JP2019052632A - Controller of in-cylinder injection type internal combustion engine - Google Patents

Controller of in-cylinder injection type internal combustion engine Download PDF

Info

Publication number
JP2019052632A
JP2019052632A JP2017179284A JP2017179284A JP2019052632A JP 2019052632 A JP2019052632 A JP 2019052632A JP 2017179284 A JP2017179284 A JP 2017179284A JP 2017179284 A JP2017179284 A JP 2017179284A JP 2019052632 A JP2019052632 A JP 2019052632A
Authority
JP
Japan
Prior art keywords
injection
fuel pressure
pulse width
fuel
target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017179284A
Other languages
Japanese (ja)
Other versions
JP6815960B2 (en
Inventor
齋藤 和也
Kazuya Saito
和也 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Astemo Ltd
Original Assignee
Hitachi Automotive Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Automotive Systems Ltd filed Critical Hitachi Automotive Systems Ltd
Priority to JP2017179284A priority Critical patent/JP6815960B2/en
Publication of JP2019052632A publication Critical patent/JP2019052632A/en
Application granted granted Critical
Publication of JP6815960B2 publication Critical patent/JP6815960B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

To provide a controller of an in-cylinder injection type internal combustion engine capable of preventing an injection pulse width per time of multistage injection from going below a minimum injection pulse width, and also capable of maintaining the number of times for injection in the multistage injection to an optimal value.SOLUTION: A controller is configured to, in a condition that an injection pulse width TIsn per time of multistage injection goes below a minimum injection pulse width TImin when fuel pressure is basic fuel pressure, more reduce the fuel pressure than the basic fuel pressure, and perform multistage injection so that the injection pulse width TIsn per time goes beyond the minimum injection pulse width TImin.SELECTED DRAWING: Figure 5

Description

本発明は、筒内噴射式内燃機関の制御装置に関し、詳しくは、1燃焼サイクル中に燃料を複数回に分けて噴射させる多段噴射の制御に関する。   The present invention relates to a control device for a direct injection internal combustion engine, and more particularly to control of multi-stage injection in which fuel is injected in a plurality of times during one combustion cycle.

特許文献1には、機関温度が所定温度以下のときに、1燃焼サイクル中に噴射すべき総噴射量が多くなるにしたがって、或いは、1燃焼サイクル中に必要とされる総噴射パルス幅が大きくなるにしたがって、1燃焼サイクル中における分割噴射の回数を増やすことを特徴とした、筒内噴射式エンジンの燃料噴射制御装置が開示されている。   In Patent Document 1, when the engine temperature is equal to or lower than a predetermined temperature, the total injection pulse width required during one combustion cycle increases as the total injection amount to be injected during one combustion cycle increases. Accordingly, there has been disclosed a fuel injection control device for a direct injection engine characterized in that the number of divided injections in one combustion cycle is increased.

特開2014−020211号公報Japanese Patent Laid-Open No. 2014-020211

ところで、筒内噴射式内燃機関において、1燃焼サイクルでの総燃料噴射量を複数回に分けて噴射する多段噴射を実施する場合、多段噴射における噴射回数(総燃料噴射量の分割数)は、パティキュレートマター(Particulate Matter、排気微粒子)の排出粒子数PN(Particulate Number)や、エンジンオイルへの燃料の溶け込み量(オイル希釈量)などを十分に抑制できる回数に適合される。
しかし、内燃機関におけるフリクションの変化や補機類の動作状態などによっては、最適な噴射回数に設定すると、多段噴射の1回当たりの噴射パルス幅が、燃料の計量精度を維持できる最小噴射パルス幅を下回る可能性があった。
ここで、最小噴射パルス幅以上の噴射パルス幅を確保するために多段噴射における噴射回数を最適回数から減らすと、PNやオイル希釈量が悪化するという問題が生じる。
By the way, in the cylinder injection internal combustion engine, when performing multi-stage injection in which the total fuel injection amount in one combustion cycle is divided into multiple injections, the number of injections in multi-stage injection (the number of divisions of the total fuel injection amount) is It is adapted to the number of times that the number of exhausted particulate matter PN (Particulate Number) and the amount of fuel dissolved in the engine oil (oil dilution amount) can be sufficiently suppressed.
However, depending on the change in friction in the internal combustion engine and the operating state of the auxiliary machinery, etc., if the optimal number of injections is set, the injection pulse width per multistage injection is the minimum injection pulse width that can maintain the fuel measurement accuracy. There was a possibility of falling below.
Here, if the number of injections in multi-stage injection is reduced from the optimum number in order to ensure an injection pulse width equal to or greater than the minimum injection pulse width, there arises a problem that PN and oil dilution amount deteriorate.

本発明は、従来の実情に鑑みてなされたものであり、その目的は、多段噴射の1回当たりの噴射パルス幅が最小噴射パルス幅を下回ることを抑制しつつ、多段噴射における噴射回数を可及的に最適値に維持できる、筒内噴射式内燃機関の制御装置を提供することにある。   The present invention has been made in view of the conventional situation, and an object of the present invention is to enable the number of injections in multistage injection while suppressing that the injection pulse width per single multistage injection is less than the minimum injection pulse width. An object of the present invention is to provide a control device for a direct injection internal combustion engine that can be maintained at an optimum value.

本発明によれば、その1つの態様において、燃圧がベース燃圧であるときの多段噴射での1回当たりの噴射パルス幅が最小噴射パルス幅を下回る条件であるときに、燃圧をベース燃圧よりも低下させ、1回当たりの噴射パルス幅が最小噴射パルス幅を上回るようにして多段噴射を行わせる。   According to the present invention, in one aspect thereof, when the fuel pressure is the base fuel pressure, the fuel pressure is lower than the base fuel pressure when the injection pulse width per injection in the multistage injection is less than the minimum injection pulse width. The multi-stage injection is performed such that the injection pulse width per one time exceeds the minimum injection pulse width.

上記発明によると、多段噴射の1回当たりの噴射パルス幅が最小噴射パルス幅を下回ることを抑制しつつ、多段噴射における噴射回数を可及的に最適値に維持できる。   According to the above-described invention, the number of injections in multistage injection can be maintained at the optimum value as much as possible while suppressing the injection pulse width per single multistage injection from being less than the minimum injection pulse width.

筒内噴射式内燃機関の燃料噴射システムを示す図である。It is a figure which shows the fuel-injection system of a cylinder injection type internal combustion engine. 制御装置の燃料噴射制御機能を示すブロック図である。It is a block diagram which shows the fuel-injection control function of a control apparatus. 多段噴射における噴射回数を減らす処理が行われる場合の燃圧FP、目標噴射回数Ntg、パルス比率PRなどの挙動を例示するタイムチャートである。It is a time chart which illustrates behavior, such as fuel pressure FP, target injection frequency Ntg, and pulse ratio PR, when processing for reducing the number of injections in multistage injection is performed. 燃圧に対するPNの変化を多段噴射の噴射回数毎に示す線図である。It is a diagram which shows the change of PN with respect to fuel pressure for every injection frequency of multistage injection. 燃圧を低下させる処理が行われる場合の燃圧FP、目標噴射回数Ntg、パルス比率PRなどの挙動を例示するタイムチャートである。It is a time chart which illustrates behavior, such as fuel pressure FP, target injection frequency Ntg, and pulse ratio PR, when processing for reducing fuel pressure is performed. 燃圧を低下させる処理及び多段噴射における噴射回数を減らす処理が行われる場合の燃圧FP、目標噴射回数Ntg、パルス比率PRなどの挙動を例示するタイムチャートである。It is a time chart which illustrates behavior, such as fuel pressure FP, target injection frequency Ntg, and pulse ratio PR, when processing for reducing fuel pressure and processing for reducing the number of injections in multistage injection are performed. 暖機後に多段噴射における噴射回数を減らす処理が行われる場合の燃圧FP、目標噴射回数Ntg、パルス比率PRなどの挙動を例示するタイムチャートである。It is a time chart which illustrates behavior, such as fuel pressure FP, target injection frequency Ntg, and pulse ratio PR, when processing for reducing the injection frequency in multistage injection is performed after warm-up.

以下に本発明の実施の形態を説明する。
図1は、車両用の筒内噴射式内燃機関の燃料噴射システムを示す図である。
図1の燃料噴射システムは、内燃機関101と、燃料噴射弁105と、燃料噴射弁105による燃料噴射をはじめとする内燃機関101の制御全般を司るコンピュータであるECU(Engine Control Unit)109とを有する。
Embodiments of the present invention will be described below.
FIG. 1 is a diagram showing a fuel injection system for a cylinder injection internal combustion engine for a vehicle.
The fuel injection system of FIG. 1 includes an internal combustion engine 101, a fuel injection valve 105, and an ECU (Engine Control Unit) 109, which is a computer that performs overall control of the internal combustion engine 101 including fuel injection by the fuel injection valve 105. Have.

図1において、内燃機関101の吸気は、空気流量計120、電制スロットル弁119、コレクタ115の順に通過し、その後、各気筒に備わる吸気管110、吸気弁103を介して燃焼室121に吸引される。
一方、電動式の低圧燃料ポンプ124は、燃料タンク123内の燃料を機関駆動式の高圧燃料ポンプ125に送る。
In FIG. 1, the intake air of the internal combustion engine 101 passes through an air flow meter 120, an electric throttle valve 119, and a collector 115 in this order, and is then sucked into the combustion chamber 121 via an intake pipe 110 and an intake valve 103 provided in each cylinder. Is done.
On the other hand, the electric low-pressure fuel pump 124 sends the fuel in the fuel tank 123 to the engine-driven high-pressure fuel pump 125.

高圧燃料ポンプ125は、低圧燃料ポンプ124から供給された燃料を昇圧し、高圧燃料配管128を介して燃料噴射弁105に送るものであり、ECU109は、高圧燃料ポンプ125の吐出量を調整して燃料噴射弁105に送られる燃料の圧力(以下、燃圧と称する)を目標燃圧に制御する。
上記の燃料タンク123、低圧燃料ポンプ124、高圧燃料ポンプ125、高圧燃料配管128などによって、燃料噴射弁105に供給される燃圧を可変とする燃料供給装置129が構成される。
The high-pressure fuel pump 125 boosts the fuel supplied from the low-pressure fuel pump 124 and sends it to the fuel injection valve 105 through the high-pressure fuel pipe 128. The ECU 109 adjusts the discharge amount of the high-pressure fuel pump 125. The pressure of the fuel sent to the fuel injection valve 105 (hereinafter referred to as fuel pressure) is controlled to the target fuel pressure.
The fuel tank 123, the low pressure fuel pump 124, the high pressure fuel pump 125, the high pressure fuel pipe 128, and the like constitute a fuel supply device 129 that varies the fuel pressure supplied to the fuel injection valve 105.

燃料噴射弁105は、内燃機関101の燃焼室121内(筒内)に燃料を直接噴射する電磁式の燃料噴射弁であり、ECU109からの指令(噴射パルス信号)を受け、当該指令で指定された時間だけ開弁することで、開弁時間に比例する量の燃料を燃焼室121内に噴射する。
ECU109は、機関運転状態に基づき1燃焼サイクル中(1気筒1サイクル中)に燃料噴射弁105から噴射させる燃料の総量(総燃料噴射量)を設定し、また、機関運転状態に基づき総燃料噴射量を1燃焼サイクル中に複数回に分けて噴射させる多段噴射における噴射回数(総燃料噴射量の分割数)を設定し、燃料噴射弁105による多段噴射を制御する。
つまり、ECU109は、総燃料噴射量を設定する総噴射量設定部、多段噴射における噴射回数を設定する回数設定部、及び、燃料噴射弁105による多段噴射を行わせる多段噴射制御部としての機能をソフトウェアとして備える。
The fuel injection valve 105 is an electromagnetic fuel injection valve that directly injects fuel into the combustion chamber 121 (in-cylinder) of the internal combustion engine 101. The fuel injection valve 105 receives a command (injection pulse signal) from the ECU 109 and is designated by the command. By opening the valve for a predetermined time, an amount of fuel proportional to the valve opening time is injected into the combustion chamber 121.
The ECU 109 sets the total amount of fuel (total fuel injection amount) to be injected from the fuel injection valve 105 during one combustion cycle (one cycle per cylinder) based on the engine operating state, and also determines the total fuel injection based on the engine operating state. The number of injections in the multistage injection in which the amount is divided into a plurality of times in one combustion cycle (the number of divisions of the total fuel injection amount) is set, and the multistage injection by the fuel injection valve 105 is controlled.
That is, the ECU 109 functions as a total injection amount setting unit that sets the total fuel injection amount, a number setting unit that sets the number of injections in multi-stage injection, and a multi-stage injection control unit that performs multi-stage injection by the fuel injection valve 105. Prepare as software.

燃料圧力センサ126は、高圧燃料配管128内の燃圧FP、つまり、燃料噴射弁105に供給される燃圧FPを検出する。
そして、ECU109は、燃料圧力センサ126が検出した燃圧FPと、機関運転条件に応じて設定した目標燃圧FPtgとの偏差ΔFPを演算し、高圧燃料ポンプ125の吐出量を調整する電磁調量弁の操作量を偏差ΔFPに基づく比例動作、積分動作などによって設定する所謂フィードバック制御を実施し、燃圧FPを目標燃圧FPtgに近づける。
The fuel pressure sensor 126 detects the fuel pressure FP in the high-pressure fuel pipe 128, that is, the fuel pressure FP supplied to the fuel injection valve 105.
Then, the ECU 109 calculates a deviation ΔFP between the fuel pressure FP detected by the fuel pressure sensor 126 and the target fuel pressure FPtg set according to the engine operating conditions, and adjusts the discharge amount of the high-pressure fuel pump 125. So-called feedback control is performed in which the operation amount is set by a proportional operation, an integral operation, or the like based on the deviation ΔFP, and the fuel pressure FP is brought close to the target fuel pressure FPtg.

また、内燃機関101は、点火コイル107、点火プラグ106を有する点火装置を備える。
ECU109は、点火コイル107への通電を制御することで、点火プラグ106による火花(スパーク)の発生を制御する。
The internal combustion engine 101 includes an ignition device having an ignition coil 107 and an ignition plug 106.
The ECU 109 controls generation of a spark (spark) by the spark plug 106 by controlling energization to the ignition coil 107.

そして、燃焼室121内の混合気は、点火プラグ106が発生する火花により着火燃焼し、燃焼により生じた排気ガスは、排気弁104を介して燃焼室121内から排気管111に排出される。
排気管111には、排気ガスを浄化するための3元触媒を収容した触媒コンバータ112が備えられている。
The air-fuel mixture in the combustion chamber 121 is ignited and burned by the spark generated by the spark plug 106, and the exhaust gas generated by the combustion is discharged from the combustion chamber 121 to the exhaust pipe 111 via the exhaust valve 104.
The exhaust pipe 111 is provided with a catalytic converter 112 that houses a three-way catalyst for purifying exhaust gas.

ECU109は、内燃機関101の冷却水の温度である水温TWを計測する水温センサ108、内燃機関101のクランク軸(図示省略)の角度を計測するクランク角センサ116、内燃機関101の吸入空気流量QAを計測する空気流量計120、内燃機関101の排気ガス中の酸素濃度に基づき混合気の空燃比を検出する空燃比センサ113、運転者が操作するアクセルの開度ACCを示すアクセル開度センサ122、及び、前述した燃料圧力センサ126などからの検出信号を入力する。   The ECU 109 is a water temperature sensor 108 that measures the water temperature TW, which is the temperature of the cooling water of the internal combustion engine 101, a crank angle sensor 116 that measures the angle of the crankshaft (not shown) of the internal combustion engine 101, and the intake air flow rate QA of the internal combustion engine 101. An air flow meter 120 that measures the air-fuel ratio, an air-fuel ratio sensor 113 that detects the air-fuel ratio of the air-fuel mixture based on the oxygen concentration in the exhaust gas of the internal combustion engine 101, and an accelerator opening sensor 122 that indicates the accelerator opening ACC operated by the driver. , And a detection signal from the fuel pressure sensor 126 described above is input.

そして、ECU109は、アクセル開度センサ122の信号から、内燃機関101の要求トルクを算出するとともに、内燃機関101がアイドル運転状態であるか否かの判定などを行う。
また、ECU109は、クランク角センサ116の検出信号を基に機関回転速度NEを演算し、水温センサ108の検出信号に基づき内燃機関101が暖機中であるか否かの判定などを行う。
The ECU 109 calculates the required torque of the internal combustion engine 101 from the signal of the accelerator opening sensor 122 and determines whether or not the internal combustion engine 101 is in an idle operation state.
Further, the ECU 109 calculates the engine rotational speed NE based on the detection signal of the crank angle sensor 116, and determines whether or not the internal combustion engine 101 is warming up based on the detection signal of the water temperature sensor 108.

また、ECU109は、上述の要求トルクなどから目標吸入空気量を算出し、この目標吸入空気量に見合った開度信号を電制スロットル弁119に出力し、また、1燃焼サイクルでの総燃料噴射量を吸入空気量や機関回転速度などに基づき算出して燃料噴射弁105による多段噴射を行わせ、更に、機関負荷や機関回転速度などに応じて点火時期を算出して点火コイル107に点火信号を出力する。   Further, the ECU 109 calculates a target intake air amount from the above-mentioned required torque and the like, outputs an opening signal corresponding to the target intake air amount to the electric throttle valve 119, and performs total fuel injection in one combustion cycle. The amount is calculated based on the intake air amount, the engine rotational speed, etc., and the multi-stage injection is performed by the fuel injection valve 105. Further, the ignition timing is calculated according to the engine load, the engine rotational speed, etc., and the ignition coil 107 receives an ignition signal. Is output.

図2は、ECU109が備える多段噴射制御機能を示す機能ブロック図である。
基本噴射パルス幅演算部200は、空気流量計120が検出した吸入空気流量QAと機関回転速度NE(エンジン回転数rpm)とに基づき、燃圧FPが基準燃圧FPsであるときに理論空燃比の混合気を生成するための基本燃料噴射パルス幅TP[ms]を演算する。
FIG. 2 is a functional block diagram showing the multi-stage injection control function provided in the ECU 109.
The basic injection pulse width calculation unit 200 mixes the stoichiometric air-fuel ratio when the fuel pressure FP is the reference fuel pressure FPs based on the intake air flow rate QA detected by the air flow meter 120 and the engine speed NE (engine speed rpm). A basic fuel injection pulse width TP [ms] for generating a gas is calculated.

燃料噴射パルス幅演算部201(総噴射量設定部)は、基本燃料噴射パルス幅TPを、水温TWなどの運転条件に基づく各種燃料補正項、及び、燃料圧力センサ126が検出した燃圧FPに基づく燃圧補正項などに応じて補正して、1燃焼サイクルにおける総燃料噴射パルス幅TIを演算する。
総燃料噴射パルス幅TIは、1燃焼サイクル中に燃料噴射弁105から噴射させる総燃料噴射量に相当する。
The fuel injection pulse width calculation unit 201 (total injection amount setting unit) uses the basic fuel injection pulse width TP based on various fuel correction terms based on operating conditions such as the water temperature TW and the fuel pressure FP detected by the fuel pressure sensor 126. The total fuel injection pulse width TI in one combustion cycle is calculated with correction according to the fuel pressure correction term.
The total fuel injection pulse width TI corresponds to the total fuel injection amount injected from the fuel injection valve 105 during one combustion cycle.

目標燃圧マップ部202は、例えば、基本燃料噴射パルス幅TP(機関負荷)、機関回転速度NE、水温TWなどの運転条件に応じて目標燃圧FPtgmを記憶したマップを複数の燃焼モード毎に備える。
複数の燃焼モードとは、例えば、成層燃焼モード、均質燃焼モード、触媒暖機中における点火時期のリタードモードなどである。
The target fuel pressure map unit 202 includes, for example, a map in which the target fuel pressure FPtgm is stored for each of a plurality of combustion modes in accordance with operating conditions such as the basic fuel injection pulse width TP (engine load), engine speed NE, and water temperature TW.
The plurality of combustion modes include, for example, a stratified combustion mode, a homogeneous combustion mode, a retard mode of ignition timing during catalyst warm-up, and the like.

多段噴射回数マップ部203(回数設定部)は、例えば、基本燃料噴射パルス幅TP(機関負荷)、機関回転速度NE、水温TWなどの運転条件に応じて多段噴射における目標噴射回数Ntgm(総燃料噴射パルス幅TIの分割数)を記憶したマップを複数の燃焼モード毎に備える。
多段噴射分割比マップ部204は、例えば、基本燃料噴射パルス幅TP(機関負荷)、機関回転速度NE、水温TWなどの運転条件に応じて多段噴射の目標分割比SRtgmを記憶したマップを複数の燃焼モード、及び、噴射回数N毎に備える。
The multi-stage injection number map unit 203 (number-of-times setting unit) is, for example, a target injection number Ntgm (total fuel) in multi-stage injection according to operating conditions such as basic fuel injection pulse width TP (engine load), engine speed NE, and water temperature TW. The map which memorize | stored the division | segmentation number of the injection pulse width TI) is provided for every some combustion mode.
The multi-stage injection division ratio map unit 204 stores a plurality of maps storing the target division ratio SRtgm for multi-stage injection according to operating conditions such as the basic fuel injection pulse width TP (engine load), the engine speed NE, and the water temperature TW. Provided for each combustion mode and number of injections N.

ここで、目標分割比SRtgmは、多段噴射の各噴射に総燃料噴射パルス幅TIの何パーセントをそれぞれ振り分けるかを指定するものであり、多段噴射の各噴射における分割比(%)を総和すると100%になる。
例えば、総燃料噴射パルス幅TIを2回に分けて噴射する多段噴射(目標噴射回数Ntgm=2回)において、初回噴射の分割比SRが25%に指定された場合、初回噴射で総燃料噴射パルス幅TIの25%を噴射させ、2回目の噴射で総燃料噴射パルス幅TIの75%を噴射させることになる。但し、多段噴射において総燃料噴射パルス幅TIを各噴射に均等に割り振ることができる。
Here, the target split ratio SRtgm designates what percentage of the total fuel injection pulse width TI is allocated to each injection of the multistage injection, and the sum of the split ratio (%) in each injection of the multistage injection is 100. %become.
For example, in multi-stage injection in which the total fuel injection pulse width TI is divided into two injections (target injection number Ntgm = 2), when the split ratio SR of the initial injection is specified as 25%, the total fuel injection is performed in the initial injection. 25% of the pulse width TI is injected, and 75% of the total fuel injection pulse width TI is injected in the second injection. However, the total fuel injection pulse width TI can be equally allocated to each injection in multistage injection.

噴射タイミングマップ部205は、例えば、基本燃料噴射パルス幅TP(機関負荷)、機関回転速度NE、水温TWなどの運転条件に応じて、多段噴射の各噴射の噴射タイミングITを記憶したマップを複数の燃焼モード、及び、噴射回数Ntg毎に備える。
多段噴射制御部206は、総燃料噴射パルス幅TI、燃料噴射弁105で燃料の計量精度を維持できる最小噴射パルス幅TImin、燃焼モードの情報を受け、目標燃圧マップ部202からそのときの運転条件に対応する目標燃圧FPtgmを検索し、また、多段噴射回数マップ部203からそのときの運転条件に対応する目標噴射回数Ntgmを検索する。
The injection timing map unit 205 stores, for example, a plurality of maps that store the injection timing IT of each injection of the multi-stage injection according to operating conditions such as the basic fuel injection pulse width TP (engine load), the engine speed NE, and the water temperature TW. For each combustion mode and every number of injections Ntg.
The multi-stage injection control unit 206 receives information on the total fuel injection pulse width TI, the minimum injection pulse width TImin that can maintain the fuel measurement accuracy with the fuel injection valve 105, and the combustion mode, and the operating conditions at that time from the target fuel pressure map unit 202 The target fuel pressure FPtgm corresponding to is searched, and the target injection number Ntgm corresponding to the operation condition at that time is searched from the multistage injection number map unit 203.

そして、多段噴射制御部206は、総燃料噴射パルス幅TI、最小噴射パルス幅TImin、目標噴射回数Ntgmに基づき、現状の目標燃圧FPtgm(ベース燃圧)の条件下で、目標噴射回数Ntgmでの多段噴射が可能であるか否かを判断する。
多段噴射制御部206は、総燃料噴射パルス幅TIを目標噴射回数Ntgmに均等に分けて多段噴射させると仮定したときに、多段噴射の各噴射における噴射パルス幅TIsn(TIsn=TI/Ntgm)が最小噴射パルス幅TImin以上になる場合は、前提条件とした目標噴射回数Ntgm及び目標燃圧FPtgmでの多段噴射が可能であると判断する。
The multi-stage injection control unit 206 then multi-stages at the target number of injections Ntgm under the conditions of the current target fuel pressure FPtgm (base fuel pressure) based on the total fuel injection pulse width TI, the minimum injection pulse width TImin, and the target injection number Ntgm. It is determined whether or not injection is possible.
When it is assumed that the multi-stage injection control unit 206 performs multi-stage injection by dividing the total fuel injection pulse width TI equally into the target injection number Ntgm, the injection pulse width TIsn (TIsn = TI / Ntgm) in each injection of the multi-stage injection is When the minimum injection pulse width TImin is exceeded, it is determined that multi-stage injection can be performed with the target injection number Ntgm and the target fuel pressure FPtgm as preconditions.

このとき、多段噴射制御部206は、目標噴射回数Ntgmをそのまま最終的な目標噴射回数Ntgに設定し、この目標噴射回数Ntgを、後述する多段噴射分割比制御部207及び多段噴射タイミング制御部208に出力し、また、目標燃圧FPtgmをそのまま最終的な目標燃圧FPtgに設定し、燃圧制御部209に出力する。
燃圧制御部209は、目標燃圧FPtgと燃料圧力センサ126が検出した燃圧FPとに基づき、高圧燃料ポンプ125の吐出量を調整するフィードバック制御を実施する。
At this time, the multi-stage injection control unit 206 sets the target injection number Ntgm as it is as the final target injection number Ntg, and uses the target injection number Ntg as will be described later for the multi-stage injection division ratio control unit 207 and the multi-stage injection timing control unit 208. In addition, the target fuel pressure FPtgm is set to the final target fuel pressure FPtg as it is, and is output to the fuel pressure control unit 209.
The fuel pressure control unit 209 performs feedback control for adjusting the discharge amount of the high-pressure fuel pump 125 based on the target fuel pressure FPtg and the fuel pressure FP detected by the fuel pressure sensor 126.

一方、多段噴射制御部206は、総燃料噴射パルス幅TIを目標噴射回数Ntgmに均等に分けて多段噴射させると仮定したときに、多段噴射の各噴射における噴射パルス幅TIsnが最小噴射パルス幅TIminを下回る場合は、前提条件とした目標噴射回数Ntgm及び目標燃圧FPtgmでの多段噴射が不能であると判断する。
つまり、最小噴射パルス幅TIminを下回る噴射パルス幅TIsnで多段噴射が行われると、燃料噴射弁105による燃料の計量精度が低下し、総燃料噴射パルス幅TIに見合う量の燃料を精度よく噴射させることができず、空燃比の制御精度が低下する。
On the other hand, when it is assumed that the multi-stage injection control unit 206 performs multi-stage injection by dividing the total fuel injection pulse width TI equally into the target injection number Ntgm, the injection pulse width TIsn in each injection of the multi-stage injection is the minimum injection pulse width TImin. If it is less than, it is determined that multi-stage injection at the target number of injections Ntgm and the target fuel pressure FPtgm as the preconditions is impossible.
That is, when multi-stage injection is performed with an injection pulse width TIsn that is less than the minimum injection pulse width TImin, the fuel measurement accuracy by the fuel injection valve 105 decreases, and an amount of fuel that matches the total fuel injection pulse width TI is accurately injected. Inability to control the air-fuel ratio decreases.

そのため、多段噴射制御部206は、最小噴射パルス幅TIminを下回る噴射パルス幅TIsnで多段噴射が行われる条件を多段噴射の不能状態と判断し、最小噴射パルス幅TImin以上の噴射パルス幅TIsnで多段噴射が行われるように、多段噴射の条件を変更する。
詳細には、多段噴射制御部206は、最小噴射パルス幅TIminを下回る噴射パルス幅TIsnで多段噴射が行われる条件であるときに、目標燃圧FPtgをそのときの運転条件に応じてマップから求めた目標燃圧FPtgm(ベース燃圧)よりも低下させることで、同じ燃料量を噴射するために要する噴射パルス幅(開弁時間)を長くし、目標噴射回数Ntgmを変更せずに多段噴射の各噴射における噴射パルス幅TIsnを最小噴射パルス幅TImin以上にする。
係る多段噴射制御部206の制御機能によって、最適な目標噴射回数Ntgmを維持しつつ、最小噴射パルス幅TIminを下回る噴射パルス幅TIsnでの多段噴射、つまり、燃料噴射弁105による燃料の計量精度の低下が抑制される。
Therefore, the multi-stage injection control unit 206 determines that the multi-stage injection is impossible when the multi-stage injection is performed with the injection pulse width TIsn lower than the minimum injection pulse width TImin. The conditions for multi-stage injection are changed so that injection is performed.
Specifically, the multi-stage injection control unit 206 obtains the target fuel pressure FPtg from the map according to the operation conditions at that time when the multi-stage injection is performed with the injection pulse width TIsn lower than the minimum injection pulse width TImin. By reducing it below the target fuel pressure FPtgm (base fuel pressure), the injection pulse width (valve opening time) required to inject the same amount of fuel is lengthened, and the target number of injections Ntgm is not changed. The injection pulse width TIsn is set to be equal to or greater than the minimum injection pulse width TImin.
With the control function of the multi-stage injection control unit 206, the multi-stage injection with the injection pulse width TIsn below the minimum injection pulse width TImin while maintaining the optimum target injection number Ntgm, that is, the fuel measurement accuracy of the fuel injection valve 105 is improved. Reduction is suppressed.

また、多段噴射制御部206は、目標燃圧FPtgを所定の下限値(リミッターFPmin)まで低下させても、多段噴射の各噴射における噴射パルス幅TIsnが最小噴射パルス幅TImin以上にならない場合、目標燃圧FPtgをベース燃圧の戻すとともに、目標噴射回数Ntgをそのときの運転条件に応じてマップから求めた目標噴射回数Ntgm(ベース噴射回数)よりも減らすことで、多段噴射の各噴射における噴射パルス幅TIsnを最小噴射パルス幅TImin以上にする。
係る多段噴射制御部206の制御機能によって、過剰に目標燃圧FPtgが下げられることを抑止でき、また、最小噴射パルス幅TIminを下回る噴射パルス幅TIsnでの多段噴射、つまり、燃料噴射弁105による燃料の計量精度の低下が抑制される。
Further, the multi-stage injection control unit 206 may reduce the target fuel pressure FPtg to a predetermined lower limit value (limiter FPmin). If the injection pulse width TIsn in each injection of the multi-stage injection does not exceed the minimum injection pulse width TImin, the target fuel pressure The FPtg is returned to the base fuel pressure, and the target injection number Ntg is reduced from the target injection number Ntgm (base injection number) obtained from the map in accordance with the operation conditions at that time, whereby the injection pulse width TIsn in each injection of multistage injection. Is greater than or equal to the minimum injection pulse width TImin.
The control function of the multi-stage injection control unit 206 can prevent the target fuel pressure FPtg from being excessively lowered, and can perform multi-stage injection with an injection pulse width TIsn less than the minimum injection pulse width TImin, that is, fuel by the fuel injection valve 105. The decrease in weighing accuracy is suppressed.

多段噴射分割比制御部207は、多段噴射制御部206で設定された目標噴射回数Ntg、総燃料噴射パルス幅TI、最小噴射パルス幅TImin、燃焼モードなどの情報を受け、多段噴射分割比マップ部204からそのときの運転条件及び目標噴射回数Ntgに対応する目標分割比SRtgmを検索する。
そして、多段噴射分割比制御部207は、総燃料噴射パルス幅TI、最小噴射パルス幅TImin、目標噴射回数Ntg、目標分割比SRtgmから、目標分割比SRtgmでの多段噴射が可能であるか否かを判断する。
The multistage injection division ratio control unit 207 receives information such as the target number of injections Ntg, the total fuel injection pulse width TI, the minimum injection pulse width TImin, and the combustion mode set by the multistage injection control unit 206, and receives a multistage injection division ratio map unit. A target division ratio SRtgm corresponding to the operation condition and the target injection number Ntg at that time is searched from 204.
Then, the multistage injection split ratio control unit 207 determines whether multistage injection at the target split ratio SRtgm is possible from the total fuel injection pulse width TI, the minimum injection pulse width TImin, the target injection number Ntg, and the target split ratio SRtgm. Judging.

つまり、多段噴射分割比制御部207は、総燃料噴射パルス幅TIを目標噴射回数Ntgに分けて噴射し、かつ、各噴射の噴射パルス幅TIsnを目標分割比SRtgmにしたがって設定したと仮定したときに、各噴射の噴射パルス幅TIsnが全て最小噴射パルス幅TImin以上であれば、目標分割比SRtgmに応じたパルス幅の割り付けでの多段噴射が可能であると判断する。
一方、多段噴射分割比制御部207は、総燃料噴射パルス幅TIを目標噴射回数Ntgに分けて噴射し、かつ、各噴射の噴射パルス幅TIsnを目標分割比SRtgmにしたがって設定したと仮定したときに、各噴射の噴射パルス幅TIsnのうちで最小噴射パルス幅TIminを下回るものがあれば、目標分割比SRtgmに応じたパルス幅の割り付けでの多段噴射は不能であると判断する。
That is, when it is assumed that the multistage injection split ratio control unit 207 divides the total fuel injection pulse width TI into the target injection number Ntg and sets the injection pulse width TIsn of each injection according to the target split ratio SRtgm. In addition, if all of the injection pulse widths TIsn of the respective injections are equal to or larger than the minimum injection pulse width TImin, it is determined that the multistage injection with the pulse width allocation according to the target division ratio SRtgm is possible.
On the other hand, when it is assumed that the multistage injection split ratio control unit 207 divides the total fuel injection pulse width TI into the target injection number Ntg and sets the injection pulse width TIsn of each injection according to the target split ratio SRtgm. In addition, if there is an injection pulse width TIsn of each injection that is less than the minimum injection pulse width TImin, it is determined that the multistage injection with the assignment of the pulse width according to the target split ratio SRtgm is impossible.

多段噴射分割比制御部207は、目標分割比SRtgmでの多段噴射が可能であると判断すると、マップから検索した目標分割比SRtgmをそのまま最終的な目標分割比SRtgに設定して出力する。
また、多段噴射分割比制御部207は、目標分割比SRtgmでの多段噴射が不能であると判断すると、最小噴射パルス幅TIminを下回る噴射パルス幅TIsnに設定された噴射回の分割比SRを増加させて最小噴射パルス幅TImin以上の噴射パルス幅TIsnを割り付けるように修正するとともに、相対的に、最小噴射パルス幅TImin以上の噴射パルス幅TIsnに設定された噴射回の分割比を噴射パルス幅TIsnが最小噴射パルス幅TIminを下回らない範囲で減少させる。
If the multistage injection split ratio control unit 207 determines that multistage injection at the target split ratio SRtgm is possible, the target split ratio SRtgm retrieved from the map is set as the final target split ratio SRtg as it is and output.
If the multistage injection split ratio control unit 207 determines that multistage injection at the target split ratio SRtgm is impossible, the multistage injection split ratio control unit 207 increases the injection split ratio SR set to the injection pulse width TIsn that is less than the minimum injection pulse width TImin. The injection pulse width TIsn greater than or equal to the minimum injection pulse width TImin is corrected and the injection pulse division ratio set to the injection pulse width TIsn greater than or equal to the minimum injection pulse width TImin is relatively set. Is reduced within a range that does not fall below the minimum injection pulse width TImin.

つまり、多段噴射分割比制御部207は、総燃料噴射パルス幅TIの多段噴射の各噴射回への割り振りを、各噴射回における噴射パルス幅が全て最小噴射パルス幅TIminを下回らないように調整する。
そして、多段噴射分割比制御部207は、上記のようにして訂正した目標分割比SRtgmを最終的な目標分割比SRtgとして出力する。
なお、多段噴射分割比制御部207は、目標分割比SRtgmに応じたパルス幅の割り付けでの多段噴射が不能であると判断したときに、総燃料噴射パルス幅TIを多段噴射の各噴射回に均等に割り付ける目標分割比SRtgを出力することができる。
That is, the multistage injection split ratio control unit 207 adjusts the allocation of the total fuel injection pulse width TI to each injection time so that the injection pulse widths at each injection time do not fall below the minimum injection pulse width TImin. .
Then, the multistage injection split ratio control unit 207 outputs the target split ratio SRtgm corrected as described above as the final target split ratio SRtg.
The multi-stage injection split ratio control unit 207 determines that the total fuel injection pulse width TI is set for each injection of multi-stage injection when it is determined that multi-stage injection is not possible with the pulse width allocation according to the target split ratio SRtgm. The target division ratio SRtg to be allocated evenly can be output.

多段噴射タイミング制御部208は、目標噴射回数Ntg、燃焼モードの情報を受け、噴射タイミングマップ部205からそのときの運転条件及び目標噴射回数Ntgに対応する噴射タイミングITを検索する。
燃料噴射弁駆動制御部210は、目標噴射回数Ntg、目標分割比SRtg、総燃料噴射パルス幅TI、噴射タイミングITの情報を受け、係る指令に応じて多段噴射の各噴射の噴射パルス幅TIsnを決定し、噴射タイミングITの指令に応じたタイミングで噴射パルス幅TIsnの噴射パルス信号を燃料噴射弁105に出力する。
The multi-stage injection timing control unit 208 receives information on the target number of injections Ntg and the combustion mode, and searches the injection timing map unit 205 for the injection timing IT corresponding to the operating condition and the target number of injections Ntg at that time.
The fuel injection valve drive control unit 210 receives information on the target number of injections Ntg, the target split ratio SRtg, the total fuel injection pulse width TI, and the injection timing IT, and determines the injection pulse width TIsn of each injection of the multistage injection in accordance with the command. The injection pulse signal having the injection pulse width TIsn is output to the fuel injection valve 105 at a timing according to the command of the injection timing IT.

図3は、ECU109が、内燃機関101の冷機状態でのファーストアイドル(fast idle)で、噴射パルス幅TIsnを最小噴射パルス幅TImin以上にするための制御として、目標燃圧FPtgを変更せずに目標噴射回数Ntgを減少させる噴射回数制御を実施するときの目標噴射回数Ntgやパルス比率PRなどの挙動を例示するタイムチャートである。   FIG. 3 shows a target without changing the target fuel pressure FPtg as control for the ECU 109 to make the injection pulse width TIsn equal to or greater than the minimum injection pulse width TImin when the internal combustion engine 101 is in the cold idle state. It is a time chart which illustrates behaviors, such as target injection frequency Ntg and pulse ratio PR, when implementing injection frequency control which reduces injection frequency Ntg.

なお、ファーストアイドルとは、内燃機関101の冷間始動後(暖機中)の回転保持、暖機性、走行性確保のために、始動後のアイドル回転速度を暖機後よりも高くしている状態であり、目標噴射回数Ntgmが比較的多い回数に設定され、かつ、総燃料噴射パルス幅TIが短く、噴射パルス幅TIsnが最小噴射パルス幅TImin未満になり易い運転条件である。
また、パルス比率PRは、多段噴射の目標噴射回数Ntg、最小噴射パルス幅TImin、総燃料噴射パルス幅TIに基づき、RP=TImin×Ntg/TIとして演算される値である。
The first idle means that the idling rotational speed after starting is made higher than that after warming up in order to maintain rotation, warming up and running performance after the cold starting of the internal combustion engine 101 (during warming up). This is an operating condition in which the target number of injections Ntgm is set to a relatively large number, the total fuel injection pulse width TI is short, and the injection pulse width TIsn tends to be less than the minimum injection pulse width TImin.
The pulse ratio PR is a value calculated as RP = TImin × Ntg / TI based on the target number Ntg of multistage injections, the minimum injection pulse width TImin, and the total fuel injection pulse width TI.

したがって、総燃料噴射パルス幅TIを目標噴射回数Ntgに均等分割したときの噴射パルス幅TIsnが最小噴射パルス幅TIminに一致する場合にパルス比率PR=1.0となり、パルス比率PRは、総燃料噴射パルス幅TIを目標噴射回数Ntgに均等分割したときの噴射パルス幅TIsnが最小噴射パルス幅TIminよりも大きくなるほど、1.0よりも小さい値になる。
そして、パルス比率PRが1.0を超えるときには、均等割り付けしたときの噴射パルス幅TIsnが最小噴射パルス幅TIminを下回ることを示し、パルス比率PRが1.0以下であるときには、均等割り付けしたときの噴射パルス幅TIsnが最小噴射パルス幅TImin以上になり、目標噴射回数Ntgでの多段噴射が可能であることを示す。
Therefore, when the injection pulse width TIsn when the total fuel injection pulse width TI is equally divided into the target number of injections Ntg matches the minimum injection pulse width TImin, the pulse ratio PR = 1.0, and the pulse ratio PR is equal to the total fuel injection pulse. As the injection pulse width TIsn obtained by equally dividing the width TI into the target number of injections Ntg is larger than the minimum injection pulse width TImin, the value becomes smaller than 1.0.
When the pulse ratio PR exceeds 1.0, it indicates that the injection pulse width TIsn when evenly allocated is less than the minimum injection pulse width TImin. When the pulse ratio PR is 1.0 or less, the injection pulse width when evenly allocated TIsn is equal to or greater than the minimum injection pulse width TImin, indicating that multistage injection at the target injection number Ntg is possible.

図3における内燃機関101の運転条件である冷機ファーストアイドル状態、換言すれば、内燃機関101の暖機状態では、目標アイドル回転速度を暖機後よりも高く設定し、また、点火時期を暖機後よりもリタードさせることで、触媒コンバータ112の触媒暖機を促進させる場合がある。
係る触媒暖機の促進処理が実施されるときは、内燃機関101の吸入空気量がアイドル状態としては多く、また、PN低減のために燃圧FPが例えば20MPa以上の高燃圧に設定される条件であり、図3の例では目標噴射回数Ntgmが3回に設定される。
ここで、個体差によりファーストアイドル状態での要求空気量が比較的少ない内燃機関101の場合、始動後、機関回転速度が目標アイドル回転速度に近づくにしたがって総燃料噴射パルス幅TIが減少し、パルス比率PRが徐々に大きくなる。
In the cold start first idle state which is the operating condition of the internal combustion engine 101 in FIG. 3, in other words, in the warm up state of the internal combustion engine 101, the target idle rotation speed is set higher than after warm up, and the ignition timing is set to warm up. In some cases, the catalyst warm-up of the catalytic converter 112 is promoted by retarding later.
When the catalyst warm-up promotion process is performed, the intake air amount of the internal combustion engine 101 is large in an idle state, and the fuel pressure FP is set to a high fuel pressure of, for example, 20 MPa or more for PN reduction. Yes, in the example of FIG. 3, the target number of injections Ntgm is set to three.
Here, in the case of the internal combustion engine 101 in which the required air amount in the first idle state is relatively small due to individual differences, the total fuel injection pulse width TI decreases as the engine rotational speed approaches the target idle rotational speed after startup, and the pulse The ratio PR gradually increases.

図3に示す判定値Xは、目標噴射回数Ntgでの多段噴射が不能であるか否かを判断するためのパルス比率PRの閾値で、例えば判定値X=1.0に設定される。なお、燃料噴射弁105の開弁特性のばらつきなどを考慮し、判定値XをX<1.0とすることができる。
パルス比率PRが時刻t1で判定値Xを超えたとき、ECU109は、目標噴射回数Ntgm(マップ値)での多段噴射が不能であると判断し、目標噴射回数Ntgを3回から2回に減じる。
The determination value X shown in FIG. 3 is a threshold value of the pulse ratio PR for determining whether or not multi-stage injection at the target number of injections Ntg is impossible. For example, the determination value X is set to 1.0. The determination value X can be set to X <1.0 in consideration of variations in the valve opening characteristics of the fuel injection valve 105 and the like.
When the pulse ratio PR exceeds the determination value X at time t1, the ECU 109 determines that multistage injection at the target injection number Ntgm (map value) is impossible, and reduces the target injection number Ntg from three to two. .

目標噴射回数Ntgが3回から2回になると、パルス比率PRは急速に小さくなる。例えば、TImin=0.5ms、TI=1.45ms、Ntg=3回の条件では、PR=1.034であるのに対し、TImin=0.5ms、TI=1.45ms、Ntg=2回の条件では、PR=0.689にまで低下し、目標噴射回数Ntgを3回から2回に減じたことで、最小噴射パルス幅TImin以上の噴射パルス幅TIsnで多段噴射(2回噴射、2分割噴射)を行えることになる。
しかし、目標噴射回数Ntgを、最適値であるマップ値(目標噴射回数Ntgm)の3回から2回に減じたことで、シリンダ壁面への燃料付着量、混合気の均質性などが変化して燃焼が悪化し、PNの悪化を含む排気性状の悪化、及び、機関回転速度の低下などが発生する場合がある。
When the target number of injections Ntg is changed from 3 times to 2 times, the pulse ratio PR is rapidly reduced. For example, PR = 1.034 under the conditions of TImin = 0.5 ms, TI = 1.45 ms, and Ntg = 3, whereas PR = 0.689 under the conditions of TImin = 0.5 ms, TI = 1.45 ms, and Ntg = 2. By reducing the target number of injections Ntg from three to two, multistage injection (two injections, two-part injection) can be performed with an injection pulse width TIsn equal to or greater than the minimum injection pulse width TImin.
However, by reducing the target number of injections Ntg from three times the map value (target number of injections Ntgm), which is the optimal value, the amount of fuel adhering to the cylinder wall surface, the homogeneity of the air-fuel mixture, etc. will change. Combustion deteriorates, exhaust characteristics including PN deterioration, engine speed reduction, and the like may occur.

図3に示す判定値Yは、運転領域の変化や補機負荷の変化などにより、総燃料噴射パルス幅TIが増加に転じたときに、目標噴射回数Ntgをマップ値(目標噴射回数Ntgm)よりも減らした状態からマップ値(目標噴射回数Ntgm)に復帰させるタイミングを判断するためのパルス比率PRの閾値である。
この判定値Y(Y<X≦1.0)は、マップ値の目標噴射回数Ntgmを設定できるパルス比率PR、及び、目標噴射回数Ntgを減少させたときのパルス比率PRの変動などを考慮し、目標噴射回数Ntgのハンチングを抑制できる値に設定される。
The determination value Y shown in FIG. 3 indicates that the target number of injections Ntg is calculated from the map value (target number of injections Ntgm) when the total fuel injection pulse width TI starts to increase due to a change in the operation region or a change in the auxiliary machine load. This is the threshold value of the pulse ratio PR for determining the timing for returning to the map value (target injection number Ntgm) from the reduced state.
This determination value Y (Y <X ≦ 1.0) takes into account the pulse ratio PR that can set the target injection number Ntgm of the map value and the fluctuation of the pulse ratio PR when the target injection number Ntg is decreased. It is set to a value that can suppress hunting of the number of injections Ntg.

図3の時刻t2で、ECU109は、パルス比率PRが判定値Yを下回ったことを判断し、目標噴射回数Ntgを2回からマップ値(目標噴射回数Ntgm)である3回、つまり、そのときの運転条件における最適値に戻す処理を実施する。
目標噴射回数Ntgが本来の3回に戻されると、シリンダ壁面への燃料付着量、混合気の均質性などが改善され、係る燃焼改善によってトルクが増えることで機関回転速度が上昇する。
そして、機関回転速度が上昇すると総燃料噴射パルス幅TIが減り、総燃料噴射パルス幅TIが減ることで再びパルス比率PRが上昇に転じて判定値Xを超えるようになり、ECU109は、時刻t3でパルス比率PRが判定値Xを超えたことを判断すると、目標噴射回数Ntgをマップ値である3回から2回に減じる処理を再度行うことになる。
At time t2 in FIG. 3, the ECU 109 determines that the pulse ratio PR has fallen below the determination value Y, and changes the target injection number Ntg from two times to the map value (target injection number Ntgm) three times, that is, at that time. The process of returning to the optimum value in the operating conditions is performed.
When the target number of injections Ntg is returned to the original three times, the amount of fuel adhering to the cylinder wall surface, the homogeneity of the air-fuel mixture, and the like are improved, and the engine speed is increased by increasing the torque due to such combustion improvement.
When the engine rotational speed increases, the total fuel injection pulse width TI decreases, and when the total fuel injection pulse width TI decreases, the pulse ratio PR starts to increase again and exceeds the determination value X. When it is determined that the pulse ratio PR exceeds the determination value X, the process of reducing the target injection number Ntg from 3 times as the map value to 2 times is performed again.

上記のように、目標噴射回数Ntgを最適値から減らすと、最小噴射パルス幅TImin以上の噴射パルス幅TIsnで多段噴射を行わせることができるが、PNの悪化を含む排気性状の悪化が生じる可能性がある。
そこで、ECU109は、最小噴射パルス幅TImin以上の噴射パルス幅TIsnで多段噴射を行わせるための制御として、目標燃圧FPtgの減少制御を実施するよう構成されており、以下では、目標燃圧FPtgの減少制御によって、目標噴射回数Ntgを減らす場合よりもPNの悪化を抑制できることを説明する。
As described above, when the target number of injections Ntg is reduced from the optimum value, multistage injection can be performed with an injection pulse width TIsn that is equal to or greater than the minimum injection pulse width TImin, but exhaust properties including deterioration of PN may be deteriorated. There is sex.
Therefore, the ECU 109 is configured to perform a reduction control of the target fuel pressure FPtg as a control for performing multi-stage injection with an injection pulse width TIsn equal to or greater than the minimum injection pulse width TImin. It will be described that the control can suppress the deterioration of PN as compared with the case where the target number of injections Ntg is reduced.

図4は、燃圧FPに対するPNの変化を、多段噴射の目標噴射回数Ntg(Ntg=1,2,3)毎にグラフ化したもので、横軸に燃圧FP、縦軸にPNを表している。
燃圧FPを高くすると燃料噴霧の微粒化が促進されるため、1回噴射(Ntg=1)、2回噴射(Ntg=2)、3回噴射(Ntg=3)のいずれにおいてもPNが低減する傾向を示すが、燃圧を高くすると燃料噴霧の貫徹力が強くなって到達距離が長くなるため、燃圧の上昇に応じて低減する傾向を示していたPNは、ある燃圧を超えると上昇に転じる。
FIG. 4 is a graph showing the change in PN with respect to the fuel pressure FP for each target injection number Ntg (Ntg = 1, 2, 3) of multistage injection, with the horizontal axis representing the fuel pressure FP and the vertical axis representing PN. .
When the fuel pressure FP is increased, atomization of the fuel spray is promoted, so that PN is reduced in any of the single injection (Ntg = 1), the two injections (Ntg = 2), and the three injections (Ntg = 3). Although it shows a tendency, if the fuel pressure is increased, the penetration force of the fuel spray becomes stronger and the reach distance becomes longer. Therefore, the PN that has shown a tendency to decrease according to the increase in the fuel pressure starts to increase when the fuel pressure exceeds a certain fuel pressure.

ここで、燃圧FPが同じでも、多段噴射の目標噴射回数Ntgが多くなるほど、換言すれば、1回当たりの噴射パルス幅TIsnが短くなるほど、燃料噴霧の貫徹力が弱くなって到達距離が短くなるから、目標噴射回数Ntgが多いほどPNは低下する傾向を示す。
また、燃料噴霧の微粒化による気化促進と噴霧の貫徹力(到達距離)との関係性から、PN低減効果を可及的に大きくできる燃圧領域は、目標噴射回数Ntg毎に異なる。
Here, even if the fuel pressure FP is the same, as the target number Ntg of multistage injections increases, in other words, as the injection pulse width TIsn per one becomes shorter, the penetration force of the fuel spray becomes weaker and the reach distance becomes shorter. Therefore, PN tends to decrease as the target number of injections Ntg increases.
Further, the fuel pressure region where the PN reduction effect can be made as large as possible varies depending on the target number of injections Ntg because of the relationship between vaporization promotion by atomization of fuel spray and the penetration force (reach distance) of the spray.

このような特性を考慮し、目標燃圧FPtg及び目標噴射回数Ntgのマップ値(FPtgm、Ntgm)は運転領域毎に最適値に設定される。
例えば、図4に示す特性において、目標燃圧FPtg=FP1、目標噴射回数Ntg=3回が最適値(FPtgm、Ntgm)として設定されている運転条件である場合に、最小噴射パルス幅TIminを下回る噴射パルス幅TIsnが設定される条件になって、目標噴射回数Ntgを3回から2回に減じたと仮定する。
Considering such characteristics, the map values (FPtgm, Ntgm) of the target fuel pressure FPtg and the target number of injections Ntg are set to optimum values for each operation region.
For example, in the characteristics shown in FIG. 4, when the target fuel pressure FPtg = FP1 and the target number of injections Ntg = 3 are the operating conditions set as the optimum values (FPtgm, Ntgm), the injection is less than the minimum injection pulse width TImin. It is assumed that the target injection frequency Ntg is reduced from 3 times to 2 times under the condition that the pulse width TIsn is set.

この場合、目標噴射回数Ntgを3回から2回に減じたことに因るPNの増加量はΔPNであるが、3回噴射を維持して燃圧FPをFP1からFP2(FP2<FP1)にまで低下させたときのPNの増加量は同じΔPNになる。
つまり、目標噴射回数Ntgを3回に維持したまま、燃圧FPをFP1からFP2未満までの間で調整して最小噴射パルス幅TImin以上の噴射パルス幅TIsnに設定できれば、目標噴射回数Ntgを3回から2回に減じる場合よりも、PNの悪化を抑止しつつ最小噴射パルス幅TImin以上の噴射パルス幅TIsnでの多段噴射を行わせることができる。
In this case, the amount of increase in PN due to the reduction of the target number of injections Ntg from 3 to 2 is ΔPN, but the fuel pressure FP is maintained from 3 to 3 and the fuel pressure FP is changed from FP1 to FP2 (FP2 <FP1). The amount of increase in PN when it is lowered is the same ΔPN.
In other words, if the fuel pressure FP is adjusted between FP1 and less than FP2 while the target injection number Ntg is maintained at three times, the target injection number Ntg is set to three times if the injection pulse width TIsn is equal to or greater than the minimum injection pulse width TImin. The multistage injection with the injection pulse width TIsn equal to or larger than the minimum injection pulse width TImin can be performed while suppressing the deterioration of the PN, compared with the case where the number is reduced to twice.

このため、ECU109は、最小噴射パルス幅TIminを下回る噴射パルス幅TIsnが設定される条件になったときに、目標噴射回数Ntgを維持したまま目標燃圧FPtgを低下させて最小噴射パルス幅TImin以上の噴射パルス幅TIsnが設定されるようにする。
但し、最小噴射パルス幅TImin以上の噴射パルス幅TIsnを設定させるために、図4に示す燃圧FP2よりも低い燃圧にする必要がある場合は、目標噴射回数Ntgを3回から2回に減じた場合のPNの増加量であるΔPNよりも悪化することになる。
Therefore, the ECU 109 reduces the target fuel pressure FPtg while maintaining the target number of injections Ntg when the injection pulse width TIsn lower than the minimum injection pulse width TImin is set. The injection pulse width TIsn is set.
However, when it is necessary to set the fuel pressure lower than the fuel pressure FP2 shown in FIG. 4 in order to set the injection pulse width TIsn equal to or greater than the minimum injection pulse width TImin, the target injection number Ntg is reduced from 3 times to 2 times. In this case, it becomes worse than ΔPN, which is the amount of increase in PN.

そこで、ECU109は、最小噴射パルス幅TImin以上の噴射パルス幅TIsnを設定するために燃圧FPを燃圧FP2まで低下させる必要がある場合、燃圧FPを低下させて噴射パルス幅TIsnを最小噴射パルス幅TImin以上にする代わり、燃圧FPを最適値であるFP1(マップ値である目標燃圧FPtgm)に戻して目標噴射回数Ntgを目標噴射回数Ntgm(マップ値)から減じ、最小噴射パルス幅TImin以上の噴射パルス幅TIsnを設定できるようにする。
また、ECU109は、最小噴射パルス幅TImin以上の噴射パルス幅TIsnでの多段噴射を行わせるため、目標噴射回数Ntgをマップ値である目標噴射回数Ntgmに維持したまま燃圧FPを低下させるときに、要求される燃圧FP付近での燃圧変動に対するPN変化が急であると、目標燃圧FPtgをマップ値である目標燃圧FPtgmから低下させる代わりに、燃圧FPを最適値であるFP1(目標燃圧FPtgm)に戻して目標噴射回数Ntgを目標噴射回数Ntgmから減じ、最小噴射パルス幅TImin以上の噴射パルス幅TIsnを設定する。
Therefore, when the ECU 109 needs to reduce the fuel pressure FP to the fuel pressure FP2 in order to set the injection pulse width TIsn equal to or greater than the minimum injection pulse width TImin, the ECU 109 reduces the fuel pressure FP to reduce the injection pulse width TIsn to the minimum injection pulse width TImin. Instead of the above, the fuel pressure FP is returned to the optimum value FP1 (target fuel pressure FPtgm which is a map value), the target number of injections Ntg is reduced from the target number of injections Ntgm (map value), and an injection pulse equal to or greater than the minimum injection pulse width TImin. The width TIsn can be set.
Further, when the ECU 109 reduces the fuel pressure FP while maintaining the target injection number Ntg at the target injection number Ntgm, which is a map value, in order to perform multi-stage injection with an injection pulse width TIsn equal to or greater than the minimum injection pulse width TImin, When the PN change with respect to the fuel pressure fluctuation in the vicinity of the required fuel pressure FP is steep, instead of lowering the target fuel pressure FPtg from the target fuel pressure FPtgm that is the map value, the fuel pressure FP is set to the optimum value FP1 (target fuel pressure FPtgm). Returning, the target number of injections Ntg is subtracted from the target number of injections Ntgm, and an injection pulse width TIsn equal to or greater than the minimum injection pulse width TImin is set.

これは、燃圧制御性を考慮すると、最小噴射パルス幅TImin以上の噴射パルス幅TIsnを設定するために燃圧変動でPNが大きく変化する領域(例えば、図4の3回噴射での燃圧FP2)で燃圧を制御するよりも、目標噴射回数Ntgをマップ値である目標噴射回数Ntgmから減らして、燃圧変動によるPN変化が緩やかな領域(例えば、図4の2回噴射での燃圧FP1)で燃圧FPを制御することが排気性能上望ましいためである。
そこで、ECU109は、PN悪化代やPN変化特性を考慮して設定された目標燃圧FPtgの低下限界であるリミッターFPmin(下限目標燃圧)を記憶し、リミッターFPminを下回る燃圧低下が要求される条件のときには、最小噴射パルス幅TImin以上の噴射パルス幅TIsnでの多段噴射を行わせるための燃圧低下処理をキャンセルし、目標燃圧FPtgを最適値(マップ値である目標燃圧FPtgm)に戻して目標噴射回数Ntgをマップ値である目標噴射回数Ntgmから減じるようにする。
In consideration of fuel pressure controllability, this is a region (for example, fuel pressure FP2 in three injections in FIG. 4) in which PN greatly changes due to fuel pressure fluctuation in order to set an injection pulse width TIsn that is equal to or greater than the minimum injection pulse width TImin. Rather than controlling the fuel pressure, the target number of injections Ntg is reduced from the target number of injections Ntgm, which is the map value, and the fuel pressure FP is in a region where the PN change due to fuel pressure fluctuation is slow (for example, the fuel pressure FP1 in the two-time injection in FIG. This is because it is desirable from the viewpoint of exhaust performance.
Therefore, the ECU 109 stores a limiter FPmin (lower limit target fuel pressure) that is a lowering limit of the target fuel pressure FPtg set in consideration of the PN deterioration allowance and the PN change characteristic, and the condition that the fuel pressure lowering below the limiter FPmin is required. Sometimes, the fuel pressure lowering process for performing the multi-stage injection with the injection pulse width TIsn equal to or greater than the minimum injection pulse width TImin is canceled, and the target fuel pressure FPtg is returned to the optimum value (target fuel pressure FPtgm which is the map value). Ntg is subtracted from the target injection number Ntgm which is a map value.

図5は、最小噴射パルス幅TImin以上の噴射パルス幅TIsnで多段噴射を行わせるための燃圧低下処理を説明するための図であり、内燃機関101の冷機ファーストアイドル状態(暖機中のアイドル運転)での目標燃圧FPtgなどの挙動の一例を表している。
なお、図5に示した、パルス比率PR、判定値X、判定値Yは、図3で説明したものと同じものであり、詳細な説明は省略する。
FIG. 5 is a diagram for explaining a fuel pressure lowering process for performing multi-stage injection with an injection pulse width TIsn equal to or greater than the minimum injection pulse width TImin, and shows a cold fast idle state of the internal combustion engine 101 (idle operation during warm-up). ) Represents an example of behavior such as the target fuel pressure FPtg.
Note that the pulse ratio PR, determination value X, and determination value Y shown in FIG. 5 are the same as those described with reference to FIG.

判定値A(第1判定値)は、目標燃圧FPtgを低下させる制御を開始させるタイミングを判断するためのパルス比率PRの閾値で、目標噴射回数Ntgを減数するか否かを判断するための判定値X(第2判定値)より低い値である(判定値A<判定値X≦1.0)。
これは、燃圧制御によって実際の燃圧FPが変化するまでの応答遅れを考慮し、パルス比率PRが判定値Xに達する前から燃圧FPを低下させる処理を開始し、燃圧FP低下の過渡応答の間で最小噴射パルス幅TIminを下回る噴射パルス幅TIsnでの噴射が実施されることを抑止するためである。
The determination value A (first determination value) is a threshold value of the pulse ratio PR for determining the timing for starting the control for reducing the target fuel pressure FPtg, and is a determination for determining whether or not to decrease the target number of injections Ntg. The value is lower than the value X (second determination value) (determination value A <determination value X ≦ 1.0).
This takes into account the response delay until the actual fuel pressure FP changes due to the fuel pressure control, starts the process of reducing the fuel pressure FP before the pulse ratio PR reaches the determination value X, and during the transient response of the fuel pressure FP lowering This is to prevent the injection with the injection pulse width TIsn below the minimum injection pulse width TImin.

また、判定値Bは、目標燃圧FPtgをマップ値である目標燃圧FPtgm(ベース燃圧)に戻すように上昇させる制御を開始させるタイミングを判断するためのパルス比率PRの閾値で、判定値Aと同様に、燃圧FPnの応答遅れを考慮して判定値Y(第3判定値)よりも高い値に設定される(判定値Y<判定値B<判定値A<判定値X≦1.0)。   The determination value B is a threshold value of the pulse ratio PR for determining the timing for starting the control to increase the target fuel pressure FPtg to return to the target fuel pressure FPtgm (base fuel pressure) that is the map value, and is the same as the determination value A. Further, in consideration of the response delay of the fuel pressure FPn, a value higher than the determination value Y (third determination value) is set (determination value Y <determination value B <determination value A <determination value X ≦ 1.0).

図5の時刻t1は、内燃機関101の始動開始タイミングで、時刻t1からパルス比率PRが判定値Aに達する時刻t2までの間では、目標燃圧FPtgはマップ値である目標燃圧FPtgmに保持され、目標噴射回数Ntgはマップ値である3回に保持される。
図5の時刻t2から時刻t3の間は、パルス比率PRが判定値Aを超えたために、ECU109が燃圧FPを減少変化させる期間である。
The time t1 in FIG. 5 is the start timing of the internal combustion engine 101, and from time t1 to time t2 when the pulse ratio PR reaches the determination value A, the target fuel pressure FPtg is held at the target fuel pressure FPtgm, which is a map value. The target number of injections Ntg is held at the map value of 3 times.
The period from time t2 to time t3 in FIG. 5 is a period during which the ECU 109 decreases the fuel pressure FP because the pulse ratio PR exceeds the determination value A.

ECU109は、パルス比率PRが判定値Aを超えると、目標燃圧FPtgを、マップ値である目標燃圧FPtgm(ベース燃圧)を初期値として一定時間毎に所定圧ずつ低下させ、燃圧FPを徐々に低下させる。なお、ECU109は、パルス比率PRと判定値Aとの偏差に応じて目標燃圧FPtgの低下量(低下速度)を可変に設定できる。
また、目標燃圧FPtgの低下処理には、リミッターFPminが設けられ、ECU109は、パルス比率PRが判定値Aを下回るようになるまで、若しくは、目標燃圧FPtgがリミッターFPminに達するまで、目標燃圧FPtgを漸減させる。
When the pulse ratio PR exceeds the determination value A, the ECU 109 decreases the target fuel pressure FPtg by a predetermined pressure every predetermined time with the target fuel pressure FPtgm (base fuel pressure) as a map value as an initial value, and gradually decreases the fuel pressure FP. Let Note that the ECU 109 can variably set the amount of decrease (decrease rate) in the target fuel pressure FPtg according to the deviation between the pulse ratio PR and the determination value A.
Further, a limiter FPmin is provided for the process of reducing the target fuel pressure FPtg, and the ECU 109 sets the target fuel pressure FPtg until the pulse ratio PR becomes lower than the determination value A or until the target fuel pressure FPtg reaches the limiter FPmin. Decrease gradually.

なお、リミッターFPminは、図4における燃圧FP1、FP2の間(FP2<FPmin<FP1)に設定される。また、ECU109は、目標燃圧FPtgm(ベース燃圧)の関数でリミッターFPminを演算することができる。
目標燃圧FPtg(実燃圧FP)を低下させると、同一燃料量を噴射するための噴射パルス幅が増加するため、パルス比率PRは減少するようになり、時刻t3でパルス比率PRは判定値Aにまで低下し、目標燃圧FPtgを低下させる処理は停止される。
The limiter FPmin is set between the fuel pressures FP1 and FP2 in FIG. 4 (FP2 <FPmin <FP1). Further, the ECU 109 can calculate the limiter FPmin as a function of the target fuel pressure FPtgm (base fuel pressure).
When the target fuel pressure FPtg (actual fuel pressure FP) is decreased, the injection pulse width for injecting the same amount of fuel increases, so that the pulse ratio PR decreases, and the pulse ratio PR becomes the determination value A at time t3. Until the target fuel pressure FPtg is lowered.

図5の時刻t3から時刻t4の間は、パルス比率PRが判定値Aと判定値Bとの間の値である期間で、目標燃圧FPtgはパルス比率PRが判定値Aに達したときの目標燃圧FPtgに保持され、目標噴射回数Ntgはマップ値である3回に保持される。
図5の時刻t4から時刻t5の間は、パルス比率PRが判定値Bにまで低下し、ECU109が、目標燃圧FPtgをマップ値である目標燃圧FPtgm(ベース燃圧)にまで戻す処理を実施する期間である。
From time t3 to time t4 in FIG. 5, the target fuel pressure FPtg is a target when the pulse ratio PR reaches the determination value A in a period in which the pulse ratio PR is a value between the determination value A and the determination value B. The fuel pressure FPtg is held, and the target number of injections Ntg is held at 3 times that is a map value.
Between time t4 and time t5 in FIG. 5, the period during which the pulse ratio PR decreases to the determination value B and the ECU 109 performs processing to return the target fuel pressure FPtg to the target fuel pressure FPtgm (base fuel pressure) that is a map value. It is.

ECU109は、パルス比率PRが判定値Bに達すると、目標燃圧FPtgをマップ値である目標燃圧FPtgm(ベース燃圧)に向けて一定時間毎に所定圧ずつ増加させ、目標燃圧FPtgが目標燃圧FPtgmに戻った時点(図5の時刻t5)で目標燃圧FPtgの漸増処理を停止させる。
なお、ECU109は、パルス比率PRと判定値Bとの偏差に応じて目標燃圧FPtgの上昇量(上昇速度)を可変に設定することができる。
When the pulse ratio PR reaches the determination value B, the ECU 109 increases the target fuel pressure FPtg by a predetermined pressure every predetermined time toward the target fuel pressure FPtgm (base fuel pressure) that is a map value, and the target fuel pressure FPtg becomes the target fuel pressure FPtgm. At the time of return (time t5 in FIG. 5), the process of gradually increasing the target fuel pressure FPtg is stopped.
The ECU 109 can variably set the amount of increase (increase speed) of the target fuel pressure FPtg in accordance with the deviation between the pulse ratio PR and the determination value B.

図6は、内燃機関101の冷機ファーストアイドル状態(暖機中)で、ECU109が目標燃圧FPtgをリミッターFPminまで低下させてもパルス比率PRが判定値Xを超え、ECU109が目標噴射回数Ntgをマップ値である3回から2回に減じる処理を実施する状況でのパルス比率PR、目標燃圧FPtg、目標噴射回数Ntgなどの挙動の一例を表している。
図6に示した、パルス比率PR、判定値X、判定値A、判定値B、判定値Yは、図3、図5と同じものであり、詳細な説明は省略する。
FIG. 6 shows that the pulse ratio PR exceeds the determination value X even when the ECU 109 reduces the target fuel pressure FPtg to the limiter FPmin when the internal combustion engine 101 is in the cold first idle state (warming up), and the ECU 109 maps the target number of injections Ntg. An example of the behavior of the pulse ratio PR, the target fuel pressure FPtg, the target number of injections Ntg, etc. in a situation where the process of reducing the value from 3 to 2 is performed is shown.
The pulse ratio PR, determination value X, determination value A, determination value B, and determination value Y shown in FIG. 6 are the same as those in FIG. 3 and FIG.

図6の時刻t1で、パルス比率PRが判定値Aを超えたため、ECU109は、目標燃圧FPtgをマップ値である目標燃圧FPtgm(ベース燃圧)から漸減させる処理を開始し、時刻t2で目標燃圧FPtgがリミッターFPminに達したために目標燃圧FPtgを漸減させる処理を停止し、目標燃圧FPtgをリミッターFPminに保持する。
目標燃圧FPtgがリミッターFPminに達した後もパルス比率PRが上昇し、時刻t3でパルス比率PRが判定値Xを超えたため、ECU109は、目標噴射回数Ntgをマップ値である3回から2回に減じるとともに、目標燃圧FPtgをリミッターFPminからマップ値である目標燃圧FPtgmに戻す処理を開始する。
Since the pulse ratio PR exceeds the determination value A at time t1 in FIG. 6, the ECU 109 starts a process of gradually decreasing the target fuel pressure FPtg from the target fuel pressure FPtgm (base fuel pressure) that is the map value, and at the time t2, the target fuel pressure FPtg. Has reached the limiter FPmin, the process of gradually decreasing the target fuel pressure FPtg is stopped, and the target fuel pressure FPtg is held in the limiter FPmin.
Even after the target fuel pressure FPtg reaches the limiter FPmin, the pulse ratio PR increases, and the pulse ratio PR exceeds the determination value X at time t3. Therefore, the ECU 109 changes the target injection number Ntg from three times, which is a map value. At the same time, the process of returning the target fuel pressure FPtg from the limiter FPmin to the target fuel pressure FPtgm that is the map value is started.

目標噴射回数Ntgがマップ値である3回から2回に減じられたことで、パルス比率PRは時刻t3以降で減少に転じ、時刻t4でパルス比率PRが判定値Yを下回ったことで、ECU109は、目標噴射回数Ntgをマップ値(目標噴射回数Ntgm)に復帰させても最小噴射パルス幅TImin以上の噴射パルス幅TIsnを設定できる条件(総燃料噴射パルス幅TI)になったと判断し、目標噴射回数Ntgを2回からマップ値である3回に戻す。
このように、ECU109は、基本的に目標燃圧FPtgを減じてパルス比率PRが判定値Xを超えないように制御するが、目標燃圧FPtgをリミッターFPminまで低下させてもパルス比率PRが判定値Xを超えた場合は、目標燃圧FPtgをマップ値に戻した上で、目標噴射回数Ntgをマップ値である目標噴射回数Ntgmから減じ、パルス比率PRが判定値Xを超える状態の解消を図る。
By reducing the target injection number Ntg from 3 times, which is the map value, to 2 times, the pulse ratio PR starts to decrease after time t3, and the pulse ratio PR falls below the determination value Y at time t4. Determines that the condition (total fuel injection pulse width TI) that allows setting of the injection pulse width TIsn equal to or greater than the minimum injection pulse width TImin even when the target injection number Ntg is restored to the map value (target injection number Ntgm) The number of injections Ntg is returned from 2 times to 3 times that is the map value.
As described above, the ECU 109 basically controls the pulse ratio PR so that the pulse ratio PR does not exceed the determination value X by reducing the target fuel pressure FPtg. However, even if the target fuel pressure FPtg is reduced to the limiter FPmin, the pulse ratio PR is determined to be the determination value X. Is exceeded, the target fuel pressure FPtg is returned to the map value, and the target injection number Ntg is subtracted from the target injection number Ntgm, which is the map value, to eliminate the state where the pulse ratio PR exceeds the determination value X.

なお、ECU109は、目標燃圧FPtgをマップ値である目標燃圧FPtgmに戻すときに、急激な燃圧FPの変動によって燃料噴射弁105の計量精度が悪化することを抑止できるように、目標燃圧FPtgを目標燃圧FPtgmに向けて漸増させる。
また、ECU109が、目標噴射回数Ntgを減じるときに目標燃圧FPtgをマップ値に戻すのは、図4に示したように、燃圧FP変動に対するPNの変化が少ない領域の目標燃圧FPtgで内燃機関101を運転させ、燃圧FPの制御ばらつきがあってもPNを安定して少ない状態に制御できるようにするためである。
なお、ECU109は、上述した図5、図6にしたがって説明したパルス比率PRに基づく目標燃圧FPtgの制御を、目標噴射回数Ntgを減少させた場合の排気ガス、PNへの影響が大きい冷機状態や触媒暖機中、つまり、内燃機関101の暖機中に限定して実施することができる。
When the ECU 109 returns the target fuel pressure FPtg to the target fuel pressure FPtgm, which is a map value, the ECU 109 sets the target fuel pressure FPtg so that the measurement accuracy of the fuel injection valve 105 can be prevented from deteriorating due to rapid fluctuations in the fuel pressure FP. Increase gradually toward fuel pressure FPtgm.
Further, the ECU 109 returns the target fuel pressure FPtg to the map value when the target number of injections Ntg is decreased, as shown in FIG. 4, at the target fuel pressure FPtg in the region where the change in PN with respect to the fuel pressure FP fluctuation is small. This makes it possible to stably control the PN to a small state even if there is a variation in the control of the fuel pressure FP.
The ECU 109 performs control of the target fuel pressure FPtg based on the pulse ratio PR described in accordance with FIGS. 5 and 6 described above, in a cold state where the influence on the exhaust gas and PN is large when the target injection number Ntg is decreased. The present invention can be implemented only during the catalyst warm-up, that is, during the warm-up of the internal combustion engine 101.

図7は、上述したパルス比率PRに基づく目標燃圧FPtgの制御を触媒暖機中であることを条件として実施する構成において、触媒暖機完了後のアイドル状態での目標噴射回数Ntgの挙動を示した一例である。
なお、図7に示した、パルス比率PR、判定値X、判定値A、判定値B、判定値Yは、図3、図5、図6と同じものであり、詳細な説明は省略する。
FIG. 7 shows the behavior of the target number of injections Ntg in the idle state after the catalyst warm-up is completed in the configuration in which the control of the target fuel pressure FPtg based on the pulse ratio PR described above is performed on the condition that the catalyst is warmed up. It is an example.
Note that the pulse ratio PR, determination value X, determination value A, determination value B, and determination value Y shown in FIG. 7 are the same as those in FIG. 3, FIG. 5, and FIG.

ECU109は、図7の時刻t1で触媒暖機の完了、つまり、触媒温度が活性温度に達したことを判定すると、燃焼モードの切り替えによって触媒暖機のために点火時期をリタードさせる制御から通常点火時期での制御に移行し、また、目標アイドル回転速度を触媒暖機用の高回転から水温TWに応じた目標アイドル回転速度に下げる。係る制御によって、内燃機関101は要求空気量が少ない運転領域に移行する。
また、図7の時刻t1での触媒暖機の完了判定(燃焼モードの切り替わり判定)に伴い、ECU109が目標噴射回数Ntgmを検索するマップを切り替えることで、目標噴射回数Ntgは3回から2回に変更される。
When the ECU 109 determines that the catalyst warm-up is completed at time t1 in FIG. 7, that is, the catalyst temperature has reached the activation temperature, normal ignition is performed from the control for retarding the ignition timing for catalyst warm-up by switching the combustion mode. Control is shifted to timing control, and the target idle rotation speed is lowered from a high rotation for catalyst warm-up to a target idle rotation speed corresponding to the water temperature TW. By such control, the internal combustion engine 101 shifts to an operation region where the required air amount is small.
In addition, with the catalyst warm-up completion determination (combustion mode switching determination) at time t1 in FIG. 7, the ECU 109 switches the map for searching for the target injection number Ntgm, so that the target injection number Ntg is 3 to 2 times. Changed to

その後の時刻t2において、パルス比率PRは判定値Aを超えるが、パルス比率PRに基づく目標燃圧FPtgの制御を実施しない条件である触媒暖機の完了後であるため、ECU109は、パルス比率PRが判定値Aを超えても目標燃圧FPtgを低下させる制御を実施しない。
内燃機関101のフリクションが比較的小さく、総燃料噴射パルス幅TIが標準よりも短く演算される場合、時刻t2後においてパルス比率PRがさらに上昇する。
At the subsequent time t2, the pulse ratio PR exceeds the determination value A, but since the catalyst warm-up, which is a condition for not performing the control of the target fuel pressure FPtg based on the pulse ratio PR, is completed, the ECU 109 determines that the pulse ratio PR is Even if the judgment value A is exceeded, the control for reducing the target fuel pressure FPtg is not performed.
When the friction of the internal combustion engine 101 is relatively small and the total fuel injection pulse width TI is calculated to be shorter than the standard, the pulse ratio PR further increases after time t2.

そして、時刻t3でパルス比率PRが判定値Xを超えると、ECU109は、目標噴射回数Ntgをマップ値である2回から1回に減らして、最小噴射パルス幅TImin以上の噴射パルス幅TIsnを設定できる、換言すれば、パルス比率PRを判定値X以下にできる目標噴射回数Ntgに調整する。
目標噴射回数Ntgが2回から1回に減らされた後、運転領域の変化や補機類の動作状況などにより、総燃料噴射パルス幅TIが目標噴射回数Ntgを2回にできる値にまで増加することで、時刻t4でパルス比率PRが判定値Yを下回るようになる。
When the pulse ratio PR exceeds the determination value X at time t3, the ECU 109 decreases the target number of injections Ntg from two times that is the map value to one time, and sets an injection pulse width TIsn that is equal to or greater than the minimum injection pulse width TImin. In other words, the pulse ratio PR is adjusted to the target injection number Ntg that can be made equal to or less than the determination value X.
After the target number of injections Ntg has been reduced from two to one, the total fuel injection pulse width TI increases to a value that allows the target number of injections Ntg to be doubled due to changes in the operating range and operating conditions of the auxiliary machinery. As a result, the pulse ratio PR becomes lower than the determination value Y at time t4.

しかし、ECU109は、触媒暖機完了後のアイドル状態でパルス比率PRに基づき目標噴射回数Ntgを減らした場合、次にアイドル条件が不成立となるまで(内燃機関101が加速されアイドル状態を脱するまで)、マップ値(目標噴射回数Ntgm)よりも減数させた目標噴射回数Ntgを維持するよう構成される。
目標噴射回数Ntgが減少、増加(復帰)する際は、シリンダ壁面への燃料付着量や混合気の均質性などに変化が生じることで燃焼状態が変化するため、回転速度変動が生じ易く、特に機関回転速度の低いアイドル領域においては、燃焼変化による回転速度変動が顕著に表れやすい。
However, when the target number of injections Ntg is reduced based on the pulse ratio PR in the idle state after the catalyst warm-up is completed, the ECU 109 next until the idle condition is not satisfied (until the internal combustion engine 101 is accelerated and exits the idle state). ), The target number of injections Ntg reduced from the map value (target injection number Ntgm) is maintained.
When the target number of injections Ntg decreases or increases (returns), the combustion state changes due to changes in the amount of fuel adhering to the cylinder wall surface, the homogeneity of the air-fuel mixture, etc. In the idle region where the engine rotational speed is low, rotational speed fluctuations due to combustion changes tend to be noticeable.

このため、ECU109は、目標噴射回数Ntgをマップ値(目標噴射回数Ntgm)から減少させることによる排ガス、PNの影響が比較的小さい運転状態である、触媒暖機判定後若しくは水温、油温等が所定温度以上のアイドル領域に限り、パルス比率PRが判定値Yを下回るようになってもマップ値から減少させた目標噴射回数Ntgを維持させ、目標噴射回数Ntgの復帰に伴う回転変動の発生を抑止する。
そして、ECU109は、目標噴射回数Ntgをマップ値から減少させているアイドル状態が解除されると(換言すれば、目標噴射回数Ntgをマップ値から減少させているアイドル状態から非アイドル状態に移行すると)、目標噴射回数Ntgをマップ値に戻すように増加させる。
For this reason, the ECU 109 is in an operating state in which the influence of exhaust gas and PN due to the decrease in the target injection number Ntg from the map value (target injection number Ntgm) is relatively small, or after the catalyst warm-up determination or the water temperature, oil temperature, etc. Only in the idle region of a predetermined temperature or higher, even if the pulse ratio PR falls below the judgment value Y, the target injection number Ntg reduced from the map value is maintained, and the occurrence of rotational fluctuations accompanying the return of the target injection number Ntg is maintained. Deter.
Then, when the idle state in which the target injection number Ntg is decreased from the map value is released (in other words, the ECU 109 shifts from the idle state in which the target injection number Ntg is decreased from the map value to the non-idle state). ) Increase the target injection number Ntg so as to return to the map value.

以上、本発明の実施形態について詳述したが、燃圧、及び、多段噴射の噴射回数を制御すためのパラメータは、上述した最小噴射パルス幅TIminと1燃焼サイクル当たりの総燃料噴射パルス幅TIとの比率以外に、噴射パルス幅や噴射パルス幅を推定できる新たなパラメータを用いても同様の動作が可能であることは言うまでもない。
なお、本発明は上記した実施形態に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施形態の構成を加えることも可能である。また、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
Although the embodiment of the present invention has been described in detail above, the parameters for controlling the fuel pressure and the number of injections of multistage injection are the minimum injection pulse width TImin and the total fuel injection pulse width TI per combustion cycle described above. It goes without saying that the same operation is possible even if a new parameter that can estimate the injection pulse width and the injection pulse width is used in addition to this ratio.
In addition, this invention is not limited to above-described embodiment, Various modifications are included. For example, the above-described embodiment has been described in detail for easy understanding of the present invention, and is not necessarily limited to one having all the configurations described. Further, a part of the configuration of an embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of an embodiment. In addition, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.

図2に示したECU109の制御機能では、ECU109は、内燃機関101の運転条件に応じた標準の目標燃圧FPtgm、内燃機関101の運転条件に応じた標準の目標噴射回数Ntgmなどをマップからの検索で求めるが、ECU109は、運転条件を変数とする関数に基づき目標燃圧FPtgm(ベース燃圧)や目標噴射回数Ntgm(ベース噴射回数)を演算することができる。   In the control function of the ECU 109 shown in FIG. 2, the ECU 109 searches the map for a standard target fuel pressure FPtgm corresponding to the operating condition of the internal combustion engine 101, a standard target injection number Ntgm corresponding to the operating condition of the internal combustion engine 101, and the like. However, the ECU 109 can calculate the target fuel pressure FPtgm (base fuel pressure) and the target number of injections Ntgm (base injection number) based on a function whose operating conditions are variables.

また、ECU109は、パルス比率PR(RP=TImin×Ntg/TI)に基づき、最小噴射パルス幅TImin以上の噴射パルス幅TIsnでの多段噴射が行える条件であるか否かを判断する構成に代えて、総燃料噴射パルス幅TI、目標噴射回数Ntgm、目標分割比SRtgmに基づき特定される各噴射での噴射パルス幅TIsnのうち最も短い噴射パルス幅と最小噴射パルス幅TIminとを比較して、最小噴射パルス幅TImin以上の噴射パルス幅TIsnでの多段噴射が行える条件であるか否かを判断することができる。   In addition, the ECU 109 replaces the configuration for determining whether or not the conditions allow the multistage injection with the injection pulse width TIsn equal to or greater than the minimum injection pulse width TImin based on the pulse ratio PR (RP = TImin × Ntg / TI). The minimum injection pulse width TImin is compared with the shortest injection pulse width TImin among the injection pulse widths TIsn in each injection specified based on the total fuel injection pulse width TI, the target number of injections Ntgm, and the target split ratio SRtgm. It is possible to determine whether or not the conditions allow multistage injection with an injection pulse width TIsn equal to or greater than the injection pulse width TImin.

更に、ECU109は、目標分割比SRtgmに応じた各噴射での噴射パルス幅TIsnのうち最も短い噴射パルス幅が最小噴射パルス幅TImin未満であると判断したときに、目標分割比SRtgmを所定範囲内で変更することで各噴射回での噴射パルス幅TIsnを全て最小噴射パルス幅TImin以上にできる場合は、目標分割比SRtgmの変更を実施し、目標分割比SRtgmを所定範囲内で変更しても各噴射回での噴射パルス幅TIsnを全て最小噴射パルス幅TImin以上にできない場合に目標燃圧FPtgの低下を実施することができる。
また、ECU109は、目標分割比SRtgmに応じた各噴射での噴射パルス幅TIsnのうち最も短い噴射パルス幅が最小噴射パルス幅TImin未満であると判断したときに、目標分割比SRtgmを変更せずに、目標燃圧FPtgの低下によって各噴射回での噴射パルス幅TIsnを全て最小噴射パルス幅TImin以上とすることができる。
Further, when the ECU 109 determines that the shortest injection pulse width TIsn in each injection corresponding to the target division ratio SRtgm is less than the minimum injection pulse width TImin, the ECU 109 keeps the target division ratio SRtgm within a predetermined range. If all the injection pulse widths TIsn at each injection time can be made equal to or greater than the minimum injection pulse width TImin by changing in step S1, the target split ratio SRtgm is changed and the target split ratio SRtgm is changed within a predetermined range. The target fuel pressure FPtg can be reduced when the injection pulse width TIsn at each injection time cannot be all made equal to or greater than the minimum injection pulse width TImin.
Further, the ECU 109 does not change the target split ratio SRtgm when determining that the shortest injection pulse width TIsn of the injection pulse widths TIsn in each injection corresponding to the target split ratio SRtgm is less than the minimum injection pulse width TImin. In addition, all of the injection pulse widths TIsn at the respective injection times can be made equal to or greater than the minimum injection pulse width TImin by decreasing the target fuel pressure FPtg.

また、ECU109は、内燃機関101の暖機後においても、各噴射回での噴射パルス幅TIsnを全て最小噴射パルス幅TImin以上とするために、目標燃圧FPtgをベース燃圧から低下させる処理を実施することができる。
また、ECU109は、パルス比率PRの上昇速度に応じて判定値Aのレベルを変更することができ、パルス比率PRの上昇速度が速いほど判定値Aのレベルを下げて、燃圧FPを低下させる制御の開始を早めることで、燃圧制御の応答遅れによって噴射パルス幅TIsnが最小噴射パルス幅TImin未満になることを抑止しつつ、燃圧FPを低下させる制御を過剰に実施してしまうことを抑制できる。
Further, even after the internal combustion engine 101 is warmed up, the ECU 109 performs a process of reducing the target fuel pressure FPtg from the base fuel pressure in order to make all the injection pulse widths TIsn at each injection time equal to or greater than the minimum injection pulse width TImin. be able to.
Further, the ECU 109 can change the level of the determination value A in accordance with the increasing rate of the pulse ratio PR, and the control for decreasing the fuel pressure FP by decreasing the level of the determining value A as the increasing rate of the pulse ratio PR increases. By accelerating the start of the fuel pressure control, it is possible to prevent the fuel pressure FP from being excessively controlled while preventing the injection pulse width TIsn from becoming less than the minimum injection pulse width TImin due to the response delay of the fuel pressure control.

101…内燃機関、105…燃料噴射弁、109…ECU(制御装置)、129…燃料供給装置、201…燃料噴射パルス幅演算部(総噴射量設定部)、203…多段噴射回数マップ部(回数設定部)、206…多段噴射制御部   DESCRIPTION OF SYMBOLS 101 ... Internal combustion engine, 105 ... Fuel injection valve, 109 ... ECU (control apparatus), 129 ... Fuel supply apparatus, 201 ... Fuel injection pulse width calculating part (total injection amount setting part), 203 ... Multistage injection frequency map part (Number of times) Setting unit), 206... Multistage injection control unit

Claims (11)

内燃機関の筒内に燃料を直接噴射する燃料噴射弁と、前記燃料噴射弁に供給される燃圧を可変とする燃料供給装置とを備えた筒内噴射式内燃機関に適用される制御装置であって、
1燃焼サイクル中に前記燃料噴射弁から噴射させる総燃料噴射量を設定する総噴射量設定部と、
前記総燃料噴射量を1燃焼サイクル中に複数回に分けて噴射させる多段噴射における噴射回数を設定する回数設定部と、
前記燃圧がベース燃圧であるときの前記多段噴射での1回当たりの噴射パルス幅が最小噴射パルス幅を下回る条件であるときに、前記燃圧を前記ベース燃圧よりも低下させ、1回当たりの噴射パルス幅が前記最小噴射パルス幅を上回るようにして多段噴射を行わせる多段噴射制御部と、
を有する、筒内噴射式内燃機関の制御装置。
A control device applied to a direct injection internal combustion engine comprising a fuel injection valve that directly injects fuel into a cylinder of the internal combustion engine and a fuel supply device that varies a fuel pressure supplied to the fuel injection valve. And
A total injection amount setting unit for setting a total fuel injection amount to be injected from the fuel injection valve during one combustion cycle;
A number-of-times setting unit for setting the number of injections in multi-stage injection in which the total fuel injection amount is injected in a plurality of times during one combustion cycle;
When the fuel pressure is the base fuel pressure, when the injection pulse width per injection in the multistage injection is less than the minimum injection pulse width, the fuel pressure is reduced below the base fuel pressure, and the injection per injection A multi-stage injection control unit that performs multi-stage injection so that a pulse width exceeds the minimum injection pulse width;
A control apparatus for a direct injection internal combustion engine.
前記多段噴射制御部は、前記噴射回数をNtg、前記最小噴射パルス幅をTImin、前記燃圧が前記ベース燃圧であるときに前記総燃料噴射量に相当する総燃料噴射パルス幅をTIとしたときに、TImin×Ntg/TIが第1判定値(<1.0)以下になる条件である場合、前記ベース燃圧で多段噴射を行わせる、請求項1記載の内燃機関の制御装置。   The multi-stage injection control unit is configured such that the number of injections is Ntg, the minimum injection pulse width is TImin, and the total fuel injection pulse width corresponding to the total fuel injection amount is TI when the fuel pressure is the base fuel pressure. 2. The control device for an internal combustion engine according to claim 1, wherein, when TImin × Ntg / TI is a condition that is equal to or less than a first determination value (<1.0), multistage injection is performed at the base fuel pressure. 前記多段噴射制御部は、前記噴射回数をNtg、前記最小噴射パルス幅をTImin、前記燃圧が前記ベース燃圧であるときに前記総燃料噴射量に相当する総燃料噴射パルス幅をTIとしたときに、TImin×Ntg/TIが第1判定値(<1.0)よりも大きくなる条件である場合、前記燃圧を、前記ベース燃圧からTI/Ntgが最小噴射パルス幅TImin以上になる燃圧まで低下させる、請求項1又は請求項2記載の内燃機関の制御装置。   The multi-stage injection control unit is configured such that the number of injections is Ntg, the minimum injection pulse width is TImin, and the total fuel injection pulse width corresponding to the total fuel injection amount is TI when the fuel pressure is the base fuel pressure. , TImin × Ntg / TI is a condition that is greater than the first determination value (<1.0), the fuel pressure is reduced from the base fuel pressure to a fuel pressure at which TI / Ntg is equal to or greater than the minimum injection pulse width TImin. The control apparatus for an internal combustion engine according to claim 1 or 2. 前記多段噴射制御部は、前記燃圧を前記ベース燃圧よりも低下させている状態で、TImin×Ntg/TIが前記第1判定値よりも小さくなったときに、前記燃圧を前記ベース燃圧に向けて上昇させる、請求項3記載の内燃機関の制御装置。   The multi-stage injection control unit directs the fuel pressure toward the base fuel pressure when TImin × Ntg / TI is smaller than the first determination value in a state where the fuel pressure is lower than the base fuel pressure. The control device for an internal combustion engine according to claim 3, wherein the control device is raised. 前記多段噴射制御部は、前記燃圧を所定範囲内で変化させる、請求項3又は請求項4記載の内燃機関の制御装置。   The control device for an internal combustion engine according to claim 3 or 4, wherein the multi-stage injection control unit changes the fuel pressure within a predetermined range. 前記多段噴射制御部は、前記燃圧を前記ベース燃圧よりも低い所定燃圧まで低下させても、1回当たりの噴射パルス幅が前記最小噴射パルス幅を下回る条件であるときに、前記噴射回数を減らすことで、1回当たりの噴射パルス幅が前記最小噴射パルス幅を上回るようにして燃料噴射を行わせる、請求項1記載の内燃機関の制御装置。   The multi-stage injection control unit reduces the number of injections when the injection pulse width per one time is less than the minimum injection pulse width even if the fuel pressure is reduced to a predetermined fuel pressure lower than the base fuel pressure. The control apparatus for an internal combustion engine according to claim 1, wherein fuel injection is performed such that a single injection pulse width exceeds the minimum injection pulse width. 前記多段噴射制御部は、前記燃圧がベース燃圧であるときのTImin×Ntg/TIが前記第1判定値よりも大きい第2判定値を超える条件のときに、前記噴射回数を減らすことで、1回当たりの噴射パルス幅が前記最小噴射パルス幅を上回るようにして多段噴射を行わせる、請求項3記載の内燃機関の制御装置。   The multi-stage injection control unit reduces the number of injections by reducing the number of injections when TImin × Ntg / TI when the fuel pressure is the base fuel pressure exceeds a second determination value that is larger than the first determination value. The control apparatus for an internal combustion engine according to claim 3, wherein the multi-stage injection is performed such that the injection pulse width per revolution exceeds the minimum injection pulse width. 前記多段噴射制御部は、前記噴射回数を減らした状態でのTImin×Ntg/TIが、前記第1判定値よりも小さい第3判定値を超えるときは、前記噴射回数を減らした状態を維持し、TImin×Ntg/TIが前記第3判定値を下回るようになったときに前記噴射回数を増加させる、請求項7記載の内燃機関の制御装置。   The multi-stage injection control unit maintains the state where the number of injections is reduced when TImin × Ntg / TI in a state where the number of injections is reduced exceeds a third determination value which is smaller than the first determination value. 8. The control apparatus for an internal combustion engine according to claim 7, wherein the number of injections is increased when TImin × Ntg / TI falls below the third determination value. 前記多段噴射制御部は、前記噴射回数を減らすときに前記燃圧を上昇させる、請求項6又は請求項7記載の内燃機関の制御装置。   The control device for an internal combustion engine according to claim 6 or 7, wherein the multi-stage injection control unit increases the fuel pressure when reducing the number of injections. 前記多段噴射制御部は、前記燃圧の低下を前記内燃機関の暖機中に行う、請求項1記載の内燃機関の制御装置。   The control apparatus for an internal combustion engine according to claim 1, wherein the multi-stage injection control unit reduces the fuel pressure while the internal combustion engine is warmed up. 前記多段噴射制御部は、前記内燃機関の暖機後のアイドル状態で前記噴射回数を減らした場合、当該アイドル状態が解除されたときに前記噴射回数を増加させる、請求項6又は請求項7記載の内燃機関の制御装置。   The said multistage injection control part increases the said frequency | count of injection when the said idling state is cancelled | released when the said frequency | count of injection is reduced in the idling state after warm-up of the said internal combustion engine. Control device for internal combustion engine.
JP2017179284A 2017-09-19 2017-09-19 In-cylinder injection type internal combustion engine control device Active JP6815960B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017179284A JP6815960B2 (en) 2017-09-19 2017-09-19 In-cylinder injection type internal combustion engine control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017179284A JP6815960B2 (en) 2017-09-19 2017-09-19 In-cylinder injection type internal combustion engine control device

Publications (2)

Publication Number Publication Date
JP2019052632A true JP2019052632A (en) 2019-04-04
JP6815960B2 JP6815960B2 (en) 2021-01-20

Family

ID=66013703

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017179284A Active JP6815960B2 (en) 2017-09-19 2017-09-19 In-cylinder injection type internal combustion engine control device

Country Status (1)

Country Link
JP (1) JP6815960B2 (en)

Also Published As

Publication number Publication date
JP6815960B2 (en) 2021-01-20

Similar Documents

Publication Publication Date Title
US7055503B2 (en) Fuel injection controller for engine
EP1859142B1 (en) Control apparatus for internal combustion engine
US7318412B2 (en) Control device for internal combustion engine
US10107225B2 (en) Fuel injection control device
JP4449706B2 (en) Control device for internal combustion engine
JP2005232990A (en) Fuel injection control device of diesel engine
JP2006152817A (en) Controller of internal combustion engine
JP2013087755A (en) Internal combustion engine control device
JP6815960B2 (en) In-cylinder injection type internal combustion engine control device
JP5332871B2 (en) Fuel injection control device for spark ignition internal combustion engine
JP4453566B2 (en) Control device for internal combustion engine
JP2016079909A (en) Control device and control method of internal combustion engine
US10704489B2 (en) Controller and control method for fuel injection timing of internal combustion engine
JP4742633B2 (en) Control device for internal combustion engine
JP3968905B2 (en) Engine fuel injection control device
JP2007032330A (en) Controller of internal combustion engine
JP2002097985A (en) Control device of diesel engine
JP2008309035A (en) Internal combustion engine control device and internal combustion engine control system
JP2020007932A (en) Control device of internal combustion engine
JP2003328833A (en) Control system for internal combustion engine
JP2006220003A (en) Fuel injection control device for internal combustion engine
JP2003328817A (en) Control system for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190906

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200901

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201030

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201223

R150 Certificate of patent or registration of utility model

Ref document number: 6815960

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250