷詰部71、材料圧縮部72および表層除去部73に対して個別に移動機構を設ける必要がなく、付加製造装置1の構成を簡潔にすることができる。 Further, the additive manufacturing apparatus 1 of this embodiment includes a support portion 74 that supports the material filling portion 71, the material compression portion 72, and the surface layer removal portion 73 side by side in the traveling direction D, and moves the support portion 74 in the traveling direction D. And a moving mechanism 75 to be moved. With this configuration, the material spreader 71, the material compression unit 72, and the surface layer removal unit 73 can be simultaneously moved in the traveling direction D, and the material powder P can be spread, compressed, and scraped off the surface layer portion continuously. . Moreover, it is not necessary to provide a separate moving mechanism for the material spreader 71, the material compressing unit 72, and the surface layer removing unit 73, and the configuration of the additive manufacturing apparatus 1 can be simplified.
以上説明したように、本実施形態によれば、材料粉末Pを付加製造部5のステージ51上に高密度かつ均一な厚さTp3に敷き詰めて、製品である造形物Mの品質を向上させることが可能な付加製造装置1を提供することができる。なお、本開示の付加製造装置は、前述の実施形態に係る付加製造装置1の構成に限定されない。以下、前述の実施形態に係る付加製造装置1の変形例について説明する。 As described above, according to the present embodiment, the material powder P is spread on the stage 51 of the additive manufacturing unit 5 at a high density and a uniform thickness Tp3, thereby improving the quality of the shaped object M that is a product. Can be provided. In addition, the additional manufacturing apparatus of this indication is not limited to the structure of the additional manufacturing apparatus 1 which concerns on above-mentioned embodiment. Hereinafter, modifications of the additive manufacturing apparatus 1 according to the above-described embodiment will be described.
前述の実施形態に係る付加製造装置1において、敷詰ブレード71Bは、材料粉末Pに接する先端部に弾性変形可能な弾性部71c(図2参照)を有してもよい。たとえば、敷詰ブレード71Bの先端部に複数のスリットを設け、敷詰ブレード71Bの先端部を櫛歯状にすることによって、敷詰ブレード71Bの先端部に弾性部71cを形成することができる。 In the additive manufacturing apparatus 1 according to the above-described embodiment, the laying blade 71B may have an elastic portion 71c (see FIG. 2) that can be elastically deformed at a tip portion in contact with the material powder P. For example, the elastic part 71c can be formed in the front-end | tip part of the spread blade 71B by providing a some slit in the front-end | tip part of the spread blade 71B, and making the front-end | tip part of the spread blade 71B into a comb-tooth shape.
すなわち、敷詰ブレード71Bの弾性部71cは、敷詰ブレード71Bのその他の部分よりも容易に弾性変形するように構成されている。このような構成により、敷詰ブレード71Bによって付加製造部5のステージ51上に材料粉末Pを均しながら敷き詰めるときに、敷詰ブレード71Bまたは造形物Mの破損を防止できる。 That is, the elastic part 71c of the laying blade 71B is configured to be elastically deformed more easily than the other parts of the laying blade 71B. With such a configuration, when the material powder P is spread on the stage 51 of the additional manufacturing unit 5 by the spread blade 71B while being leveled, the breakage of the spread blade 71B or the model M can be prevented.
より具体的には、付加製造部5のステージ51上に造形物Mの一部が形成された状態で、敷詰ブレード71Bによって付加製造部5のステージ51上に材料粉末Pを均しながら敷き詰める場合がある。このとき、敷詰ブレード71Bの先端部が造形物Mの一部に引っ掛かったとしても、弾性部71cが弾性変形することで敷詰ブレード71Bまたは造形物Mに過大な力が作用することが防止され、敷詰ブレード71Bまたは造形物Mの破損を防止できる。なお、除去ブレード73Bの先端部に同様の弾性部73c(図2参照)を設けることで、同様の効果を奏することができる。 More specifically, in a state where a part of the model M is formed on the stage 51 of the additional manufacturing unit 5, the material powder P is spread on the stage 51 of the additional manufacturing unit 5 while being leveled by the laying blade 71B. There is a case. At this time, even if the tip of the laying blade 71B is caught by a part of the molded article M, the elastic portion 71c is elastically deformed to prevent an excessive force from acting on the laid blade 71B or the molded article M. As a result, the laying blade 71B or the model M can be prevented from being damaged. In addition, the same effect can be show | played by providing the same elastic part 73c (refer FIG. 2) in the front-end | tip part of the removal blade 73B.
図4は、前述の実施形態に係る付加製造装置1の材料敷詰部71、材料圧縮部72および表層除去部73の他の変形例を示す図3に相当する模式的な側面図である。材料敷詰部71を構成する敷詰ブレード71Bは、先端部に傾斜面71bを有しなくてもよく、表層除去部73を構成する除去ブレード73Bは、先端部に傾斜面73bを有しなくてもよい。 FIG. 4 is a schematic side view corresponding to FIG. 3 and showing another modified example of the material filling unit 71, the material compressing unit 72, and the surface layer removing unit 73 of the additive manufacturing apparatus 1 according to the above-described embodiment. The spreader blade 71B constituting the material spreader 71 may not have the inclined surface 71b at the tip, and the remover blade 73B constituting the surface layer removing unit 73 does not have the inclined surface 73b at the tip. May be.
この場合、敷詰ブレード71Bによる材料粉末Pの圧縮効果は得られないが、敷詰ブレード71Bによって材料粉末Pを均しながら敷き詰めることは可能である。また、除去ブレード73Bは、必要な剛性が得られる範囲で可能な限り厚さT3を薄くすることで、材料粉末Pの表面の乱れを防止しつつ、材料粉末Pの表層部を均一に削り取ることができる。 In this case, the compressing effect of the material powder P by the laying blade 71B cannot be obtained, but it is possible to spread the material powder P while leveling the laying blade 71B. Further, the removal blade 73B is configured to reduce the thickness T3 as much as possible within a range where necessary rigidity can be obtained, so that the surface layer portion of the material powder P is uniformly scraped while preventing the surface disturbance of the material powder P. Can do.
図5は、前述の実施形態に係る付加製造装置1の材料敷詰部71、材料圧縮部72および表層除去部73の他の変形例を示す図3に相当する模式的な側面図である。材料敷詰部71は、たとえば、敷詰ローラ71Rによって構成されていてもよい。敷詰ローラ71Rは、たとえば、圧縮ローラ72Rと同一の回転方向に回転させてもよい。この構成により、敷詰ローラ71Rによって、材料供給部4から供給される材料粉末Pを付加製造部5のステージ51上に運んで均しながら敷き詰めるのと同時に、材料粉末Pを圧縮して密度を向上させることができる。なお。敷詰ローラ71Rは、回転不能に固定されていてもよい。 FIG. 5 is a schematic side view corresponding to FIG. 3 and showing another modification of the material spreader 71, the material compressor 72, and the surface layer remover 73 of the additive manufacturing apparatus 1 according to the above-described embodiment. The material laying portion 71 may be constituted by, for example, a laying roller 71R. For example, the laying roller 71R may be rotated in the same rotational direction as the compression roller 72R. With this configuration, the material powder P supplied from the material supply unit 4 is transported onto the stage 51 of the additional manufacturing unit 5 and spread while being leveled by the laying roller 71R, and at the same time, the material powder P is compressed to reduce the density. Can be improved. Note that. The laying roller 71R may be fixed so as not to rotate.
図6は、前述の実施形態に係る付加製造装置1の材料敷詰部71、材料圧縮部72および表層除去部73の他の変形例を示す図3に相当する模式的な側面図である。材料圧縮部72は、たとえば、圧縮ローラ72Rを材料粉末Pに押し付ける押付部72Pを有してもよい。押付部72Pは、たとえば、圧縮ローラ72Rを回転可能に支持する軸受部と、その軸受部に力を付与するスプリングとによって構成することができる。このような構成により、材料粉末Pの表面状態に応じた力で圧縮ローラ72Rを材料粉末Pの表面に押しつけて、材料粉末Pをより均一に圧縮することが可能になる。 6 is a schematic side view corresponding to FIG. 3 and showing another modification of the material spreader 71, the material compressor 72, and the surface layer remover 73 of the additive manufacturing apparatus 1 according to the above-described embodiment. The material compression unit 72 may include a pressing unit 72P that presses the compression roller 72R against the material powder P, for example. The pressing portion 72P can be constituted by, for example, a bearing portion that rotatably supports the compression roller 72R and a spring that applies a force to the bearing portion. With such a configuration, it is possible to compress the material powder P more uniformly by pressing the compression roller 72R against the surface of the material powder P with a force according to the surface state of the material powder P.
図7は、前述の実施形態に係る付加製造装置1の材料敷詰部71、材料圧縮部72および表層除去部73の他の変形例を示す図3に相当する模式的な側面図である。表層除去部73を構成する除去ブレード73Bは、たとえば、材料粉末Pに接する先端部から離れるほど進行方向Dの後方へ後退するように傾斜し、材料粉末Pの表層部との間の角度Aが鋭角になっている。このような構成により、材料粉末Pの表層部を掬い取るようにして削り取ることができ、材料粉末Pをより均一な厚さTp3にすることができる。 FIG. 7 is a schematic side view corresponding to FIG. 3 and showing another modification example of the material filling unit 71, the material compression unit 72, and the surface layer removal unit 73 of the additive manufacturing apparatus 1 according to the above-described embodiment. For example, the removal blade 73B constituting the surface layer removing portion 73 is inclined so as to recede in the advancing direction D as it moves away from the tip portion in contact with the material powder P, and the angle A between the surface layer portion of the material powder P is It has an acute angle. With such a configuration, the surface layer portion of the material powder P can be scraped off and the material powder P can be made to have a more uniform thickness Tp3.
以上、図面を用いて本発明の実施の形態を詳述してきたが、具体的な構成はこの実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲における設計変更等があっても、それらは本発明に含まれるものである。 The embodiment of the present invention has been described in detail with reference to the drawings, but the specific configuration is not limited to this embodiment, and there are design changes and the like without departing from the gist of the present invention. They are also included in the present invention.
1 付加製造装置
71 材料敷詰部
71a 先端
71B 敷詰ブレード
71b 傾斜面
72 材料圧縮部
72a 先端
72P 押付部
72R 圧縮ローラ
73 表層除去部
73a 先端
73B 除去ブレード
73b 傾斜面
74 支持部
75 移動機構
A 角度
D 進行方向
H1 高さ位置
H2 高さ位置
H3 高さ位置
P 材料粉末
DESCRIPTION OF SYMBOLS 1 Additional manufacturing apparatus 71 Material laying part 71a Tip 71B laying blade 71b Inclined surface 72 Material compression part 72a Tip 72P Pressing part 72R Compression roller 73 Surface layer removal part 73a Tip 73B Removal blade 73b Inclined surface 74 Support part 75 Moving mechanism A Angle D Traveling direction H1 Height position H2 Height position H3 Height position P Material powder
Claims (10)
材料粉末を均しながら敷き詰める材料敷詰部と、
前記材料敷詰部によって敷き詰められた前記材料粉末を圧縮する材料圧縮部と、
前記材料圧縮部によって圧縮された前記材料粉末の表層部を削り取る表層除去部と、を備えることを特徴とする付加製造装置。 An additive manufacturing apparatus of powder bed fusion bonding method,
A material laying section that spreads the material powder while leveling,
A material compression section that compresses the material powder spread by the material spread section;
An additive manufacturing apparatus comprising: a surface layer removing unit that scrapes off a surface layer portion of the material powder compressed by the material compressing unit.
前記表層除去部の先端の高さ位置は、前記材料圧縮部の前記先端の高さ位置よりも低いことを特徴とする請求項1に記載の付加製造装置。 The height position of the tip of the material compression part is lower than the height position of the tip of the material laying part,
The additive manufacturing apparatus according to claim 1, wherein a height position of a tip of the surface layer removing unit is lower than a height position of the tip of the material compression unit.
前記傾斜面は、前記敷詰ブレードの進行方向の後方側ほど前記敷詰ブレードの先端に近付くように前記進行方向に対して傾斜していることを特徴とする請求項3に記載の付加製造装置。 The laying blade has an inclined surface at a tip portion in contact with the material powder,
4. The additive manufacturing apparatus according to claim 3, wherein the inclined surface is inclined with respect to the advancing direction so that a rear side in the advancing direction of the laying blade is closer to a tip of the laying blade. .
前記表層除去部は、板状の除去ブレードによって構成されていることを特徴とする請求項2に記載の付加製造装置。 The material compression unit is constituted by a compression roller,
The additive manufacturing apparatus according to claim 2, wherein the surface layer removing unit is configured by a plate-shaped removing blade.
前記傾斜面は、前記除去ブレードの進行方向の後方側ほど前記除去ブレードの先端から離れるように前記進行方向に対して傾斜していることを特徴とする請求項6に記載の付加製造装置。 The removal blade has an inclined surface at a tip portion in contact with the material powder,
7. The additive manufacturing apparatus according to claim 6, wherein the inclined surface is inclined with respect to the traveling direction so as to be farther away from the tip of the removing blade toward the rear side in the traveling direction of the removing blade.
前記支持部を前記進行方向に移動させる移動機構と、を有することを特徴とする請求項1に記載の付加製造装置。 A support portion that supports the material spreading portion, the material compression portion, and the surface layer removal portion side by side in the traveling direction;
The addition manufacturing apparatus according to claim 1, further comprising a moving mechanism that moves the support portion in the traveling direction.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018025901A JP2019142017A (en) | 2018-02-16 | 2018-02-16 | Additive manufacturing apparatus |
PCT/JP2019/002325 WO2019159644A1 (en) | 2018-02-16 | 2019-01-24 | Additive manufacturing apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018025901A JP2019142017A (en) | 2018-02-16 | 2018-02-16 | Additive manufacturing apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2019142017A true JP2019142017A (en) | 2019-08-29 |
Family
ID=67618680
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018025901A Pending JP2019142017A (en) | 2018-02-16 | 2018-02-16 | Additive manufacturing apparatus |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2019142017A (en) |
WO (1) | WO2019159644A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022224548A1 (en) * | 2021-04-22 | 2022-10-27 | 株式会社日本製鋼所 | Recoater and powder laminate molding apparatus |
JP7579198B2 (en) | 2021-04-22 | 2024-11-07 | 株式会社日本製鋼所 | Recoater and Powder Additive Manufacturing Equipment |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BE1027856B1 (en) * | 2019-12-13 | 2021-07-13 | Aerosint Sa | Leveling system and method |
FR3129308A1 (en) * | 2021-11-23 | 2023-05-26 | Safran Additive Manufacturing Campus | Additive manufacturing device and associated manufacturing method |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19514740C1 (en) * | 1995-04-21 | 1996-04-11 | Eos Electro Optical Syst | Appts. for producing three-dimensional objects by laser sintering |
JP2015193134A (en) * | 2014-03-31 | 2015-11-05 | 日本電子株式会社 | Three-dimensional laminate modeling apparatus |
JP6498922B2 (en) * | 2014-12-08 | 2019-04-10 | 株式会社アスペクト | Powder additive manufacturing apparatus and powder additive manufacturing method |
JP6515557B2 (en) * | 2015-02-04 | 2019-05-22 | セイコーエプソン株式会社 | Member for manufacturing three-dimensional object, apparatus for manufacturing three-dimensional object, method for manufacturing three-dimensional object, and three-dimensional object |
CN107771109B (en) * | 2015-06-19 | 2021-09-07 | 应用材料公司 | Material distribution and compaction in additive manufacturing |
JP2017087469A (en) * | 2015-11-04 | 2017-05-25 | 株式会社リコー | Apparatus for three-dimensional fabrication |
US10183330B2 (en) * | 2015-12-10 | 2019-01-22 | Vel03D, Inc. | Skillful three-dimensional printing |
US10293547B2 (en) * | 2016-06-07 | 2019-05-21 | Xerox Corporation | Electrostatic 3-D printer using layer and mechanical planer |
JP6899094B2 (en) * | 2017-05-24 | 2021-07-07 | 株式会社リコー | 3D modeling equipment, 3D model manufacturing method and modeling program |
-
2018
- 2018-02-16 JP JP2018025901A patent/JP2019142017A/en active Pending
-
2019
- 2019-01-24 WO PCT/JP2019/002325 patent/WO2019159644A1/en active Application Filing
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022224548A1 (en) * | 2021-04-22 | 2022-10-27 | 株式会社日本製鋼所 | Recoater and powder laminate molding apparatus |
JP7579198B2 (en) | 2021-04-22 | 2024-11-07 | 株式会社日本製鋼所 | Recoater and Powder Additive Manufacturing Equipment |
Also Published As
Publication number | Publication date |
---|---|
WO2019159644A1 (en) | 2019-08-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019159644A1 (en) | Additive manufacturing apparatus | |
US20210114106A1 (en) | Selective material dispensing in additive manufacturing | |
US10646924B2 (en) | Additive manufacturing using a recoater with in situ exchangeable recoater blades | |
US12083738B2 (en) | Method, device, and recoating module for producing a three-dimensional object | |
US10780636B2 (en) | Recoating unit, recoating method, device and method for additive manufacturing of a three-dimensional object | |
US10682812B2 (en) | Powder spreader and additive manufacturing apparatus thereof | |
EP3174652B1 (en) | Powder additive method for manufacturing a part, in particular a sipe for lining a tyre mould | |
WO2014010144A1 (en) | Method for manufacturing three-dimensional molding | |
US10252332B2 (en) | Powder processing arrangement and method for use in an apparatus for producing three-dimensional work pieces | |
KR20180061137A (en) | Dispensing and Compressing Materials in Lamination Manufacturing | |
EP3215349A1 (en) | Machine and method for powder-based additive manufacturing | |
WO2013092997A1 (en) | Method and apparatus for producing three-dimensional objects | |
FR2980380A1 (en) | Manufacturing metal part such as blade of turboshaft engine, comprises performing two successive sweepings of same zone of metal powder layer by laser beam or electron beam, where metal powder layer is coated with deposit on support | |
JP6347493B2 (en) | Flattening slider changer used in equipment for manufacturing 3D workpieces | |
EP2773475A1 (en) | Apparatus for manufacturing parts by selective melting of powder | |
JP2017160485A (en) | Manufacturing method of three-dimensional shape molded object | |
JP2017214611A (en) | Production method of three-dimensionally shaped object | |
JP6641909B2 (en) | Method for manufacturing three-dimensional object and three-dimensional object | |
CN112188962A (en) | Method of preparing powder bed deposited additive manufacturing platform upper surface | |
JP7199293B2 (en) | Additive manufacturing device and blade cleaning method | |
JP4141379B2 (en) | Method and apparatus for modeling a three-dimensional object | |
JP7021516B2 (en) | Manufacturing method of 3D modeling equipment and 3D modeling | |
FR3095974A1 (en) | DEVICE AND METHOD FOR ADDITIVE MANUFACTURING BY LASER FUSION ON POWDER BED | |
JP2017226882A (en) | Production method for three-dimensional molded article | |
FR3102078A1 (en) | INSTALLATION AND ADDITIVE MANUFACTURING PROCESS ON BED OF POWDER OF PART WITH IMPROVED SURFACE CONDITION |