JP2019079980A - LED light source - Google Patents
LED light source Download PDFInfo
- Publication number
- JP2019079980A JP2019079980A JP2017206878A JP2017206878A JP2019079980A JP 2019079980 A JP2019079980 A JP 2019079980A JP 2017206878 A JP2017206878 A JP 2017206878A JP 2017206878 A JP2017206878 A JP 2017206878A JP 2019079980 A JP2019079980 A JP 2019079980A
- Authority
- JP
- Japan
- Prior art keywords
- filler
- reflective film
- sealing member
- led chip
- substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000945 filler Substances 0.000 claims abstract description 79
- 238000007789 sealing Methods 0.000 claims abstract description 55
- 239000000758 substrate Substances 0.000 claims abstract description 23
- 230000003746 surface roughness Effects 0.000 claims description 19
- 230000035699 permeability Effects 0.000 abstract description 3
- 239000010408 film Substances 0.000 description 92
- 239000011347 resin Substances 0.000 description 17
- 229920005989 resin Polymers 0.000 description 17
- 238000011156 evaluation Methods 0.000 description 14
- 239000011230 binding agent Substances 0.000 description 8
- 239000000463 material Substances 0.000 description 7
- 239000010409 thin film Substances 0.000 description 7
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 6
- 239000011248 coating agent Substances 0.000 description 6
- 238000000576 coating method Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 229910052731 fluorine Inorganic materials 0.000 description 6
- 239000011737 fluorine Substances 0.000 description 6
- 125000000524 functional group Chemical group 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- 239000013078 crystal Substances 0.000 description 5
- 239000002245 particle Substances 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 238000003776 cleavage reaction Methods 0.000 description 4
- 238000000605 extraction Methods 0.000 description 4
- 239000003973 paint Substances 0.000 description 4
- 230000007017 scission Effects 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 230000007423 decrease Effects 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 230000005855 radiation Effects 0.000 description 3
- SCPYDCQAZCOKTP-UHFFFAOYSA-N silanol Chemical compound [SiH3]O SCPYDCQAZCOKTP-UHFFFAOYSA-N 0.000 description 3
- 229910052582 BN Inorganic materials 0.000 description 2
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 2
- 239000002390 adhesive tape Substances 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 239000010445 mica Substances 0.000 description 1
- 229910052618 mica group Inorganic materials 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 238000002310 reflectometry Methods 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910000679 solder Inorganic materials 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 239000012463 white pigment Substances 0.000 description 1
Landscapes
- Led Device Packages (AREA)
Abstract
Description
本発明は、LED光源に関する。 The present invention relates to an LED light source.
従来、LED光源として、例えば、特許文献1に示すように、LEDチップと、LEDチップが実装される基板と、基板の表面に白色顔料が塗布されて形成され、LEDチップから射出された光を反射する反射膜と、LEDチップ及び反射膜を覆う封止部材とを備えたものがある。 Conventionally, as an LED light source, for example, as shown in Patent Document 1, an LED chip, a substrate on which the LED chip is mounted, and a surface of the substrate are formed by applying a white pigment, and light emitted from the LED chip is There is one provided with a reflective film that reflects light and a sealing member that covers the LED chip and the reflective film.
封止部材は、LEDチップや反射膜を保護する他、その屈折率が、通常、LEDチップと外部(空気)の屈折率の間の値であるため、LEDチップと外部(空気)との間の屈折率差を小さくして、LEDチップ内にとどまる光量を少なくする役割を果たす。これにより、LED光源の光取出し効率が向上する。 In addition to protecting the LED chip and the reflective film, the sealing member usually has a refractive index between the LED chip and the external (air) refractive index, and thus between the LED chip and the external (air) Plays a role in reducing the amount of light remaining in the LED chip by reducing the difference in refractive index. This improves the light extraction efficiency of the LED light source.
しかしながら、封止部材の材料として、紫外光等の短波長の光に対する耐光性や透過性に優れたものの場合には、一般的に、化学的に反応しやすい官能基が含まれておらず、封止部材と反射膜とが化学的に結合し難いため、両者間の密着性が低い。一方、反射膜との密着性に優れた材料の場合には、一般的に、化学的に反応しやすい官能基が含まれていて、紫外光等の光エネルギーにより官能基自身や封止部材と反射膜との間の化学結合が切断されるため、紫外光に対する耐光性や透過性が低い。 However, if the material of the sealing member is excellent in light resistance and transparency to light of short wavelength such as ultraviolet light, generally, it does not contain a functional group which is easily chemically reacted, Since the sealing member and the reflective film are difficult to chemically bond, the adhesion between the two is low. On the other hand, in the case of a material excellent in adhesion to the reflective film, a functional group which is easily chemically reacted is generally contained, and the functional group itself or the sealing member is formed by light energy such as ultraviolet light. Since the chemical bond with the reflective film is broken, the light resistance and transparency to ultraviolet light are low.
そこで本発明は、上記問題点を解決すべくなされたものであり、封止部材の紫外光等の短波長の光に対する耐光性及び透過性を担保しつつ、封止部材と反射膜との密着性を向上させることをその主たる課題とするものである。 Therefore, the present invention has been made to solve the above-mentioned problems, and the adhesion between the sealing member and the reflective film is ensured while securing the light resistance and the permeability to the light of short wavelength such as ultraviolet light of the sealing member. The main issue is to improve the quality.
すなわち本発明にかかるLED光源は、基板と、前記基板の表面に実装されたLEDチップと、前記基板の表面に設けられて、前記LEDチップから射出された光を反射する反射膜と、前記反射膜の少なくとも一部を覆うとともに、前記LEDチップを封止する封止部材とを備え、前記反射膜が、所定の長径を有する鱗片状の第1フィラーと、前記第1フィラーよりも長径が大きい鱗片状の第2フィラーとを有していることを特徴とするものである。 That is, the LED light source according to the present invention includes a substrate, an LED chip mounted on the surface of the substrate, a reflection film provided on the surface of the substrate to reflect light emitted from the LED chip, and the reflection And a sealing member for covering the LED chip while covering at least a part of the film, wherein the reflective film has a major diameter greater than the scaly first filler having a predetermined major diameter and the first filler. It is characterized by having a scaly second filler.
長径の短い第1フィラーのみを含む反射膜は、当該フィラー表面の総面積が大きく、光の反射特性に優れるものの、その表面粗さが小さくなる傾向にある一方、長径の長い第2フィラーのみを含む反射膜は、当該フィラー表面の総面積が小さく、光の反射特性に劣るものの、その表面粗さが大きくなる傾向にある。そこで、本発明のように、長径が互いに異なる第1フィラー及び第2フィラーを含む反射膜とすれば、光の反射特性を一定水準以上としながらも、その表面粗さを大きくすることができ、アンカー効果によって反射膜と封止部材との密着性を向上させることができる。 Although the reflective film containing only the first filler with a short major axis has a large total area on the surface of the filler and is excellent in the light reflection characteristics, its surface roughness tends to be small, while only the second filler having a long major axis Although the total area of the surface of the filler is small and the reflection film including the layer has a small light reflection property, the surface roughness tends to be large. Therefore, as in the present invention, if the reflection film includes the first filler and the second filler having different long diameters, the surface roughness can be increased while maintaining the light reflection characteristics at a certain level or more. The adhesion between the reflective film and the sealing member can be improved by the anchor effect.
これにより、封止部材として、紫外光に対する耐光性や透過性の高い材料、即ち、反射膜との間に良好な密着性が得られない材料を選択したとしても、封止部材と反射膜との密着性をアンカー効果により高めることができる。そして、封止部材と反射膜との密着性が高まれば、封止部材が剥離し難くなり、反射膜やLEDチップと封止部材との間に空気が噛み込まず、LEDチップから射出された光の取出し効率を向上させることができる。 As a result, even if a material having high light resistance and transparency to ultraviolet light is selected as the sealing member, that is, a material from which good adhesion with the reflective film can not be obtained, the sealing member and the reflective film can be used. The adhesion of these can be enhanced by the anchor effect. Then, if the adhesion between the sealing member and the reflective film is increased, the sealing member becomes difficult to peel off, and air is not caught between the reflective film or the LED chip and the sealing member, and the light is emitted from the LED chip Light extraction efficiency can be improved.
封止部材と反射膜との密着性を担保するためには、前記反射膜の表面粗さが10μm以上であることが好ましい。 In order to secure the adhesion between the sealing member and the reflective film, the surface roughness of the reflective film is preferably 10 μm or more.
一方、反射膜の表面粗さが大きくなると(第2フィラーの割合が増えると)、反射膜の反射率が低下する懸念がある。
そこで、反射膜の反射率を一定値以上とするためには、前記反射膜に含まれている前記第2フィラーに対する前記第1フィラーの体積比率が10%以上40%以下であることが好ましい。
On the other hand, when the surface roughness of the reflective film is increased (when the ratio of the second filler is increased), the reflectance of the reflective film may be reduced.
Therefore, in order to set the reflectance of the reflective film to a certain value or more, the volume ratio of the first filler to the second filler contained in the reflective film is preferably 10% to 40%.
上述した作用効果を顕著に発揮させるためには、前記LEDチップが、紫外光を射出するものであることが好ましい。 In order to exert the above-described effects remarkably, the LED chip preferably emits ultraviolet light.
このように構成した本発明によれば、封止部材の紫外光に対する耐光性及び透過性を担保しつつ、しかも反射膜の反射率を低下させることなく、封止部材と反射膜との密着性を向上させることができる。また、LEDチップ及び反射膜を封止部材で覆うことで、LEDチップから射出された光の取出し効率を向上させることができる。 According to the present invention configured as described above, the adhesion between the sealing member and the reflective film is ensured while securing the light resistance and the permeability to the ultraviolet light of the sealing member and without reducing the reflectance of the reflective film. Can be improved. In addition, by covering the LED chip and the reflective film with a sealing member, the extraction efficiency of the light emitted from the LED chip can be improved.
以下に本発明に係るLED光源の一実施形態について図面を参照して説明する。 Hereinafter, an embodiment of an LED light source according to the present invention will be described with reference to the drawings.
本実施形態に係るLED光源100は、図1に示すように、基板10と、基板10の表面に実装されたLEDチップ20と、LEDチップ20を封止する封止部材30と、基板10の表面に設けられた反射膜40とを備えたものである。 As shown in FIG. 1, the LED light source 100 according to this embodiment includes a substrate 10, an LED chip 20 mounted on the surface of the substrate 10, a sealing member 30 for sealing the LED chip 20, and the substrate 10. And a reflective film 40 provided on the surface.
基板10は、例えばセラミック製や樹脂製のものであり、表面にはLEDチップ20が電気的に接続されるための金属パターン等からなる配線導体(図示しない)が形成されている。 The substrate 10 is made of, for example, ceramic or resin, and a wiring conductor (not shown) formed of a metal pattern or the like for electrically connecting the LED chip 20 is formed on the surface.
LEDチップ20は、半田や金バンプ等の接合部材50を介して基板10表面に実装されており、例えば200nm〜400nmに放射ピークを有する紫外光(深紫外光を含む)を射出するものである。このようなLEDチップ20の一例としては、250nm〜350nmに放射ピークを有し、具体的には265nm付近に放射ピークを有するものが挙げられる。
また、図1では基板10に1つのLEDチップ20が実装された態様を示しているが、LEDチップ20の数は、目的・用途に応じて複数にするなど適宜変更して構わない。
The LED chip 20 is mounted on the surface of the substrate 10 via a bonding member 50 such as solder or gold bump, and emits, for example, ultraviolet light (including deep ultraviolet light) having a radiation peak at 200 nm to 400 nm. . An example of such an LED chip 20 is one having a radiation peak at 250 nm to 350 nm, and specifically one having a radiation peak at around 265 nm.
Moreover, although the aspect by which one LED chip 20 was mounted in the board | substrate 10 is shown in FIG. 1, the number of LED chips 20 may be suitably changed according to the objective and the application, etc. according to the objective.
封止部材30は、LEDチップ20を封止するためのものであり、ここではLEDチップ20から封止部材30へ効率良く紫外光を取り出すべく、紫外光に対する透過性に優れるとともに、紫外光に対する耐光性を備えた透明樹脂からなるものである。このような封止部材30の材料としては、例えばフッ素系樹脂が挙げられる。フッ素系樹脂の中には、優れた耐光性及び透過性を有するものがあるからであり、このようなフッ素系樹脂は、化学的に反応しやすい官能基が含まれておらず、反射膜40と化学的に結合し難いために反射膜40との密着性は低いものの、紫外光の光エネルギーによって官能基自身や反射膜40との化学結合が切断されないため、上記のような特性を有する。 The sealing member 30 is for sealing the LED chip 20. Here, in order to efficiently extract the ultraviolet light from the LED chip 20 to the sealing member 30, the sealing member 30 is excellent in the transparency to ultraviolet light and to the ultraviolet light. It consists of transparent resin provided with light resistance. As a material of such a sealing member 30, a fluorine resin is mentioned, for example. This is because some fluorine-based resins have excellent light resistance and transparency, and such fluorine-based resins do not contain a functional group that is chemically reactive, and the reflective film 40 Although the adhesion to the reflective film 40 is low because it is difficult to chemically bond with it, the chemical bond with the functional group itself or the reflective film 40 is not broken by the light energy of the ultraviolet light, so that it has the above characteristics.
また、この封止部材30は、例えば、その表面が光の射出方向に膨出した曲面であり、封止部材30の光軸とLEDチップ20の光軸とが同軸上となるように配置されている。 Further, the sealing member 30 is, for example, a curved surface whose surface bulges in the light emission direction, and is disposed such that the optical axis of the sealing member 30 and the optical axis of the LED chip 20 are coaxial. ing.
反射膜40は、基板10の表面に設けられて、LEDチップ20から射出された光を反射するものであり、例えばセラミック塗料を基板10の表面に塗布して形成したものである。この反射膜40は、LEDチップ20を取り囲むように形成されており、少なくともLEDチップ20の近傍部分が上述した封止部材30によって覆われている。 The reflective film 40 is provided on the surface of the substrate 10 to reflect the light emitted from the LED chip 20, and is formed, for example, by applying a ceramic paint on the surface of the substrate 10. The reflective film 40 is formed so as to surround the LED chip 20, and at least a portion near the LED chip 20 is covered by the sealing member 30 described above.
然して、本実施形態の反射膜40は、図2に示すように、所定の長径を有する鱗片状の第1フィラー41と、第1フィラー41よりも長径が大きい鱗片状の第2フィラー42とを有している。
なお、ここでいう「鱗片状」とは、図3に示すように、長径が厚みよりも大きい(好ましくは、長径が厚みの2倍以上、更に好ましくは、長径が厚みの5倍以上である)長尺な形状を意味し、この形状は例えば電子顕微鏡等を用いて観測することができる。
Therefore, as shown in FIG. 2, the reflective film 40 according to the present embodiment includes a scaly first filler 41 having a predetermined major diameter and a scaly second filler 42 having a major diameter larger than the first filler 41. Have.
In addition, as shown in FIG. 3, in the “scale-like shape”, the major axis is larger than the thickness (preferably, the major axis is twice or more of the thickness, more preferably, the major axis is five or more of the thickness ) Means a long shape, which can be observed using, for example, an electron microscope or the like.
本実施形態の第1フィラー41及び第2フィラー42は、図3に示すように、薄膜を重ねたような層状構造を有するものであり、結晶面の1つのみがへき開面となる結晶構造を備えた物質を含んでいる。このような物質としては、例えば六方晶窒化ホウ素(h−BN)やグラファイトや雲母等が挙げられ、本実施形態の第1フィラー41及び第2フィラー42は、いずれも六方晶窒化ホウ素(h−BN)である。 As shown in FIG. 3, the first filler 41 and the second filler 42 of the present embodiment have a layered structure in which thin films are stacked, and have a crystal structure in which only one crystal plane is a cleavage plane. Contains the provided material. Examples of such a substance include hexagonal boron nitride (h-BN), graphite, mica and the like, and the first filler 41 and the second filler 42 in the present embodiment are both hexagonal boron nitride (h- BN).
このように、第1フィラー41や第2フィラー42が、結晶面の1つのみがへき開面となる結晶構造を備えた物質であれば、基板10の表面に第1フィラー41や第2フィラー42を含む材料を塗布して反射膜40を形成した後、基板10が熱膨張や熱収縮した場合に、へき開面から結晶が容易にすべり変形するので、反射膜40にクラックや割れ等を生じにくくすることができる。 As described above, if the first filler 41 or the second filler 42 is a substance having a crystal structure in which only one crystal face is a cleavage plane, the first filler 41 or the second filler 42 on the surface of the substrate 10 When the substrate 10 is subjected to thermal expansion or thermal contraction after applying the material including the above to form the reflective film 40, the crystal is easily slid from the cleavage plane, so that the reflective film 40 is not easily cracked or broken. can do.
本実施形態の反射膜40は、図2に示すように、上述した第1フィラー41や第2フィラー42をバインダー43に混合して分散させたものを基板10の表面に塗布することで形成されたものであり、バインダー43と第1フィラー41や第2フィラー42との界面においてフレネル反射が生じる。
なお、バインダー43としては、反射膜40の反射性を向上させるべく、フレネル反射が大きくなるように第1フィラー41や第2フィラー42との屈折率差が大きく、LEDチップ20から射出される光の波長(ここでは紫外領域の波長)を吸収しないものが好ましい。なお、本実施形態では、シラノール溶液を脱水重合させて得られる、ガラスベースのバインダー43を用いた。
As shown in FIG. 2, the reflective film 40 of the present embodiment is formed by applying on the surface of the substrate 10 a mixture of the first filler 41 and the second filler 42 described above mixed and dispersed in the binder 43. The Fresnel reflection occurs at the interface between the binder 43 and the first filler 41 and the second filler 42.
As the binder 43, the refractive index difference between the first filler 41 and the second filler 42 is large so as to increase the Fresnel reflection so as to improve the reflectivity of the reflective film 40, and the light emitted from the LED chip 20 The thing which does not absorb the wavelength of (here, the wavelength of an ultraviolet region) is preferable. In the present embodiment, a glass-based binder 43 obtained by dehydration polymerization of a silanol solution was used.
反射膜40の膜厚は、20μm以上、より好ましくは30μm以上であることが好ましい。反射膜40の膜厚は、膜厚方向に存在するフィラー量を規定する重要な要素であり、膜厚が薄くなると、バインダー43とフィラー41、42との界面の面積が減って反射膜40の反射率が低下する。そういった意味で膜厚は20μm以上(より好ましくは30μm以上)であることが好ましい。一方、反射膜40において光の反射に寄与するのは表面から一定深さまでの表層部分であるため、ある膜厚以上になると反射率の向上は見られず、膜厚の上限値は特に限定されるものではない。 The film thickness of the reflective film 40 is preferably 20 μm or more, more preferably 30 μm or more. The film thickness of the reflective film 40 is an important element that defines the amount of filler present in the film thickness direction, and the area of the interface between the binder 43 and the fillers 41 and 42 decreases as the film thickness decreases. The reflectance decreases. From that point of view, the film thickness is preferably 20 μm or more (more preferably 30 μm or more). On the other hand, since it is the surface layer from the surface to a certain depth that contributes to light reflection in the reflective film 40, no improvement in reflectance is seen when the film thickness exceeds a certain value, and the upper limit of the film thickness is particularly limited. It is not a thing.
第1フィラー41及び第2フィラー42は、上述したように長径が互いに異なり、ここでは第1フィラー41の平均粒径(長径)が例えば2μmであり、第2フィラー42の平均粒径(長径)が例えば8μmである。このように、本実施形態では、互いにサイズの異なるフィラー41、42をバインダー43に混合している。これは、第1フィラー41のみだと、バインダー43と当該フィラー41との界面の面積が大きく、良好な反射特性が得られるものの、反射膜40の表面粗さが小さくなるからであり、また、第2フィラー42のみだと、反射膜40の表面粗さが大きくなるものの、バインダー43と当該フィラー42との界面の面積が小さく、良好な反射特性が得られないからである。 As described above, the first filler 41 and the second filler 42 have different major axes, and here, the average particle size (major axis) of the first filler 41 is, for example, 2 μm, and the average particle size (major axis) of the second filler 42 Is 8 μm, for example. Thus, in the present embodiment, the fillers 41 and 42 having different sizes are mixed in the binder 43. This is because if only the first filler 41 is used, the area of the interface between the binder 43 and the filler 41 is large and good reflection characteristics can be obtained, but the surface roughness of the reflective film 40 is small, and If only the second filler 42 is used, although the surface roughness of the reflective film 40 is increased, the area of the interface between the binder 43 and the filler 42 is small, and good reflection characteristics can not be obtained.
したがって、異なる大きさのフィラー41、42を混合することで、光の反射特性を一定水準以上としつつ、アンカー効果を得るのに適切な表面粗さとすることができ、このアンカー効果によって反射膜40と封止部材30との間の密着性が向上する。 Therefore, by mixing the fillers 41 and 42 of different sizes, it is possible to obtain a surface roughness suitable for obtaining an anchor effect while keeping the light reflection characteristics at a certain level or more, and the anchor effect causes the reflective film 40 to be obtained. The adhesion between the and the sealing member 30 is improved.
続いて、上述した反射膜40の封止部材30に対する密着性や反射膜40の反射率などの性能を評価した実験結果について説明する。 Then, the experimental result which evaluated performance, such as adhesiveness with respect to the sealing member 30 of the reflecting film 40 mentioned above and the reflectance of the reflecting film 40, is demonstrated.
始めに、実験に用いたサンプルの作製方法について説明する。 First, a method of producing a sample used in the experiment will be described.
まず、シラノール溶液に第1フィラー41と第2フィラー42とをそれぞれ混合して分散させ、2種類のフィラー41、42を種々の体積比で混合した塗料を作製する。ここでは、第2フィラー42に対する第1フィラー41の体積比率が100%、75%、50%、25%、0%となる塗料を作製した。なお、この体積比率は塗料が硬化した後の値であり、また、硬化後の塗膜全体に占めるフィラーの割合は、体積比率約50%となっている。 First, the first filler 41 and the second filler 42 are mixed and dispersed in a silanol solution, respectively, to prepare a paint in which two types of fillers 41 and 42 are mixed at various volume ratios. Here, the paint in which the volume ratio of the first filler 41 to the second filler 42 is 100%, 75%, 50%, 25%, 0% was produced. The volume ratio is a value after the coating is cured, and the ratio of the filler to the entire coating after curing is about 50% by volume.
そして、それぞれの塗料を例えばアルミ板などの金属板に塗布する。なお、塗布の際には、塗料をスキージやローラ等で延ばしながら金属板に塗布することで、塗料に分散している第1フィラー41や第2フィラー42のへき開面が塗膜の表面と略平行となるようにする。 Then, each paint is applied to a metal plate such as an aluminum plate, for example. At the time of application, the coating is applied to a metal plate while extending the coating with a squeegee or a roller, whereby the cleavage surfaces of the first filler 41 and the second filler 42 dispersed in the coating approximately correspond to the surface of the coating. Make it parallel.
その後、例えば260〜300℃で数時間の熱処理を行うことにより、シラノール溶液を脱水重合させ、第1フィラー41や第2フィラー42を分散した状態で金属板上に固化させることにより、金属板に膜厚約50μmの評価用反射膜が形成されたサンプルが作製される。 Thereafter, heat treatment is performed, for example, at 260 to 300 ° C. for several hours to dehydrate and polymerize the silanol solution, and solidify the first filler 41 and the second filler 42 in a dispersed state on the metal plate to form a metal plate. A sample on which a reflective film for evaluation having a thickness of about 50 μm is formed is produced.
次に、上述したサンプルを用いて、反射膜40と封止部材30との間の密着性を評価した実験結果について説明する。なお本実施形態では、クロスカット法と称される方法によって反射膜40と封止部材30との間の密着性を評価した。 Next, the experimental result which evaluated the adhesiveness between the reflective film 40 and the sealing member 30 is demonstrated using the sample mentioned above. In the present embodiment, the adhesion between the reflective film 40 and the sealing member 30 was evaluated by a method called a cross cut method.
反射膜40の表面粗さと密着性の相関を見るべく、まず上述したサンプルそれぞれに対して、評価用反射膜の表面粗さを測定した。具体的には、各サンプルに形成された評価用反射膜に対して、約80μm角のエリアにおける表面の最大高さを表面粗さとして測定した。 In order to check the correlation between the surface roughness of the reflective film 40 and the adhesion, first, the surface roughness of the reflective film for evaluation was measured for each of the samples described above. Specifically, with respect to the evaluation reflective film formed on each sample, the maximum height of the surface in an area of about 80 μm was measured as the surface roughness.
次に、評価用反射膜上に液状の封止樹脂(上記フッ素系樹脂)を滴下して、例えば200℃で1時間の熱処理を行い、封止樹脂を硬化させて、20μm以下の膜厚の封止樹脂薄膜を形成する。 Next, a liquid sealing resin (the above-mentioned fluorine-based resin) is dropped onto the evaluation reflection film, and heat treatment is performed, for example, at 200 ° C. for 1 hour to cure the sealing resin. Form a sealing resin thin film.
そして、封止樹脂薄膜に切り込みを入れて1mm間隔で25マスの格子を形成し、これらのマスに透明付着テープを貼り付けて剥がすことでテープ剥離試験を行った。 Then, incisions were made in the sealing resin thin film to form a grid of 25 squares at intervals of 1 mm, and a transparent adhesive tape was attached to these squares and peeled off to conduct a tape peeling test.
この試験結果を図4に示す。図4において、三角印は、透明付着テープを剥離する前に(即ち、切り込みを入れた時点で)評価用反射膜から剥離した封止樹脂薄膜のマス数を示しており、四角印は、透明付着テープを剥離した後に評価用反射膜から剥離した封止樹脂薄膜のマス数を示している。 The test results are shown in FIG. In FIG. 4, triangle marks indicate the number of masses of the sealing resin thin film peeled from the evaluation reflection film before peeling the transparent adhesive tape (that is, when the cut is made), and the square marks indicate the transparent The mass number of the sealing resin thin film peeled from the reflection film for evaluation after peeling off the adhesion tape is shown.
この試験結果から、評価用反射膜の表面粗さが10μmを境に剥離した封止樹脂薄膜のマス数が大きく変化していることが分かる。
つまりこの実験結果から、反射膜40と封止部材30との密着性を担保するためには、反射膜40の表面粗さが10μm以上であることが好ましく、より好ましくは11μm以上であることが分かる。
From this test result, it is understood that the number of squares of the sealing resin thin film peeled off at the boundary of 10 μm of the surface roughness of the reflection film for evaluation is largely changed.
That is, from the experimental results, in order to secure the adhesion between the reflective film 40 and the sealing member 30, the surface roughness of the reflective film 40 is preferably 10 μm or more, more preferably 11 μm or more. I understand.
なお、上述したサンプルそれぞれに対して、−40℃〜100℃で各30分100サイクルの熱衝撃試験をした結果、外観に変化はなく、金属板と評価用反射膜との間にも、評価用反射膜と封止樹脂膜との間にも剥離はみられなかった。 In addition, as a result of performing a thermal shock test for 30 minutes and 100 cycles at -40 ° C to 100 ° C for each of the samples described above, there is no change in the appearance, and evaluation is also performed between the metal plate and the reflective film for evaluation No peeling was observed between the reflective film and the sealing resin film.
ところで、反射膜40の表面粗さが大きくなると(第2フィラー42の割合が増えると)、反射率が低下することが懸念される。
これに対して、本願発明者は実験を重ねた結果、反射膜40と封止部材30との密着性を損なうことなく、反射膜40の反射率を高く維持することのできる第1フィラー41と第2フィラー42との混合比率があることを見出した。
以下、この実験結果について説明する。
By the way, when the surface roughness of the reflective film 40 is increased (when the ratio of the second filler 42 is increased), the reflectance may be reduced.
On the other hand, as a result of experiments conducted by the inventor of the present invention, it is possible to maintain the reflectance of the reflective film 40 at a high level without deteriorating the adhesion between the reflective film 40 and the sealing member 30. It was found that there was a mixing ratio with the second filler 42.
The experimental results will be described below.
まず、上述したそれぞれのサンプルに対して、評価用反射膜の表面粗さを測定した。なお、測定方法は、上述した通り、約80μm角のエリアにおける表面の最大高さを表面粗さとして測定した。 First, the surface roughness of the evaluation reflective film was measured for each of the samples described above. As the measurement method, as described above, the maximum height of the surface in the area of about 80 μm square was measured as the surface roughness.
次に、各サンプルに形成された評価用反射膜の反射率を測定した。ここでの反射率は、265nmの紫外光を評価用反射膜に当てて反射した紫外光の正反射成分と拡散反射成分とを合わせたものを測定した値である。 Next, the reflectance of the evaluation reflective film formed on each sample was measured. The reflectance here is a value obtained by measuring a combination of the specular reflection component and the diffuse reflection component of the ultraviolet light reflected by applying the ultraviolet light of 265 nm to the reflection film for evaluation.
これらの測定結果をプロットした結果を図5に示す。図5において、三角印は、評価用反射膜の反射率を測定した結果を示しており、四角印は、評価用反射膜の表面粗さを測定した結果を示している。
この実験結果から、反射膜40の反射率を高く維持しつつ、反射膜40と封止部材30との密着性を損なうことのない表面粗さ、すなわち10μm以上の表面粗さにするためには、第2フィラー42に対する第1フィラー41の体積比率が10%以上40%以下であることが好ましく、より好ましくは25%であることが分かる。
The results of plotting these measurement results are shown in FIG. In FIG. 5, triangular marks indicate the results of measuring the reflectance of the evaluation reflective film, and square marks indicate the results of measuring the surface roughness of the evaluation reflective film.
From this experimental result, in order to maintain the reflectance of the reflective film 40 high and to make the surface roughness such that the adhesion between the reflective film 40 and the sealing member 30 is not impaired, ie, 10 μm or more, It is understood that the volume ratio of the first filler 41 to the second filler 42 is preferably 10% or more and 40% or less, and more preferably 25%.
このように構成された本実施形態のLED光源100によれば、反射膜40が長径の互いに異なる鱗片状の第1フィラー41及び鱗片状の第2フィラー42を有しているので、反射膜40の表面を、反射膜40と封止部材30とを密着させるのに適した粗さにして両者間の密着性をアンカー効果によって向上させることができる。
これにより、本実施形態のように、封止部材30を紫外光に対する耐光性や透過性の高い例えばOH基などの化学的に反応しやすい官能基を持たないフッ素系樹脂により形成しても、封止部材30と反射膜40との密着性を向上させることが可能となり、また、密着性が高まって封止部材30が剥離し難くなれば、反射膜40やLEDチップ20と封止部材30との間に空気が噛み込まず、LEDチップ20から射出された紫外光の取出し効率を向上させることができる。
According to the LED light source 100 of the present embodiment configured as described above, since the reflective film 40 includes the scaly first fillers 41 and scaly second fillers 42 having different major axes, the reflective film 40 is formed. The surface of the film can be made rough enough to bring the reflective film 40 and the sealing member 30 into close contact with each other, and the adhesion between the two can be improved by the anchor effect.
Thus, as in the present embodiment, even if the sealing member 30 is formed of a fluorine-based resin that does not have a functional group that easily reacts with ultraviolet light, such as an OH group, which has high light resistance and transparency. The adhesion between the sealing member 30 and the reflective film 40 can be improved, and if the adhesion is increased and the sealing member 30 is difficult to peel off, the reflective film 40 or the LED chip 20 and the sealing member 30 can be used. Thus, air does not get caught between them, and the extraction efficiency of the ultraviolet light emitted from the LED chip 20 can be improved.
さらに、図5に示すように、反射膜40に含まれる第2フィラー42に対する第1フィラー41の体積比率を10%以上40%以下、好ましくは25%にすることで、反射膜40の反射率を高く維持しつつ、反射膜40と封止部材30との密着性を担保することができる。 Furthermore, as shown in FIG. 5, the reflectance of the reflective film 40 is set by setting the volume ratio of the first filler 41 to the second filler 42 contained in the reflective film 40 to 10% or more and 40% or less, preferably 25%. The adhesion between the reflective film 40 and the sealing member 30 can be secured while maintaining the
なお、本発明は前記実施形態に限られるものではない。 The present invention is not limited to the above embodiment.
例えば、前記実施形態では、第1フィラー41の平均粒径(長径)が2μmであり、第2フィラー42の平均粒径(長径)が8μmである場合について説明したが、第1フィラー41や第2フィラー42としては、平均粒径(長径)が例えば1μm以下のものや十数μmのものを用いても構わない。 For example, although the case where the average particle diameter (long diameter) of the first filler 41 is 2 μm and the average particle diameter (long diameter) of the second filler 42 is 8 μm has been described in the embodiment, the first filler 41 or the first As the 2 filler 42, one having an average particle diameter (long diameter) of, for example, 1 μm or less or one having several tens of μm may be used.
また、前記実施形態の第1フィラー41や第2フィラー42は、薄膜を重ねたような層状構造を有するものであったが、層状構造を有していないものであっても良い。さらに、第1フィラー41や第2フィラー42は、複数の物質が混在したものであっても良い。そのうえ、反射膜40としては、3種類以上のフィラーを有するものであっても良い。 Moreover, although the 1st filler 41 and the 2nd filler 42 of the said embodiment had a layered structure which piled up the thin film, they may not have a layered structure. Furthermore, the first filler 41 and the second filler 42 may be a mixture of a plurality of substances. Moreover, the reflective film 40 may have three or more types of fillers.
封止部材30は、前記実施形態ではフッ素系樹脂からなるものであったが、例えばシリコン樹脂、ガラスなどからなるものであっても良い。 Although the sealing member 30 is made of a fluorine-based resin in the above embodiment, it may be made of, for example, silicon resin, glass, or the like.
LEDチップ20は、前記実施形態では紫外光を射出するものであったが、例えば短波長の可視光を射出するものであっても良い。 The LED chip 20 emits ultraviolet light in the above embodiment, but may emit visible light of short wavelength, for example.
その他、本発明は前記実施形態に限られず、その趣旨を逸脱しない範囲で種々の変形が可能である。 In addition, the present invention is not limited to the embodiment described above, and various modifications can be made without departing from the scope of the invention.
100・・・LED光源
10 ・・・基板
20 ・・・LEDチップ
30 ・・・封止部材
40 ・・・反射膜
41 ・・・第1フィラー
42 ・・・第2フィラー
100 ... LED light source 10 ... Substrate 20 ... LED chip 30 ... Sealing member 40 ... Reflective film 41 ... First filler 42 ... Second filler
Claims (4)
前記基板の表面に実装されたLEDチップと、
前記基板の表面に設けられて、前記LEDチップから射出された光を反射する反射膜と、
前記反射膜の少なくとも一部を覆うとともに、前記LEDチップを封止する封止部材とを備え、
前記反射膜が、所定の長径を有する鱗片状の第1フィラーと、前記第1フィラーよりも長径が大きい鱗片状の第2フィラーとを有しているLED光源。 A substrate,
An LED chip mounted on the surface of the substrate;
A reflective film provided on the surface of the substrate to reflect light emitted from the LED chip;
A sealing member that covers at least a part of the reflective film and seals the LED chip;
An LED light source, comprising: a scaly first filler having a predetermined major axis; and a scaly second filler having a major axis greater than the first filler.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017206878A JP6985885B2 (en) | 2017-10-26 | 2017-10-26 | LED light source |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017206878A JP6985885B2 (en) | 2017-10-26 | 2017-10-26 | LED light source |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2019079980A true JP2019079980A (en) | 2019-05-23 |
JP6985885B2 JP6985885B2 (en) | 2021-12-22 |
Family
ID=66628176
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017206878A Active JP6985885B2 (en) | 2017-10-26 | 2017-10-26 | LED light source |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6985885B2 (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014130902A (en) * | 2012-12-28 | 2014-07-10 | Konica Minolta Inc | Reflective material and light-emitting device |
JP2016181535A (en) * | 2015-03-23 | 2016-10-13 | コニカミノルタ株式会社 | Light-emitting device, and coating liquid for manufacturing light-emitting device |
-
2017
- 2017-10-26 JP JP2017206878A patent/JP6985885B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014130902A (en) * | 2012-12-28 | 2014-07-10 | Konica Minolta Inc | Reflective material and light-emitting device |
JP2016181535A (en) * | 2015-03-23 | 2016-10-13 | コニカミノルタ株式会社 | Light-emitting device, and coating liquid for manufacturing light-emitting device |
Also Published As
Publication number | Publication date |
---|---|
JP6985885B2 (en) | 2021-12-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN207542274U (en) | Wavelength convert component and luminescent device | |
JP6314472B2 (en) | Fluorescent wheel for projector, manufacturing method thereof, and light emitting device for projector | |
JP5566785B2 (en) | Composite sheet | |
KR101997113B1 (en) | Wavelength conversion device and related light-emitting device thereof | |
JP5744386B2 (en) | Optical semiconductor encapsulant | |
TWI766032B (en) | Light-emitting device and method of manufacturing same | |
JP5701523B2 (en) | Semiconductor light emitting device | |
JP6287212B2 (en) | Phosphor-containing resin sheet and light emitting device | |
WO2010064177A1 (en) | Led assembly | |
KR20160017921A (en) | Luminescence complex, composition including the complex, hardened member of the composition, optical sheet, backlight unit, and display device | |
JP2011238811A (en) | Wavelength conversion element and light-emitting device | |
EP3830216B1 (en) | Reflective color correction for phosphor illumination systems | |
JPWO2018083903A1 (en) | Wavelength conversion member, light emitting device, and method of manufacturing wavelength conversion member | |
JP2014122296A (en) | Sealing material precursor solution for light-emitting device, sealing material for light-emitting device using the same, led device, and method for producing the led device | |
KR102423795B1 (en) | Chip-scale package structure and manufacturing method for moisture-sensitive high-gamut backlight applications | |
JP2011228525A (en) | Optical semiconductor device | |
JP2018014480A (en) | Optical semiconductor element with reflective layer and phosphor layer | |
JP6985885B2 (en) | LED light source | |
WO2018008197A1 (en) | Photosemiconductor element with reflection layer and phosphor layer | |
JP2012138425A (en) | Resin lens, led device with lens and method of manufacturing led device with lens | |
WO2012090961A1 (en) | Light emitting device, method for manufacturing light emitting device, and coating liquid | |
JP2015096950A (en) | Light scattering composition, light scattering complex, and manufacturing method therefor | |
TWI844519B (en) | Light conversion device with enhanced inorganic binder | |
WO2022071230A1 (en) | Light-emitting device and light-emitting device manufacturing method | |
WO2017221608A1 (en) | Phosphor layer sheet, and manufacturing method of optical semiconductor element with phosphor layer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20200915 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20210921 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20210922 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20211119 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20211125 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20211126 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6985885 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |