JP2019100638A - Expansion valve control sensor and refrigeration system using the same - Google Patents

Expansion valve control sensor and refrigeration system using the same Download PDF

Info

Publication number
JP2019100638A
JP2019100638A JP2017232992A JP2017232992A JP2019100638A JP 2019100638 A JP2019100638 A JP 2019100638A JP 2017232992 A JP2017232992 A JP 2017232992A JP 2017232992 A JP2017232992 A JP 2017232992A JP 2019100638 A JP2019100638 A JP 2019100638A
Authority
JP
Japan
Prior art keywords
expansion valve
refrigeration system
refrigerant
temperature
condenser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017232992A
Other languages
Japanese (ja)
Inventor
境 寿和
Toshikazu Sakai
寿和 境
堀尾 好正
Yoshimasa Horio
好正 堀尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2017232992A priority Critical patent/JP2019100638A/en
Priority to CN201880051913.2A priority patent/CN111033146A/en
Priority to PCT/JP2018/043672 priority patent/WO2019111771A1/en
Publication of JP2019100638A publication Critical patent/JP2019100638A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/39Dispositions with two or more expansion means arranged in series, i.e. multi-stage expansion, on a refrigerant line leading to the same evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

To save energy for a refrigeration system by optimally controlling an expansion valve, in a refrigeration system having limitation in refrigerant amount and heat radiation capability of a condenser.SOLUTION: An expansion valve control sensor includes: a micro resistance 20; an upstream temperature sensor 21 for detecting piping temperature on an upstream side of the micro resistance 20; a downstream temperature sensor 22 for detecting piping temperature on a downstream side of the micro resistance 20. An expansion valve 14 is controlled so as to maintain a state of an outlet of a condenser 12 substantially constant using the expansion valve control sensor 23 for detecting a temperature difference between the upstream temperature sensor 21 and the downstream temperature sensor 22.SELECTED DRAWING: Figure 1

Description

本発明は、絞り量を可変する膨張弁を制御するためのセンサ及びこれを搭載する冷凍システムに関するものである。   The present invention relates to a sensor for controlling an expansion valve that varies a throttle amount, and a refrigeration system equipped with the same.

省エネルギーの観点から、絞り量を可変する膨張弁を搭載した冷凍システムがある。   From the viewpoint of energy saving, there is a refrigeration system equipped with an expansion valve that can change the throttle amount.

以下、図面を参照しながら従来の冷凍システムを説明する。   Hereinafter, a conventional refrigeration system will be described with reference to the drawings.

図4は従来の冷凍システムの模式図、図5は従来の冷凍システムの膨張弁の制御方法を示した図である。   FIG. 4 is a schematic view of a conventional refrigeration system, and FIG. 5 is a view showing a control method of an expansion valve of the conventional refrigeration system.

図4において、冷凍システム40は、圧縮機41、凝縮器42、レシーバ43、膨張弁44、キャピラリーチューブ45、蒸発器46、吸入管47、内部熱交換部48、吸入管温度センサ49を有する。   In FIG. 4, the refrigeration system 40 includes a compressor 41, a condenser 42, a receiver 43, an expansion valve 44, a capillary tube 45, an evaporator 46, a suction pipe 47, an internal heat exchange unit 48, and a suction pipe temperature sensor 49.

ここで、レシーバ43は冷凍システム40内を循環する冷媒を液状態で貯留するものであり、膨張弁44の絞りを可変した際にレシーバ43内の液冷媒量が変動することで、凝縮器42や蒸発器46内部の冷媒量を適正に維持しながら、膨張弁44に流入する冷媒の過冷却度を略一定に保つ作用を有する。   Here, the receiver 43 stores the refrigerant circulating in the refrigeration system 40 in a liquid state, and when the throttling of the expansion valve 44 is changed, the amount of liquid refrigerant in the receiver 43 fluctuates. And the function of maintaining the degree of subcooling of the refrigerant flowing into the expansion valve 44 substantially constant while maintaining the amount of refrigerant inside the evaporator 46 properly.

また、膨張弁44とキャピラリーチューブ45を直列に配置して、冷凍システム40の絞りを構成することにより、キャピラリーチューブ45と吸入管47を熱交換する内部熱交換部48を実現することができ、吸入管47内を還流する低温冷媒のエンタルピーを回収して冷凍システム40の効率を向上することができる。   Further, by arranging the expansion valve 44 and the capillary tube 45 in series to constitute the throttling of the refrigeration system 40, it is possible to realize the internal heat exchange section 48 which exchanges heat between the capillary tube 45 and the suction pipe 47. The enthalpy of the low temperature refrigerant circulating in the suction pipe 47 can be recovered to improve the efficiency of the refrigeration system 40.

また、吸入管温度センサ49は内部熱交換部48を通過した後の吸入管47の温度を検知するものであり、吸入管温度センサ49が検知する温度に基づいて、膨張弁44の絞り量を可変することができる。   Further, the suction pipe temperature sensor 49 detects the temperature of the suction pipe 47 after passing through the internal heat exchange unit 48, and based on the temperature detected by the suction pipe temperature sensor 49, the throttling amount of the expansion valve 44 is detected. It can be variable.

以上のように構成された従来の冷凍システムについて以下にその動作を説明する。   The operation of the conventional refrigeration system configured as described above will be described below.

冷凍システム40を稼動させて冷却運転を行う際には、圧縮機41を運転する。圧縮機41で圧縮された冷媒は凝縮器42で放熱して凝縮し、レシーバ43に貯留される。そして、レシーバ43に滞留する液冷媒が膨張弁44とキャピラリーチューブ45で減圧された後、蒸発器46に供給されて蒸発し、吸入管47を介して圧縮機41へ還流する。このとき、蒸発器46で発生する冷熱を利用して冷却が行われる。   When the refrigeration system 40 is operated and the cooling operation is performed, the compressor 41 is operated. The refrigerant compressed by the compressor 41 dissipates heat by the condenser 42 and is condensed and stored in the receiver 43. Then, the liquid refrigerant remaining in the receiver 43 is depressurized by the expansion valve 44 and the capillary tube 45, and is then supplied to the evaporator 46 for evaporation, and is returned to the compressor 41 via the suction pipe 47. At this time, cooling is performed using cold heat generated by the evaporator 46.

ここで、冷凍システム40を用いて冷却する対象物(図示せず)の温度が低下して安定状態に近づくと、蒸発器46から供給する冷熱が余剰となり、吸入管47内に蒸発できなかった液冷媒が混入して、吸入管47の温度が低下していく。このとき、吸入管47内を還流する低温冷媒のエンタルピーを回収する内部熱交換部48を通過した後も吸入管47の温度が十分上昇せず、蒸発器46の温度に近づいていく。   Here, when the temperature of an object (not shown) to be cooled using the refrigeration system 40 decreases and approaches a stable state, cold heat supplied from the evaporator 46 becomes excessive and can not evaporate in the suction pipe 47 The liquid refrigerant mixes, and the temperature of the suction pipe 47 decreases. At this time, even after passing through the internal heat exchange section 48 which recovers the enthalpy of the low temperature refrigerant flowing back in the suction pipe 47, the temperature of the suction pipe 47 does not rise sufficiently and approaches the temperature of the evaporator 46.

この結果、利用されなかった蒸発器46で発生する冷熱が圧縮機41に還流することで、冷凍システム40の効率が低下するとともに、この状態が持続すると、液冷媒が還流して圧縮機41の耐久性が低下する懸念が生じる。そこで、冷凍システム40の効率低下や圧縮機41の耐久性低下を回避するために、吸入管温度センサ49が検知する温度に基づいて、膨張弁44の絞り量を制御する。   As a result, the cold heat generated by the evaporator 46 which is not utilized is returned to the compressor 41, whereby the efficiency of the refrigeration system 40 is reduced, and when this state continues, the liquid refrigerant is returned and the compressor 41 is There is a concern that durability may be reduced. Therefore, in order to avoid the efficiency decrease of the refrigeration system 40 and the durability decrease of the compressor 41, the throttling amount of the expansion valve 44 is controlled based on the temperature detected by the suction pipe temperature sensor 49.

次に、図5に基づいて従来の冷凍システムの膨張弁の制御方法について説明する。   Next, a control method of the expansion valve of the conventional refrigeration system will be described based on FIG.

図5の横軸は膨張弁44の絞り量に応じて発生する圧力損失であり、縦軸は吸入管温度センサ49が検知する吸入管47の温度Rである。前記したように、冷凍システム40を用いて冷却する対象物(図示せず)の温度が低下して安定状態に近づき、蒸発器46から供給する冷熱が余剰となって吸入管47の温度が低下してR1を下回った場合、膨張弁44の絞り量を所定量増大させる。この結果、蒸発器46の蒸発温度が低下して冷媒循環量を小さくなり蒸発器46から供給する冷凍能力を低下させるとともに、吸入管47へ流出していた液冷媒を余剰冷媒としてレシーバ43に回収することで吸入管47の温度を上昇させるものである。   The horizontal axis in FIG. 5 is the pressure loss generated in accordance with the amount of throttling of the expansion valve 44, and the vertical axis is the temperature R of the suction pipe 47 detected by the suction pipe temperature sensor 49. As described above, the temperature of the object (not shown) to be cooled using the refrigeration system 40 decreases and approaches a stable state, and the cold heat supplied from the evaporator 46 becomes excessive and the temperature of the suction pipe 47 decreases. When the pressure falls below R1, the throttling amount of the expansion valve 44 is increased by a predetermined amount. As a result, the evaporation temperature of the evaporator 46 decreases, the refrigerant circulation amount is reduced, and the refrigeration capacity supplied from the evaporator 46 is reduced, and the liquid refrigerant flowing out to the suction pipe 47 is recovered as surplus refrigerant in the receiver 43 By doing this, the temperature of the suction pipe 47 is raised.

一方、吸入管47の温度が上昇してR2を上回った場合、膨張弁44の絞り量を所定量減少させる。この結果、蒸発器46の蒸発温度が上昇して冷媒循環量を大きくなり蒸発器46から供給する冷凍能力を増大させるとともに、レシーバ43に回収していた余剰冷媒を蒸発器46に供給することで吸入管47の温度を下降させるものである。   On the other hand, when the temperature of the suction pipe 47 rises and exceeds R2, the throttling amount of the expansion valve 44 is decreased by a predetermined amount. As a result, the evaporation temperature of the evaporator 46 rises, the refrigerant circulation amount is increased, and the refrigeration capacity supplied from the evaporator 46 is increased, and the surplus refrigerant collected in the receiver 43 is supplied to the evaporator 46. The temperature of the suction pipe 47 is lowered.

このように膨張弁44の絞り量を制御することにより、吸入管47の温度RをR1からR2の間に維持することができ、冷凍システム40の効率低下や圧縮機41の耐久性低下を回避することができる。   Thus, by controlling the throttling amount of the expansion valve 44, the temperature R of the suction pipe 47 can be maintained between R1 and R2, and the efficiency reduction of the refrigeration system 40 and the durability reduction of the compressor 41 are avoided. can do.

特開平5−196321号公報JP-A-5-196321

しかしながら、従来の冷凍システムの構成では、吸入管温度センサ49の出力に基づいて膨張弁44の絞り量を制御するため、膨張弁44の絞り量によって変動する余剰冷媒量を自動的に調整するレシーバ43が必要であった。この結果、常にレシーバ43に余剰冷媒を保持するだけの冷媒量が必要になるとともに、レシーバ43を所定量の過冷却度に保つだけの放熱能力を有した凝縮器42が必要であった。そのため、可燃性冷媒を使用する家庭用冷蔵庫など冷媒量に制限がある冷凍システムでは膨張弁を使用することが困難であった。   However, in the configuration of the conventional refrigeration system, in order to control the throttling amount of the expansion valve 44 based on the output of the suction pipe temperature sensor 49, a receiver that automatically adjusts the surplus refrigerant amount that fluctuates with the throttling amount of the expansion valve 44 43 were required. As a result, the amount of refrigerant necessary to hold the surplus refrigerant is always required in the receiver 43, and a condenser 42 having a heat dissipating ability to keep the receiver 43 at a predetermined amount of subcooling is required. Therefore, it has been difficult to use the expansion valve in a refrigeration system having a limited amount of refrigerant such as a household refrigerator using a flammable refrigerant.

また、筐体の外郭から自然対流で放熱する凝縮器を使用する家庭用冷蔵庫など環境条件によって放熱能力が大きく変化する冷凍システムでは、凝縮器出口を所定の過冷却度に保つことができないので、膨張弁を使用することが困難であった。   In addition, in a refrigeration system whose heat dissipation capacity changes significantly depending on the environmental conditions, such as a household refrigerator that uses a condenser that dissipates heat by natural convection from the outer shell of the casing, the condenser outlet can not be maintained at a predetermined degree of subcooling. It was difficult to use the expansion valve.

そこで本発明は、冷媒量や凝縮器の放熱能力に制限がある冷凍システムにおいても膨張弁を用いて、この膨張弁の最適制御により冷凍システムの省エネルギー化を図ることを目的とする。   Therefore, an object of the present invention is to achieve energy saving of the refrigeration system by optimum control of the expansion valve using the expansion valve even in the refrigeration system having a restriction on the amount of refrigerant and the heat radiation capacity of the condenser.

この目的を達成するために、本発明は、微小抵抗と、前記微小抵抗の上流側の配管温度を検知する上流温度センサと、前記微小抵抗の下流側の配管温度を検知する下流温度センサとを有し、前記上流温度センサと前記下流温度センサの温度差を検出することを特徴とするものである。   In order to achieve this object, the present invention comprises a minute resistance, an upstream temperature sensor for detecting a piping temperature upstream of the small resistance, and a downstream temperature sensor for detecting a piping temperature downstream of the small resistance. And detecting a temperature difference between the upstream temperature sensor and the downstream temperature sensor.

本発明の膨張弁制御センサを搭載した冷凍システムは、膨張弁の最適制御により、冷凍システムの省エネルギー化を図ることができる。   The refrigeration system equipped with the expansion valve control sensor of the present invention can achieve energy saving of the refrigeration system by the optimum control of the expansion valve.

本発明の実施の形態1における冷凍システムの模式図Schematic diagram of the refrigeration system in the first embodiment of the present invention 本発明の実施の形態1における冷凍システムの膨張弁の制御方法を示した図The figure which showed the control method of the expansion valve of the refrigeration system in Embodiment 1 of this invention. 本発明の実施の形態1における冷凍システムの膨張弁制御センサの出力と冷媒流速との相関を示した図The figure which showed the correlation of the output of the expansion valve control sensor of the refrigeration system in Embodiment 1 of this invention, and a refrigerant | coolant flow velocity 従来の冷凍システムの模式図Schematic of conventional refrigeration system 従来の冷凍システムの膨張弁の制御方法を示した図Diagram showing control method of expansion valve of conventional refrigeration system

第1の発明は、微小抵抗と、前記微小抵抗の上流側の配管温度を検知する上流温度センサと、前記微小抵抗の下流側の配管温度を検知する下流温度センサとを有し、前記上流温度センサと前記下流温度センサの温度差を検出する膨張弁制御センサである。   The first invention has a minute resistance, an upstream temperature sensor for detecting a piping temperature upstream of the small resistance, and a downstream temperature sensor for detecting a piping temperature downstream of the small resistance, the upstream temperature The expansion valve control sensor detects a temperature difference between the sensor and the downstream temperature sensor.

これによって、微小抵抗を通過する冷媒の流速や乾き度などの状態変化を相対的に検知することができ、その結果、冷凍システムの省エネルギー化を図ることができる。   As a result, it is possible to relatively detect changes in the flow rate and dryness of the refrigerant passing through the minute resistance, and as a result, energy saving of the refrigeration system can be achieved.

第2の発明は、少なくとも凝縮器と、膨張弁とを有し、前記凝縮器の下流側に第1の発明の膨張弁制御センサを配置し、前記膨張弁制御センサの下流側に前記膨張弁を配置することを特徴とする冷凍システムである。   A second invention has at least a condenser and an expansion valve, and the expansion valve control sensor of the first invention is disposed downstream of the condenser, and the expansion valve is downstream of the expansion valve control sensor. A refrigeration system characterized in that

これによって、凝縮器出口の状態を略一定に保つように膨張弁を制御することができ、冷凍システムの省エネルギー化を図ることができる。   As a result, the expansion valve can be controlled to keep the state of the condenser outlet substantially constant, and energy saving of the refrigeration system can be achieved.

第3の発明は、第2の発明において、少なくとも圧縮機と、凝縮器と、膨張弁と、キャピラリーチューブとを有し、前記膨張弁の下流側にキャピラリーチューブを配置し、前記膨張弁の絞り量を最小にして前記圧縮機を起動した後、膨張弁制御センサから得られる温度差を所定値に近づけるように、前記膨張弁を徐々に絞るように制御することを特徴とするものである。   A third invention according to the second invention comprises at least a compressor, a condenser, an expansion valve, and a capillary tube, and a capillary tube is disposed downstream of the expansion valve, and the expansion valve is throttled. After activating the compressor with the amount minimized, the expansion valve is controlled to be gradually narrowed so as to bring the temperature difference obtained from the expansion valve control sensor close to a predetermined value.

これによって、膨張弁の絞り量を最小にした時に予測される凝縮器出口の状態に基づいて、膨張弁制御センサから得られる温度差の目標値を相対的に決定することができ、より最適に膨張弁の制御することができ、その結果、冷凍システムの省エネルギー化を図ることができる。   As a result, the target value of the temperature difference obtained from the expansion valve control sensor can be relatively determined based on the state of the condenser outlet predicted when the expansion valve throttle amount is minimized, and more optimally The expansion valve can be controlled, and as a result, energy saving of the refrigeration system can be achieved.

以下、本発明の実施の形態について、図面を参照しながら説明するが、従来例と同一構成については同一符号を付して、その詳細な説明は省略する。なお、この実施の形態によってこの発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. The same reference numerals are given to the same components as those of the conventional example, and the detailed description thereof will be omitted. The present invention is not limited by the embodiment.

(実施の形態1)
図1は本発明の実施の形態1における冷凍システムの模式図、図2は同実施の形態1における冷凍システムの膨張弁の制御方法を示した図、図3は同実施の形態1における冷凍システムの膨張弁制御センサの出力と冷媒流速の相関を示した図である。
Embodiment 1
FIG. 1 is a schematic view of a refrigeration system according to a first embodiment of the present invention, FIG. 2 is a view showing a method of controlling an expansion valve of the refrigeration system according to the first embodiment, and FIG. 3 is a refrigeration system according to the first embodiment It is the figure which showed the correlation of the output of the expansion valve control sensor of 1, and a refrigerant | coolant flow velocity.

図1において、冷凍システム10は、圧縮機11、凝縮器12、ドライヤ13、膨張弁14、キャピラリーチューブ15、蒸発器16、アキュームレータ17、吸入管18、内部熱交換部19を有する。また、冷凍システム10は、微小抵抗20、上流温度センサ21及び下流温度センサ22からなる膨張弁制御センサ23を有する。   In FIG. 1, the refrigeration system 10 includes a compressor 11, a condenser 12, a dryer 13, an expansion valve 14, a capillary tube 15, an evaporator 16, an accumulator 17, a suction pipe 18, and an internal heat exchange unit 19. In addition, the refrigeration system 10 includes an expansion valve control sensor 23 including a minute resistor 20, an upstream temperature sensor 21 and a downstream temperature sensor 22.

ここで、ドライヤ13は、冷凍システム10内を循環する冷媒を乾燥するものであり、液冷媒と効率よく接触するために凝縮器12の下流に配置する。   Here, the dryer 13 is for drying the refrigerant circulating in the refrigeration system 10, and is disposed downstream of the condenser 12 in order to contact the liquid refrigerant efficiently.

また、アキュームレータ17は、安定状態における余剰冷媒を貯留するものであり、蒸発器16と略同一の温度に保持するために蒸発器16の下流に配置する。冷凍システム10を用いて冷却する対象物(図示せず)の温度が上昇すると、アキュームレータ17に貯留される余剰冷媒量が減少して冷凍システム10内の冷媒循環量が増大することで冷凍能力を増加させる。一般に、筐体の外郭から自然対流で放熱する家庭用冷蔵庫など環境条件によって放熱能力が大きく変化する冷凍システムでは、レシーバを用いて冷凍システムの高圧側に余剰冷媒を貯留することができないので、本実施の形態1と同様に、アキュームレータを用いて冷凍システムの低圧側に余剰冷媒を貯留する。また、アキュームレータに貯留する余剰冷媒量は冷凍システム内の全冷媒量の10〜30%程度であり、比較的少量で冷凍能力を調整する機能が得られるので、全冷媒量を抑制するために有効である。   In addition, the accumulator 17 stores surplus refrigerant in a stable state, and is disposed downstream of the evaporator 16 in order to maintain the temperature substantially the same as that of the evaporator 16. When the temperature of an object (not shown) to be cooled using the refrigeration system 10 rises, the amount of surplus refrigerant stored in the accumulator 17 decreases and the amount of refrigerant circulating in the refrigeration system 10 increases, thereby increasing the refrigeration capacity. increase. Generally, in a refrigeration system whose heat dissipation capacity changes significantly depending on the environmental conditions, such as a household refrigerator that dissipates heat from the enclosure of the casing by natural convection, excess receiver can not be stored on the high pressure side of the refrigeration system. As in the first embodiment, surplus refrigerant is stored on the low pressure side of the refrigeration system using an accumulator. Moreover, since the surplus refrigerant amount stored in the accumulator is about 10 to 30% of the total refrigerant amount in the refrigeration system, and the function of adjusting the refrigeration capacity can be obtained with a relatively small amount, it is effective to suppress the total refrigerant amount. It is.

また、膨張弁14とキャピラリーチューブ15を直列に配置して、冷凍システム10の絞りを構成することにより、キャピラリーチューブ15と吸入管18を熱交換する内部熱交換部19を実現することができ、吸入管18内を還流する低温冷媒のエンタルピーを回収して冷凍システム10の効率を向上することができる。   Further, by arranging the expansion valve 14 and the capillary tube 15 in series to constitute the throttling of the refrigeration system 10, it is possible to realize the internal heat exchange unit 19 which exchanges heat between the capillary tube 15 and the suction pipe 18 The enthalpy of the low temperature refrigerant flowing back in the suction pipe 18 can be recovered to improve the efficiency of the refrigeration system 10.

また、膨張弁制御センサ23を構成する微小抵抗20は長さ250mmの細径管からなり、直列配置された微小抵抗20、膨張弁14及びキャピラリーチューブ15の全抵抗の約5%に相当する抵抗を有する。全抵抗に対する微小抵抗20の比率は、1〜20%が望ましい。1%未満では内部を流れる冷媒の状態変化を検知することが困難となる。20%超では内部熱交換19の熱交換が不十分となり、冷凍システムの効率が低下する。ここで、全抵抗に対する微小抵抗20の比率は、それぞれの抵抗を同じ内径のキャピラリーチューブで代替した時の長さの比率で示したものである。   The minute resistance 20 constituting the expansion valve control sensor 23 is a small diameter tube having a length of 250 mm, and the resistance equivalent to about 5% of the total resistance of the minute resistance 20, the expansion valve 14 and the capillary tube 15 arranged in series. Have. The ratio of the minute resistance 20 to the total resistance is desirably 1 to 20%. If it is less than 1%, it becomes difficult to detect a change in the state of the refrigerant flowing inside. If it exceeds 20%, the heat exchange of the internal heat exchange 19 is insufficient, and the efficiency of the refrigeration system is reduced. Here, the ratio of the minute resistance 20 to the total resistance is shown by the ratio of the length when each resistance is replaced with a capillary tube of the same inner diameter.

また、膨張弁制御センサ23を構成する上流温度センサ21及び下流温度センサ22は、それぞれ微小抵抗20の上流側の配管温度及び下流側の配管温度を検知するものであり、微小抵抗20の内部を流れる冷媒の状態変化に応じて上流温度センサ21と下流温度センサ22が検知する温度の差が変化するものである。従って、上流温度センサ21と下流温度センサ22が検知する温度の差に基づいて膨張弁14の絞り量を可変することにより、冷凍システム10を所定の状態に制御することができる。   Further, the upstream temperature sensor 21 and the downstream temperature sensor 22 constituting the expansion valve control sensor 23 detect the pipe temperature on the upstream side and the pipe temperature on the downstream side of the minute resistor 20, respectively. The difference between the temperatures detected by the upstream temperature sensor 21 and the downstream temperature sensor 22 changes in accordance with the state change of the flowing refrigerant. Therefore, the refrigeration system 10 can be controlled to a predetermined state by varying the throttling amount of the expansion valve 14 based on the difference between the temperatures detected by the upstream temperature sensor 21 and the downstream temperature sensor 22.

以上のように構成された本発明の実施の形態1の冷凍システムについて以下にその動作を説明する。   The operation of the refrigeration system according to the first embodiment of the present invention configured as described above will be described below.

冷凍システム10を稼動させて冷却運転を行う際には、膨張弁14の絞り量を最小とし圧縮機11を運転する。圧縮機11で圧縮された冷媒は凝縮器12で放熱して凝縮した後、ドライヤ13で乾燥される。そして、膨張弁制御センサ23を通過した後、膨張弁14とキャピラリーチューブ15で減圧された後、蒸発器16に供給されて蒸発し、吸入管18を介して圧縮機11へ還流する。このとき、蒸発器16で発生する冷熱を利用して冷却が行われる。   When the refrigeration system 10 is operated to perform the cooling operation, the compressor 11 is operated with the throttling amount of the expansion valve 14 minimized. The refrigerant compressed by the compressor 11 dissipates heat by the condenser 12 and is then condensed by the dryer 13. Then, after passing through the expansion valve control sensor 23, the pressure is reduced by the expansion valve 14 and the capillary tube 15, and then supplied to the evaporator 16 for evaporation and refluxing to the compressor 11 through the suction pipe 18. At this time, cooling is performed using cold heat generated by the evaporator 16.

ここで、膨張弁14の絞り量を最小とし圧縮機11を運転した状態で、対象物(図示せず)の温度が低下して安定状態に近づくと、凝縮器12の出口冷媒は2相状態(望ましくは、乾き度3〜10重量%)となる。これは、冷却する対象物(図示せず)の温度が上昇して、アキュームレータ17に貯留される余剰冷媒量が減少し冷凍システム10内の冷媒循環量が増大した場合でも、凝縮器12の出口冷媒が過冷却とならないように、直列配置された微小抵抗20、膨張弁14及びキャピラリーチューブ15の全抵抗と冷凍システム10内の全冷媒量を設計しているためである。一般に、筐体の外郭から自然対流で放熱する家庭用冷蔵庫など環境条件によって放熱能力が大きく変化する冷凍システムにおいて、凝縮器の出口冷媒が過冷却になるように設計すると、環境条件によって放熱能力が増大した際に冷凍システム内のほぼすべての冷媒が凝縮器に滞留して、冷媒循環量が異常に低下する懸念が生じる。また、環境条件によって放熱能力が減少した際に凝縮器で凝縮できなかった余剰冷媒がアキュームレータに貯留しきれなくなって吸入管から圧縮機へ還流することで、圧縮機の耐久性が低下する懸念が生じる。   Here, in a state where the expansion amount of expansion valve 14 is minimized and compressor 11 is operated, when the temperature of an object (not shown) decreases and approaches a stable state, the refrigerant at the outlet of condenser 12 is in a two-phase state (Desirably, the dryness is 3 to 10% by weight). This is because the temperature of the object to be cooled (not shown) rises, the amount of surplus refrigerant stored in the accumulator 17 decreases, and the amount of refrigerant circulation in the refrigeration system 10 increases, the outlet of the condenser 12 This is because the total resistance of the minute resistor 20, the expansion valve 14 and the capillary tube 15 arranged in series and the total amount of refrigerant in the refrigeration system 10 are designed so that the refrigerant does not become subcooled. Generally, in a refrigeration system whose heat dissipation capacity changes significantly depending on the environmental conditions such as a household refrigerator that dissipates heat from the outer shell of the casing by natural convection, if the refrigerant at the outlet of the condenser is designed to be supercooled, the heat dissipation capacity is When it increases, almost all the refrigerant in the refrigeration system stays in the condenser, causing a concern that the refrigerant circulation amount may be abnormally reduced. In addition, there is a concern that the durability of the compressor may be reduced by the excess refrigerant which could not be condensed by the condenser when the heat radiation capacity is reduced due to environmental conditions, because the accumulator can not be stored enough and recirculated from the suction pipe to the compressor. It occurs.

そして、膨張弁制御センサ23が検知する微小抵抗20の前後の温度差が所定値あるいは、膨張弁14の絞り量を最小に保った安定状態に比べて所定量変化するように、膨張弁14の絞り量を制御する。この結果、凝縮器12の出口冷媒の乾き度が減少することで、冷凍効果が増大して冷凍システム10の効率を向上することができる。   Then, the temperature difference of the small resistance 20 detected by the expansion valve control sensor 23 changes a predetermined value or a predetermined amount as compared with the stable state in which the expansion amount of the expansion valve 14 is kept at a minimum. Control the amount of aperture. As a result, the dryness of the refrigerant at the outlet of the condenser 12 is reduced, so that the refrigeration effect can be increased and the efficiency of the refrigeration system 10 can be improved.

次に、図2及び図3に基づいて本発明の実施の形態1の冷凍システムの膨張弁の制御方法について説明する。   Next, a method of controlling the expansion valve of the refrigeration system according to the first embodiment of the present invention will be described based on FIGS. 2 and 3.

図2の横軸は膨張弁14の絞り量に応じて発生する圧力損失であり、縦軸は膨張弁制御センサ23が検知する微小抵抗20の前後の温度差Sである。前記したように、膨張弁14の絞り量を最小とし圧縮機11を運転した状態で、冷凍システム10を用いて冷却する対象物(図示せず)の温度が低下して安定状態に近づくと、凝縮器12の出口冷媒は2相状態となる。このとき、膨張弁制御センサ23の出力はS0を示す。そして、膨張弁制御センサ23の出力がS2を下回るように膨張弁14の絞り量を増加させる。この結果、凝縮器12の出口冷媒の乾き度が減少することで、冷凍効果が増大して冷凍システム10の効率を向上することができる。   The horizontal axis of FIG. 2 is a pressure loss generated according to the amount of restriction of the expansion valve 14, and the vertical axis is a temperature difference S before and after the minute resistance 20 detected by the expansion valve control sensor 23. As described above, when the temperature of an object (not shown) to be cooled using the refrigeration system 10 decreases and approaches a stable state while the compressor 11 is operated with the amount of throttling of the expansion valve 14 minimized. The refrigerant at the outlet of the condenser 12 is in a two-phase state. At this time, the output of the expansion valve control sensor 23 indicates S0. Then, the throttling amount of the expansion valve 14 is increased so that the output of the expansion valve control sensor 23 falls below S2. As a result, the dryness of the refrigerant at the outlet of the condenser 12 is reduced, so that the refrigeration effect can be increased and the efficiency of the refrigeration system 10 can be improved.

一方、凝縮器12の出口冷媒の乾き度が減少し続け膨張弁制御センサ23の出力がS1を下回った場合、膨張弁14の絞り量を減少させる。この結果、膨張弁制御センサ23の出力がS1からS2を示す状態に安定させることができる。膨張弁制御センサ23の出力に下限値S1を設けたのは、膨張弁14を絞り過ぎると凝縮器12の出口冷媒が過冷却状態となり、冷凍システム10内のほぼすべての冷媒が凝縮器12に滞留して、冷媒循環量が異常に低下する懸念が生じるためである。   On the other hand, when the dryness of the refrigerant at the outlet of the condenser 12 continues to decrease and the output of the expansion valve control sensor 23 falls below S1, the throttling amount of the expansion valve 14 is reduced. As a result, the output of the expansion valve control sensor 23 can be stabilized in the state of S1 to S2. The lower limit value S1 is provided for the output of the expansion valve control sensor 23 because if the expansion valve 14 is throttled too much, the refrigerant at the outlet of the condenser 12 becomes supercooled and almost all the refrigerant in the refrigeration system 10 It is because there is a concern that the refrigerant circulation amount is abnormally reduced due to stagnation.

図3の横軸は、図2の縦軸と同じ膨張弁制御センサ23が検知する微小抵抗20の前後の温度差Sであり、図3の縦軸は、微小抵抗20内を通過する冷媒の流速Vである。前記したように、膨張弁制御センサ23の出力がS0を示した状態から膨張弁14の絞り量を増加させると、凝縮器12の出口冷媒の乾き度が減少して微小抵抗20内を通過する冷媒の流速Vが遅くなり、結果として、膨張弁制御センサ23の出力がS0からS2へ低下する。同様に、膨張弁14の絞り量を調整して膨張弁制御センサ23の出力がS1からS2を示す状態に安定させると、凝縮器12の出口冷媒の乾き度が零近傍(望ましくは、乾き度0〜1重量%)で安定し、冷媒の流速Vが最小値近傍で安定する。これは、冷凍システム10が安定状態では冷媒循環量が略一定となるので、凝縮器12の出口冷媒が液相になると微小抵抗20内を通過する冷媒の流速Vが略最小となるとともに、凝縮器12の出口冷媒の乾き度が増加するに従い、微小抵抗20内を通過する冷媒の流速Vが増加するためである。また一般に、液相に対する気相の比容積は50倍程度と大きいため、乾き度が0〜10重量%の微小抵抗20内を通過する冷媒の流速Vの変化量が大きく、特にこの範囲では膨張弁制御センサ23による凝縮器12の出口冷媒の状態を検知しやすいといえる。   The horizontal axis in FIG. 3 is the temperature difference S before and after the minute resistance 20 detected by the expansion valve control sensor 23 which is the same as the vertical axis in FIG. 2. The vertical axis in FIG. It is the flow velocity V. As described above, when the throttling amount of the expansion valve 14 is increased from the state where the output of the expansion valve control sensor 23 indicates S0, the dryness of the refrigerant at the outlet of the condenser 12 decreases and passes through the minute resistance 20 As a result, the output of the expansion valve control sensor 23 decreases from S0 to S2. Similarly, when the expansion amount of the expansion valve 14 is adjusted to stabilize the output of the expansion valve control sensor 23 in the state of S1 to S2, the dryness of the refrigerant at the outlet of the condenser 12 is near zero (desirably, the dryness is desirable It is stable at 0 to 1% by weight, and the flow velocity V of the refrigerant stabilizes near the minimum value. This is because the refrigerant circulation amount is substantially constant when the refrigeration system 10 is in a stable state, and therefore, when the refrigerant at the outlet of the condenser 12 is in the liquid phase, the flow velocity V of the refrigerant passing through the minute resistance 20 is substantially minimized As the dryness of the refrigerant at the outlet of the vessel 12 increases, the flow velocity V of the refrigerant passing through the minute resistance 20 increases. Generally, the specific volume of the gas phase to the liquid phase is as large as about 50 times, so the amount of change in the flow velocity V of the refrigerant passing through the minute resistance 20 with a dryness of 0 to 10% by weight is large. It can be said that it is easy to detect the state of the outlet refrigerant of the condenser 12 by the valve control sensor 23.

このように膨張弁制御センサ23の出力に応じて膨張弁14の絞り量を制御することにより、凝縮器12の出口冷媒の乾き度が零近傍(望ましくは、乾き度0〜1重量%)で安定させ、冷凍効果が増大して冷凍システム10の効率を向上することができる。   Thus, by controlling the throttling amount of the expansion valve 14 according to the output of the expansion valve control sensor 23, the dryness of the refrigerant at the outlet of the condenser 12 is near zero (desirably, the dryness is 0 to 1% by weight). The stability can be enhanced and the refrigeration effect can be increased to improve the efficiency of the refrigeration system 10.

以上のように、本実施の形態1の冷凍システムは、微小抵抗とその前後の温度差を検知する温度センサからなる膨張弁制御センサを用いて凝縮器出口の状態を略一定に保つように膨張弁を制御することにより、凝縮器出口にレシーバを有しない冷凍システムにおいて膨張弁の最適制御を行うことができ、冷凍システムの省エネルギー化を図るとともに、圧縮機の耐久性低下を回避することができる。   As described above, the refrigeration system according to the first embodiment uses the expansion valve control sensor including the minute resistance and the temperature sensor for detecting the temperature difference between the small resistance and the expansion so as to keep the state of the condenser outlet substantially constant. By controlling the valve, optimum control of the expansion valve can be performed in the refrigeration system having no receiver at the condenser outlet, energy saving of the refrigeration system can be achieved, and deterioration in the durability of the compressor can be avoided. .

なお、本実施の形態1では膨張弁制御センサ23の出力をS1からS2の所定値になるように膨張弁14の絞り量を調整したが、膨張弁14の絞り量を最小に保った安定状態に比べて所定量変化するように膨張弁14の絞り量を調整してもよい。冷凍システム10の周囲温度などの環境条件や凝縮温度や蒸発温度などの圧縮機11の運転条件から、安定状態における凝縮器12の出口冷媒の乾き度及び膨張弁制御センサ23の出力が予め想定することができれば、その条件における最適な凝縮器12の出口冷媒の乾き度及び膨張弁制御センサ23の出力を推定することができ、膨張弁14をより精度よく調整することができる。一般に、冷凍システムは予め想定した環境条件や運転条件において、凝縮器の出口冷媒が過冷却とならないように、冷凍システムの全抵抗と全冷媒量を設計しているため、膨張弁の絞り量を最小に保った安定状態であれば凝縮器の出口冷媒の乾き度を想定することは可能である。   In the first embodiment, the throttling amount of the expansion valve 14 is adjusted so that the output of the expansion valve control sensor 23 becomes a predetermined value from S1 to S2. The throttling amount of the expansion valve 14 may be adjusted so as to change by a predetermined amount as compared with. The dryness of the refrigerant at the outlet of the condenser 12 in the stable state and the output of the expansion valve control sensor 23 are assumed in advance from environmental conditions such as the ambient temperature of the refrigeration system 10 and operating conditions of the compressor 11 such as condensing temperature and evaporation temperature. If it is possible, it is possible to estimate the optimum dryness of the refrigerant at the outlet of the condenser 12 and the output of the expansion valve control sensor 23 under the conditions, and adjust the expansion valve 14 more accurately. In general, the refrigeration system is designed so that the total resistance and the total refrigerant quantity of the refrigeration system are designed so that the refrigerant at the outlet of the condenser does not become supercooled under the environmental conditions and operating conditions assumed in advance. It is possible to assume the dryness of the refrigerant at the outlet of the condenser if it is in a stable state kept to a minimum.

なお、本実施の形態1では長さ250mmの細径管からなり、直列配置された微小抵抗20、膨張弁14及びキャピラリーチューブ15の全抵抗の約5%となる微小抵抗20を用いたが、全抵抗に対する微小抵抗20の比率が1〜20%であれば、細径管あるいは微小なオリフィスなどで微小抵抗20を構成しても同様の効果を得ることができる。   In the first embodiment, although the minute resistance 20 consisting of a small diameter tube having a length of 250 mm is used, the minute resistance 20 which is approximately 5% of the total resistance of the minute resistance 20, the expansion valve 14 and the capillary tube 15 arranged in series is used. If the ratio of the minute resistance 20 to the total resistance is 1 to 20%, the same effect can be obtained even if the minute resistance 20 is configured by a small diameter tube or a minute orifice.

以上のように、本発明にかかる冷凍システムは、筐体の外郭から自然対流で放熱する家庭用冷蔵庫など環境条件によって放熱能力が大きく変化する冷凍システムや、冷媒量に制限がある可燃性冷媒などを使用した冷凍システムにおいても膨張弁を用いることができ、この膨張弁を最適に制御することができるので、冷凍冷蔵応用商品に適用できる。   As described above, the refrigeration system according to the present invention includes a refrigeration system whose heat dissipating capacity changes greatly depending on the environmental conditions such as a household refrigerator which dissipates heat by natural convection from the outer shell of the casing, and a flammable refrigerant which has a limited amount of refrigerant The expansion valve can also be used in a refrigeration system using the above, and the expansion valve can be optimally controlled, so that it can be applied to refrigeration and refrigeration applied goods.

10 冷凍システム
11 圧縮機
12 凝縮器
13 ドライヤ
14 膨張弁
15 キャピラリーチューブ
16 蒸発器
18 吸入管
19 内部熱交換部
20 微小抵抗
21 上流温度センサ
22 下流温度センサ
23 膨張弁制御センサ
DESCRIPTION OF SYMBOLS 10 Refrigeration system 11 Compressor 12 Condenser 13 Dryer 14 Expansion valve 15 Capillary tube 16 Evaporator 18 Intake pipe 19 Internal heat exchange part 20 Small resistance 21 Upstream temperature sensor 22 Downstream temperature sensor 23 Expansion valve control sensor

Claims (3)

微小抵抗と、前記微小抵抗の上流側の配管温度を検知する上流温度センサと、前記微小抵抗の下流側の配管温度を検知する下流温度センサとを有し、前記上流温度センサと前記下流温度センサの温度差を検出することを特徴とする膨張弁制御センサ。 The upstream temperature sensor and the downstream temperature sensor, comprising: a minute resistance; an upstream temperature sensor for detecting a pipe temperature upstream of the minute resistance; and a downstream temperature sensor for detecting a pipe temperature downstream of the minute resistance An expansion valve control sensor characterized by detecting a temperature difference between the two. 少なくとも凝縮器と、膨張弁とを有し、前記凝縮器の下流側に請求項1に記載の膨張弁制御センサを配置し、前記膨張弁制御センサの下流側に前記膨張弁を配置することを特徴とする冷凍システム。 It has at least a condenser and an expansion valve, and the expansion valve control sensor according to claim 1 is disposed downstream of the condenser, and the expansion valve is disposed downstream of the expansion valve control sensor. Characteristic refrigeration system. 少なくとも圧縮機と、凝縮器と、膨張弁と、キャピラリーチューブとを有し、前記膨張弁の下流側にキャピラリーチューブを配置し、前記膨張弁を全開にして前記圧縮機を起動した後、膨張弁制御センサから得られる温度差を所定値に近づけるように、前記膨張弁を徐々に絞るように制御することを特徴とする請求項2に記載の冷凍システム。 At least a compressor, a condenser, an expansion valve, and a capillary tube, and a capillary tube is disposed downstream of the expansion valve, and the expansion valve is fully opened to start the compressor, and then the expansion valve The refrigeration system according to claim 2, wherein the expansion valve is controlled to be gradually narrowed so that a temperature difference obtained from a control sensor approaches a predetermined value.
JP2017232992A 2017-12-05 2017-12-05 Expansion valve control sensor and refrigeration system using the same Pending JP2019100638A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017232992A JP2019100638A (en) 2017-12-05 2017-12-05 Expansion valve control sensor and refrigeration system using the same
CN201880051913.2A CN111033146A (en) 2017-12-05 2018-11-28 Expansion valve control sensor and refrigeration system using the same
PCT/JP2018/043672 WO2019111771A1 (en) 2017-12-05 2018-11-28 Expansion valve control sensor, and refrigeration system employing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017232992A JP2019100638A (en) 2017-12-05 2017-12-05 Expansion valve control sensor and refrigeration system using the same

Publications (1)

Publication Number Publication Date
JP2019100638A true JP2019100638A (en) 2019-06-24

Family

ID=66749902

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017232992A Pending JP2019100638A (en) 2017-12-05 2017-12-05 Expansion valve control sensor and refrigeration system using the same

Country Status (3)

Country Link
JP (1) JP2019100638A (en)
CN (1) CN111033146A (en)
WO (1) WO2019111771A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT525641B1 (en) * 2022-07-21 2023-06-15 Univ Graz Tech Refrigerant circuit of a refrigerator

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2883535B2 (en) * 1994-04-26 1999-04-19 三洋電機株式会社 Refrigeration equipment
JP3483688B2 (en) * 1995-12-05 2004-01-06 株式会社日立製作所 Refrigeration cycle device with dryer
JP2001091071A (en) * 1999-09-24 2001-04-06 Sanyo Electric Co Ltd Multi-stage compression refrigerating machine
JP3629587B2 (en) * 2000-02-14 2005-03-16 株式会社日立製作所 Air conditioner, outdoor unit and refrigeration system
JP2002286300A (en) * 2001-03-28 2002-10-03 Mitsubishi Electric Corp Air conditioner

Also Published As

Publication number Publication date
WO2019111771A1 (en) 2019-06-13
CN111033146A (en) 2020-04-17

Similar Documents

Publication Publication Date Title
JP5991989B2 (en) Refrigeration air conditioner
US8459051B2 (en) Air conditioner and method of controlling the same
JP5613122B2 (en) Method for controlling refrigerant pressure and flow
US20190360730A1 (en) Integrated vapor cycle and pumped two-phase cooling system with latent thermal storage of refrigerants for transient thermal management
JP5355016B2 (en) Refrigeration equipment and heat source machine
CN109373497B (en) Refrigerant quantity adjusting method, device and system of temperature adjusting equipment and air conditioner
JP5639984B2 (en) Air conditioner
CN107990609A (en) Control method of electronic expansion valve and refrigerant circulating system
US20190383524A1 (en) Test chamber and method
JP2012067985A (en) Refrigerating machine, refrigerating device, and air conditioning device
JP2015148431A (en) Refrigeration device
US20190257562A1 (en) Cooling system with adjustable internal heat exchanger
JP2015038388A (en) Refrigeration device for container
US20130125573A1 (en) Heat source system and control method therefor
JP2019100638A (en) Expansion valve control sensor and refrigeration system using the same
JP2011220559A (en) Refrigerating/air conditioning device
JP4334818B2 (en) Cooling system
JP2006336943A (en) Refrigeration system, and cold insulation box
JP2002310497A (en) Heat pump hot-water supplier
JP2012026686A (en) Load-side device and refrigeration/cold-storage system
JP2011179764A (en) Refrigeration cycle device
KR101203578B1 (en) Air conditioner
JP2020094781A (en) Refrigerating apparatus
CN114508877B (en) Two-stage throttling device, control method, control device, refrigerating unit and medium
JP7284381B2 (en) refrigeration equipment

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20190121