JP2019131846A - Laminate forming apparatus - Google Patents

Laminate forming apparatus Download PDF

Info

Publication number
JP2019131846A
JP2019131846A JP2018013245A JP2018013245A JP2019131846A JP 2019131846 A JP2019131846 A JP 2019131846A JP 2018013245 A JP2018013245 A JP 2018013245A JP 2018013245 A JP2018013245 A JP 2018013245A JP 2019131846 A JP2019131846 A JP 2019131846A
Authority
JP
Japan
Prior art keywords
electron beam
gas
powder bed
powder
scattering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018013245A
Other languages
Japanese (ja)
Other versions
JP6960867B2 (en
Inventor
恭諒 丸小
Takaaki MARUKO
恭諒 丸小
武士 物種
Takeshi Monotane
武士 物種
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2018013245A priority Critical patent/JP6960867B2/en
Publication of JP2019131846A publication Critical patent/JP2019131846A/en
Application granted granted Critical
Publication of JP6960867B2 publication Critical patent/JP6960867B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Powder Metallurgy (AREA)

Abstract

To obtain a laminate forming apparatus capable of reducing the volume of a gas to be introduced into a vacuum chamber for the purpose of preventing scattering while preventing charged portions of a powder material due to irradiation of an electron beam from repelling to each other into scattering.SOLUTION: A laminate forming apparatus 100 is a laminate forming apparatus for manufacturing a three-dimensional laminate formed object 8 by repeating a process of selectively solidifying each layer of a powder bed while laminating within a vacuum chamber 1 a powder bed formed of a powder material 7, and comprises an electron gun 2 that irradiates an electron beam EB for solidifying a powder material 7 to a powder bed, a work groundsill 5 that is provided in a scanning range of an electron beam EB and adjustable in height, a plate 4 that is placed on the work groundsill 5 and for forming a powder bed, and a gas introducer 10 that introduces a molecular flow of a scattering prevention gas G to be positively ionized by an irradiation of an electron beam EB into the passage region S1 of an electron beam EB.SELECTED DRAWING: Figure 1

Description

この発明は、例えば金属粒体からなる粉末材料により形成される粉末床を真空室内で積層しながら各層の粉末床を選択的に固化させる工程を繰り返すことにより三次元形状の造形物を製造する積層造形装置に関するものである。   This invention is a laminate for producing a three-dimensional shaped object by repeating a step of selectively solidifying a powder bed of each layer while laminating a powder bed formed of a powder material made of metal particles in a vacuum chamber, for example. The present invention relates to a modeling apparatus.

電子ビームの照射により溶融凝固可能な金属粒体などからなる粉末材料により形成される粉末床を真空室内で積層しながら、各層の粉末床を選択的に固化させることにより三次元形状の造形物を製造する積層造形装置が知られている。このように電子ビームを用いる積層造形装置では、電子ビームの照射により粉末材料が負に帯電するため、個々の粉末材料同士がクーロン力により互いに反発し合い粉末材料が飛散する虞がある。そこで、装置の真空室内に補助ガスを導入し、電子ビームの照射点近傍で補助ガスを正に帯電させることで粉末材料を電気的に中性化させるものがある(例えば、特許文献1参照)。また、粉末材料の粉表面の伝導度を増加させる反応性ガスを供給しながら、作業領域上に配置された材料に電子ビームを照射するものがある(例えば、特許文献2参照)。   Three-dimensional shaped objects can be obtained by selectively solidifying the powder bed of each layer while laminating a powder bed made of a powder material consisting of metal particles that can be melted and solidified by electron beam irradiation in a vacuum chamber. An additive manufacturing apparatus to be manufactured is known. In the additive manufacturing apparatus using an electron beam as described above, since the powder material is negatively charged by the electron beam irradiation, the individual powder materials may repel each other due to the Coulomb force and the powder material may be scattered. In view of this, there is one in which an auxiliary gas is introduced into the vacuum chamber of the apparatus and the powder material is electrically neutralized by positively charging the auxiliary gas in the vicinity of the electron beam irradiation point (see, for example, Patent Document 1). . In addition, there is one that irradiates an electron beam to a material arranged on a work area while supplying a reactive gas that increases the conductivity of the powder surface of the powder material (for example, see Patent Document 2).

特表2010−526694号公報Special table 2010-526694 特表2011−506761号公報Special table 2011-506761 gazette

しかしながら、真空室内に導入されるガスは容易に拡散するため、特許文献1及び特許文献2に記載のものでは、粉末材料の飛散を防止するためのガスを真空室内全体に導入することになり、特に大型の造形物を造形する場合のように、真空室が大型化すると必要なガス量も増大して生産コストが増大してしまうという問題点がある。   However, since the gas introduced into the vacuum chamber easily diffuses, the gas described in Patent Document 1 and Patent Document 2 introduces a gas for preventing the powder material from being scattered into the entire vacuum chamber, In particular, as in the case of modeling a large model, there is a problem that if the vacuum chamber is increased in size, the amount of gas required increases and the production cost increases.

この発明は、上記のような問題点を解決するためになされたもので、電子ビームの照射によって帯電した粉末材料同士が互いに反発して飛散することを防止しつつ、飛散防止のために真空室内に導入されるガスの量を低減することができる積層造形装置を得るものである。   The present invention has been made to solve the above-described problems, and while preventing powder materials charged by electron beam irradiation from repelling each other and scattering, a vacuum chamber is provided to prevent scattering. It is possible to obtain an additive manufacturing apparatus capable of reducing the amount of gas introduced into the apparatus.

この発明の積層造形装置は、粉末材料により形成される粉末床を真空チャンバ内で積層しながら各層の粉末床を選択的に固化させる工程を繰り返すことにより三次元形状の造形物を製造する積層造形装置であって、粉末材料を固化させる電子ビームを粉末床に照射する電子ビーム照射手段と、電子ビームの走査範囲に設けられ、高さを調整可能な載置台と、載置台に載置され、粉末床を形成する粉末床形成部と、電子ビームの照射によって陽イオン化するガスの分子流を電子ビームの通過領域に導入するガス導入部とを備えたものである。   The additive manufacturing apparatus of the present invention is an additive manufacturing method for manufacturing a three-dimensional shaped object by repeating a process of selectively solidifying a powder bed of each layer while laminating a powder bed formed of a powder material in a vacuum chamber. An apparatus, an electron beam irradiation means for irradiating a powder bed with an electron beam for solidifying a powder material, a mounting table provided in a scanning range of the electron beam and having an adjustable height, and mounted on the mounting table, A powder bed forming unit that forms a powder bed and a gas introducing unit that introduces a molecular flow of a gas that is cationized by irradiation with an electron beam into a region through which the electron beam passes are provided.

この発明の積層造形装置によれば、電子ビームの照射によって陽イオン化するガスの分子流を電子ビームの通過領域に噴出するガス導入部を備えたため、電子ビームの照射によって帯電した粉末材料同士が互いに反発して飛散することを防止しつつ、飛散防止のために真空室内に導入されるガスの量を低減することができる。   According to the additive manufacturing apparatus of the present invention, since the gas introducing portion for ejecting the molecular flow of the gas that is positively ionized by the electron beam irradiation to the electron beam passing region is provided, the powder materials charged by the electron beam irradiation are mutually connected. While preventing repulsion and scattering, the amount of gas introduced into the vacuum chamber to prevent scattering can be reduced.

この発明の実施の形態1における積層造形装置を示す概略図である。It is the schematic which shows the additive manufacturing apparatus in Embodiment 1 of this invention. この発明の実施の形態1に係るガス導入部を示す側面図である。It is a side view which shows the gas introduction part which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係るガス導入部を示す平面図である。It is a top view which shows the gas introduction part which concerns on Embodiment 1 of this invention. この発明の実施の形態2における積層造形装置を示す概略図である。It is the schematic which shows the additive manufacturing apparatus in Embodiment 2 of this invention. この発明の実施の形態2に係るガス導入部を示す側面図である。It is a side view which shows the gas introduction part which concerns on Embodiment 2 of this invention. この発明の実施の形態2に係るガス導入部を示す平面図である。It is a top view which shows the gas introduction part which concerns on Embodiment 2 of this invention.

実施の形態1.
以下に、この発明の実施の形態1を図1から図2Bに基づいて説明する。図1は、実施の形態1における積層造形装置を示す概略図である。積層造形装置100において、真空チャンバ1の上方に設置された電子銃室3、すなわち収納室には、電子銃2、すなわち電子ビーム照射手段が収納されている。電子銃2は真空チャンバ1の床部1aに対向しており、所定の走査範囲に対して電子ビームEBを照射するものである。電子銃室3の床部3aには電子銃室3と真空チャンバ1とを連通する開口部3bが設けられており、電子銃2から照射される電子ビームEBは開口部3bを介して真空チャンバ1内に照射される。開口部3bは図示しないシャッターによって開閉可能となっており、電子ビームEBが照射される時以外開口部3bを閉じることで真空チャンバ1と電子銃室3を遮断し、真空チャンバ1内の真空度を維持することが可能となっている。
Embodiment 1 FIG.
Embodiment 1 of the present invention will be described below with reference to FIGS. 1 to 2B. 1 is a schematic diagram showing an additive manufacturing apparatus according to Embodiment 1. FIG. In the additive manufacturing apparatus 100, an electron gun 2, that is, an electron beam irradiation means is accommodated in an electron gun chamber 3 installed above the vacuum chamber 1, that is, a storage chamber. The electron gun 2 is opposed to the floor 1a of the vacuum chamber 1, and irradiates the electron beam EB to a predetermined scanning range. An opening 3b that connects the electron gun chamber 3 and the vacuum chamber 1 is provided in the floor portion 3a of the electron gun chamber 3, and an electron beam EB irradiated from the electron gun 2 passes through the opening 3b to form a vacuum chamber. 1 is irradiated. The opening 3b can be opened and closed by a shutter (not shown), and the vacuum chamber 1 and the electron gun chamber 3 are shut off by closing the opening 3b except when the electron beam EB is irradiated. It is possible to maintain.

電子ビームEBは、電磁力によって偏向させることで照射箇所を操作可能である。また、電子ビームEBは電子銃2から床部1aまでの間で所定の広がり角度をもって広がる。実施の形態1では、電子ビームEBの照射先が走査範囲内を移動する際に電子ビームの経路が動く領域を電子ビームEBの通過領域とし、真空チャンバ1内の通過領域を通過領域S1、電子銃室3内の通過領域を通過領域S2としている。開口部3bの面積は、床部3aの高さにおける通過領域S2の水平断面積以上であり、電子ビームEBが通過領域S2内のどの経路を通っても、電子ビームEBが開口部3bを介して真空チャンバ1内に進入するようになっている。また、電子ビームEBの広がりは下方ほど大きいので、通過領域S1の水平断面積は、通過領域S2の水平断面積よりも大きい。   The electron beam EB can be operated at an irradiation position by being deflected by an electromagnetic force. Further, the electron beam EB spreads from the electron gun 2 to the floor 1a with a predetermined spread angle. In the first embodiment, a region where the electron beam path moves when the irradiation destination of the electron beam EB moves within the scanning range is defined as the electron beam EB passage region, and the passage region in the vacuum chamber 1 is defined as the passage region S1 and the electron. A passage region in the gun chamber 3 is defined as a passage region S2. The area of the opening 3b is equal to or larger than the horizontal cross-sectional area of the passing region S2 at the height of the floor 3a, and the electron beam EB passes through the opening 3b regardless of the path in the passing region S2. Then, it enters the vacuum chamber 1. In addition, since the spread of the electron beam EB is larger toward the lower side, the horizontal sectional area of the passing region S1 is larger than the horizontal sectional area of the passing region S2.

床部1aには、三次元積層造形物8の原料である粉末材料7が敷き詰められる造形領域部1bが電子ビームEBの走査範囲に形成されている。造形領域部1bの底面は、昇降機構6により高さを調整可能な作業土台5、すなわち載置台により形成されており、作業土台5を昇降させることにより造形領域部1bの深さが調整される。   On the floor portion 1a, a modeling region portion 1b on which the powder material 7 that is a raw material of the three-dimensional layered object 8 is spread is formed in the scanning range of the electron beam EB. The bottom surface of the modeling region portion 1b is formed by a work base 5 whose height can be adjusted by the lifting mechanism 6, that is, a mounting table, and the depth of the modeling region portion 1b is adjusted by raising and lowering the work base 5. .

床部1a上には、粉末ボックス91に収納された粉末材料7を作業土台5の上に敷き詰める粉末床形成機構92が設置されている。粉末床形成機構92は、造形領域部1bの上部を移動、往復しながら所定量の粉末材料7を造形領域部1b内に供給し、作業土台5の上に粉末材料7を敷き詰める。粉末ボックス91は、例えば直方体の箱体であり、粉末床形成機構92が下方に来ると粉末材料7を落下させ、粉末床形成機構92に粉末材料7を供給する。粉末材料7は、固化して三次元造形物を構成する粉末状の材料であり、電子銃2からの電子ビームEBが照射されることで溶融凝固又は焼結して固化する。粉末材料7は、例えばコバルトクロムモリブデン合金やチタン合金などの金属粒体の粉末材料であるが、これに限られるものではなく電子ビームEBの照射により溶融凝固又は焼結可能なものであればよい。   On the floor portion 1a, a powder bed forming mechanism 92 for installing the powder material 7 stored in the powder box 91 on the work base 5 is installed. The powder bed forming mechanism 92 supplies a predetermined amount of the powder material 7 into the modeling region 1b while moving and reciprocating in the upper part of the modeling region 1b, and spreads the powder material 7 on the work base 5. The powder box 91 is, for example, a rectangular parallelepiped box. When the powder bed forming mechanism 92 comes downward, the powder material 7 is dropped, and the powder material 7 is supplied to the powder bed forming mechanism 92. The powder material 7 is a powdery material that is solidified to form a three-dimensional structure, and is solidified by being melted or solidified or sintered by being irradiated with the electron beam EB from the electron gun 2. The powder material 7 is a powder material of metal particles such as a cobalt chromium molybdenum alloy or a titanium alloy, but is not limited thereto, and may be any material that can be melt solidified or sintered by irradiation with an electron beam EB. .

また、床部1aにはガス導入部10が設置されている。ガス導入部10は、造形領域部1bの近傍に配置され、噴出管104を介して電子ビームEBの通過領域S1に分子流状態の飛散防止ガスGを局所的に導入する。また、ガス導入部10は、真空チャンバ1の側壁に設けられたガス供給部13に配管103を介して接続されている。ガス供給部13は、真空チャンバ1の外部に設けられた容器12に配管102を介して接続されており、容器12に保持されている飛散防止ガスGをガス導入部10に供給する。容器12は、配管101を介して真空ポンプ11と接続されており、真空ポンプ11により減圧された飛散防止ガスGを保持している。   Moreover, the gas introduction part 10 is installed in the floor part 1a. The gas introduction unit 10 is disposed in the vicinity of the modeling region unit 1b, and locally introduces the scattering preventing gas G in a molecular flow state into the passage region S1 of the electron beam EB through the ejection tube 104. The gas introduction unit 10 is connected to a gas supply unit 13 provided on the side wall of the vacuum chamber 1 via a pipe 103. The gas supply unit 13 is connected to a container 12 provided outside the vacuum chamber 1 via a pipe 102, and supplies the anti-scattering gas G held in the container 12 to the gas introduction unit 10. The container 12 is connected to the vacuum pump 11 via the pipe 101, and holds the anti-scattering gas G decompressed by the vacuum pump 11.

ガス導入部10及びプレート4についてより詳細に説明する。図2A及び図2Bは、ガス導入部10を示す側面図及び平面図である。なお、実際はプレート4の周囲にも粉末材料7が敷き詰められるが、図2A及び図2Bではプレート4の周囲に敷き詰められる粉末材料を省略している。プレート4は、例えば断面正方形状の金属製のプレートであり、電子ビームEBが照射される範囲に溝部4aが設けられている。作業土台5の上に粉末材料7が敷き詰められる際には溝部4a内にも粉末材料7が敷き詰められ、1層目の粉末床71が形成される。   The gas introduction part 10 and the plate 4 will be described in more detail. 2A and 2B are a side view and a plan view showing the gas introduction unit 10. Note that the powder material 7 is actually spread around the plate 4, but the powder material spread around the plate 4 is omitted in FIGS. 2A and 2B. The plate 4 is, for example, a metal plate having a square cross section, and a groove 4a is provided in a range where the electron beam EB is irradiated. When the powder material 7 is spread on the work base 5, the powder material 7 is also spread in the groove 4 a to form the first powder bed 71.

ガス導入部10は、電子ビームEBの通過領域S1側の側面に複数の噴出管104が設けられている。それぞれの噴出管104は、例えば断面円形状の細管であり、床部1aから高さV1でガス導入部10に設けられ、ガス導入部10から電子ビームEBの通過領域S1に向かって延びている。噴出管104の通過領域S1側の端と溝部4aとの間は所定の距離H1離れている。複数の噴出管104は、プレート4の幅方向に沿って配列されており、その本数はプレート4の幅に合わせて設定され、噴出管104から噴出する飛散防止ガスGがプレート4の上部全体をカバーするようになっている。このため、電子ビームEBが通過領域S1内のどのような経路を通過しても、電子ビームEBが飛散防止ガスGを照射することとなり、電子ビームEBの照射によって飛散防止ガスGが陽イオン化される。なお、飛散防止ガスGとしては電子ビームEBの照射によって陽イオン化されるものであれば特に限られるものではないが、粉末材料の酸化を防ぐ観点から、アルゴンやヘリウムなどの不活性ガスを用いることが望ましい。   The gas introduction unit 10 is provided with a plurality of ejection tubes 104 on the side surface on the side of the passage region S1 of the electron beam EB. Each of the ejection pipes 104 is, for example, a thin tube having a circular cross section, is provided in the gas introduction part 10 at a height V1 from the floor 1a, and extends from the gas introduction part 10 toward the passage region S1 of the electron beam EB. . A predetermined distance H1 is provided between the end of the ejection pipe 104 on the passage area S1 side and the groove 4a. The plurality of ejection pipes 104 are arranged along the width direction of the plate 4, and the number of the ejection pipes 104 is set in accordance with the width of the plate 4, and the anti-scattering gas G ejected from the ejection pipe 104 spreads over the entire upper portion of the plate 4. It comes to cover. For this reason, the electron beam EB irradiates the anti-scattering gas G regardless of the path in the passage region S1, and the anti-scattering gas G is positively ionized by the irradiation of the electron beam EB. The The anti-scattering gas G is not particularly limited as long as it is cationized by irradiation with the electron beam EB, but from the viewpoint of preventing the oxidation of the powder material, an inert gas such as argon or helium is used. Is desirable.

飛散防止ガスGは、分子流として噴出管104から導入される。より具体的には、飛散防止ガスGの流れが粘性流であるか分子流であるかを示す指数であるクヌーセン数Kが、0.3より大きくなるように設定される。実施の形態1では、系の代表長を噴出管104の内径Dとしているので、クヌーセン数Kは、飛散防止ガスGの平均自由工程λ及び噴出管104の内径Dを用いてK=λ/Dで表される。クヌーセン数Kの設定は、平均自由工程λ及び噴出管104の内径Dを調整することで行う。平均自由工程λは飛散防止ガスGの圧力を調整することで調整可能である。クヌーセン数Kの調整のために内径Dを小さくする場合、内径Dの変化量に応じて噴出管104の本数を増やし、噴出管104全体の幅をプレート4の幅に合わせる。   The anti-scattering gas G is introduced from the ejection pipe 104 as a molecular flow. More specifically, the Knudsen number K which is an index indicating whether the flow of the anti-scattering gas G is a viscous flow or a molecular flow is set to be larger than 0.3. In the first embodiment, since the representative length of the system is the inner diameter D of the ejection pipe 104, the Knudsen number K is calculated by using the mean free path λ of the scattering prevention gas G and the inner diameter D of the ejection pipe 104, K = λ / D It is represented by The Knudsen number K is set by adjusting the mean free path λ and the inner diameter D of the ejection pipe 104. The mean free path λ can be adjusted by adjusting the pressure of the anti-scattering gas G. When the inner diameter D is reduced to adjust the Knudsen number K, the number of the ejection pipes 104 is increased in accordance with the amount of change in the inner diameter D, and the entire width of the ejection pipes 104 is adjusted to the width of the plate 4.

分子流として導入される飛散防止ガスGは、粘性流の場合のような拡散が起こることが抑制されており、図2Bに示すように噴出管104から直線的に流れるため、飛散防止ガスGは電子ビームEBの通過領域S1に局所的に導入される。   The anti-scattering gas G introduced as a molecular flow is suppressed from diffusing as in the case of a viscous flow and flows linearly from the ejection pipe 104 as shown in FIG. The electron beam EB is locally introduced into the passage region S1.

次に、動作について説明する。真空チャンバ1内を真空引きして真空チャンバ1内の真空度を安定させた後、プレート4の上面から床部1aの上面までの高さが粉末床71の1層分になるように作業土台5の高さを調整し、作業土台5に対して予熱用の電子ビームを照射することで作業土台5を加熱する。予熱用の電子ビームは、ビーム出力やビームフォーカス、ビーム走査速度などのビームパラメータを調整し、粉末材料を溶融凝固させる電子ビームEBよりも出力を抑制したものである。作業土台5の加熱後、作業土台5の上に粉末材料7を敷き詰める。この際、プレート4の溝部4aにも粉末材料7が敷き詰められ、1層目の粉末床71が形成される。1層目の粉末床71は、加熱された作業土台5からの熱伝導により予熱される。これにより1層目の粉末床71を形成する粉末材料が昇温するので、電子ビームEBの照射によって粉末材料が負に帯電し、粉末材料同士がクーロン力により反発して飛散することが抑制される。上記のような昇温によって粉末材料の飛散を抑制することができるのは、昇温に伴う電気抵抗の低下により電荷が導通し、粉末材料の帯電が抑制されるためである。   Next, the operation will be described. After the vacuum chamber 1 is evacuated to stabilize the degree of vacuum in the vacuum chamber 1, the working base is set so that the height from the upper surface of the plate 4 to the upper surface of the floor portion 1 a corresponds to one layer of the powder bed 71. The work base 5 is heated by adjusting the height 5 and irradiating the work base 5 with a preheating electron beam. The electron beam for preheating is one in which the output is suppressed more than the electron beam EB that melts and solidifies the powder material by adjusting beam parameters such as beam output, beam focus, and beam scanning speed. After the work base 5 is heated, the powder material 7 is spread on the work base 5. At this time, the powder material 7 is spread over the grooves 4 a of the plate 4 to form a first powder bed 71. The first powder bed 71 is preheated by heat conduction from the heated work base 5. As a result, the temperature of the powder material forming the first powder bed 71 rises, so that the powder material is negatively charged by the irradiation of the electron beam EB, and the powder materials are suppressed from being repelled and scattered by the Coulomb force. The The reason why the scattering of the powder material can be suppressed by the temperature increase as described above is that electric charges are conducted due to a decrease in electrical resistance accompanying the temperature increase, and charging of the powder material is suppressed.

粉末床71の予熱後、容器12に保持されている飛散防止ガスGをガス導入部10へ送り、噴出管104を通して飛散防止ガスGを電子ビームEBの通過領域S1に局所的に導入する。   After the powder bed 71 is preheated, the anti-scattering gas G held in the container 12 is sent to the gas introduction unit 10, and the anti-scattering gas G is locally introduced into the passage region S1 of the electron beam EB through the ejection pipe 104.

次に、予め設定した照射パターンに従って電子ビームEBを1層目の粉末床71に照射し、1層目の粉末床71の粉末材料を選択的に固化させる。この際、粉末床71の近傍では通過領域S1に導入された飛散防止ガスGが電子ビームEBに照射され、飛散防止ガスGと電子ビームEBの相互作用により陽イオンが生じる。この陽イオンは、電子ビームEBの照射により負に帯電した1層目の粉末床71の粉末材料7を電気的に中和する。1層目の粉末床71について粉末材料の固化が完了したら電子ビームEBの照射をやめ、作業土台5の高さを2層目の粉末床(図示なし)の厚さ分だけ下げて、1層目の場合と同様にして1層目の粉末床71の上に2層目の粉末床を形成する。2層目の粉末床は、電子ビームEBにより固化された1層目の粉末床71の余熱によって昇温するため、2層目の粉末床を形成する粉末材料が電子ビームEBの照射により負に帯電してクーロン力により反発し、粉末材料7が飛散することが抑制される。   Next, the first powder bed 71 is irradiated with an electron beam EB according to a preset irradiation pattern to selectively solidify the powder material of the first powder bed 71. At this time, in the vicinity of the powder bed 71, the scattering prevention gas G introduced into the passage region S1 is irradiated to the electron beam EB, and positive ions are generated by the interaction between the scattering prevention gas G and the electron beam EB. This cation electrically neutralizes the powder material 7 of the first powder bed 71 that is negatively charged by irradiation with the electron beam EB. When solidification of the powder material is completed for the first powder bed 71, the irradiation of the electron beam EB is stopped, and the height of the work base 5 is lowered by the thickness of the second powder bed (not shown). A second powder bed is formed on the first powder bed 71 as in the case of the eyes. The second powder bed is heated by the residual heat of the first powder bed 71 solidified by the electron beam EB, so that the powder material forming the second powder bed becomes negative by the irradiation of the electron beam EB. It is charged and repelled by Coulomb force, and scattering of the powder material 7 is suppressed.

2層目の粉末床の形成後、1層目の場合と同様に飛散防止ガスGを電子ビームEBの通過領域S1に局所的に導入し、電子ビームEBを照射して2層目の粉末床71の粉末材料を選択的に固化させる。なお、2層目の粉末床に対して電子ビームEBを照射する前に、予熱用の電子ビームを照射して2層目の粉末床を再予熱してもよい。3層目以降も同様にし、粉末床を積層しながら各層の粉末床を選択的に固化させる工程を繰り返すことにより、作業土台5の上に三次元積層造形物8を製造する。   After the formation of the second layer of powder bed, as in the case of the first layer, the scattering prevention gas G is locally introduced into the passage region S1 of the electron beam EB and irradiated with the electron beam EB to form the second layer of powder bed. 71 powder materials are selectively solidified. In addition, before irradiating the electron beam EB with respect to the 2nd layer powder bed, you may re-preheat the 2nd layer powder bed by irradiating the electron beam for preheating. In the same manner for the third and subsequent layers, the three-dimensional layered object 8 is manufactured on the work base 5 by repeating the step of selectively solidifying the powder bed of each layer while laminating the powder beds.

実施の形態1による効果について説明する。実施の形態1の効果を確認するため、飛散防止ガスGを局所的に導入する場合と導入しない場合とで、負に帯電した粉末材料がクーロン力により反発して飛散するときの電子ビームEBの電流値を「許容電流値」としてそれぞれ計測し、比較した。許容電流値の計測では、まず真空チャンバ1内の真空度を安定させ、金属粒体からなる粉末材料7を溝部4aに厚さ100μmで一様に敷き詰めた後、敷き詰められた粉末材料7に対して電子ビームEBを照射する。また、粉末材料の予熱は行わず、常温のままの粉末材料7に対して電子ビームEBを照射している。この条件の下、電子ビームEBの電流値を徐々に増加させていき、粉末材料の飛散が確認されたときの電子ビームEBの電流値を計測する。粉末材料7の飛散の有無の確認は、電子ビームEBの照射後の約2秒間、真空チャンバ1の覗き窓(図示なし)より真空チャンバ1内を目視確認することで行う。許容電流値の比較においては、飛散防止ガスGを局所的に導入する場合と導入しない場合で計測をそれぞれ複数回行い、平均値を算出して比較する。上記のようにして許容電流値を計測した結果、飛散防止ガスGを導入しない場合の許容電流値の平均値は約0.6mA、飛散防止ガスGを局所的に導入した場合の許容電流値の平均値は約1.1mAであり、局所的な飛散防止ガスGの導入により許容電流値が上昇する効果があることが確認できた。このような効果があるのは、飛散防止ガスGの導入が局所的なものであっても、通過領域S1に導入された飛散防止ガスGと電子ビームEBの相互作用によって生じた陽イオンにより、帯電した粉末材料7を電気的に中和されたためと考えられる。   The effect by Embodiment 1 is demonstrated. In order to confirm the effect of the first embodiment, the electron beam EB when the negatively charged powder material is repelled and scattered by the Coulomb force between the case where the scattering prevention gas G is introduced locally and the case where it is not introduced. The current values were measured as “allowable current values” and compared. In the measurement of the allowable current value, first, the degree of vacuum in the vacuum chamber 1 is stabilized, and the powder material 7 made of metal particles is uniformly spread over the groove portion 4a with a thickness of 100 μm, and then the spread powder material 7 is applied to the spread powder material 7 Then, the electron beam EB is irradiated. In addition, the powder material 7 is not preheated, and the electron beam EB is irradiated to the powder material 7 at room temperature. Under this condition, the current value of the electron beam EB is gradually increased, and the current value of the electron beam EB when the scattering of the powder material is confirmed is measured. The presence or absence of scattering of the powder material 7 is confirmed by visually confirming the inside of the vacuum chamber 1 from a viewing window (not shown) of the vacuum chamber 1 for about 2 seconds after irradiation with the electron beam EB. In the comparison of the allowable current value, the measurement is performed a plurality of times depending on whether the anti-scattering gas G is locally introduced or not introduced, and an average value is calculated and compared. As a result of measuring the allowable current value as described above, the average value of the allowable current value when the anti-scattering gas G is not introduced is about 0.6 mA, the allowable current value when the anti-scattering gas G is locally introduced. The average value was about 1.1 mA, and it was confirmed that there was an effect of increasing the allowable current value by introducing the local anti-scattering gas G. Even if the introduction of the scattering prevention gas G is local, such an effect is caused by the cations generated by the interaction between the scattering prevention gas G introduced into the passage region S1 and the electron beam EB. It is considered that the charged powder material 7 was electrically neutralized.

実施の形態1によれば、電子ビームの照射によって帯電した粉末材料同士が互いに反発して飛散することを防止しつつ、真空室内に導入される飛散防止ガスの量を低減することができる。より具体的には、電子ビームの照射によって陽イオン化する飛散防止ガスの分子流を電子ビームの通過領域に導入するガス導入部を備えたため、電子ビームの通過領域に飛散防止ガスを局所的に導入することが可能となっている。このため、真空チャンバ全体に飛散防止ガスを導入する必要がなく、真空室内に導入される飛散防止ガスの量が低減されている。導入される飛散防止ガスの量の低減は、飛散防止ガスに係るコストを低減するとともに、真空チャンバ内のガス分子の増加を抑制し、真空度の低下を抑制することができる。これにより、飛散防止ガスのガス分子と電子ビームの衝突による電子ビームのエネルギーの低下も抑制されるため、電子ビームへのエネルギー投入量の増加を抑制することができる。   According to the first embodiment, it is possible to reduce the amount of anti-scattering gas introduced into the vacuum chamber while preventing the powder materials charged by the electron beam irradiation from repelling each other and scattering. More specifically, it has a gas introduction part that introduces the molecular flow of the anti-scattering gas that is positively ionized by electron beam irradiation into the electron beam passage region, so that the anti-scattering gas is locally introduced into the electron beam passage region. It is possible to do. For this reason, it is not necessary to introduce the scattering prevention gas into the entire vacuum chamber, and the amount of the scattering prevention gas introduced into the vacuum chamber is reduced. The reduction in the amount of the anti-scattering gas introduced can reduce the cost associated with the anti-scattering gas, suppress an increase in gas molecules in the vacuum chamber, and suppress a decrease in the degree of vacuum. Thereby, since the fall of the energy of the electron beam by the collision of the gas molecule of scattering prevention gas and an electron beam is also suppressed, the increase in the energy input amount to an electron beam can be suppressed.

また、ガス導入部を真空チャンバの床部に設置したので、飛散防止ガスが粉末床の近傍に導入され、より効果的に粉末材料の飛散を防止することができる。   Moreover, since the gas introduction part is installed in the floor part of the vacuum chamber, the scattering prevention gas is introduced in the vicinity of the powder bed, and the scattering of the powder material can be more effectively prevented.

実施の形態2.
以下に、この発明の実施の形態2を図3から図4Bに基づいて説明する。なお、図1から図2Bと同一又は相当部分については同一の符号を付し、その説明を省略する。実施の形態2は、ガス導入部を電子銃室に設置した点が実施の形態2と異なる。図3は、実施の形態2における積層造形装置を示す概略図である。積層造形装置200において、電子銃室3の床部3aにはガス導入部20が設置されている。ガス導入部20は、開口部3bの近傍に配置され、噴出管204を介して電子ビームEBの通過領域S2に分子流状態の飛散防止ガスGを局所的に導入する。また、ガス導入部20は、電子銃室3の側壁に設けられたガス供給部23に配管203を介して接続されている。ガス供給部23は容器12に配管202を介して接続されており、容器12に保持されている飛散防止ガスGをガス導入部20に供給する。
Embodiment 2. FIG.
A second embodiment of the present invention will be described below with reference to FIGS. 3 to 4B. In addition, the same code | symbol is attached | subjected about FIG. 1 to FIG. The second embodiment is different from the second embodiment in that the gas introduction part is installed in the electron gun chamber. FIG. 3 is a schematic diagram showing an additive manufacturing apparatus in the second embodiment. In the additive manufacturing apparatus 200, a gas introduction unit 20 is installed on the floor 3 a of the electron gun chamber 3. The gas introduction unit 20 is disposed in the vicinity of the opening 3b, and locally introduces the anti-scattering gas G in the molecular flow state into the passage region S2 of the electron beam EB through the ejection tube 204. The gas introduction unit 20 is connected to a gas supply unit 23 provided on the side wall of the electron gun chamber 3 via a pipe 203. The gas supply unit 23 is connected to the container 12 via a pipe 202, and supplies the anti-scattering gas G held in the container 12 to the gas introduction unit 20.

ガス導入部20についてより詳細に説明する。図4A及び図4Bは、ガス導入部20を示す側面図及び平面図である。ガス導入部20は、開口部3b側の側面に複数の噴出管204が設けられている。噴出管204は、例えば断面円形状の複数の細管かであり、床部3aから高さV2でガス導入部20に設けられ、ガス導入部20側から開口部3bに向かって延びている。噴出管204の開口部3b側の端と開口部3bとの間は所定の距離H2離れている。複数の噴出管204は、開口部3bの幅方向に沿って配列されており、その本数は開口部3bの幅に合わせて設定され、噴出管204から噴出する飛散防止ガスGが開口部3bの上部全体をカバーするようになっている。このため、電子ビームEBが通過領域S2内のどのような経路を通過しても、電子ビームEBが飛散防止ガスGを照射することとなり、電子ビームEBの照射により飛散防止ガスGが陽イオン化される。
飛散防止ガスGが分子流として噴出管204から導入され、通過領域S2に局所的に導入される点は実施の形態1と同様である。また、クヌーセン数Kの調整のために噴出管204の内径Dを小さくする場合、内径Dの変化量に応じて噴出管204の本数を増やし、噴出管204全体の幅を開口部3bの幅に合わせる。
The gas introduction unit 20 will be described in more detail. 4A and 4B are a side view and a plan view showing the gas introduction unit 20. The gas introduction unit 20 is provided with a plurality of ejection pipes 204 on the side surface on the opening 3b side. The ejection pipe 204 is, for example, a plurality of thin tubes having a circular cross section, and is provided in the gas introduction part 20 at a height V2 from the floor 3a and extends from the gas introduction part 20 side toward the opening 3b. A predetermined distance H2 is provided between the end of the ejection pipe 204 on the opening 3b side and the opening 3b. The plurality of ejection pipes 204 are arranged along the width direction of the opening 3b. The number of the ejection pipes 204 is set in accordance with the width of the opening 3b, and the anti-scattering gas G ejected from the ejection pipe 204 is in the opening 3b. It covers the entire upper part. For this reason, the electron beam EB irradiates the scattering prevention gas G no matter what path the electron beam EB passes through, and the scattering prevention gas G is positively ionized by the irradiation of the electron beam EB. The
The point that the anti-scattering gas G is introduced as a molecular flow from the ejection pipe 204 and is locally introduced into the passage region S2 is the same as in the first embodiment. Further, when the inner diameter D of the ejection pipe 204 is reduced in order to adjust the Knudsen number K, the number of the ejection pipes 204 is increased in accordance with the amount of change in the inner diameter D, so that the entire width of the ejection pipe 204 becomes the width of the opening 3b. Match.

その他の構成については実施の形態1と同様であるので、その説明を省略する。   Since other configurations are the same as those of the first embodiment, description thereof is omitted.

次に、動作について説明する。実施の形態1と同様に、真空チャンバ1内の真空度を安定させ、作業土台5の高さを調整した後に作業土台5を予熱用の電子ビームで加熱する。作業土台5の加熱後、作業土台5の上、及びプレート4の溝部4aに粉末材料7を敷き詰め、溝部4a内に1層目の粉末床71を形成する。1層目の粉末床71は、作業土台5からの熱伝導により予熱される。粉末床71の予熱後、容器12に保持されている飛散防止ガスGをガス導入部20へ送り、噴出管204を通して飛散防止ガスGを電子ビームEBの通過領域S2に局所的に導入する。   Next, the operation will be described. As in the first embodiment, after the degree of vacuum in the vacuum chamber 1 is stabilized and the height of the work base 5 is adjusted, the work base 5 is heated with a preheating electron beam. After the work base 5 is heated, the powder material 7 is spread on the work base 5 and in the groove 4a of the plate 4 to form the first powder bed 71 in the groove 4a. The first powder bed 71 is preheated by heat conduction from the work base 5. After the powder bed 71 is preheated, the anti-scattering gas G held in the container 12 is sent to the gas introducing unit 20, and the anti-scattering gas G is locally introduced into the passage region S2 of the electron beam EB through the ejection pipe 204.

飛散防止ガスGを通過領域S2に導入した後、予め設定した照射パターンに従って電子ビームEBを1層目の粉末床71に照射する。この際、電子銃室3内の開口部3bの近傍にて飛散防止ガスGと電子ビームEBが相互作用して陽イオンが生じる。この陽イオンは、開口部3bを通って真空チャンバ1内に入り、1層目の粉末床71の近傍に達して、電子ビームEBの照射により負に帯電した1層目の粉末床71の粉末材料7を電気的に中和する。1層目の粉末床71について粉末材料の固化が完了したら電子ビームEBの照射をやめ、作業土台5の高さを2層目の粉末床(図示なし)の厚さ分だけ下げる。その後、1層目の場合と同様にして1層目の粉末床71の上に2層目の粉末床を形成する。以降については実施の形態1と同様であるので、その説明を省略する。   After introducing the anti-scattering gas G into the passage region S2, the first powder bed 71 is irradiated with the electron beam EB in accordance with a preset irradiation pattern. At this time, in the vicinity of the opening 3b in the electron gun chamber 3, the scattering preventing gas G and the electron beam EB interact to generate cations. The cations enter the vacuum chamber 1 through the opening 3b, reach the vicinity of the first powder bed 71, and are negatively charged by the irradiation with the electron beam EB. Material 7 is electrically neutralized. When solidification of the powder material is completed for the first powder bed 71, the irradiation of the electron beam EB is stopped, and the height of the work base 5 is lowered by the thickness of the second powder bed (not shown). Thereafter, a second powder bed is formed on the first powder bed 71 in the same manner as in the first layer. Since the subsequent steps are the same as those in the first embodiment, the description thereof is omitted.

実施の形態2によれば、実施の形態1と同様に飛散防止ガスの分子流を電子ビームの通過領域に導入するガス導入部を備えたため、電子ビームの照射によって帯電した粉末材料同士が互いに反発して飛散することを防止しつつ、真空室内に導入される飛散防止ガスの量を低減することができる。   According to the second embodiment, as in the first embodiment, since the gas introducing portion for introducing the molecular flow of the scattering prevention gas into the electron beam passage region is provided, the powder materials charged by the electron beam irradiation are repelled from each other. Thus, the amount of anti-scattering gas introduced into the vacuum chamber can be reduced while preventing the scattering.

また、導入する飛散防止ガスの量をさらに低減することができる。より具体的には、飛散防止ガスを電子ビームの通過領域に導入するガス導入部を電子銃室内に設置したため、ガス導入部に設けられた噴出管がカバーすべき幅が、実施の形態1よりも小さくなっている。これは、上述したように電子ビームは所定の広がり角度を持ち、下方ほど広がりが大きくなるためで、電子銃室内の通過領域の水平断面積は真空チャンバ内の通過領域の水平断面積よりも小さいためである。そして、噴出管がカバーすべき幅は電子ビームの通過領域の幅であるため、実施の形態2において噴出管がカバーすべき幅は、実施の形態1において噴出管がカバーする必要があった幅よりも小さく、噴出管の本数を削減できるとともに、導入する飛散防止ガスの量をさらに低減することが可能となっている。   Further, the amount of anti-scattering gas to be introduced can be further reduced. More specifically, since the gas introduction part for introducing the anti-scattering gas into the electron beam passage region is installed in the electron gun chamber, the width to be covered by the ejection pipe provided in the gas introduction part is greater than that of the first embodiment. Is also getting smaller. This is because, as described above, the electron beam has a predetermined spread angle, and the spread becomes larger downward, so that the horizontal cross-sectional area of the passage region in the electron gun chamber is smaller than the horizontal cross-sectional area of the passage region in the vacuum chamber. Because. Since the width to be covered by the ejection tube is the width of the electron beam passage region, the width to be covered by the ejection tube in the second embodiment is the width that the ejection tube needs to cover in the first embodiment. The number of ejection pipes can be reduced, and the amount of anti-scattering gas to be introduced can be further reduced.

また、この発明は、この発明の趣旨を逸脱しない範囲において、各実施の形態や構成を適宜組み合わせたり、構成を一部変形、省略したりすることが可能である。   Further, in the present invention, the embodiments and configurations can be appropriately combined, or the configurations can be partially modified or omitted without departing from the spirit of the present invention.

1 真空チャンバ、1a 床部、1b 造形領域部、2 電子銃、3 電子銃室、4 プレート、4a 溝部、5 作業土台、7 粉末材料、71 粉末床、8 三次元積層造形物、10、20 ガス導入部、104、204 噴出管、100、200 積層造形装置、EB 電子ビーム、G 飛散防止ガス、S1、S2 通過領域、 DESCRIPTION OF SYMBOLS 1 Vacuum chamber, 1a floor part, 1b modeling area part, 2 electron gun, 3 electron gun chamber, 4 plate, 4a groove part, 5 work foundation, 7 powder material, 71 powder bed, 8 three-dimensional layered object 10, 20 Gas introduction part, 104, 204 ejection pipe, 100, 200 additive manufacturing apparatus, EB electron beam, G scattering prevention gas, S1, S2 passage region,

Claims (4)

粉末材料により形成される粉末床を真空チャンバ内で積層しながら各層の粉末床を選択的に固化させる工程を繰り返すことにより三次元形状の造形物を製造する積層造形装置であって、
前記粉末材料を固化させる電子ビームを前記粉末床に照射する電子ビーム照射手段と、
前記電子ビームの走査範囲に設けられ、高さを調整可能な載置台と、
前記載置台に載置され、前記粉末床を形成する粉末床形成部と、
前記電子ビームの照射によって陽イオン化するガスの分子流を前記電子ビームの通過領域に導入するガス導入部と
を備えたことを特徴とする積層造形装置。
A layered modeling apparatus for manufacturing a three-dimensional shaped object by repeating a process of selectively solidifying a powder bed of each layer while laminating a powder bed formed of a powder material in a vacuum chamber,
Electron beam irradiation means for irradiating the powder bed with an electron beam for solidifying the powder material;
A mounting table provided in a scanning range of the electron beam, the height of which can be adjusted;
A powder bed forming part mounted on the mounting table and forming the powder bed;
An additive manufacturing apparatus comprising: a gas introduction unit that introduces a molecular flow of a gas that is positively ionized by irradiation of the electron beam into a region through which the electron beam passes.
前記ガス導入部は、前記粉末材料が敷き詰められる造形領域部を有する床部に設置されている請求項1に記載の積層造形装置。   The additive manufacturing apparatus according to claim 1, wherein the gas introduction unit is installed on a floor portion having a modeling region portion on which the powder material is spread. 前記ガス導入部は、前記電子ビーム照射手段を収納する収納室に設置されている請求項1に記載の積層造形装置。   The additive manufacturing apparatus according to claim 1, wherein the gas introduction unit is installed in a storage chamber that stores the electron beam irradiation unit. 前記分子流は、クヌーセン数が0.3より大きい請求項1から3のいずれか1項に記載の積層造形装置。   The additive manufacturing apparatus according to any one of claims 1 to 3, wherein the molecular flow has a Knudsen number greater than 0.3.
JP2018013245A 2018-01-30 2018-01-30 Laminated modeling equipment Active JP6960867B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018013245A JP6960867B2 (en) 2018-01-30 2018-01-30 Laminated modeling equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018013245A JP6960867B2 (en) 2018-01-30 2018-01-30 Laminated modeling equipment

Publications (2)

Publication Number Publication Date
JP2019131846A true JP2019131846A (en) 2019-08-08
JP6960867B2 JP6960867B2 (en) 2021-11-05

Family

ID=67544802

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018013245A Active JP6960867B2 (en) 2018-01-30 2018-01-30 Laminated modeling equipment

Country Status (1)

Country Link
JP (1) JP6960867B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021010242A1 (en) 2019-07-17 2021-01-21 三菱瓦斯化学株式会社 Polyester resin, and molded body, stretched film and bottle containing said polyester resin

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10275583A (en) * 1997-03-28 1998-10-13 Jeol Ltd Device for analyzing sample containing insulating material
JP2002134057A (en) * 2000-10-24 2002-05-10 Hitachi Ltd Scanning electron microscope
JP2010526694A (en) * 2007-05-15 2010-08-05 アルカム アーベー Method and apparatus for making a three-dimensional object

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10275583A (en) * 1997-03-28 1998-10-13 Jeol Ltd Device for analyzing sample containing insulating material
JP2002134057A (en) * 2000-10-24 2002-05-10 Hitachi Ltd Scanning electron microscope
JP2010526694A (en) * 2007-05-15 2010-08-05 アルカム アーベー Method and apparatus for making a three-dimensional object

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
千田 裕彦: "粘性流領域における真空排気の理論計算とその応用", 住友電工テクニカルレビュー, vol. 第176号, JPN6021027892, 2010, JP, pages 1 - 7, ISSN: 0004554259 *
高橋 主人: "真空技術者資格認定試験の問題解説", 真空技術, vol. 60, no. 2, JPN6021027890, 2017, JP, pages 72 - 74, ISSN: 0004554260 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021010242A1 (en) 2019-07-17 2021-01-21 三菱瓦斯化学株式会社 Polyester resin, and molded body, stretched film and bottle containing said polyester resin

Also Published As

Publication number Publication date
JP6960867B2 (en) 2021-11-05

Similar Documents

Publication Publication Date Title
US10821718B2 (en) Selective powder processing during powder bed additive manufacturing
US11103928B2 (en) Additive manufacturing using a mobile build volume
US12076789B2 (en) Additive manufacturing using a dynamically grown build envelope
US10799953B2 (en) Additive manufacturing using a mobile scan area
US10821516B2 (en) Large scale additive machine
US8784720B2 (en) Method and device for manufacturing a three-dimensional object that is suitable for application to microtechnology
JP2016108662A (en) Powder dispenser for creating component by additive manufacturing
KR20200009120A (en) Method and apparatus for increasing the resolution in additively manufactured three-dimensional articles
JP2017526815A (en) Additive manufacturing using laser and plasma
EP3486008B1 (en) Powder reduction apparatus
JP6639735B2 (en) 3D modeling equipment
JP2017529239A (en) Additive manufacturing using laser and gas flow
US20180369912A1 (en) Chemical vapor deposition during additive manufacturing
US10821519B2 (en) Laser shock peening within an additive manufacturing process
KR20100020942A (en) Method and device for producing three-dimensional objects
CN102240806A (en) Device and method for generative manufacturing of a three dimensional object with construction area limit
JP6216464B1 (en) Control method for three-dimensional additive manufacturing apparatus, control method for three-dimensional additive manufacturing apparatus, and control program for three-dimensional additive manufacturing apparatus
JP2015193883A (en) Three-dimensional laminate molding apparatus and three-dimensional laminate molding method
JP2023115028A (en) Additive manufacturing device and additive manufacturing method
JP2010255057A (en) Apparatus for forming shaped article with electron beam
US10981232B2 (en) Additive manufacturing using a selective recoater
WO2020126086A1 (en) Method and system for generating a three-dimensional workpiece
JP2019131846A (en) Laminate forming apparatus
JP7550624B2 (en) Three-dimensional modeling apparatus and method for manufacturing a model
RU2717761C1 (en) Apparatus for selective laser sintering and method of producing large-size articles on said apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200930

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20200930

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210720

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210914

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211012

R151 Written notification of patent or utility model registration

Ref document number: 6960867

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250