JP2019050104A - Method for manufacturing positive electrode active material composite for lithium ion secondary battery - Google Patents

Method for manufacturing positive electrode active material composite for lithium ion secondary battery Download PDF

Info

Publication number
JP2019050104A
JP2019050104A JP2017173213A JP2017173213A JP2019050104A JP 2019050104 A JP2019050104 A JP 2019050104A JP 2017173213 A JP2017173213 A JP 2017173213A JP 2017173213 A JP2017173213 A JP 2017173213A JP 2019050104 A JP2019050104 A JP 2019050104A
Authority
JP
Japan
Prior art keywords
lithium
particles
compound
positive electrode
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017173213A
Other languages
Japanese (ja)
Other versions
JP6527201B2 (en
Inventor
聖史 嶌田
Satoshi Shimada
聖史 嶌田
智紀 初森
Tomoki Hatsumori
智紀 初森
愉子 平山
Satoko Hirayama
愉子 平山
大神 剛章
Takeaki Ogami
剛章 大神
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP2017173213A priority Critical patent/JP6527201B2/en
Publication of JP2019050104A publication Critical patent/JP2019050104A/en
Application granted granted Critical
Publication of JP6527201B2 publication Critical patent/JP6527201B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

To provide a method for manufacturing a positive electrode active material composite for a lithium ion secondary battery, which enables an efficient manufacturing process and which allows a resultant secondary battery to exhibit superior durability and an excellent rate characteristic.SOLUTION: A method for manufacturing a positive electrode active material composite for a lithium ion secondary battery, which includes particular lithium composite oxide particles composed of lithium composite oxide secondary particles (A) and having particular lithium-based polyanion particles (B) coating surfaces of the lithium composite oxide secondary particles, comprises the steps of: (X) firing mix powder including a predetermined compound to obtain lithium composite oxide secondary particles (A); (Y) granulating, by spray drying, a slurry including lithium-based polyanion primary particles obtained by subjecting a predetermined compound to a hydrothermal reaction and a carbon source and then, firing resultant granules, thereby obtaining granulated bodies (C) consisting of lithium-based polyanion particles (B) having carbon supported on their surfaces, and adjusted to 45-80 vol.% in porosity; and (Z) mixing the lithium composite oxide secondary particles (A) obtained in the step (X), and granulated bodies (C) obtained in the step (Y) while applying a compressive force and a shearing force thereto, thereby compounding the lithium composite oxide secondary particles (A) and the lithium-based polyanion particles (B) having carbon supported on their surfaces while collapsing the granulated bodies (C).SELECTED DRAWING: None

Description

本発明は、優れた放電特性と安全性とを兼ね備えたリチウムイオン二次電池を得ることのできる、層状岩塩構造を有するリチウムイオン二次電池用正極活物質複合体の製造方法に関する。   The present invention relates to a method for producing a positive electrode active material composite for a lithium ion secondary battery having a layered rock salt structure, which can obtain a lithium ion secondary battery having both excellent discharge characteristics and safety.

層状型リチウム・ニッケル・コバルト・マンガン複合酸化物(NCM)や層状型リチウム・ニッケル・コバルト・アルミニウム複合酸化物(NCA)等の層状型リチウム複合酸化物は、リチウム原子層と遷移金属原子層とが、酸素原子層を介して交互に積み重なった層状結晶構造を呈し、遷移金属の1原子あたりに1個のリチウム原子が含まれる、いわゆる層状岩塩構造を有している。かかる層状型リチウム複合酸化物は、高出力及び高容量のリチウムイオン二次電池を構成できる正極活物質として使用されている。   Layered lithium composite oxides such as layered lithium-nickel-cobalt-manganese composite oxide (NCM) and layered-type lithium-nickel-cobalt-aluminum composite oxide (NCA) comprise a lithium atomic layer and a transition metal atomic layer Has a layered crystal structure alternately stacked via an atomic oxygen layer, and has a so-called layered rock salt structure in which one lithium atom is contained per one transition metal atom. Such layered lithium composite oxide is used as a positive electrode active material that can constitute a high output and high capacity lithium ion secondary battery.

こうした層状型リチウム複合酸化物を正極活物質として用いたリチウムイオン二次電池では、リチウムイオンが層状型リチウム複合酸化物に脱離・挿入されることによって充電・放電が行われるが、通常、充放電サイクルを重ねるにつれて容量低下が生じ、特に長期間使用すると、電池の容量低下が著しくなるおそれがある。これは、充電時に層状型リチウム複合酸化物の遷移金属成分が電解液へ溶出することにより、かかる結晶構造の崩壊が生じやすくなることが原因であると考えられている。また、この遷移金属成分の電解液への溶出によって、リチウムイオン二次電池の熱的安定性が低下して安全性が損なわれるおそれがある。   In a lithium ion secondary battery using such a layered lithium composite oxide as a positive electrode active material, charging and discharging are carried out by the lithium ions being desorbed and inserted into the layered lithium composite oxide. As the discharge cycles are repeated, capacity reduction occurs, and particularly when used for a long time, the capacity reduction of the battery may be significant. It is believed that this is because the dissolution of the transition metal component of the layered lithium composite oxide into the electrolytic solution during charging easily causes the collapse of the crystal structure. In addition, the elution of the transition metal component into the electrolytic solution may lower the thermal stability of the lithium ion secondary battery and impair the safety.

ところが、例えば車載用電池に使用される電池材料には、1000サイクル以上もの多数回にわたる充放電サイクルを経ても、一定以上の電池容量を維持できるような優れた耐久性を有することが要求されており、これに応じるべく種々の開発がなされている。例えば、特許文献1には、ニッケル酸リチウム粒子の表面が、一般式LixMPO4(0.05≦x≦1.2、MはFe、Mn、Co、Ni、Cu、Zn、Mgからなる群より選ばれる一種以上)で表されるオリビン化合物で被覆されてなる正極活物質が開示されており、良好な電子伝導性を有するニッケル酸リチウムと、サイクル特性や安全性に優れるオリビン化合物とを併用した正極活物質とすることによって、かかる正極活物質全体としての充放電容量と高温安定性の向上を図っている。そして、該文献には、用いるオリビン化合物として、特許文献2に記載されるような、所定の原料を混合して得た前駆体を還元性ガス雰囲気で焼成する方法により得られたものを用いる旨も記載されている。 However, for example, a battery material used for a vehicle-mounted battery is required to have excellent durability such that a battery capacity of a predetermined level or more can be maintained even after a large number of cycles of 1000 cycles or more. There have been various developments to accommodate this. For example, in Patent Document 1, the surface of lithium nickelate particles is generally represented by Li x MPO 4 (0.05 ≦ x ≦ 1.2, M is Fe, Mn, Co, Ni, Cu, Zn, Mg) And a positive electrode active material coated with an olivine compound represented by at least one selected from the group consisting of lithium nickelate having good electron conductivity, and an olivine compound having excellent cycle characteristics and safety. By setting it as the positive electrode active material used together, the improvement of the charge / discharge capacity and high temperature stability as this whole positive electrode active material is aimed at. And, as the olivine compound to be used, the one obtained by the method of baking a precursor obtained by mixing predetermined raw materials in a reducing gas atmosphere as described in Patent Document 2 is used as the olivine compound to be used Is also described.

特開2004−87299号公報JP 2004-87299 A 特開2001−250555号公報JP 2001-250555 A

しかしながら、上記特許文献1に記載されるような、ニッケル酸リチウム粒子の表面がオリビン化合物で被覆されてなる正極活物質を作製するにあたり、上記特許文献2に記載されるような方法で得られたオリビン化合物を用いると、かかるオリビン化合物は非常に堅牢な二次粒子であるため、これを解砕するのに過度な負荷を要し、また被覆処理にも時間がかかるおそれがある。それ故、正極活物質を構成するこれらの粒子において、結晶構造の損傷が発生・拡大し、得られる二次電池において、耐久性やレート特性等の電池特性が低下してしまうことが懸念される。   However, when producing a positive electrode active material in which the surface of lithium nickelate particles is coated with an olivine compound as described in Patent Document 1 above, it is obtained by the method as described in Patent Document 2 above. When using an olivine compound, such an olivine compound is a very robust secondary particle, so it may require an excessive load to break it up, and the coating process may also take time. Therefore, in these particles constituting the positive electrode active material, there is a concern that damage to the crystal structure may occur and be expanded, and battery characteristics such as durability and rate characteristics may be degraded in the obtained secondary battery. .

したがって、本発明の課題は、製造工程の効率化を可能としつつ、得られる二次電池において優れた耐久性とレート特性を発現させることのできるリチウムイオン二次電池用正極活物質複合体の製造方法を提供することである。   Therefore, an object of the present invention is to manufacture a positive electrode active material composite for lithium ion secondary battery capable of exhibiting excellent durability and rate characteristics in the obtained secondary battery while making the production process efficient. It is to provide a method.

そこで本発明者らは、上記課題を解決すべく鋭意検討を行った結果、特定のリチウム複合酸化物二次粒子(A)の表面に特定のリチウム系ポリアニオン粒子(B)が被覆してなるリチウムイオン二次電池用正極活物質複合体を製造するにあたり、表面に炭素が担持されたリチウム系ポリアニオン粒子(B)により形成される、空隙率の高い造粒体を用いることによって、製造工程の効率化を図りつつ電池特性の向上をも可能とする正極活物質が得られることを見出した。   Therefore, as a result of intensive studies to solve the above problems, the present inventors have found that lithium formed by coating a specific lithium-based polyanion particle (B) on the surface of a specific lithium composite oxide secondary particle (A) In the production of a positive electrode active material complex for an ion secondary battery, the efficiency of the production process is achieved by using a granule having a high porosity, which is formed of lithium-based polyanion particles (B) having carbon supported on the surface. It has been found that it is possible to obtain a positive electrode active material capable of improving battery characteristics while achieving

すなわち、本発明は、下記式(I)、又は(II):
LiNiaCobMnc1 x2・・・(I)
(式(I)中、M1はMg、Ti、Nb、Fe、Cr、Si、Al、Ga、V、Zn、Cu、Sr、Mo、Zr、Sn、Ta、W、La、Ce、Pb、Bi及びGeから選ばれる1種又は2種以上の元素を示す。a、b、c、xは、0.3≦a<1、0<b≦0.7、0<c≦0.7、0≦x≦0.3、かつ3a+3b+3c+(M1の価数)×x=3を満たす数を示す。)
LiNidCoeAlf2 y2 ・・・(II)
(式(II)中、M2はMg、Ti、Nb、Fe、Cr、Si、Ga、V、Zn、Cu、Sr、Mo、Zr、Sn、Ta、W、La、Ce、Pb、Bi及びGeから選ばれる1種又は2種以上の元素を示す。d、e、f、yは、0.4≦d<1、0<e≦0.6、0<f≦0.3、0≦y≦0.3、かつ3d+3e+3f+(M2の価数)×y=3を満たす数を示す。)
で表されるリチウム複合酸化物粒子からなるリチウム複合酸化物二次粒子(A)の表面において、下記式(III):
LiFemMnn3 oPO4・・・(III)
(式(III)中、M3はCo、Ca、Sr、Y、Zr、Mo、Ba、Pb、Bi、La、Ce、Nd又はGdを示す。m、n、及びoは、0≦m≦1、0≦n≦1、0≦o≦0.3、及びm+n≠0を満たし、かつ2m+2n+(M3の価数)×o=2を満たす数を示す。)
で表され、かつ表面に炭素が担持されたリチウム系ポリアニオン粒子(B)が被覆してなるリチウムイオン二次電池用正極活物質複合体の製造方法であって、次の工程(X)〜(Z):
(X)リチウム化合物、ニッケル化合物、コバルト化合物、及びマンガン化合物を含有する混合粉体、或いはリチウム化合物、ニッケル化合物、コバルト化合物、及びアルミニウム化合物を含有する混合粉体を焼成して、リチウム複合酸化物二次粒子(A)を得る工程、
(Y)リチウム化合物、少なくとも鉄化合物又はマンガン化合物を含む金属化合物及びリン酸化合物を水熱反応に付して得られたリチウム系ポリアニオン一次粒子、及び炭素源を含むスラリーを噴霧乾燥して造粒した後に焼成して、空隙率が45〜80体積%に調整されてなり、かつ表面に炭素が担持されたリチウム系ポリアニオン粒子(B)からなる造粒体(C)を得る工程、並びに
(Z)工程(X)で得られるリチウム複合酸化物二次粒子(A)と、工程(Y)で得られる造粒体(C)とを、圧縮力及びせん断力を付加しながら混合して、造粒体(C)を崩壊させながら、リチウム複合酸化物二次粒子(A)と表面に炭素が担持されたリチウム系ポリアニオン粒子(B)とを複合化する工程
を備えるリチウムイオン二次電池用正極活物質複合体の製造方法を提供するものである。
That is, the present invention relates to the following formula (I) or (II):
LiNi a Co b Mn c M 1 x O 2 (I)
(In the formula (I), M 1 represents Mg, Ti, Nb, Fe, Cr, Si, Al, Ga, V, Zn, Cu, Sr, Mo, Zr, Sn, Ta, W, La, Ce, Pb, And one or more elements selected from Bi and Ge, a, b, c, x, 0.3 ≦ a <1, 0 <b ≦ 0.7, 0 <c ≦ 0.7, Indicates a number satisfying 0 ≦ x ≦ 0.3 and 3a + 3b + 3c + (valence of M 1 ) × x = 3)
LiNi d Co e Al f M 2 y O 2 (II)
(Wherein M 2 is Mg, Ti, Nb, Fe, Cr, Si, Ga, V, Zn, Cu, Sr, Mo, Zr, Sn, Ta, W, La, Ce, Pb, Bi, and D represents one or more elements selected from Ge, d, e, f and y each satisfy 0.4 ≦ d <1, 0 <e ≦ 0.6, 0 <f ≦ 0.3, 0 ≦ It shows a number satisfying y ≦ 0.3 and 3d + 3e + 3f + (valence of M 2 ) × y = 3)
In the surface of lithium composite oxide secondary particles (A) consisting of lithium composite oxide particles represented by the following formula (III):
LiFe m Mn n M 3 o PO 4 (III)
(In the formula (III), M 3 represents Co, Ca, Sr, Y, Zr, Mo, Ba, Pb, Bi, La, Ce, Nd or Gd. M, n, and o satisfy 0 ≦ m ≦ 1, 0 ≦ n ≦ 1, 0 ≦ o ≦ 0.3, and m + n ≠ 0 are satisfied, and 2m + 2n + (valence number of M 3 ) × o = 2 is satisfied.)
A method for producing a positive electrode active material complex for a lithium ion secondary battery, comprising the step of coating a lithium-based polyanion particle (B) having a surface supported by carbon and being supported on the surface, comprising the steps of Z):
(X) A lithium mixed oxide containing a lithium compound, a nickel compound, a cobalt compound, and a manganese compound, or a mixed powder containing a lithium compound, a nickel compound, a cobalt compound, and an aluminum compound is fired to form a lithium composite oxide Obtaining secondary particles (A),
(Y) A lithium compound, a metal compound containing at least an iron compound or a manganese compound, and a phosphoric acid compound are subjected to a hydrothermal reaction, lithium-based polyanion primary particles obtained, and a slurry containing a carbon source are spray-dried to granulate And calcining to adjust the porosity to 45 to 80% by volume, and obtaining a granulated body (C) comprising lithium-based polyanion particles (B) having carbon supported on the surface, and (Z ) The lithium composite oxide secondary particles (A) obtained in step (X) and the granules (C) obtained in step (Y) are mixed while applying compressive force and shear force to produce A positive electrode for a lithium ion secondary battery, comprising a step of combining the lithium composite oxide secondary particles (A) and the lithium-based polyanion particles (B) having carbon supported on the surface thereof while disintegrating the particles (C) Active material The present invention provides a method for producing a complex.

本発明の製造方法によれば、工程中で過度な負荷を与えるのを有効に回避して、製造工程の効率を高めながら、正極活物質を構成する粒子における結晶構造の損傷を効果的に抑制し、安定した耐久性とレート特性を兼ね備えたリチウムイオン二次電池用正極活物質複合体を得ることができる。   According to the manufacturing method of the present invention, it is possible to effectively avoid applying an excessive load in the process, and effectively suppress the damage of the crystal structure in the particles constituting the positive electrode active material while enhancing the efficiency of the manufacturing process. Thus, it is possible to obtain a positive electrode active material complex for a lithium ion secondary battery having stable durability and rate characteristics.

以下、本発明について詳細に説明する。
本発明のリチウムイオン二次電池用正極活物質複合体の製造方法は、下記式(I)、又は(II):
LiNiaCobMnc1 x2・・・(I)
(式(I)中、M1はMg、Ti、Nb、Fe、Cr、Si、Al、Ga、V、Zn、Cu、Sr、Mo、Zr、Sn、Ta、W、La、Ce、Pb、Bi及びGeから選ばれる1種又は2種以上の元素を示す。a、b、c、xは、0.3≦a<1、0<b≦0.7、0<c≦0.7、0≦x≦0.3、かつ3a+3b+3c+(M1の価数)×x=3を満たす数を示す。)
LiNidCoeAlf2 y2 ・・・(II)
(式(II)中、M2はMg、Ti、Nb、Fe、Cr、Si、Ga、V、Zn、Cu、Sr、Mo、Zr、Sn、Ta、W、La、Ce、Pb、Bi及びGeから選ばれる1種又は2種以上の元素を示す。d、e、f、yは、0.4≦d<1、0<e≦0.6、0<f≦0.3、0≦y≦0.3、かつ3d+3e+3f+(M2の価数)×y=3を満たす数を示す。)
で表されるリチウム複合酸化物粒子からなるリチウム複合酸化物二次粒子(A)の表面において、下記式(III):
LiFemMnn3 oPO4・・・(III)
(式(III)中、M3はCo、Ca、Sr、Y、Zr、Mo、Ba、Pb、Bi、La、Ce、Nd又はGdを示す。m、n、及びoは、0≦m≦1、0≦n≦1、0≦o≦0.3、及びm+n≠0を満たし、かつ2m+2n+(M3の価数)×o=2を満たす数を示す。)
で表され、かつ表面に炭素が担持されたリチウム系ポリアニオン粒子(B)が被覆してなるリチウムイオン二次電池用正極活物質複合体の製造方法であって、次の工程(X)〜(Z):
(X)リチウム化合物、ニッケル化合物、コバルト化合物、及びマンガン化合物を含有する混合粉体、或いはリチウム化合物、ニッケル化合物、コバルト化合物、及びアルミニウム化合物を含有する混合粉体を焼成して、リチウム複合酸化物二次粒子(A)を得る工程、
(Y)リチウム化合物、少なくとも鉄化合物又はマンガン化合物を含む金属化合物及びリン酸化合物を水熱反応に付して得られたリチウム系ポリアニオン一次粒子、及び炭素源を含むスラリーを噴霧乾燥して造粒した後に焼成して、空隙率が45〜80体積%に調整されてなり、かつ表面に炭素が担持されたリチウム系ポリアニオン粒子(B)からなる造粒体(C)を得る工程、並びに
(Z)工程(X)で得られるリチウム複合酸化物二次粒子(A)と、工程(Y)で得られる造粒体(C)とを、圧縮力及びせん断力を付加しながら混合して、造粒体(C)を崩壊させながら、リチウム複合酸化物二次粒子(A)と表面に炭素が担持されたリチウム系ポリアニオン粒子(B)とを複合化する工程
を備える。
Hereinafter, the present invention will be described in detail.
The method for producing a positive electrode active material composite for a lithium ion secondary battery of the present invention comprises the following formula (I) or (II):
LiNi a Co b Mn c M 1 x O 2 (I)
(In the formula (I), M 1 represents Mg, Ti, Nb, Fe, Cr, Si, Al, Ga, V, Zn, Cu, Sr, Mo, Zr, Sn, Ta, W, La, Ce, Pb, And one or more elements selected from Bi and Ge, a, b, c, x, 0.3 ≦ a <1, 0 <b ≦ 0.7, 0 <c ≦ 0.7, Indicates a number satisfying 0 ≦ x ≦ 0.3 and 3a + 3b + 3c + (valence of M 1 ) × x = 3)
LiNi d Co e Al f M 2 y O 2 (II)
(Wherein M 2 is Mg, Ti, Nb, Fe, Cr, Si, Ga, V, Zn, Cu, Sr, Mo, Zr, Sn, Ta, W, La, Ce, Pb, Bi, and D represents one or more elements selected from Ge, d, e, f and y each satisfy 0.4 ≦ d <1, 0 <e ≦ 0.6, 0 <f ≦ 0.3, 0 ≦ It shows a number satisfying y ≦ 0.3 and 3d + 3e + 3f + (valence of M 2 ) × y = 3)
In the surface of lithium composite oxide secondary particles (A) consisting of lithium composite oxide particles represented by the following formula (III):
LiFe m Mn n M 3 o PO 4 (III)
(In the formula (III), M 3 represents Co, Ca, Sr, Y, Zr, Mo, Ba, Pb, Bi, La, Ce, Nd or Gd. M, n, and o satisfy 0 ≦ m ≦ 1, 0 ≦ n ≦ 1, 0 ≦ o ≦ 0.3, and m + n ≠ 0 are satisfied, and 2m + 2n + (valence number of M 3 ) × o = 2 is satisfied.)
A method for producing a positive electrode active material complex for a lithium ion secondary battery, comprising the step of coating a lithium-based polyanion particle (B) having a surface supported by carbon and being supported on the surface, comprising the steps of Z):
(X) A lithium mixed oxide containing a lithium compound, a nickel compound, a cobalt compound, and a manganese compound, or a mixed powder containing a lithium compound, a nickel compound, a cobalt compound, and an aluminum compound is fired to form a lithium composite oxide Obtaining secondary particles (A),
(Y) A lithium compound, a metal compound containing at least an iron compound or a manganese compound, and a phosphoric acid compound are subjected to a hydrothermal reaction, lithium-based polyanion primary particles obtained, and a slurry containing a carbon source are spray-dried to granulate And calcining to adjust the porosity to 45 to 80% by volume, and obtaining a granulated body (C) comprising lithium-based polyanion particles (B) having carbon supported on the surface, and (Z ) The lithium composite oxide secondary particles (A) obtained in step (X) and the granules (C) obtained in step (Y) are mixed while applying compressive force and shear force to produce A step of combining the lithium composite oxide secondary particles (A) and the lithium-based polyanion particles (B) having carbon supported on the surface while collapsing the particles (C) is provided.

本発明のリチウムイオン二次電池用正極活物質複合体の製造方法が備える工程(X)は、リチウム化合物、ニッケル化合物、コバルト化合物、及びマンガン化合物を含有する混合粉体、或いはリチウム化合物、ニッケル化合物、コバルト化合物、及びアルミニウム化合物を含有する混合粉体を焼成して、リチウム複合酸化物二次粒子(A)を得る工程である。かかる工程で得られるリチウム複合酸化物二次粒子(A)は、下記式(I)、又は(II):
LiNiaCobMnc1 x2・・・(I)
(式(I)中、M1はMg、Ti、Nb、Fe、Cr、Si、Al、Ga、V、Zn、Cu、Sr、Mo、Zr、Sn、Ta、W、La、Ce、Pb、Bi及びGeから選ばれる1種又は2種以上の元素を示す。a、b、c、xは、0.3≦a<1、0<b≦0.7、0<c≦0.7、0≦x≦0.3、かつ3a+3b+3c+(M1の価数)×x=3を満たす数を示す。)
LiNidCoeAlf2 y2 ・・・(II)
(式(II)中、M2はMg、Ti、Nb、Fe、Cr、Si、Ga、V、Zn、Cu、Sr、Mo、Zr、Sn、Ta、W、La、Ce、Pb、Bi及びGeから選ばれる1種又は2種以上の元素を示す。d、e、f、yは、0.4≦d<1、0<e≦0.6、0<f≦0.3、0≦y≦0.3、かつ3d+3e+3f+(M2の価数)×y=3を満たす数を示す。)
で表されるリチウム複合酸化物粒子からなる二次粒子であり、式(I)で表されるリチウム複合酸化物二次粒子(A)、式(II)で表されるリチウム複合酸化物二次粒子(A)ともに、正極活物質を構成する層状型岩塩構造を有する粒子である。
The step (X) provided in the method for producing a positive electrode active material composite for lithium ion secondary batteries of the present invention comprises a lithium compound, a nickel compound, a cobalt compound, and a mixed powder containing a manganese compound, or a lithium compound, a nickel compound And calcining a mixed powder containing a cobalt compound and an aluminum compound to obtain a lithium composite oxide secondary particle (A). The lithium composite oxide secondary particles (A) obtained in this step have the following formula (I) or (II):
LiNi a Co b Mn c M 1 x O 2 (I)
(In the formula (I), M 1 represents Mg, Ti, Nb, Fe, Cr, Si, Al, Ga, V, Zn, Cu, Sr, Mo, Zr, Sn, Ta, W, La, Ce, Pb, And one or more elements selected from Bi and Ge, a, b, c, x, 0.3 ≦ a <1, 0 <b ≦ 0.7, 0 <c ≦ 0.7, Indicates a number satisfying 0 ≦ x ≦ 0.3 and 3a + 3b + 3c + (valence of M 1 ) × x = 3)
LiNi d Co e Al f M 2 y O 2 (II)
(Wherein M 2 is Mg, Ti, Nb, Fe, Cr, Si, Ga, V, Zn, Cu, Sr, Mo, Zr, Sn, Ta, W, La, Ce, Pb, Bi, and D represents one or more elements selected from Ge, d, e, f and y each satisfy 0.4 ≦ d <1, 0 <e ≦ 0.6, 0 <f ≦ 0.3, 0 ≦ It shows a number satisfying y ≦ 0.3 and 3d + 3e + 3f + (valence of M 2 ) × y = 3)
Lithium secondary oxide particles represented by Formula (I), secondary particles represented by Formula (II), and lithium secondary oxide particles represented by Formula (I): Both the particles (A) are particles having a layered rock salt structure constituting the positive electrode active material.

上記式(I)で表されるリチウム複合酸化物二次粒子(A)を得るには、リチウム化合物、ニッケル化合物、コバルト化合物、及びマンガン化合物を含有する混合粉体を焼成する。具体的には、まずニッケル化合物、コバルト化合物、及びマンガン化合物を所望するリチウム複合酸化物の組成となるよう、水に溶解させて水溶液aを得るのがよい。かかるニッケル化合物、コバルト化合物、及びマンガン化合物としては、例えば、これら金属元素の硫酸塩、硝酸塩、炭酸塩、酢酸塩、シュウ酸塩、酸化物、水酸化物、ハロゲン化物等が挙げられる。具体的には、硫酸ニッケル、硫酸コバルト、硫酸マンガン、酢酸ニッケル、酢酸コバルト、酢酸マンガン等が挙げられるが、これらに限定されるものではない。
この工程で、必要に応じて、さらに所望するリチウム複合酸化物の組成になるよう、リチウム複合酸化物の一部を置換する金属(M1)元素として、Mg、Ti、Nb、Fe、Cr、Si、Al、Ga、V、Zn、Cu、Sr、Mo、Zr、Sn、Ta、W、La、Ce、Pb、Bi及びGeから選ばれる1種又は2種以上の元素を混入させてもよい。
In order to obtain the lithium composite oxide secondary particles (A) represented by the above formula (I), a mixed powder containing a lithium compound, a nickel compound, a cobalt compound, and a manganese compound is fired. Specifically, an aqueous solution a is preferably obtained by first dissolving a nickel compound, a cobalt compound, and a manganese compound in water so as to obtain a desired lithium composite oxide composition. Examples of such nickel compounds, cobalt compounds and manganese compounds include sulfates, nitrates, carbonates, acetates, oxalates, oxides, hydroxides, halides and the like of these metal elements. Specifically, nickel sulfate, cobalt sulfate, manganese sulfate, nickel acetate, cobalt acetate, manganese acetate and the like can be mentioned, but it is not limited thereto.
In this step, Mg, Ti, Nb, Fe, Cr, as a metal (M 1 ) element which substitutes a part of the lithium composite oxide so as to obtain a desired lithium composite oxide composition as required. One or more elements selected from Si, Al, Ga, V, Zn, Cu, Sr, Mo, Zr, Sn, Ta, W, La, Ce, Pb, Bi and Ge may be mixed. .

次に、上記水溶液aに、アルカリ溶液を添加して水溶液bとし、撹拌しながら溶解している金属成分を中和反応によって共沈させ、金属複合水酸化物を生成させる。ここで用いるアルカリ溶液は、水溶液bがpH10〜14を保持するのに充分な量で滴下するのが好ましい。かかるアルカリ溶液としては、例えば、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、アンモニア等の水溶液を用いることができ、なかでも水酸化ナトリウム、炭酸ナトリウム又はこれらの混合溶液を用いるのが好ましい。   Next, an alkaline solution is added to the aqueous solution a to form an aqueous solution b, and while stirring, the dissolved metal components are coprecipitated by the neutralization reaction to form a metal composite hydroxide. The alkaline solution used here is preferably dropped in an amount sufficient for the aqueous solution b to maintain pH 10-14. As such an alkaline solution, for example, an aqueous solution of sodium hydroxide, potassium hydroxide, sodium carbonate, ammonia or the like can be used, and among them, sodium hydroxide, sodium carbonate or a mixed solution thereof is preferably used.

上記中和反応中における水溶液bの温度は、30℃以上が好ましく、より好ましくは30〜60℃である。また、水溶液bの撹拌時間は、30分〜120分が好ましく、30〜60分がより好ましい。
撹拌した後、水溶液bを濾過することによって金属複合水酸化物を回収すればよい。回収した金属複合水酸化物は、水で洗浄した後、乾燥するのが好ましい。
The temperature of the aqueous solution b during the neutralization reaction is preferably 30 ° C. or higher, and more preferably 30 to 60 ° C. Moreover, 30 minutes-120 minutes are preferable, and, as for the stirring time of the aqueous solution b, 30 to 60 minutes are more preferable.
After stirring, the metal composite hydroxide may be recovered by filtering the aqueous solution b. The recovered metal composite hydroxide is preferably washed with water and then dried.

次いで、所望するリチウム複合酸化物の組成となるよう、回収した金属複合水酸化物とリチウム化合物を乾式混合し、得られた混合粉体を酸素雰囲気下で焼成すればよい。ここで用いるリチウム化合物としては、例えば、水酸化リチウム又はその水和物、過酸化リチウム、硝酸リチウム、炭酸リチウム等が挙げられる。金属複合水酸化物とリチウム化合物の乾式混合では、ボールミルやVブレンダー等の、通常の乾式混合機又は混合造粒装置等を用いることができ、自公転可能な遊星ボールミルを用いるのがより好ましい。   Next, the recovered metal composite hydroxide and the lithium compound may be dry-mixed to obtain a desired lithium composite oxide composition, and the obtained mixed powder may be fired under an oxygen atmosphere. As a lithium compound used here, lithium hydroxide or its hydrate, lithium peroxide, lithium nitrate, lithium carbonate etc. are mentioned, for example. In dry mixing of the metal composite hydroxide and the lithium compound, a common dry mixer or mixing granulator such as a ball mill or a V blender can be used, and it is more preferable to use a planetary ball mill capable of self-revolution.

上記混合粉体の焼成は、2段階(仮焼成及び本焼成)で行うことが好ましい。2段階の焼成とすることにより、仮焼成において、混合粉体中の水酸化物や炭酸塩からの水分子や二酸化炭素等の加熱分解成分を除去した後、本焼成を行うこととなり、効率よくリチウム複合酸化物二次粒子(A)を得ることができる。仮焼成の条件としては、特に限定されるものではないが、昇温速度は、室温から1〜20℃/分であることが好ましい。また、焼成雰囲気は、大気雰囲気又は酸素雰囲気であることが好ましい。焼成温度は、700℃〜1000℃であることが好ましく、650℃〜750℃であることがより好ましい。さらに、焼成時間は、3〜20時間であることが好ましく、4〜6時間であることがより好ましい。
得られた仮焼成物を乳鉢等で解砕した後、適量のバインダーを混合して造粒し、本焼成するのがよい。本焼成した後に得られた焼成物が、リチウム複合酸化物二次粒子(A)である。
The firing of the mixed powder is preferably performed in two stages (temporary firing and main firing). By performing the two-step firing, in the temporary firing, after the thermal decomposition components such as water molecules and carbon dioxide from the hydroxides and carbonates in the mixed powder are removed, the main firing is performed, which is efficient Lithium composite oxide secondary particles (A) can be obtained. The conditions for the pre-sintering are not particularly limited, but the temperature raising rate is preferably from room temperature to 1 to 20 ° C./minute. The firing atmosphere is preferably an air atmosphere or an oxygen atmosphere. The firing temperature is preferably 700 ° C. to 1000 ° C., and more preferably 650 ° C. to 750 ° C. Furthermore, the baking time is preferably 3 to 20 hours, and more preferably 4 to 6 hours.
After the obtained calcined product is crushed in a mortar or the like, an appropriate amount of a binder is mixed and granulated, and it is preferable to perform main baking. The fired product obtained after the main firing is a lithium composite oxide secondary particle (A).

本焼成の条件としては、特に限定されるものではないが、昇温速度は、再度室温から昇温速度1〜20℃/分とするのがよい。また、焼成雰囲気は、大気雰囲気又は酸素雰囲気であることが好ましい。焼成温度は、本焼成後に得られるリチウム複合酸化物二次粒子(A)を構成するリチウム複合酸化物の一次粒子の平均粒径を、所望の値に制御する観点から、700℃〜1200℃であることが好ましく、700℃〜1000℃であるのがより好ましく、750℃〜900℃であることがさらに好ましい。さらに、焼成時間は、3〜20時間であることが好ましく、8〜10時間であることがより好ましい。
こうした2段階の焼成には、酸素雰囲気、除湿及び除炭酸処理を施した乾燥空気雰囲気等の、ガス雰囲気中の酸素濃度が20質量%以上に調整された電気炉、ロータリーキルン、管状炉、プッシャー炉等を用いることができる。
The conditions for the main firing are not particularly limited, but it is preferable that the temperature rising rate is again from room temperature to a temperature rising rate of 1 to 20 ° C./minute. The firing atmosphere is preferably an air atmosphere or an oxygen atmosphere. The firing temperature is 700 ° C. to 1200 ° C. from the viewpoint of controlling the average particle diameter of the primary particles of the lithium composite oxide constituting the lithium composite oxide secondary particles (A) obtained after the main firing to a desired value. The temperature is preferably 700 to 1000 ° C., and more preferably 750 to 900 ° C. Furthermore, the baking time is preferably 3 to 20 hours, and more preferably 8 to 10 hours.
For such two-stage firing, an electric furnace, a rotary kiln, a tubular furnace, a pusher furnace, and the like in which the oxygen concentration in the gas atmosphere is adjusted to 20 mass% or more, such as an oxygen atmosphere or a dry air atmosphere subjected to dehumidification and decarbonization. Etc. can be used.

上記式(I)で表されるリチウム複合酸化物の一次粒子の平均粒径は、好ましくは500nm以下であり、より好ましくは300nm以下である。また、かかる一次粒子の平均粒径の下限値は、特に限定されないが、ハンドリングの観点から、50nm以上が好ましい。   The average particle diameter of the primary particles of the lithium composite oxide represented by the above formula (I) is preferably 500 nm or less, more preferably 300 nm or less. The lower limit of the average particle diameter of the primary particles is not particularly limited, but is preferably 50 nm or more from the viewpoint of handling.

得られるリチウム複合酸化物二次粒子(A)の平均粒径は、好ましくは25μm以下であり、より好ましくは20μm以下である。また、かかる二次粒子の平均粒径の下限値は特に限定されないが、ハンドリングの観点から1μm以上が好ましく、5μm以上がより好ましい。
なお、本明細書において、粒子の平均粒径とは、SEM又はTEMの電子顕微鏡による観察において測定される、数十個の粒子の粒径(長軸の長さ)の平均値を意味する。
The average particle diameter of the lithium composite oxide secondary particles (A) obtained is preferably 25 μm or less, more preferably 20 μm or less. The lower limit of the average particle diameter of the secondary particles is not particularly limited, but is preferably 1 μm or more, more preferably 5 μm or more from the viewpoint of handling.
In addition, in this specification, the average particle diameter of particle | grains means the average value of the particle diameter (length of a long axis) of dozens of particle | grains measured in observation by the electron microscope of SEM or TEM.

或いは、上記式(II)で示されるリチウム複合酸化物二次粒子(A)を得るには、リチウム化合物、ニッケル化合物、コバルト化合物、及びアルミニウム化合物を含有する混合粉体を焼成する。具体的には、まずニッケル化合物、コバルト化合物、及びアルミニウム化合物を所望するリチウム複合酸化物の組成となるよう、水に溶解させて水溶液a'を得るのがよい。かかるニッケル化合物、コバルト化合物、及びアルミニウム化合物としては、例えば、これら金属元素の硫酸塩、硝酸塩、炭酸塩、酢酸塩、シュウ酸塩、酸化物、水酸化物、ハロゲン化物等が挙げられる。具体的には、硫酸ニッケル、硫酸コバルト、硫酸アルミニウム、酢酸ニッケル、酢酸コバルト、酢酸アルミニウム等が挙げられるが、これらに限定されるものではない。
この過程で、必要に応じて、さらに所望する複合酸化物の組成になるよう、リチウム金属複合酸化物の一部を置換する金属(M2)元素として、Mg、Ti、Nb、Fe、Cr、Si、Ga、V、Zn、Cu、Sr、Mo、Zr、Sn、Ta、W、La、Ce、Pb、Bi及びGeから選ばれる1種又は2種以上の元素を混入させてもよい。
Alternatively, in order to obtain the lithium composite oxide secondary particles (A) represented by the above formula (II), the mixed powder containing the lithium compound, the nickel compound, the cobalt compound, and the aluminum compound is fired. Specifically, an aqueous solution a ′ may be obtained by first dissolving a nickel compound, a cobalt compound, and an aluminum compound in water so as to obtain a desired lithium composite oxide composition. Examples of such nickel compounds, cobalt compounds and aluminum compounds include sulfates, nitrates, carbonates, acetates, oxalates, oxides, hydroxides, halides and the like of these metal elements. Specific examples thereof include, but are not limited to, nickel sulfate, cobalt sulfate, aluminum sulfate, nickel acetate, cobalt acetate, aluminum acetate and the like.
In this process, Mg, Ti, Nb, Fe, Cr, as a metal (M 2 ) element which substitutes a part of the lithium metal composite oxide so as to obtain the composition of the desired composite oxide as needed. One or two or more elements selected from Si, Ga, V, Zn, Cu, Sr, Mo, Zr, Sn, Ta, W, La, Ce, Pb, Bi and Ge may be mixed.

次に、上記水溶液a'に、アルカリ溶液を添加して水溶液b'とし、撹拌しながら溶解している金属成分を中和反応によって共沈させ、金属複合水酸化物を生成させる。ここで用いるアルカリ溶液は、水溶液b'がpH10〜14を保持するのに充分な量を滴下するのが好ましい。かかるアルカリ溶液としては、例えば、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、アンモニア等の水溶液を用いることができ、なかでもアンモニア、水酸化ナトリウム、炭酸ナトリウム又はこれらの混合溶液を用いることが好ましい。   Next, an alkaline solution is added to the aqueous solution a 'to form an aqueous solution b', and while stirring, the dissolved metal components are coprecipitated by the neutralization reaction to form a metal composite hydroxide. The alkali solution used here is preferably added dropwise in an amount sufficient for the aqueous solution b 'to maintain a pH of 10-14. As such an alkaline solution, for example, an aqueous solution of sodium hydroxide, potassium hydroxide, sodium carbonate, ammonia or the like can be used, and among them, ammonia, sodium hydroxide, sodium carbonate or a mixed solution thereof is preferably used.

上記中和反応中の水溶液b'の温度は、40℃以上が好ましく、より好ましくは40℃〜60℃である。また、水溶液b'の撹拌時間は、30〜120分が好ましく、30〜60分がより好ましい。
有用な正極活物質を得るべく、嵩密度の高い金属複合水酸化物とする観点から、中和反応後の水溶液b'に、さらに次亜塩素酸ソーダや過酸化水素水等の酸化剤を添加してもよい。
40 degreeC or more is preferable, and, as for the temperature of aqueous solution b 'in the said neutralization reaction, more preferably, it is 40 degreeC-60 degreeC. Moreover, 30 to 120 minutes are preferable and, as for the stirring time of aqueous solution b ', 30 to 60 minutes are more preferable.
An oxidizing agent such as sodium hypochlorite or hydrogen peroxide solution is further added to the aqueous solution b ′ after the neutralization reaction from the viewpoint of forming a metal composite hydroxide having a high bulk density to obtain a useful positive electrode active material. You may

撹拌した後、水溶液b'を濾過することによって金属複合水酸化物を回収すればよい。回収した金属複合水酸化物は、得られるリチウム複合酸化物の品位を安定化させる観点、及びリチウムと均一かつ充分に反応させる観点から、焼成して金属複合酸化物とするのが好ましい。
金属複合水酸化物から金属複合酸化物を得るための焼成条件は、特に限定されるものではなく、例えば、大気雰囲気下、好ましくは500℃〜1100℃、より好ましくは600〜900℃の焼成温度とすればよい。
After stirring, the metal composite hydroxide may be recovered by filtering the aqueous solution b ′. The recovered metal composite hydroxide is preferably calcined to form a metal composite oxide from the viewpoint of stabilizing the quality of the obtained lithium composite oxide and from the viewpoint of reacting uniformly and sufficiently with lithium.
The firing conditions for obtaining the metal composite oxide from the metal composite hydroxide are not particularly limited. For example, the firing temperature is preferably 500 ° C. to 1100 ° C., more preferably 600 to 900 ° C. in the air atmosphere. And it is sufficient.

次いで、所望するリチウム複合酸化物の組成となるよう、上記焼成により得られた金属複合酸化物とリチウム化合物を乾式混合し、得られた混合粉体を酸素雰囲気下で焼成すればよい。ここで用いるリチウム化合物としては、例えば、水酸化リチウム又はその水和物、過酸化リチウム、硝酸リチウム、炭酸リチウム等が挙げられる。金属複合酸化物とリチウム化合物の乾式混合では、ボールミルやVブレンダー等の、通常の乾式混合機又は混合造粒装置等を用いることができる。また、焼成には、酸素雰囲気、除湿及び除炭酸処理を施した乾燥空気雰囲気等の、ガス雰囲気中の酸素濃度が20質量%以上に調整された電気炉、ロータリーキルン、管状炉、プッシャー炉等を用いることができる。   Next, the metal composite oxide obtained by the above-mentioned baking and the lithium compound may be dry-mixed so as to obtain a desired lithium composite oxide composition, and the obtained mixed powder may be fired under an oxygen atmosphere. As a lithium compound used here, lithium hydroxide or its hydrate, lithium peroxide, lithium nitrate, lithium carbonate etc. are mentioned, for example. In dry mixing of the metal composite oxide and the lithium compound, a common dry mixer or mixing granulator such as a ball mill or a V blender can be used. For firing, an electric furnace, a rotary kiln, a tubular furnace, a pusher furnace, etc. in which the oxygen concentration in the gas atmosphere is adjusted to 20 mass% or more, such as an oxygen atmosphere, a dry air atmosphere subjected to dehumidification and decarbonation treatment, etc. It can be used.

上記混合粉体の焼成条件としては、得られるリチウム複合酸化物の結晶が未発達で構造的に不安定になるのを回避する観点、及びリチウム複合酸化物の層状構造が崩壊してリチウムイオンの挿入、脱離が困難になるのを回避する観点から、焼成温度が650℃〜850℃であることが好ましく、700℃〜800℃であることがより好ましい。また、焼成時間は5〜20時間であることが好ましく、6〜10時間であることがより好ましい。   The firing conditions of the above-mentioned mixed powder include a viewpoint of avoiding that the crystals of the lithium composite oxide obtained are not developed and become structurally unstable, and the layered structure of the lithium composite oxide is collapsed to obtain lithium ions. The firing temperature is preferably 650 ° C. to 850 ° C., and more preferably 700 ° C. to 800 ° C. from the viewpoint of avoiding difficulty in insertion and detachment. The firing time is preferably 5 to 20 hours, and more preferably 6 to 10 hours.

上記混合粉体の焼成は、2段階(仮焼成及び本焼成)で行うことが好ましい。2段階の焼成とすることにより、仮焼成において、混合粉体中の水酸化物や炭酸塩からの水分子や二酸化炭素等の加熱分解成分を除去した後、本焼成を行うこととなり、効率よくリチウム複合酸化物二次粒子(A)を得ることができる。仮焼成の条件としては、焼成温度400℃〜600℃で、焼成時間を1時間以上とするのが好ましく、仮焼成で得られた焼成物を乳鉢等で解砕した後、適量のバインダーを混合して得た造粒物を本焼成に付す。本焼成の条件としては、焼成温度650℃〜850℃で、焼成時間を5時間以上とするのが好ましい。   The firing of the mixed powder is preferably performed in two stages (temporary firing and main firing). By performing the two-step firing, in the temporary firing, after the thermal decomposition components such as water molecules and carbon dioxide from the hydroxides and carbonates in the mixed powder are removed, the main firing is performed, which is efficient Lithium composite oxide secondary particles (A) can be obtained. As conditions for temporary firing, it is preferable to set a firing temperature to 400 ° C. to 600 ° C., and to set the firing time to 1 hour or more, and after a fired product obtained by temporary firing is crushed in a mortar or the like, The granulated product thus obtained is subjected to main baking. As the conditions for the main firing, it is preferable to set a firing temperature to 650 ° C. to 850 ° C. and to set the firing time to 5 hours or more.

最後に、本焼成で得られた焼成物を水洗した後、濾過、乾燥して、リチウム複合酸化物二次粒子(A)を得る。本焼成で得られた焼成物を水洗する際のスラリー濃度は、得られるリチウム複合酸化物二次粒子(A)からリチウムの脱離が生じるのを抑止する観点から、200〜4000g/Lが好ましく、500〜2000g/Lがより好ましい。
また、水洗する際に用いる水の電気伝導率は、かかる水に炭酸ガスが多く含まることによって、リチウム複合酸化物二次粒子(A)に炭酸リチウムが析出するのを回避する観点から、10μS/cm未満であるのが好ましく、1μS/cm以下であるのがより好ましい。
さらに乾燥は、2段階で行うのがよい。1段階目の乾燥は、リチウム複合酸化物二次粒子中の水分(気化温度300℃で測定した水分率)が1質量%以下になるまで、90℃以下で行う。その後、2段階目の乾燥を120℃以上で行うのが好ましい。
Finally, the calcined product obtained by the main calcination is washed with water, filtered and dried to obtain lithium composite oxide secondary particles (A). The slurry concentration when washing the calcined product obtained by this calcination with water is preferably 200 to 4000 g / L from the viewpoint of preventing the lithium from being detached from the obtained lithium composite oxide secondary particles (A). And 500 to 2000 g / L are more preferable.
In addition, the electric conductivity of water used when washing with water is 10 μS from the viewpoint of avoiding precipitation of lithium carbonate on the lithium composite oxide secondary particles (A) by containing a large amount of carbon dioxide gas in the water. It is preferably less than 1 / cm, more preferably 1 μS / cm or less.
Furthermore, drying may be performed in two stages. The drying in the first step is performed at 90 ° C. or less until the water content in the lithium composite oxide secondary particles (water content measured at a vaporization temperature of 300 ° C.) becomes 1 mass% or less. Thereafter, it is preferable to carry out the second stage drying at 120 ° C. or higher.

なお、上記式(II)で表されるリチウム複合酸化物の一次粒子の平均粒径、及びリチウム複合酸化物二次粒子(A)の平均粒径は、各々式(I)で表されるリチウム複合酸化物の一次粒子の平均粒径、及びリチウム複合酸化物二次粒子(A)の平均粒径と同様である。   In addition, the average particle diameter of the primary particle of lithium complex oxide represented by said Formula (II), and the average particle diameter of lithium complex oxide secondary particle (A) are respectively lithium represented by Formula (I) The average particle diameter of the primary particles of the composite oxide and the average particle diameter of the lithium composite oxide secondary particles (A) are the same.

本発明のリチウムイオン二次電池用正極活物質複合体の製造方法が備える工程(Y)は、リチウム化合物、少なくとも鉄化合物又はマンガン化合物を含む金属化合物及びリン酸化合物を水熱反応に付して得られたリチウム系ポリアニオン一次粒子、及び炭素源を含むスラリーを噴霧乾燥して造粒した後に焼成して、空隙率が50〜80体積%に調整されてなり、かつ表面に炭素が担持されたリチウム系ポリアニオン粒子(B)からなる造粒体(C)を得る工程である。かかる工程で得られる造粒体(C)を形成する、表面に炭素が担持されたリチウム系ポリアニオン粒子(B)は、下記式(III):
LiFemMnn3 oPO4・・・(III)
(式(III)中、M3はCo、Ca、Sr、Y、Zr、Mo、Ba、Pb、Bi、La、Ce、Nd又はGdを示す。m、n、及びoは、0≦m≦1、0≦n≦1、0≦o≦0.3、及びm+n≠0を満たし、かつ2m+2n+(M3の価数)×o=2を満たす数を示す。)
で表され、表面に炭素が担持されてなる粒子であり、正極活物質を構成するオリビン型構造を有する粒子である。かかる粒子(B)からなる空隙率の高い造粒体(C)を工程(Y)によって得ることにより、従来の方法のように、リチウム系ポリアニオン一次粒子を堅固に凝集させて得られた堅牢な二次粒子を用いるのに比べ、後述する工程(Z)において、過度な負荷を与えることなく、容易に造粒体(C)を崩壊させるとともに、かかる粒子(B)によってリチウム複合酸化物二次粒子(A)の表面を良好に被覆させることができる。
The step (Y) provided in the method for producing a positive electrode active material composite for lithium ion secondary batteries of the present invention comprises subjecting a lithium compound, a metal compound containing at least an iron compound or a manganese compound and a phosphoric acid compound to a hydrothermal reaction. The slurry containing the lithium-based polyanion primary particles and carbon source obtained was spray-dried and granulated, and then calcined to adjust the porosity to 50 to 80% by volume, and carbon was supported on the surface. It is a process of obtaining the granule (C) which consists of lithium system polyanion particles (B). The lithium-based polyanion particles (B) having carbon supported on the surface, which form the granules (C) obtained in this step, have the following formula (III):
LiFe m Mn n M 3 o PO 4 (III)
(In the formula (III), M 3 represents Co, Ca, Sr, Y, Zr, Mo, Ba, Pb, Bi, La, Ce, Nd or Gd. M, n, and o satisfy 0 ≦ m ≦ 1, 0 ≦ n ≦ 1, 0 ≦ o ≦ 0.3, and m + n ≠ 0 are satisfied, and 2m + 2n + (valence number of M 3 ) × o = 2 is satisfied.)
And is a particle having carbon supported on the surface, and is a particle having an olivine type structure constituting a positive electrode active material. A rigid body obtained by strongly aggregating lithium-based polyanion primary particles as in the conventional method by obtaining a highly porous granule (C) comprising such particles (B) by the step (Y). As compared with the use of secondary particles, in the step (Z) to be described later, the granulate (C) is easily disintegrated without applying an excessive load, and the secondary particles of lithium complex oxide can be obtained by the particles (B). The surface of the particles (A) can be well coated.

工程(Y)は、より具体的には、次の(i)〜(iv):
(i)リチウム化合物を含む混合物(c−1)に、リン酸化合物を混合して複合体(c−2)を得る工程、
(ii)得られた複合体(c−2)と、少なくとも鉄化合物又はマンガン化合物を含む金属化合物を含有するスラリー(c−3)を水熱反応に付して複合体(c−4)を得る工程、
(iii)得られた複合体(c−4)と、炭素源(d)を含むスラリー(c−5)を調整後、スラリー(c−5)を噴霧乾燥して、リチウム系ポリアニオン粒子と炭素源(d)からなる予備造粒体(c−6)を得る工程、並びに
(iv)得られた予備造粒体(c−6)を還元雰囲気又は不活性雰囲気中で焼成して、表面に炭素が担持されたリチウム系ポリアニオン粒子(B)からなる造粒体(C)を得る工程
を備えるのが好ましい。
More specifically, the step (Y) includes the following (i) to (iv):
(I) mixing a phosphoric acid compound with a mixture (c-1) containing a lithium compound to obtain a complex (c-2),
(Ii) subjecting the obtained complex (c-2) and the slurry (c-3) containing at least an iron compound or a metal compound containing a manganese compound to a hydrothermal reaction to obtain a complex (c-4) Step of obtaining
(Iii) After preparing the obtained composite (c-4) and the slurry (c-5) containing the carbon source (d), the slurry (c-5) is spray-dried to obtain lithium-based polyanion particles and carbon Obtaining a preliminary granulated body (c-6) comprising the source (d), and (iv) calcining the obtained preliminary granulated body (c-6) in a reducing atmosphere or an inert atmosphere to It is preferable to include a step of obtaining a granulated body (C) composed of lithium-based polyanion particles (B) on which carbon is supported.

上記工程(i)は、リチウム化合物を含む混合物(c−1)に、リン酸化合物を混合して複合体(c−2)を得る工程である。
用い得るリチウム化合物としては、水酸化リチウム(例えばLiOH、LiOH・H2O)、炭酸リチウム、硫酸リチウム、酢酸リチウムが挙げられる。なかでも、水酸化リチウムが好ましい。
混合物(c−1)中におけるリチウム化合物の含有量は、水100質量部に対し、好ましくは5〜50質量部であり、より好ましくは7〜45質量部である。
Said process (i) is a process of mixing a phosphoric acid compound with the mixture (c-1) containing a lithium compound, and obtaining complex (c-2).
Examples of lithium compounds that can be used include lithium hydroxide (eg, LiOH, LiOH · H 2 O), lithium carbonate, lithium sulfate, and lithium acetate. Among them, lithium hydroxide is preferred.
The content of the lithium compound in the mixture (c-1) is preferably 5 to 50 parts by mass, and more preferably 7 to 45 parts by mass with respect to 100 parts by mass of water.

混合物(c−1)にリン酸化合物を混合する前に、予め混合物(c−1)を撹拌しておくのが好ましい。かかる混合物(c−1)の撹拌時間は、好ましくは1〜15分であり、より好ましくは3〜10分である。また、混合物(c−1)の温度は、好ましくは20〜90℃であり、より好ましくは20〜70℃である。   It is preferable to stir the mixture (c-1) in advance before mixing the phosphoric acid compound with the mixture (c-1). The stirring time of the mixture (c-1) is preferably 1 to 15 minutes, more preferably 3 to 10 minutes. Moreover, the temperature of the mixture (c-1) is preferably 20 to 90 ° C., more preferably 20 to 70 ° C.

工程(i)で用いるリン酸化合物としては、オルトリン酸(H3PO4、リン酸)、メタリン酸、ピロリン酸、三リン酸、四リン酸、リン酸アンモニウム、リン酸水素アンモニウム等が挙げられる。なかでもリン酸を用いるのが好ましく、70〜90質量%濃度の水溶液として用いるのが好ましい。リン酸化合物としてリン酸を用いる場合、混合物(c−1)を撹拌しながらリン酸を滴下するのが好ましい。混合物(c−1)にリン酸を滴下して少量ずつ加えることにより、混合物(c−1)中において良好に反応が進行して、複合体(c−2)がスラリー中で均一に分散しつつ生成され、かかる複合体(c−2)が不要に凝集するのを効果的に抑制することができる。 Examples of the phosphoric acid compound used in step (i) include orthophosphoric acid (H 3 PO 4 , phosphoric acid), metaphosphoric acid, pyrophosphoric acid, triphosphoric acid, triphosphoric acid, tetraphosphoric acid, ammonium phosphate, ammonium hydrogen phosphate and the like. . Among them, it is preferable to use phosphoric acid, and it is preferable to use as a 70 to 90% by mass aqueous solution. When using phosphoric acid as a phosphoric acid compound, it is preferable to drip phosphoric acid, stirring a mixture (c-1). By adding phosphoric acid dropwise to the mixture (c-1) little by little, the reaction proceeds well in the mixture (c-1) and the complex (c-2) is dispersed uniformly in the slurry. While being generated, unnecessary aggregation of the complex (c-2) can be effectively suppressed.

リン酸の上記混合物(c−1)への滴下速度は、好ましくは15〜50mL/分であり、より好ましくは20〜45mL/分であり、さらに好ましくは28〜40mL/分である。また、リン酸を滴下しながらの混合物(c−1)の撹拌時間は、好ましくは0.5〜24時間であり、より好ましくは3〜12時間である。さらに、リン酸を滴下しながらの混合物(c−1)の撹拌速度は、好ましくは200〜700rpmであり、より好ましくは250〜600rpmであり、さらに好ましくは300〜500rpmである。
なお、混合物(c−1)を撹拌する際、さらに混合物(c−1)の沸点温度以下に冷却するのが好ましい。具体的には、80℃以下に冷却するのが好ましく、20〜60℃に冷却するのがより好ましい。
The dropping rate of phosphoric acid to the above mixture (c-1) is preferably 15 to 50 mL / min, more preferably 20 to 45 mL / min, and still more preferably 28 to 40 mL / min. Moreover, the stirring time of the mixture (c-1) while dropping phosphoric acid is preferably 0.5 to 24 hours, more preferably 3 to 12 hours. Furthermore, the stirring speed of the mixture (c-1) while dropping phosphoric acid is preferably 200 to 700 rpm, more preferably 250 to 600 rpm, and still more preferably 300 to 500 rpm.
In addition, when stirring a mixture (c-1), it is preferable to cool to below the boiling point temperature of a mixture (c-1). Specifically, cooling to 80 ° C. or less is preferable, and cooling to 20 to 60 ° C. is more preferable.

リン酸化合物を混合した後の混合物(c−1)は、リン酸1モルに対し、リチウムを2.7〜3.3モル含有するのが好ましく、2.8〜3.1モル含有するのがより好ましい。   The mixture (c-1) after mixing the phosphoric acid compound preferably contains 2.7 to 3.3 moles of lithium, and 2.8 to 3.1 moles of lithium per mole of phosphoric acid. Is more preferred.

また、リン酸化合物を混合した後の混合物(c−1)に対して窒素をパージすることにより、かかる混合物中での反応を完了させて、リチウム系ポリアニオン粒子の前駆体である複合体(c−2)を混合物中に生成させることができる。窒素がパージされると、混合物(c−1)中の溶存酸素濃度が低減された状態で反応を進行させることができ、また得られる複合体(c−2)を含有する混合物中の溶存酸素濃度も効果的に低減されるため、次の工程(ii)で添加する鉄化合物やマンガン化合物等の酸化を有効に抑制することができる。かかる複合体(c−2)を含有する混合物中において、リチウム系ポリアニオン粒子の前駆体は、微細な分散粒子として存在する。かかる複合体(c−2)は、リン酸三リチウム(Li3PO4)として得られる。 In addition, the reaction in the mixture is completed by purging nitrogen to the mixture (c-1) after the mixture of the phosphoric acid compound, and the complex (c) is a precursor of lithium-based polyanion particles (c -2) can be produced in the mixture. When nitrogen is purged, the reaction can be allowed to proceed with the concentration of dissolved oxygen in the mixture (c-1) reduced, and the dissolved oxygen in the mixture containing the complex (c-2) obtained Since the concentration is also effectively reduced, the oxidation of iron compounds, manganese compounds and the like added in the next step (ii) can be effectively suppressed. In the mixture containing the complex (c-2), the precursor of the lithium-based polyanion particle is present as a finely dispersed particle. Such complex (c-2) is obtained as trilithium phosphate (Li 3 PO 4 ).

窒素をパージする際における圧力は、好ましくは0.1〜0.2MPaであり、より好ましくは0.1〜0.15MPaである。また、リン酸化合物を混合した後の混合物(c−1)の温度は、好ましくは20〜80℃であり、より好ましくは20〜60℃である。また、反応時間は、好ましくは5〜60分であり、より好ましくは15〜45分である。
また、窒素をパージする際、反応を良好に進行させる観点から、リン酸化合物を混合した後の混合物(c−1)を撹拌するのが好ましい。このときの撹拌速度は、好ましくは200〜700rpmであり、より好ましくは250〜600rpmである。
The pressure at the time of purging nitrogen is preferably 0.1 to 0.2 MPa, more preferably 0.1 to 0.15 MPa. Moreover, the temperature of the mixture (c-1) after mixing a phosphoric acid compound becomes like this. Preferably it is 20-80 degreeC, More preferably, it is 20-60 degreeC. The reaction time is preferably 5 to 60 minutes, more preferably 15 to 45 minutes.
Moreover, when purging nitrogen, it is preferable to stir the mixture (c-1) after mixing a phosphoric acid compound from a viewpoint of making reaction advance favorably. The stirring speed at this time is preferably 200 to 700 rpm, more preferably 250 to 600 rpm.

また、より効果的に複合体(c−2)の分散粒子表面における酸化を抑制し、分散粒子の微細化を図る観点から、リン酸化合物を混合した後の混合物(c−1)中における溶存酸素濃度を0.5mg/L以下とするのが好ましく、0.2mg/L以下とするのがより好ましい。   Further, from the viewpoint of more effectively suppressing the oxidation of the dispersed particles on the surface of the dispersed particles of the complex (c-2) and achieving the finer dispersed particles, it is dissolved in the mixture (c-1) after the phosphoric acid compound is mixed. The oxygen concentration is preferably 0.5 mg / L or less, more preferably 0.2 mg / L or less.

上記工程(ii)では、工程(i)で得られた複合体(c−2)と、少なくとも鉄化合物又はマンガン化合物を含む金属塩を含有するスラリー(c−3)を水熱反応に付して、複合体(c−4)を得る工程である。上記工程(i)により得られた複合体(c−2)を混合物のまま、リチウム系ポリアニオン粒子(B)の前駆体として用い、これに少なくとも鉄化合物又はマンガン化合物を含む金属化合物を添加して、スラリー(c−3)として用いるのが好ましい。これにより、工程を簡略化させつつ、造粒体(C)を形成させるための、目的とするリチウム系ポリアニオン粒子(B)を極めて微細な粒子として得ることができる。   In the step (ii), the slurry (c-3) containing the complex (c-2) obtained in the step (i) and the metal salt containing at least an iron compound or a manganese compound is subjected to a hydrothermal reaction It is a process of obtaining complex (c-4). The complex (c-2) obtained in the above step (i) is used as a mixture as a precursor of lithium-based polyanion particles (B), to which a metal compound containing at least an iron compound or a manganese compound is added It is preferable to use as a slurry (c-3). Thereby, the target lithium-based polyanion particles (B) for forming the granules (C) can be obtained as extremely fine particles while simplifying the process.

用い得る鉄化合物としては、酢酸鉄、硝酸鉄、硫酸鉄等が挙げられる。これらは1種単独で用いてもよく、2種以上組み合わせて用いてもよい。なかでも、リチウム系ポリアニオン粒子(B)の電池特性を高める観点から、硫酸鉄が好ましい。   Iron compounds which can be used include iron acetate, iron nitrate, iron sulfate and the like. These may be used singly or in combination of two or more. Among these, iron sulfate is preferable from the viewpoint of enhancing the battery characteristics of the lithium-based polyanion particles (B).

用い得るマンガン化合物としては、酢酸マンガン、硝酸マンガン、硫酸マンガン等が挙げられる。これらは1種単独で用いてもよく、2種以上組み合わせて用いてもよい。なかでも、リチウム系ポリアニオン粒子(B)の電池特性を高める観点から、硫酸マンガンが好ましい。   As a manganese compound which can be used, manganese acetate, manganese nitrate, manganese sulfate etc. are mentioned. These may be used singly or in combination of two or more. Among them, manganese sulfate is preferable from the viewpoint of enhancing the battery characteristics of the lithium-based polyanion particles (B).

金属化合物として、鉄化合物とマンガン化合物の双方を用いる場合、これらマンガン化合物及び鉄化合物の使用モル比(マンガン化合物:鉄化合物)は、好ましくは99:1〜1:99であり、より好ましくは90:10〜10:90である。また、これら鉄化合物及びマンガン化合物の合計添加量は、スラリー(c−3)中に含有されるLi3PO4 1モルに対し、好ましくは0.99〜1.01モルであり、より好ましくは0.995〜1.005モルである。 When both an iron compound and a manganese compound are used as the metal compound, the molar ratio of the manganese compound and the iron compound (manganese compound: iron compound) is preferably 99: 1 to 1:99, more preferably 90 10 to 10:90. Moreover, the total addition amount of these iron compounds and manganese compounds is preferably 0.99 to 1.01 mol, more preferably 1 mol to 1 mol of Li 3 PO 4 contained in the slurry (c-3). It is 0.995 to 1.005 mol.

さらに、必要に応じて、金属化合物として、鉄化合物及びマンガン化合物以外の金属(M3)化合物を用いてもよい。かかる金属(M3)化合物として、硫酸塩、ハロゲン化合物、有機酸塩、及びこれらの水和物等を用いることができる。これらは1種単独で用いてもよく、2種以上用いてもよい。なかでも、電池特性を高める観点から、硫酸塩を用いるのがより好ましい。
これら金属(M3)化合物を用いる場合、鉄化合物、マンガン化合物、及び金属(M3)化合物の合計添加量は、上記工程(i)において得られた複合体(c−2)中のリン酸1モルに対し、好ましくは0.99〜1.01モルであり、より好ましくは0.995〜1.005モルである。
Furthermore, if necessary, metal (M 3 ) compounds other than iron compounds and manganese compounds may be used as the metal compound. As such a metal (M 3 ) compound, a sulfate, a halogen compound, an organic acid salt, a hydrate of these, and the like can be used. These may be used singly or in combination of two or more. Among these, from the viewpoint of enhancing the battery characteristics, it is more preferable to use a sulfate.
When using these metal (M 3 ) compounds, the total addition amount of the iron compound, the manganese compound and the metal (M 3 ) compound is the phosphoric acid in the complex (c-2) obtained in the above step (i) The amount is preferably 0.99 to 1.01 mol, and more preferably 0.995 to 1.005 mol, per 1 mol.

水熱反応に付する際に用いる水の使用量は、用いる金属化合物の溶解性、撹拌の容易性、及び合成の効率等の観点から、スラリー(c−3)中に含有されるリン酸イオン1モルに対し、好ましくは10〜30モルであり、より好ましくは12.5〜25モルである。   The amount of water used in the hydrothermal reaction is the phosphate ion contained in the slurry (c-3) from the viewpoint of solubility of the metal compound used, ease of stirring, and efficiency of synthesis, etc. Preferably it is 10-30 mol with respect to 1 mol, More preferably, it is 12.5-25 mol.

かかる工程(ii)において、鉄化合物、マンガン化合物及び金属(M3)化合物の添加順序は特に制限されない。また、これらの金属化合物を添加するとともに、必要に応じて酸化防止剤を添加してもよい。かかる酸化防止剤としては、亜硫酸ナトリウム(Na2SO3)、ハイドロサルファイトナトリウム(Na224)、アンモニア水等を使用することができる。酸化防止剤の添加量は、過剰に添加されることでリチウム系ポリアニオン粒子(B)の生成が抑制されるのを防止する観点から、鉄化合物、マンガン化合物及び必要に応じて用いる金属(M3)化合物の合計1モルに対し、好ましくは0.01〜1モルであり、より好ましくは0.03〜0.5モルである。 In the step (ii), the addition order of the iron compound, the manganese compound and the metal (M 3 ) compound is not particularly limited. Moreover, while adding these metal compounds, you may add antioxidant as needed. As such an antioxidant, sodium sulfite (Na 2 SO 3 ), sodium hydrosulfite (Na 2 S 2 O 4 ), aqueous ammonia and the like can be used. From the viewpoint of preventing the formation of lithium-based polyanion particles (B) from being suppressed by adding an excessive amount of the antioxidant, the amount of the iron compound, the manganese compound, and the metal (M 3 used if necessary) Preferably it is 0.01-1 mol with respect to a total of 1 mol of compounds), More preferably, it is 0.03-0.5 mol.

鉄化合物、マンガン化合物及び必要に応じて用いる金属(M3)化合物や酸化防止剤を添加することにより得られるスラリー(c−3)中における複合体(c−4)の含有量は、好ましくは10〜50質量%であり、より好ましくは15〜45質量%であり、さらに好ましくは20〜40質量%である。 The content of the complex (c-4) in the slurry (c-3) obtained by adding an iron compound, a manganese compound and, if necessary, a metal (M 3 ) compound and an antioxidant is preferably It is 10 to 50% by mass, more preferably 15 to 45% by mass, and still more preferably 20 to 40% by mass.

工程(ii)における水熱反応は、100℃以上であればよく、130〜180℃が好ましい。水熱反応は耐圧容器中で行うのが好ましく、130〜180℃で反応を行う場合、この時の圧力は0.3〜0.9MPaであるのが好ましく、140〜160℃で反応を行う場合の圧力は0.3〜0.6MPaであるのが好ましい。水熱反応時間は0.1〜48時間が好ましく、さらに0.2〜24時間が好ましい。
得られた複合体(c−4)は、ろ過後、水で洗浄し、再度ろ過することにより含水率が10〜50質量%のケーキとして回収できる。なお、ろ過手段には、減圧ろ過、加圧ろ過、遠心ろ過等を用いることができるが、操作の簡便性等からフィルタープレス等の加圧ろ過が好ましい。
The hydrothermal reaction in the step (ii) may be 100 ° C. or higher, preferably 130 to 180 ° C. The hydrothermal reaction is preferably carried out in a pressure vessel, and when the reaction is carried out at 130 to 180 ° C., the pressure at this time is preferably 0.3 to 0.9 MPa, and the reaction is carried out at 140 to 160 ° C. Is preferably 0.3 to 0.6 MPa. The hydrothermal reaction time is preferably 0.1 to 48 hours, and more preferably 0.2 to 24 hours.
The obtained complex (c-4) is filtered, washed with water, and filtered again to recover a cake having a water content of 10 to 50% by mass. In addition, although vacuum filtration, pressure filtration, centrifugal filtration etc. can be used for a filtration means, pressure filtration, such as a filter press, is preferable from the easiness of operation etc.

洗浄に使用する洗浄水の量は、ろ過残渣中の複合体(c−4)1質量部に対し、10質量部以上であり、好ましくは12質量部以上である。   The amount of washing water used for washing is 10 parts by mass or more, preferably 12 parts by mass or more, with respect to 1 part by mass of the complex (c-4) in the filtration residue.

上記ケーキを乾燥して得られる複合体(c−4)のBET比表面積は、吸着水分量を効果的に低減する観点から、好ましくは5〜40m2/gであり、より好ましくは5〜20m2/gである。複合体(c−4)のBET比表面積が5m2/g未満であると、リチウム系ポリアニオン粒子(B)が肥大してしまうおそれがある。また、BET比表面積が40m2/gを超えると、二次電池用正極活物質の吸着水分量が増大して電池特性に影響を与えるおそれがある。 The BET specific surface area of the complex (c-4) obtained by drying the above cake is preferably 5 to 40 m 2 / g, more preferably 5 to 20 m, from the viewpoint of effectively reducing the amount of adsorbed water. It is 2 / g. When the BET specific surface area of the complex (c-4) is less than 5 m 2 / g, the lithium-based polyanion particles (B) may be enlarged. When the BET specific surface area exceeds 40 m 2 / g, the amount of adsorbed water of the positive electrode active material for a secondary battery may increase to affect the battery characteristics.

また、複合体(c−4)の平均粒径は、得られるリチウム系ポリアニオン粒子(B)をリチウム複合酸化物二次粒子(A)と複合化して表面を良好に被覆し、耐久性等に優れるリチウムイオン二次電池用正極活物質複合体を得る観点から、好ましくは50〜300nmであり、より好ましくは75〜250nmである。
ここで、複合体(c−4)の平均粒径とは、上記粒子の平均粒径と同様の測定により得られる値の平均値を意味する。
Further, the average particle diameter of the composite (c-4) is such that the obtained lithium-based polyanion particles (B) are complexed with the lithium composite oxide secondary particles (A) to satisfactorily cover the surface, and the durability etc. From the viewpoint of obtaining an excellent positive electrode active material complex for a lithium ion secondary battery, the thickness is preferably 50 to 300 nm, and more preferably 75 to 250 nm.
Here, the average particle diameter of the composite (c-4) means an average value of values obtained by the same measurement as the average particle diameter of the particles.

上記工程(iii)では、工程(ii)で得られた複合体(c−4)と、炭素源(d)を含むスラリー(c−5)を調整後、スラリー(c−5)を噴霧乾燥して、リチウム系ポリアニオン粒子と炭素源(d)からなる予備造粒体(c−6)を得る工程である。   In the above step (iii), the slurry (c-5) is spray-dried after the slurry (c-5) containing the complex (c-4) obtained in the step (ii) and the carbon source (d) is prepared. It is a process of obtaining the pre-granulate (c-6) which consists of lithium type polyanion particle | grains and a carbon source (d).

予備造粒体(c−6)を構成する炭素源(d)は、炭素源(d)由来の炭素として、リチウム系ポリアニオン粒子(B)の表面に担持される炭素となる原料である。かかる炭素源(d)としては、セルロースナノファイバー(d1)、又は水溶性炭素材料(d2)が挙げられる。炭素源(d)となる上記セルロースナノファイバー(以後、「CNF」とも称する。)とは、全ての植物細胞壁の約5割を占める骨格成分であって、かかる細胞壁を構成する植物繊維をナノサイズまで解繊等することにより得ることができる軽量高強度繊維であり、セルロースナノファイバー(d1)由来の炭素は、周期的構造を有する。かかるセルロースナノファイバーの繊維径は、1nm〜100nmであり、水への良好な分散性も有している。また、セルロースナノファイバーを構成するセルロース分子鎖では、炭素による周期的構造が形成されていることから、これが後の工程を経ることにより炭化されつつ、上記リチウム系ポリアニオン粒子(B)とも相まって、かかる粒子の表面に堅固に担持されることにより、良好な電子伝導性を付与することができる。   The carbon source (d) constituting the preliminary granulated body (c-6) is a raw material to be carbon supported on the surface of the lithium-based polyanion particles (B) as carbon derived from the carbon source (d). As such a carbon source (d), cellulose nanofibers (d1) or a water-soluble carbon material (d2) can be mentioned. The above-mentioned cellulose nanofiber (hereinafter also referred to as "CNF"), which is a carbon source (d), is a skeletal component that occupies about 50% of all plant cell walls, and the plant fibers constituting such cell walls are nanosized It is a lightweight high-strength fiber which can be obtained by disentanglement etc., and carbon derived from cellulose nanofiber (d1) has a periodic structure. The fiber diameter of such cellulose nanofibers is 1 nm to 100 nm, and also has good dispersibility in water. Moreover, in the cellulose molecular chain which comprises a cellulose nanofiber, since the periodic structure by carbon is formed, this is combined with the said lithium-type polyanion particle (B), being carbonized by passing through a later process By being firmly supported on the surface of the particles, good electron conductivity can be imparted.

炭素源(d)としての水溶性炭素材料(d2)とは、25℃の水100gに、水溶性炭素材料の炭素原子換算量で0.4g以上、好ましくは1.0g以上溶解する炭素材料を意味し、炭化されることで炭素として上記リチウム系ポリアニオン粒子(B)の表面に存在することとなる。かかる水溶性炭素材料としては、例えば、糖類、ポリオール、ポリエーテル、及び有機酸から選ばれる1種又は2種以上が挙げられる。より具体的には、例えば、グルコース、フルクトース、ガラクトース、マンノース等の単糖類;マルトース、スクロース、セロビオース等の二糖類;デンプン、デキストリン等の多糖類;エチレングリコール、プロピレングリコール、ジエチレングリコール、ポリエチレングリコール、ブタンジオール、プロパンジオール、ポリビニルアルコール、グリセリン等のポリオールやポリエーテル;クエン酸、酒石酸、アスコルビン酸等の有機酸が挙げられる。なかでも、溶媒への溶解性及び分散性を高めて炭素材料として効果的に機能させる観点から、グルコース、フルクトース、スクロース、デキストリンが好ましく、グルコースがより好ましい。   The water-soluble carbon material (d2) as the carbon source (d) is a carbon material which dissolves in 100 g of water at 25 ° C. 0.4 g or more, preferably 1.0 g or more, in carbon atom equivalent amount of the water-soluble carbon material By being carbonized, it is present as carbon on the surface of the lithium-based polyanion particles (B). Examples of such a water-soluble carbon material include one or more selected from saccharides, polyols, polyethers, and organic acids. More specifically, for example, monosaccharides such as glucose, fructose, galactose and mannose; disaccharides such as maltose, sucrose and cellobiose; polysaccharides such as starch and dextrin; ethylene glycol, propylene glycol, diethylene glycol, polyethylene glycol, butane And polyols and polyethers such as diol, propanediol, polyvinyl alcohol and glycerin; and organic acids such as citric acid, tartaric acid and ascorbic acid. Among them, glucose, fructose, sucrose and dextrin are preferable, and glucose is more preferable, from the viewpoint of enhancing the solubility in a solvent and the dispersibility to effectively function as a carbon material.

なお、リチウム系ポリアニオン粒子(B)の表面に炭素として存在する、セルロースナノファイバー(d1)由来の炭素又は水溶性炭素材料(d2)由来の炭素の原子換算量(炭素の担持量)は、リチウム系ポリアニオン粒子(B)について炭素・硫黄分析装置を用いて測定した炭素量として、確認することができる。   The carbon equivalent derived from the cellulose nanofiber (d1) or the carbon derived from the water-soluble carbon material (d2), which is present as carbon on the surface of the lithium-based polyanion particle (B) (carried amount of carbon) is lithium It can be confirmed as the amount of carbon measured using a carbon / sulfur analyzer on the system polyanion particles (B).

スラリー(c−5)における、複合体(c−4)の含有量は、水100質量部に対し、好ましくは10〜30質量部であり、より好ましくは15〜30質量部である。かかる含有量となるように、上記の複合体(c−4)を含むケーキを用いればよい。   The content of the complex (c-4) in the slurry (c-5) is preferably 10 to 30 parts by mass, and more preferably 15 to 30 parts by mass with respect to 100 parts by mass of water. A cake containing the above complex (c-4) may be used to achieve such content.

リチウム系ポリアニオン粒子(B)の表面に、後の工程を経ることにより上記セルロースナノファイバー(d1)由来の炭素を担持させる場合、スラリー(c−5)における、セルロースナノファイバー(d1)の含有量は、その炭素原子換算量が、リチウム系ポリアニオン粒子(B)及びかかる粒子表面に担持される炭素の合計量100質量%に対し、0.3〜6質量%となるような量であるのが望ましい。具体的には、例えばスラリー(c−5)における水100質量部に対し、好ましくは0.1〜20質量部であり、より好ましくは1〜10質量部である。   When supporting carbon derived from the above-mentioned cellulose nanofibers (d1) on the surface of lithium-based polyanion particles (B) through the subsequent steps, the content of cellulose nanofibers (d1) in the slurry (c-5) The amount is such that the carbon atom equivalent amount is 0.3 to 6% by mass with respect to the total amount 100% by mass of the lithium-based polyanion particle (B) and the carbon supported on the particle surface desirable. Specifically, for example, the amount is preferably 0.1 to 20 parts by mass, and more preferably 1 to 10 parts by mass with respect to 100 parts by mass of water in the slurry (c-5).

リチウム系ポリアニオン粒子(B)の表面に、後の工程を経ることにより上記水溶性炭素材料(d2)由来の炭素を担持させる場合、スラリー(c−5)における、水溶性炭素材料(d2)の含有量は、その炭素原子換算量が、リチウム系ポリアニオン粒子(B)及びかかる粒子表面に担持される炭素の合計量100質量%に対し、0.3〜6質量%となるような量であるのが望ましい。具体的には、例えばスラリー(c−5)における水100質量部に対し、好ましくは0.1〜18質量部であり、より好ましくは1〜10質量部である。   When supporting carbon derived from the water-soluble carbon material (d2) on the surface of the lithium-based polyanion particles (B) through the subsequent steps, the water-soluble carbon material (d2) in the slurry (c-5) The content is such that the carbon atom equivalent amount is 0.3 to 6% by mass with respect to 100% by mass of the total amount of carbon supported on the surface of the lithium-based polyanion particles (B) and such particles. Is desirable. Specifically, for example, the amount is preferably 0.1 to 18 parts by mass, and more preferably 1 to 10 parts by mass with respect to 100 parts by mass of water in the slurry (c-5).

スラリー(c−5)は、リチウム系ポリアニオン粒子(B)と炭素源(d)を、すなわちリチウム系ポリアニオン粒子(B)とセルロースナノファイバー(d1)を、又はリチウム系ポリアニオン粒子(B)と水溶性炭素材料(d2)を、均一に分散させる観点から、分散機(ホモジナイザー)を用いた処理を行うことが好ましい。かかる分散機としては、例えば、離解機、叩解機、低圧ホモジナイザー、高圧ホモジナイザー、グラインダー、カッターミル、ボールミル、ジェットミル、短軸押出機、2軸押出機、超音波攪拌機、家庭用ジューサーミキサー等が挙げられる。なかでも、分散効率の観点から、超音波攪拌機が好ましい。スラリー(c−5)の分散均一性の程度は、例えば、UV・可視光分光装置を使用した光線透過率や、E型粘度計を使用した粘度で定量的に評価することもでき、また目視によって白濁度が均一であることを確認することで、簡便に評価することもできる。分散機で処理する時間は、好ましくは1〜30分間であり、より好ましくは2〜15分間である。このように処理されたスラリー(c−5)は、良好な混合状態を数日間保持することができるので、予め調製し、保管しておくことも可能となる。   The slurry (c-5) contains a lithium-based polyanion particle (B) and a carbon source (d), that is, a lithium-based polyanion particle (B) and a cellulose nanofiber (d1), or a lithium-based polyanion particle (B) and water-soluble It is preferable to perform the process using a dispersing machine (homogenizer) from a viewpoint of disperse | distributing a carbon material (d2) uniformly. As such a dispersing machine, for example, a disintegrator, a beater, a low pressure homogenizer, a high pressure homogenizer, a grinder, a cutter mill, a ball mill, a jet mill, a short screw extruder, a twin screw extruder, an ultrasonic stirrer, a domestic juicer mixer, etc. It can be mentioned. Among them, an ultrasonic stirrer is preferable from the viewpoint of dispersion efficiency. The degree of dispersion uniformity of the slurry (c-5) can also be quantitatively evaluated by, for example, light transmittance using a UV / visible light spectrometer or viscosity using an E-type viscometer, and visual observation It can also be simply evaluated by confirming that the white turbidity is uniform by. The treatment time with the disperser is preferably 1 to 30 minutes, more preferably 2 to 15 minutes. The slurry (c-5) thus treated can be maintained in good mixing for several days, so it can be prepared and stored in advance.

炭素源(d)としてセルロースナノファイバー(d1)を用いた場合、上記スラリー(c−5)は、未だ凝集状態にあるセルロースナノファイバーを有効に取り除く観点から、さらに、湿式分級することが好ましい。湿式分級には、篩や市販の湿式分級機を使用することができる。篩の目開きは、用いるセルロースナノファイバーの繊維長により変動し得るが、作業効率の観点から、150μm前後であるのが好ましい。   When the cellulose nanofiber (d1) is used as the carbon source (d), the slurry (c-5) is preferably further classified by wet from the viewpoint of effectively removing the cellulose nanofiber which is still in the aggregated state. For wet classification, a sieve or a commercially available wet classifier can be used. Although the mesh size of the sieve may vary depending on the fiber length of the cellulose nanofibers used, it is preferably about 150 μm from the viewpoint of working efficiency.

したがって、次の工程(iii)を経るために用いるスラリー(c−5)の固形分濃度は、好ましくは9〜35質量%であり、より好ましくは13〜30質量%である。   Accordingly, the solid content concentration of the slurry (c-5) used to undergo the next step (iii) is preferably 9 to 35% by mass, and more preferably 13 to 30% by mass.

上記工程(iii)では、次に、得られたスラリー(c−5)を噴霧乾燥して、予備造粒体(c−6)を得る。かかる予備造粒体(c−6)は、後の工程を経ることによって、表面に炭素が担持されたリチウム系ポリアニオン粒子(B)により形成されてなる造粒体(C)となる。これにより、リチウム系ポリアニオン一次粒子を堅固に凝集させてなる堅牢な二次粒子を用いることを回避して、過度な負荷を与えることなく容易に崩壊させることのできる造粒体(C)を用いることとし、かかる造粒体(C)を構成してなる、表面に炭素が担持されたリチウム系ポリアニオン粒子(B)を、リチウム複合酸化物二次粒子(A)の表面に良好に被覆させることを可能とする。   Next, in the step (iii), the obtained slurry (c-5) is spray-dried to obtain a pre-granulate (c-6). The pre-granulated body (c-6) becomes a granulated body (C) formed of lithium-based polyanion particles (B) having carbon supported on the surface through the subsequent steps. This avoids using robust secondary particles formed by tightly aggregating lithium-based polyanion primary particles, and uses the granulate (C) that can be easily disintegrated without applying excessive load. The surface of the lithium composite oxide secondary particles (A) is favorably coated with lithium-based polyanion particles (B) having carbon supported on the surface, which constitute the granulated body (C). Make it possible.

噴霧乾燥の際の熱風温度は、110〜160℃が好ましく、120〜140℃がより好ましい。かかる熱風の供給量G(L/分)と、スラリー(c−5)の供給量S(L/分)の比G/Sは、500≦G/S≦10000が好ましく、1000≦G/S≦9000がより好ましい。   110-160 degreeC is preferable and, as for the hot air temperature in the case of spray-drying, 120-140 degreeC is more preferable. The ratio G / S of the supply amount G (L / min) of the hot air and the supply amount S (L / min) of the slurry (c-5) is preferably 500 ≦ G / S ≦ 10000, and 1000 ≦ G / S. ≦ 9000 is more preferred.

工程(iii)で得られる予備造粒体(c−6)の粒径は、レーザー回折・散乱法に基づく粒度分布におけるD50値で、好ましくは5〜14μmであり、より好ましくは5〜12μmである。
ここで、粒度分布測定におけるD50値とは、レーザー回折・散乱法に基づく体積基準の粒度分布により得られる値であり、D50値は累積50%での粒径(メジアン径)を意味する。
The particle size of the pre-granulate (c-6) obtained in step (iii) is preferably 5 to 14 μm, more preferably 5 to 12 μm, as the D 50 value in the particle size distribution based on laser diffraction / scattering method. It is.
Here, the D 50 value in the particle size distribution measurement is a value obtained by the volume-based particle size distribution based on the laser diffraction / scattering method, and the D 50 value means the particle size (median diameter) at 50% of accumulation. .

上記工程(iv)は、工程(iii)で得られた予備造粒体(c−6)を還元雰囲気又は不活性雰囲気中で焼成して、表面に炭素が担持されたリチウム系ポリアニオン粒子(B)からなる造粒体(C)を得る工程である。かかる工程(iv)を経ることにより、造粒体(C)を構成するリチウム系ポリアニオン粒子(B)の表面に炭素をより堅固に担持させつつ、適度な崩壊性を有する造粒体(C)を形成させることができる。   In the step (iv), the preliminary granulated body (c-6) obtained in the step (iii) is fired in a reducing atmosphere or an inert atmosphere to carry lithium-based polyanion particles (B In the step of obtaining a granulated body (C) consisting of Granules (C) having appropriate disintegratability while causing carbon to be more firmly supported on the surface of lithium-based polyanion particles (B) constituting the granules (C) by passing through the step (iv) Can be formed.

焼成温度は、炭素源(d)を有効に炭化させる観点、及び造粒体(C)に適度な崩壊性を付与する観点から、好ましくは600〜800℃であり、より好ましくは700〜800℃である。また、焼成時間は、好ましくは30分〜3時間、より好ましくは1時間〜2時間とするのがよい。   The firing temperature is preferably 600 to 800 ° C., more preferably 700 to 800 ° C., from the viewpoint of effectively carbonizing the carbon source (d) and from the viewpoint of imparting appropriate disintegrability to the granulated body (C). It is. The baking time is preferably 30 minutes to 3 hours, more preferably 1 hour to 2 hours.

表面に炭素が担持されたリチウム系ポリアニオン粒子(B)からなる造粒体(C)の空隙率は、水銀圧入法に基づく空隙率で、45〜80体積%であって、好ましくは50〜80体積%である。   The porosity of the granules (C) consisting of lithium-based polyanion particles (B) having carbon supported on the surface is 45 to 80% by volume, preferably 50 to 80, in terms of the porosity based on the mercury intrusion method. It is volume%.

また、表面に炭素が担持されたリチウム系ポリアニオン粒子(B)からなる造粒体(C)のタップ密度は、好ましくは1.0g/cm3未満であり、より好ましくは0.6〜0.9g/cm3である。 Moreover, the tap density of the granulated body (C) consisting of lithium-based polyanion particles (B) having carbon supported on the surface thereof is preferably less than 1.0 g / cm 3 , and more preferably 0.6 to 0. It is 9 g / cm 3 .

さらに、表面に炭素が担持されたリチウム系ポリアニオン粒子(B)からなる造粒体(C)の平均粒径は、レーザー回折・散乱法に基づく粒度分布におけるD50値で、好ましくは5〜15μmであり、より好ましくは5〜12μmである。 Furthermore, the average particle diameter of the granulated body (C) consisting of lithium-based polyanion particles (B) having carbon supported on the surface is preferably 5 to 15 μm as D 50 value in particle size distribution based on laser diffraction / scattering method. More preferably, it is 5-12 micrometers.

表面に炭素が担持されたリチウム系ポリアニオン粒子(B)からなる造粒体(C)の崩壊強度は、好ましくは1.8KN/mm以下であり、より好ましくは1.75KN/mm以下である。かかる崩壊強度とは、表面に炭素が担持されたリチウム系ポリアニオン粒子(B)からなる造粒体(C)の圧縮による崩壊のし易さを示し、下記式(1)により求められる値を意味する。
造粒体(C)の崩壊強度(KN/mm)=10/(t0−t10) ・・・(1)
式(1)中のt0は、直径20mmの円筒容器内に表面に炭素が担持されたリチウム系ポリアニオン粒子(B)からなる造粒体(C)を3g投入し、高さ1cmからの落下によるタッピングを10回繰返した後の密充填状態における造粒体(C)の層厚(mm)を示し、t10は、かかる密充填状態の造粒体(C)に、上部から10KNの荷重を掛けた際の造粒体(C)の層厚(mm)を示す。
The disintegration strength of the granulated body (C) consisting of lithium-based polyanion particles (B) having carbon supported on the surface thereof is preferably 1.8 KN / mm or less, more preferably 1.75 KN / mm or less. The disintegration strength refers to the ease of disintegration by compression of the granule (C) consisting of lithium-based polyanion particles (B) having carbon supported on the surface, and means a value determined by the following formula (1) Do.
Collapse strength (KN / mm) = 10 / (t 0 −t 10 ) of granulated body (C) (1)
In t 0 in the formula (1), 3 g of a granule (C) consisting of lithium-based polyanion particles (B) having carbon supported on the surface thereof is introduced into a cylindrical container having a diameter of 20 mm, and falling from a height of 1 cm Shows the layer thickness (mm) of the granulated body (C) in the densely packed state after repeating tapping 10 times, and t 10 indicates a load of 10 KN from the top to the closely packed granular body (C) The layer thickness (mm) of the granulated body (C) at the time of being applied is shown.

本発明のリチウムイオン二次電池用正極活物質複合体の製造方法が備える工程(Z)は、工程(X)で得られたリチウム複合酸化物二次粒子(A)と、工程(Y)で得られた造粒体(C)とを、圧縮力及びせん断力を付加しながら混合して、造粒体(C)を崩壊させながら、リチウム複合酸化物二次粒子(A)と表面に炭素が担持されたリチウム系ポリアニオン粒子(B)とを複合化する工程である。かかる工程を経ることにより、リチウム複合酸化物二次粒子(A)表面に、造粒体(C)が崩壊してなる微細なリチウム系ポリアニオン粒子(B)を、緻密かつ広範囲に被覆させてなるリチウムイオン二次電池用正極活物質複合体を得ることができる。   Step (Z) of the method for producing a positive electrode active material composite for a lithium ion secondary battery of the present invention comprises the lithium composite oxide secondary particles (A) obtained in step (X) and step (Y) The obtained granulated body (C) is mixed while applying a compressive force and a shearing force to disintegrate the granulated body (C), and the lithium composite oxide secondary particles (A) and carbon on the surface Is a step of complexing with the supported lithium-based polyanion particles (B). By passing through the above steps, fine lithium-based polyanion particles (B) formed by the collapse of the granules (C) are densely and extensively covered on the surface of the lithium composite oxide secondary particles (A). A positive electrode active material complex for a lithium ion secondary battery can be obtained.

工程(Z)では、圧縮力及びせん断力を付加しながら混合する前に、予め得た上記リチウム複合酸化物二次粒子(A)と上記造粒体(C)の混合物を、充分に乾式混合するのが好ましい。乾式混合の方法としては、ボールミルやVブレンダー等の、通常の乾式混合機による混合であるのが好ましく、自公転可能な遊星ボールミルによる混合がより好ましい。   In the step (Z), the mixture of the lithium composite oxide secondary particles (A) and the granules (C) obtained previously is sufficiently dry mixed before being mixed while applying compressive force and shear force. It is preferable to do. The dry mixing method is preferably mixing using a common dry mixer such as a ball mill or V blender, and more preferably mixing using a planetary ball mill capable of self-revolution.

圧縮力及びせん断力を付加しながら混合する(以下、「複合化する」ともいう)処理は、インペラやローター工具等を備える密閉容器で行うのがよい。かかる密閉容器を備える装置として、高速せん断ミル、ブレード型混練機、高速混合機等が挙げられ、具体的には、例えば、粒子設計装置 COMPOSI、メカノハイブリット、高性能流動式混合機FMミキサー(日本コークス工業社製)微粒子複合化装置 メカノフュージョン、ノビルタ(ホソカワミクロン社製)、表面改質装置ミラーロ、ハイブリダイゼーションシステム(奈良機械製作所社製)、アイリッヒインテンシブミキサー(日本アイリッヒ社製)を好適に用いることができる。上記複合化する処理条件としては、温度が、好ましくは5〜80℃、より好ましくは10〜50℃である。また、雰囲気としては、特に限定されないが、不活性ガス雰囲気又は還元性ガス雰囲気であるのが好ましい。   The process of mixing while applying a compressive force and a shear force (hereinafter also referred to as "combining") may be performed in a closed vessel equipped with an impeller, a rotor tool, and the like. As an apparatus equipped with such a closed container, a high speed shear mill, a blade type kneader, a high speed mixer, etc. may be mentioned. Specifically, for example, particle design apparatus COMPOSI, mechano hybrid, high performance flow mixer FM mixer (Japan Coke Industry Co., Ltd. Fine particle complexing device Mechanofusion, Nobilta (manufactured by Hosokawa Micron Corporation), surface reforming device Miraro, Hybridization system (manufactured by Nara Machinery Co., Ltd.), Eirich Intensiv Mixer (manufactured by Nippon Eirich Co., Ltd.) are suitably used. be able to. As processing conditions to be complexed, the temperature is preferably 5 to 80 ° C., more preferably 10 to 50 ° C. The atmosphere is not particularly limited, but is preferably an inert gas atmosphere or a reducing gas atmosphere.

より具体的には、例えば、複合化を行う装置として、インペラを備えた乾式粒子複合化装置であるノビルタ(ホソカワミクロン社製)を用いる場合、かかるインペラの回転数は、上記造粒体(C)を効率的に崩壊させつつ、リチウム複合酸化物二次粒子(A)の表面にリチウム系ポリアニオン粒子(B)が良好に被覆した複合酸化物を得る観点から、好ましくは2000〜6000rpmであり、より好ましくは2000〜4000rpmである。また、複合化する時間は、好ましくは1〜10分であり、より好ましくは1〜7分である。
また、かかる複合化を行う装置として、ローター工具を備えた高速攪拌混合機であるアイリッヒインテンシブミキサー(日本アイリッヒ社製)を用いた場合、かかるローター工具の回転数は、好ましくは2000〜8000rpmであり、より好ましくは2000〜6000rpmである。また、複合化する時間は、好ましくは1〜10分であり、より好ましくは1〜7分である。
More specifically, for example, when Nobilta (manufactured by Hosokawa Micron Corporation), which is a dry particle composite apparatus equipped with an impeller, is used as a composite apparatus, the number of revolutions of the impeller is the above-mentioned granulated body (C) From the viewpoint of obtaining a composite oxide in which lithium-based polyanion particles (B) are favorably coated on the surface of the lithium composite oxide secondary particles (A) while efficiently disintegrating Preferably it is 2000-4000 rpm. Further, the time for complexing is preferably 1 to 10 minutes, more preferably 1 to 7 minutes.
Moreover, when using Erich intensive mixer (made by Nippon Erich Co., Ltd.), which is a high-speed stirring mixer equipped with a rotor tool, as an apparatus for performing such compounding, the number of revolutions of the rotor tool is preferably 2000 to 8000 rpm. More preferably 2000 to 6000 rpm. Further, the time for complexing is preferably 1 to 10 minutes, more preferably 1 to 7 minutes.

工程(Z)における、上記複合化する時間及び/又はインペラ等の回転数は、密閉容器に投入するリチウム複合酸化物二次粒子(A)と造粒体(C)の混合物の量に応じて適宜調整する必要がある。そして、密閉容器を稼動させることにより、インペラ等と密閉容器内壁との間でこれら混合物に圧縮力及びせん断力が付加されつつ、造粒体(C)を良好に崩壊させながら、リチウム複合酸化物二次粒子(A)と、表面に炭素が担持されたリチウム系ポリアニオン粒子(B)とを複合化する処理を行うことが可能となり、上記リチウム複合酸化物二次粒子(A)の表面において、上記表面に炭素が担持されたリチウム系ポリアニオン粒子(B)が良好に複合化されて被覆してなる、リチウムイオン二次電池用正極活物質複合体を得ることができる。
例えば、上記複合化を、回転数2000〜5000rpmで回転するインペラを備える密閉容器内で1〜8分間行う場合、密閉容器に投入する上記混合物の量は、有効容器(インペラを備える密閉容器のうち、上記混合物を収容可能な部位に相当する容器)1cm3当たり、好ましくは0.1〜0.7gであり、より好ましくは0.15〜0.4gである。
The time of complexation and / or the number of revolutions of the impeller or the like in the step (Z) depends on the amount of the mixture of the lithium composite oxide secondary particles (A) and the granules (C) charged into the closed vessel. It is necessary to make appropriate adjustments. And, by operating the closed vessel, while the compressive force and the shear force are applied to the mixture between the impeller etc. and the inner wall of the closed vessel, the lithium complex oxide is favorably broken while the granulated body (C) is favorably collapsed. It becomes possible to carry out a treatment of complexing the secondary particles (A) and the lithium-based polyanion particles (B) having carbon supported on the surface, and on the surface of the lithium composite oxide secondary particles (A), A positive electrode active material complex for a lithium ion secondary battery can be obtained, in which the lithium-based polyanion particles (B) in which carbon is supported on the surface are favorably complexed and coated.
For example, when the compounding is performed for 1 to 8 minutes in a closed container provided with an impeller rotating at 2000 to 5000 rpm, the amount of the mixture introduced into the closed container is an effective container (of the closed containers provided with an impeller). The amount is preferably 0.1 to 0.7 g, more preferably 0.15 to 0.4 g, per 1 cm 3 of a container corresponding to a portion capable of containing the above mixture.

工程(Z)において複合化するリチウム複合酸化物二次粒子(A)と表面に炭素が担持されたリチウム系ポリアニオン粒子(B)との質量比(粒子(A):粒子(B))は、リチウム複合酸化物二次粒子(A)の表面に良好にリチウム系ポリアニオン粒子(B)を被覆させる観点から、好ましくは95:5〜60:40であり、より好ましくは92:8〜65:35であり、さらに好ましくは90:10〜70:30である。かかる量となるよう、上記混合物中における造粒体(C)の量を調整すればよい。   The mass ratio (particles (A): particles (B)) of the lithium composite oxide secondary particles (A) to be complexed in the step (Z) and the lithium-based polyanion particles (B) having carbon supported on the surface is It is preferably 95: 5 to 60:40, more preferably 92: 8 to 65:35 from the viewpoint of allowing the surface of the lithium composite oxide secondary particles (A) to be coated well with the lithium-based polyanion particles (B). More preferably, it is 90: 10-70: 30. The amount of the granules (C) in the mixture may be adjusted so as to be such an amount.

なお、上記リチウム複合酸化物二次粒子(A)の表面において、上記表面に炭素が担持されたリチウム系ポリアニオン粒子(B)が複合化されて被覆してなる程度は、X線光電子分光法(XPS)によるピーク強度比((Ni2p3/2のピーク強度)/(P2pのピーク強度+C1sのピーク強度))、すなわちリチウム複合酸化物二次粒子(A)から放出されるNi2p3/2のピーク強度と、表面に炭素が担持されたリチウム系ポリアニオン粒子(B)から放出されるP2p及びC1sのピーク強度の比の値により確認できる。具体的には、得られたリチウムイオン二次電池用正極活物質複合体に数keVの軟X線を照射すると、かかる軟X線の照射を受けた部位から、当該部位を構成する元素に固有のエネルギー値を持つ光電子が放出されるので、リチウム複合酸化物二次粒子(A)から放出されるNi2p3/2のピークを解析して得られる3価のNiに相当するピーク強度と、表面に炭素が担持されたリチウム系ポリアニオン粒子(B)から放出されるP2p及びC1sのピーク強度の合計とを比較することで、リチウムイオン二次電池用正極活物質複合体の表面となっている材料の面積比、すなわち、かかる表面に炭素が担持されたリチウム系ポリアニオン粒子(B)が、リチウム複合酸化物二次粒子(A)を被覆している程度が分かる。 The extent to which the lithium-based polyanion particles (B) having carbon supported on the surface thereof are complexed and coated on the surface of the lithium composite oxide secondary particles (A) is X-ray photoelectron spectroscopy ( Peak intensity ratio by (XPS) ((peak intensity of Ni 2 p 3/2 ) / (peak intensity of P 2 p + peak intensity of C 1s)), ie, the peak of Ni 2 p 3/2 released from lithium composite oxide secondary particles (A) The intensity can be confirmed by the value of the ratio of the peak intensities of P2p and C1s released from the lithium-based polyanion particles (B) having carbon supported on the surface. Specifically, when the obtained positive electrode active material complex for a lithium ion secondary battery is irradiated with soft X-rays of several keV, the site irradiated with such soft X-rays is unique to the element constituting the site. Since photoelectrons having energy values of are emitted, peak intensities corresponding to trivalent Ni obtained by analyzing the peaks of Ni.sub.2p 3/2 released from the lithium composite oxide secondary particles (A), and the surface The material which is the surface of the positive electrode active material complex for lithium ion secondary batteries by comparing the sum of the peak intensities of P2p and C1s released from the lithium-based polyanion particles (B) on which carbon is supported. In other words, the lithium-based polyanion particles (B) having carbon supported on such a surface can cover the lithium composite oxide secondary particles (A).

より具体的には、本発明により製造されるリチウムイオン二次電池用正極活物質複合体は、得られる二次電池において優れた放電特性及び安全性を確保する観点から、かかるXPSによるピーク強度比((Ni2p3/2のピーク強度)/(P2pのピーク強度+C1sのピーク強度))は、通常0.05以下であり、好ましくは0.04以下であり、より好ましくは0.03以下である。 More specifically, the positive electrode active material composite for a lithium ion secondary battery manufactured according to the present invention has such a peak intensity ratio by XPS from the viewpoint of securing excellent discharge characteristics and safety in the obtained secondary battery. ((Peak intensity of Ni 2 p 3/2 ) / (peak intensity of P 2 p + peak intensity of C 1 s)) is usually 0.05 or less, preferably 0.04 or less, more preferably 0.03 or less .

さらに、上記のXPSによるピーク強度比について、得られたリチウムイオン二次電池用正極活物質複合体に一定のせん断力を加える前後におけるXPSピーク強度比を比較することで、リチウム複合酸化物二次粒子(A)の表面へのリチウム系ポリアニオン粒子(B)の被覆強度を評価することができる。   Furthermore, regarding the peak intensity ratio by the above-mentioned XPS, by comparing the XPS peak intensity ratio before and after applying a predetermined shear force to the obtained positive electrode active material composite for lithium ion secondary battery, the secondary lithium complex oxide The coating strength of lithium-based polyanion particles (B) on the surface of particles (A) can be evaluated.

具体的には、得られたリチウムイオン二次電池用正極活物質複合体2gとN−メチル−2−ピロリドン10gを高速ミキサー(プライミクス社製フィルミックス40L型)を用いて2000rpmで3分間攪拌混練して得られたスラリーに、温風乾燥して得られたリチウムイオン二次電池用正極活物質複合体について、上記と同様にXPSによるピーク強度比((Ni2p3/2のピーク強度)/(P2pのピーク強度+C1sのピーク強度))を求めた後、前記のせん断力を加える前のXPSピーク強度比との比((せん断力を加えた後のピーク強度比)/(せん断力を加える前のピーク強度比))(以後、この比を「被覆強度」と称す。)を求めればよい。この被覆強度は、値が小さく、1に近いほどリチウム複合酸化物二次粒子に強固にリチウム系ポリアニオン粒子が被覆していることを示す。 Specifically, 2 g of the obtained positive electrode active material complex for lithium ion secondary battery and 10 g of N-methyl-2-pyrrolidone are stirred and kneaded at 2000 rpm for 3 minutes using a high-speed mixer (filmix 40 L type manufactured by PRIMIX Corporation) The obtained slurry was subjected to warm air drying to obtain a positive electrode active material complex for a lithium ion secondary battery, and the peak intensity ratio by the XPS ((peak intensity of Ni2p 3/2 ) / (p After determining the P2p peak intensity + C1s peak intensity)), the ratio to the above-mentioned XPS peak intensity ratio before applying shear force ((peak intensity ratio after applying shear force) / (before applying shear force) Peak intensity ratio)) (hereinafter this ratio is referred to as "covering intensity"). The smaller the value of this coating strength is, the closer to 1 the stronger the lithium complex oxide secondary particles are covered with lithium-based polyanion particles.

本発明により製造されるリチウムイオン二次電池用正極活物質複合体を含む二次電池用正極を適用できる、リチウムイオン二次電池としては、正極と負極と電解液とセパレータを必須構成とするものであれば特に限定されない。   As a lithium ion secondary battery to which the positive electrode for secondary batteries including the positive electrode active material composite for lithium ion secondary batteries manufactured according to the present invention can be applied, the positive electrode, the negative electrode, the electrolyte and the separator are essential components It is not particularly limited as long as

リチウムイオン二次電池の正極は、本発明のリチウムイオン二次電池用正極活物質複合体、カーボンブラック等の導電助剤、及びポリフッ化ビニリデン等の結着材(バインダー)に、N−メチル−2−ピロリドン等の溶媒を加え、充分に混練して正極スラリーを得た後、アルミニウム箔等の集電体上に塗布し、次いでローラープレス等による圧密し、乾燥して得る。   The positive electrode of a lithium ion secondary battery can be prepared by using a positive electrode active material complex for a lithium ion secondary battery according to the present invention, a conductive agent such as carbon black, and a binder (binder) such as polyvinylidene fluoride. A solvent such as 2-pyrrolidone is added, and the mixture is sufficiently kneaded to obtain a positive electrode slurry, which is then coated on a current collector such as an aluminum foil and then consolidated by a roller press or the like and dried.

リチウムイオン二次電池の負極については、リチウムイオンを充電時には吸蔵し、かつ放電時には放出することができれば、その材料構成で特に限定されるものではなく、公知の材料構成のものを用いることができる。たとえば、リチウム金属、グラファイト又は非晶質炭素等の炭素材料等である。そしてリチウムイオンを電気化学的に吸蔵・放出し得るインターカレート材料で形成された電極、特に炭素材料を用いることが好ましい。   The negative electrode of the lithium ion secondary battery is not particularly limited by its material configuration as long as lithium ions can be stored during charging and released during discharging, and known materials can be used. . For example, it is a carbon material such as lithium metal, graphite or amorphous carbon. It is preferable to use an electrode formed of an intercalated material capable of electrochemically absorbing and desorbing lithium ions, particularly a carbon material.

電解液は、有機溶媒に支持塩を溶解させたものである。有機溶媒は、通常リチウムイオン二次電池の電解液に用いられる有機溶媒であれば特に限定されるものではなく、例えば、カーボネート類、ハロゲン化炭化水素、エーテル類、ケトン類、ニトリル類、ラクトン類、オキソラン化合物等を用いることができる。   The electrolytic solution is one in which a supporting salt is dissolved in an organic solvent. The organic solvent is not particularly limited as long as it is an organic solvent generally used for an electrolyte solution of a lithium ion secondary battery, and, for example, carbonates, halogenated hydrocarbons, ethers, ketones, nitriles, lactones And oxolane compounds can be used.

支持塩は、その種類が特に限定されるものではないが、LiPF6、LiBF4、LiClO4及びLiAsF6から選ばれる無機塩、該無機塩の誘導体、LiSO3CF3、LiC(SO3CF32及びLiN(SO3CF32、LiN(SO2252及びLiN(SO2CF3)(SO249)から選ばれる有機塩、並びに該有機塩の誘導体の少なくとも1種であることが好ましい。 The type of the supporting salt is not particularly limited, and an inorganic salt selected from LiPF 6 , LiBF 4 , LiClO 4 and LiAsF 6 , a derivative of the inorganic salt, LiSO 3 CF 3 , LiC (SO 3 CF 3 ) 2 and LiN (SO 3 CF 3) 2 , LiN (SO 2 C 2 F 5) 2 and an organic salt selected from LiN (SO 2 CF 3) ( SO 2 C 4 F 9) and derivatives of the organic salts, It is preferable that it is at least one of

セパレータは、正極及び負極を電気的に絶縁し、電解液を保持する役割を果たすものである。たとえば、多孔性合成樹脂膜、特にポリオレフィン系高分子(ポリエチレン、ポリプロピレン)の多孔膜を用いればよい。   The separator serves to electrically insulate the positive electrode and the negative electrode and to hold the electrolytic solution. For example, a porous synthetic resin film, in particular, a porous film of a polyolefin polymer (polyethylene, polypropylene) may be used.

固体電解質は、正極及び負極を電気的に絶縁し、高いリチウムイオン電導性を示すものである。たとえば、La0.51Li0.34TiO2.94、Li1.3Al0.3Ti1.7(PO43、Li7La3Zr212、50Li4SiO4・50Li3BO3、Li2.9PO3.30.46、Li3.6Si0.60.44、Li1.07Al0.69Ti1.46(PO43、Li1.5Al0.5Ge1.5(PO43、Li10GeP212、Li3.25Ge0.250.754、30Li2S・26B23・44LiI、63Li2S・36SiS2・1Li3PO4、57Li2S・38SiS2・5Li4SiO4、70Li2S・30P25、50Li2S・50GeS2、Li7311、Li3.250.954を用いればよい。 The solid electrolyte electrically insulates the positive electrode and the negative electrode and exhibits high lithium ion conductivity. For example, La 0.51 Li 0.34 TiO 2.94 , Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 , Li 7 La 3 Zr 2 O 12 , 50Li 4 SiO 4 .50Li 3 BO 3 , Li 2.9 PO 3.3 N 0.46 , Li 3.6 Si 0.6 P 0.4 O 4 , Li 1.07 Al 0.69 Ti 1.46 (PO 4 ) 3 , Li 1.5 Al 0.5 Ge 1.5 (PO 4 ) 3 , Li 10 GeP 2 S 12 , Li 3.25 Ge 0.25 P 0.75 S 4 , 30Li 2 S · 26 B 2 S 3 · 44 Li I, 63 Li 2 S · 36 Si S 2 · 1 Li 3 PO 4 , 57 Li 2 S · 38 Si S 2 · 5 Li 4 SiO 4 , 70 Li 2 S · 30 P 2 S 5 , 50 Li 2 S · 50 GeS 2 , Li 7 P 3 S 11 and Li 3.25 P 0.95 S 4 may be used.

上記の構成を有するリチウムイオン二次電池の形状としては、特に制限を受けるものではなく、コイン型、円筒型,角型等種々の形状や、ラミネート外装体に封入した不定形状であってもよい。   The shape of the lithium ion secondary battery having the above-mentioned configuration is not particularly limited, and may be various shapes such as coin, cylinder, square, and irregular shapes enclosed in a laminate outer package. .

以下、本発明について、実施例に基づき具体的に説明するが、本発明はこれら実施例に限定されるものではない。   EXAMPLES Hereinafter, the present invention will be specifically described based on examples, but the present invention is not limited to these examples.

[製造例1:リチウム複合酸化物二次粒子(A)の製造]
Ni:Co:Mnのモル比が1:1:1となるように、硫酸ニッケル六水和物 263g、硫酸コバルト七水和物 281g、硫酸マンガン五水和物 241g、及び水 3Lを混合した後、かかる混合溶液に25%アンモニア水を、滴下速度300ml/分で滴下して、pHが11の金属複合水酸化物を含むスラリーx1を得た。
次いで、スラリーx1をろ過、乾燥して、金属複合水酸化物の混合物x2を得た後、かかる混合物x2に炭酸リチウム37gをボールミルで混合して粉末混合物x3を得た。
得られた粉末混合物x3を、大気雰囲気下で800℃×5時間仮焼成して解砕した後に造粒し、次いで本焼成として大気雰囲気下で800℃×10時間焼成し、リチウム複合酸化物二次粒子(A)(LiNi0.33Co0.33Mn0.342、平均粒径10μm)を得た。
[Production example 1: Production of lithium composite oxide secondary particles (A)]
After mixing 263 g of nickel sulfate hexahydrate, 281 g of cobalt sulfate heptahydrate, 241 g of manganese sulfate pentahydrate, and 3 L of water so that the molar ratio of Ni: Co: Mn is 1: 1: 1 To the mixed solution, 25% ammonia water was dropped at a dropping rate of 300 ml / min to obtain a slurry x1 containing a metal composite hydroxide having a pH of 11.
Next, the slurry x1 was filtered and dried to obtain a mixture x2 of metal composite hydroxides, and then 37 g of lithium carbonate was mixed with the mixture x2 in a ball mill to obtain a powder mixture x3.
The obtained powder mixture x 3 was calcined after being calcined at 800 ° C. for 5 hours in the air atmosphere to be granulated, and then granulated as main firing, and then calcined at 800 ° C. for 10 hours in the air atmosphere. Next particles (A) (LiNi 0.33 Co 0.33 Mn 0.34 O 2 , average particle diameter 10 μm) were obtained.

[製造例2:CNF由来の炭素が表面に担持されたリチウム系ポリアニオン粒子(B−1)からなる造粒体(C−1)の製造]
LiOH・H2O 4071g、及び水9.657Lを混合してスラリーb1を得た。次いで、得られたスラリーb1を、25℃の温度に保持しながら3分間撹拌しつつ75%のリン酸水溶液4204gを40mL/分で滴下して、Li3PO4を含むスラリーb2を得た。
得られたスラリーb2に窒素パージして、スラリーb2の溶存酸素濃度を0.1mg/Lとした後、スラリーb2全量に対し、MnSO4・5H2O 3807g、FeSO4・7H2O 2684gを添加してスラリーb3を得た。添加したMnSO4とFeSO4のモル比(マンガン化合物:鉄化合物)は、70:30であった。
次いで、得られたスラリーb3をオートクレーブに投入し、170℃で0.5時間水熱反応を行った。オートクレーブ内の圧力は0.8MPaであった。水熱反応後、生成した結晶をろ過し、次いで結晶1質量部に対し12質量部の水により洗浄した。その後フィルタープレス装置で脱水し、脱水ケーキb4を得た。
脱水ケーキb4中のリチウム系ポリアニオン粒子の平均粒径は、100nmであった。
得られた脱水ケーキb4を8000g分取し、セルロースナノファイバー(KY100G、ダイセルファインケム社製)1200g、水8.5Lを添加して、固形分濃度30質量%のスラリーb5を得た。得られたスラリーb5を超音波攪拌機(T25、IKA社製)で10分間分散処理して全体を均一に呈色させた後、スプレードライ装置(MDL−050M、藤崎電機株式会社製)を用いて乾燥温度130℃で噴霧乾燥し、予備造粒体b6を得た。
得られた予備造粒体b6を、アルゴン水素雰囲気下(水素濃度3%)、700℃で1時間焼成して、2.0質量%のセルロースナノファイバー由来の炭素が表面に担持されたリン酸マンガン鉄リチウム二次粒子(B−1)からなる造粒体(C−1)(LiMn0.7Fe0.3PO4、炭素の量=2.0質量%、平均粒径:11μm、空隙率51体積%、タップ密度0.8g/cm3)を得た。
Production Example 2 Production of Granulated Body (C-1) Composed of Lithium-Based Polyanion Particle (B-1) with CNF-Derived Carbon Supported on the Surface]
4071 g of LiOH.H 2 O and 9.657 L of water were mixed to obtain a slurry b1. Next, 4204 g of a 75% aqueous phosphoric acid solution was added dropwise at 40 mL / min while stirring the obtained slurry b1 for 3 minutes while maintaining the temperature at 25 ° C. to obtain a slurry b2 containing Li 3 PO 4 .
The obtained slurry b2 was purged with nitrogen to make the dissolved oxygen concentration of the slurry b2 0.1 mg / L, and then 3807 g of MnSO 4 · 5 H 2 O and 2684 g of FeSO 4 · 7 H 2 O were added to the whole amount of the slurry b2 The slurry b3 was obtained. The molar ratio of added MnSO 4 to FeSO 4 (manganese compound: iron compound) was 70:30.
Next, the obtained slurry b3 was put into an autoclave and subjected to a hydrothermal reaction at 170 ° C. for 0.5 hours. The pressure in the autoclave was 0.8 MPa. After the hydrothermal reaction, the formed crystals were filtered and then washed with 12 parts by mass of water per 1 part by mass of the crystals. Thereafter, it was dewatered by a filter press device to obtain a dewatered cake b4.
The average particle size of the lithium-based polyanion particles in the dehydrated cake b4 was 100 nm.
8000 g of the dewatered cake b4 thus obtained was fractionated, and 1200 g of cellulose nanofibers (KY 100 G, manufactured by Daicel Finechem Co., Ltd.) and 8.5 L of water were added thereto to obtain a slurry b5 having a solid content concentration of 30 mass%. The obtained slurry b5 is dispersed for 10 minutes with an ultrasonic stirrer (T25, manufactured by IKA Co., Ltd.) to make the whole color uniformly, and then a spray dryer (MDL-050M, manufactured by Fujisaki Electric Co., Ltd.) is used. It spray-dried at the drying temperature of 130 degreeC, and obtained the pre-granulation body b6.
The obtained pre-granulated body b6 is calcined at 700 ° C. for 1 hour under an argon-hydrogen atmosphere (hydrogen concentration 3%), and phosphoric acid with 2.0 mass% of cellulose nanofiber-derived carbon supported on the surface Granulated body (C-1) consisting of manganese iron lithium secondary particles (B-1) (LiMn 0.7 Fe 0.3 PO 4 , amount of carbon = 2.0% by mass, average particle diameter: 11 μm, porosity 51% by volume , Tap density 0.8 g / cm 3 ).

[製造例3:CNF由来の炭素が表面に担持されたリチウム系ポリアニオン粒子(B−2)からなる造粒体(C−2)の製造]
脱水ケーキb4に添加する水の量を12Lに変更して固形分濃度25質量%のスラリーb5を得た後、噴霧乾燥における乾燥温度を140℃に変更した以外、製造例2と同様にして、2.0質量%のセルロースナノファイバー由来の炭素が表面に担持されたリン酸マンガン鉄リチウム二次粒子(B−2)からなる造粒体(C−2)(LiMn0.7Fe0.3PO4、炭素の量=2.0質量%、平均粒径:8μm、空隙率56体積%、タップ密度0.8g/cm3)を得た。
Production Example 3: Production of Granulated Body (C-2) Consisting of Lithium-Based Polyanion Particles (B-2) with CNF-Derived Carbon Supported on the Surface
The amount of water added to the dewatered cake b4 was changed to 12 L to obtain a slurry b5 having a solid content concentration of 25 mass%, and then the drying temperature in spray drying was changed to 140 ° C. Granulated body (C-2) (LiMn 0.7 Fe 0.3 PO 4 ) composed of lithium manganese iron phosphate secondary particle (B-2) on the surface of which 2.0% by mass of cellulose nanofiber derived carbon is supported on the surface Amount of 2.0% by mass, average particle diameter: 8 μm, porosity 56% by volume, tap density 0.8 g / cm 3 ).

[製造例4:CNF由来の炭素が表面に担持されたリチウム系ポリアニオン粒子(B−3)からなる造粒体(C−3)の製造]
脱水ケーキb4に添加する水の量を17Lに変更して固形分濃度20質量%のスラリーb5を得た後、噴霧乾燥における乾燥温度を150℃に変更した以外、製造例2と同様にして、2.0質量%のセルロースナノファイバー由来の炭素が表面に担持されたリン酸マンガン鉄リチウム二次粒子(B−3)からなる造粒体(C−3)(LiMn0.7Fe0.3PO4、炭素の量=2.0質量%、平均粒径:8μm、空隙率74体積%、タップ密度0.7g/cm3)を得た。
Production Example 4 Production of Granulated Body (C-3) Composed of Lithium-Based Polyanion Particle (B-3) with CNF-Derived Carbon Supported on Surface
The amount of water added to the dewatered cake b4 was changed to 17 L to obtain a slurry b5 having a solid content concentration of 20 mass%, and then the drying temperature in spray drying was changed to 150 ° C. Granulated body (C-3) (LiMn 0.7 Fe 0.3 PO 4 ) composed of lithium manganese iron phosphate secondary particles (B-3) on the surface of which 2.0% by mass of carbon derived from cellulose nanofibers is supported on the surface the amount of = 2.0 weight%, average particle size: to give 8 [mu] m, porosity of 74 vol%, a tap density of 0.7g / cm 3).

[製造例5:CNF由来の炭素が表面に担持されたリチウム系ポリアニオン粒子(B−4)からなる造粒体(C−4)の製造]
スラリーb2全量に対し、FeSO4・7H2O 8945gのみを添加してスラリーb3を得た以外、製造例2と同様にして、2.0質量%のセルロースナノファイバー由来の炭素が担持されたリン酸鉄リチウム二次粒子(B−4)からなる造粒体(C−4)(LiFePO4、炭素の量=2.0質量%、平均粒径:10μm、空隙率52体積%、タップ密度0.9g/cm3)を得た。
Production Example 5 Production of Granulated Body (C-4) Consisting of Lithium-Based Polyanion Particle (B-4) with CNF-Derived Carbon Supported on the Surface
In the same manner as in Production Example 2, except that 9945 g of FeSO 4 · 7H 2 O was added to the total amount of the slurry b 2 to obtain a slurry b 3, phosphorus in which 2.0 mass% of carbon derived from cellulose nanofibers was supported Granulate (C-4) (LiFePO 4 , amount of carbon = 2.0% by mass, average particle diameter: 10 μm, porosity 52% by volume, tap density 0) consisting of lithium iron oxide secondary particles (B-4) .9 g / cm 3 ).

[製造例6:CNF由来の炭素が表面に担持されたリチウム系ポリアニオン粒子(B−5)からなる造粒体(C−5)の製造]
スラリーb2全量に対し、FeSO4・7H2O 8945gのみを添加してスラリーb3を得た後、得られた脱水ケーキb4に添加する水の量を12Lに変更して固形分濃度25質量%のスラリーb5を得て、噴霧乾燥における乾燥温度を140℃に変更した以外、製造例2と同様にして、2.0質量%のセルロースナノファイバー由来の炭素が表面に担持されたリン酸鉄リチウム二次粒子(B−5)からなる造粒体(C−5)(LiFePO4、炭素の量=2.0質量%、平均粒径:9μm、空隙率61体積%、タップ密度0.8g/cm3)を得た。
Production Example 6: Production of Granulated Body (C-5) Consisting of Lithium-Based Polyanion Particles (B-5) with CNF-Derived Carbon Supported on the Surface]
After 8945 g of FeSO 4 · 7 H 2 O was added to the total amount of the slurry b 2 to obtain a slurry b 3, the amount of water added to the obtained dehydrated cake b 4 was changed to 12 L to have a solid content concentration of 25 mass% In the same manner as in Production Example 2 except that a slurry b5 was obtained, and the drying temperature in spray drying was changed to 140 ° C., lithium iron phosphate having 2.0 mass% of cellulose nanofiber-derived carbon supported on the surface Granulate (C-5) (LiFePO 4 , amount of carbon = 2.0% by mass, average particle diameter: 9 μm, porosity 61% by volume, tap density 0.8 g / cm) consisting of the following particles (B-5) 3 ) got.

[製造例7:CNF由来の炭素が表面に担持されたリチウム系ポリアニオン粒子(B−6)からなる造粒体(C−6)の製造]
スラリーb2全量に対し、FeSO4・7H2O 8945gのみを添加してスラリーb3を得た後、得られた脱水ケーキb4に添加する水の量を17Lに変更して固形分濃度20質量%のスラリーb5を得て、噴霧乾燥における乾燥温度を150℃に変更した以外、製造例2と同様にして、2.0質量%のセルロースナノファイバー由来の炭素が表面に担持されたリン酸鉄リチウム二次粒子(B−6)からなる造粒体(C−6)(LiFePO4、炭素の量=2.0質量%、平均粒径:9μm、空隙率70体積%、タップ密度0.7g/cm3)を得た。
Production Example 7: Production of Granulated Body (C-6) Consisting of Lithium-Based Polyanion Particles (B-6) with CNF-Derived Carbon Supported on the Surface]
After 8945 g of FeSO 4 · 7 H 2 O was added to the total amount of the slurry b 2 to obtain a slurry b 3, the amount of water added to the obtained dehydrated cake b 4 was changed to 17 L to have a solid content concentration of 20 mass% In the same manner as in Production Example 2 except that a slurry b5 was obtained, and the drying temperature in spray drying was changed to 150 ° C., lithium iron phosphate having 2.0 mass% of cellulose nanofiber-derived carbon supported on its surface Granulate (C-6) (LiFePO 4 , amount of carbon = 2.0% by mass, average particle diameter: 9 μm, porosity 70% by volume, tap density 0.7 g / cm) consisting of the following particles (B-6) 3 ) got.

[製造例8:CNF由来の炭素が表面に担持されたリチウム系ポリアニオン粒子(B−7)からなる造粒体(C−7)の製造]
脱水ケーキb4に添加する水の量を0.5Lに変更して固形分濃度55質量%のスラリーb5を得た後、噴霧乾燥における乾燥温度を180℃に変更した以外、製造例2と同様にして、2.0質量%のセルロースナノファイバー由来の炭素が表面に担持されたリン酸マンガン鉄リチウム二次粒子(B−7)からなる造粒体(C−7)(LiMn0.7Fe0.3PO4、炭素の量=2.0質量%、平均粒径:11μm、空隙率6体積%、タップ密度1.2g/cm3)を得た。
Production Example 8 Production of Granulated Body (C-7) Consisting of Lithium-Based Polyanion Particles (B-7) with CNF-Derived Carbon Supported on the Surface
The amount of water added to the dewatered cake b4 was changed to 0.5 L to obtain a slurry b5 having a solid content concentration of 55% by mass, and then the drying temperature in spray drying was changed to 180 ° C. Granulated body (C-7) (LiMn 0.7 Fe 0.3 PO 4 ) comprising lithium manganese iron phosphate secondary particles (B-7) on the surface of which 2.0 mass% of cellulose nanofiber derived carbon is supported on the surface An amount of carbon = 2.0% by mass, an average particle diameter: 11 μm, a porosity of 6% by volume, and a tap density of 1.2 g / cm 3 ).

[製造例9:CNF由来の炭素が表面に担持されたリチウム系ポリアニオン粒子(B−8)からなる造粒体(C−8)の製造]
脱水ケーキb4に添加する水の量を0.5Lに変更して固形分濃度55質量%のスラリーb5を得た後、噴霧乾燥における乾燥温度を200℃に変更した以外、製造例2と同様にして、2.0質量%のセルロースナノファイバー由来の炭素が表面に担持されたリン酸マンガン鉄リチウム二次粒子(B−8)からなる造粒体(C−8)(LiMn0.7Fe0.3PO4、炭素の量=2.0質量%、平均粒径:10μm、空隙率9体積%、タップ密度1.2g/cm3)を得た。
Production Example 9 Production of Granulated Body (C-8) Consisting of Lithium-Based Polyanion Particle (B-8) with CNF-Derived Carbon Supported on the Surface
The amount of water added to the dewatered cake b4 was changed to 0.5 L to obtain a slurry b5 having a solid content concentration of 55 mass%, and then the drying temperature in spray drying was changed to 200 ° C. Granulated body (C-8) (LiMn 0.7 Fe 0.3 PO 4 ) comprising lithium manganese iron phosphate secondary particles (B-8) on the surface of which 2.0 mass% of cellulose nanofiber derived carbon is supported on the surface An amount of carbon = 2.0% by mass, an average particle diameter: 10 μm, a porosity of 9% by volume, and a tap density of 1.2 g / cm 3 ).

[製造例10:CNF由来の炭素が表面に担持されたリチウム系ポリアニオン粒子(B−9)からなる造粒体(C−9)の製造]
脱水ケーキb4に添加する水の量を1.5Lに変更して固形分濃度50質量%のスラリーb5を得た後、噴霧乾燥における乾燥温度を200℃に変更した以外、製造例2と同様にして、2.0質量%のセルロースナノファイバー由来の炭素が表面に担持されたリン酸マンガン鉄リチウム二次粒子(B−9)からなる造粒体(C−9)(LiMn0.7Fe0.3PO4、炭素の量=2.0質量%、平均粒径:20μm、空隙率14体積%、タップ密度1.1g/cm3)を得た。
Production Example 10 Production of Granulated Body (C-9) Consisting of Lithium-Based Polyanion Particle (B-9) with CNF-Derived Carbon Supported on the Surface
The amount of water added to the dewatered cake b4 was changed to 1.5 L to obtain a slurry b5 having a solid content concentration of 50 mass%, and then the drying temperature in spray drying was changed to 200 ° C. Te, granule consisting of 2.0 wt% of cellulose nanofibers phosphate derived carbon is supported on the surface ferromanganese lithium secondary particles (B-9) (C- 9) (LiMn 0.7 Fe 0.3 PO 4 An amount of carbon = 2.0% by mass, an average particle diameter: 20 μm, a porosity of 14% by volume, and a tap density of 1.1 g / cm 3 ).

[製造例11:CNF由来の炭素が表面に担持されたリチウム系ポリアニオン粒子(B−10)からなる造粒体(C−10)の製造]
スラリーb2全量に対し、FeSO4・7H2O 8945gのみを添加してスラリーb3を得た後、脱水ケーキb4に添加する水の量を2.5Lに変更して固形分濃度45質量%のスラリーb5を得た以外、製造例2と同様にして、2.0質量%のセルロースナノファイバー由来の炭素が担持されたリン酸鉄リチウム二次粒子(B−10)からなる造粒体(C−10)(LiFePO4、炭素の量=2.0質量%、平均粒径:12μm、空隙率27体積%、タップ密度1.0g/cm3)を得た。
Production Example 11 Production of Granulated Body (C-10) Composed of Lithium-Based Polyanion Particle (B-10) with CNF-Derived Carbon Supported on the Surface
After the addition of 8945 g of FeSO 4 · 7 H 2 O to the total amount of the slurry b 2 to obtain a slurry b 3, the amount of water added to the dewatered cake b 4 is changed to 2.5 L to obtain a slurry with a solid content concentration of 45 mass% A granulated product (C--) composed of lithium iron phosphate secondary particles (B-10) carrying 2.0% by mass of carbon from cellulose nanofibers in the same manner as in Production Example 2 except that b5 was obtained 10) (LiFePO 4 , amount of carbon = 2.0% by mass, average particle diameter: 12 μm, porosity 27% by volume, tap density 1.0 g / cm 3 ) was obtained.

[製造例12:CNF由来の炭素が表面に担持されたリチウム系ポリアニオン粒子(B−11)からなる造粒体(C−11)の製造]
スラリーb2全量に対し、FeSO4・7H2O 8945gのみを添加してスラリーb3を得た後、得られた脱水ケーキb4に添加する水の量を8Lに変更して固形分濃度30質量%のスラリーK5を得て、噴霧乾燥における乾燥温度を170℃に変更した以外、製造例2と同様にして、2.0質量%のセルロースナノファイバー由来の炭素が担持されたリン酸鉄リチウム二次粒子(B−11)からなる造粒体(C−11)(LiFePO4、炭素の量=2.0質量%、平均粒径:15μm、空隙率44体積%、タップ密度1.0g/cm3)を得た。
Production Example 12 Production of Granulated Body (C-11) Consisting of Lithium-Based Polyanion Particle (B-11) with CNF-Derived Carbon Supported on the Surface
After the addition of only 8945 g of FeSO 4 · 7 H 2 O to the total amount of the slurry b 2 to obtain a slurry b 3, the amount of water added to the obtained dehydrated cake b 4 is changed to 8 L to have a solid content concentration of 30 mass% A slurry K5 was obtained, and lithium iron phosphate secondary particles supporting 2.0 mass% of cellulose nanofiber-derived carbon in the same manner as in Production Example 2 except that the drying temperature in spray drying was changed to 170 ° C. Granulated body (C-11) consisting of (B-11) (LiFePO 4 , amount of carbon = 2.0% by mass, average particle diameter: 15 μm, porosity 44% by volume, tap density 1.0 g / cm 3 ) I got

[実施例1:リチウムイオン二次電池用正極活物質複合体(Z−1)の製造]
製造例1で得られた複合体(A)350gと、製造例2で得られた造粒体(C−1)150gを、メカノフュージョン(ホソカワミクロン社製、AMS−Lab)を用いて、2600rpmで5分間の複合化処理を行い、リチウムイオン二次電池用正極活物質複合体(Z−1)(粒子(A):粒子(B−1)=70:30(質量比))を得た。
[Example 1: Production of positive electrode active material composite (Z-1) for lithium ion secondary battery]
Using 350 g of the complex (A) obtained in Production Example 1 and 150 g of the granules (C-1) obtained in Production Example 2 at 2600 rpm using Mechanofusion (AMS-Lab, manufactured by Hosokawa Micron Corporation) The compounding treatment for 5 minutes was performed to obtain a positive electrode active material complex (Z-1) (particles (A): particles (B-1) = 70: 30 (mass ratio)) for a lithium ion secondary battery.

[実施例2:リチウムイオン二次電池用正極活物質複合体(Z−2)の製造]
製造例2で得られた造粒体(C−1)の代わりに、製造例3で得られた造粒体(C−2)を用いた以外、実施例1と同様にして、リチウムイオン二次電池用正極活物質複合体(Z−2)(粒子(A):粒子(B−2)=70:30(質量比))を得た。
Example 2 Production of Positive Electrode Active Material Complex (Z-2) for Lithium Ion Secondary Battery
In the same manner as in Example 1, except that the granulated body (C-2) obtained in Production Example 3 was used instead of the granulated body (C-1) obtained in Production Example 2, lithium ion The positive electrode active material complex (Z-2) (particles (A): particles (B-2) = 70: 30 (mass ratio)) of a secondary battery positive electrode was obtained.

[実施例3:リチウムイオン二次電池用正極活物質複合体(Z−3)の製造]
製造例1で得られた複合体(A)450gと、製造例4で得られた造粒体(C−3)50gを、メカノフュージョン(ホソカワミクロン社製、AMS−Lab)を用いて、2600rpmで5分間の複合化処理を行い、リチウムイオン二次電池用正極活物質複合体(Z−3)(粒子(A):粒子(B−3)=90:10(質量比))を得た。
[Example 3: Production of positive electrode active material composite (Z-3) for lithium ion secondary battery]
Using 450 g of the complex (A) obtained in Production Example 1 and 50 g of the granulated product (C-3) obtained in Production Example 4 at 2600 rpm using Mechanofusion (AMS-Lab, manufactured by Hosokawa Micron Corporation) The compounding treatment for 5 minutes was performed to obtain a positive electrode active material complex (Z-3) (particles (A): particles (B-3) = 90: 10 (mass ratio)) for a lithium ion secondary battery.

[実施例4:リチウムイオン二次電池用正極活物質複合体(Z−4)の製造]
製造例2で得られた造粒体(C−1)の代わりに、製造例5で得られた造粒体(C−4)を用いた以外、実施例1と同様にして、リチウムイオン二次電池用正極活物質複合体(Z−4)(粒子(A):粒子(B−4)=70:30(質量比))を得た。
[Example 4: Production of positive electrode active material composite (Z-4) for lithium ion secondary battery]
In the same manner as in Example 1 except that the granulated body (C-4) obtained in Production Example 5 was used instead of the granulated body (C-1) obtained in Production Example 2, lithium ion The positive electrode active material complex (Z-4) (particles (A): particles (B-4) = 70: 30 (mass ratio)) of a secondary battery was obtained.

[実施例5:リチウムイオン二次電池用正極活物質複合体(Z−5)の製造]
製造例2で得られた造粒体(C−1)の代わりに、製造例6で得られた造粒体(C−5)を用いた以外、実施例1と同様にして、リチウムイオン二次電池用正極活物質複合体(Z−5)(粒子(A):粒子(B−5)=70:30(質量比))を得た。
[Example 5: Production of positive electrode active material composite (Z-5) for lithium ion secondary battery]
Lithium ion was prepared in the same manner as in Example 1, except that the granulate (C-5) obtained in Production Example 6 was used instead of the granulate (C-1) obtained in Production Example 2. The positive electrode active material complex (Z-5) for the secondary battery (particle (A): particle (B-5) = 70: 30 (mass ratio)) was obtained.

[実施例6:リチウムイオン二次電池用正極活物質複合体(Z−6)の製造]
製造例1で得られた複合体(A)400gと、製造例7で得られた造粒体(C−6)100gを、メカノフュージョン(ホソカワミクロン社製、AMS−Lab)を用いて、2600rpmで5分間の複合化処理を行い、リチウムイオン二次電池用正極活物質複合体(Z−6)(粒子(A):粒子(B−6)=80:20(質量比))を得た。
[Example 6: Production of positive electrode active material composite (Z-6) for lithium ion secondary battery]
Using Mechanofusion (manufactured by Hosokawa Micron, AMS-Lab) at 2600 rpm, using 400 g of the complex (A) obtained in Production Example 1 and 100 g of the granules (C-6) obtained in Production Example 7 The compounding treatment for 5 minutes was performed to obtain a positive electrode active material complex (Z-6) (particles (A): particles (B-6) = 80: 20 (mass ratio)) for a lithium ion secondary battery.

[比較例1:リチウムイオン二次電池用正極活物質複合体(Z−7)の製造]
製造例2で得られた造粒体(C−1)の代わりに、製造例8で得られた造粒体(C−7)を用いた以外、実施例1と同様にして、リチウムイオン二次電池用正極活物質複合体(Z−7)(粒子(A):粒子(B−7)=70:30(質量比))を得た。
[Comparative Example 1: Production of positive electrode active material composite (Z-7) for lithium ion secondary battery]
In the same manner as in Example 1 except that the granulated body (C-7) obtained in Production Example 8 was used instead of the granulated body (C-1) obtained in Production Example 2, lithium ion The positive electrode active material complex (Z-7) (particles (A): particles (B-7) = 70: 30 (mass ratio)) of a secondary battery was obtained.

[比較例2:リチウムイオン二次電池用正極活物質複合体(Z−8)の製造]
製造例2で得られた造粒体(C−1)の代わりに、製造例9で得られた造粒体(C−8)を用いた以外、実施例1と同様にして、リチウムイオン二次電池用正極活物質複合体(Z−8)(粒子(A):粒子(B−8)=70:30(質量比))を得た。
Comparative Example 2 Production of Positive Electrode Active Material Complex (Z-8) for Lithium Ion Secondary Battery
In the same manner as in Example 1, except that the granulated body (C-8) obtained in Production Example 9 was used instead of the granulated body (C-1) obtained in Production Example 2, a lithium ion A positive electrode active material complex (Z-8) (particles (A): particles (B-8) = 70: 30 (mass ratio)) of a secondary battery was obtained.

[比較例3:リチウムイオン二次電池用正極活物質複合体(Z−9)の製造]
製造例1で得られた複合体(A)400gと、製造例10で得られた造粒体(C−9)100gを、メカノフュージョン(ホソカワミクロン社製、AMS−Lab)を用いて、2600rpmで5分間の複合化処理を行い、リチウムイオン二次電池用正極活物質複合体(Z−9)(粒子(A):粒子(B−9)=80:20(質量比))を得た。
Comparative Example 3 Production of Positive Electrode Active Material Complex (Z-9) for Lithium Ion Secondary Battery
Using Mechanofusion (manufactured by Hosokawa Micron, AMS-Lab) at 2600 rpm, using 400 g of the complex (A) obtained in Production Example 1 and 100 g of the granules (C-9) obtained in Production Example 10 The compounding treatment for 5 minutes was performed to obtain a positive electrode active material complex (Z-9) (particles (A): particles (B-9) = 80: 20 (mass ratio)) for a lithium ion secondary battery.

[比較例4:リチウムイオン二次電池用正極活物質複合体(Z−10)の製造]
製造例2で得られた造粒体(C−1)の代わりに、製造例11で得られた造粒体(C−10)を用いた以外、実施例1と同様にして、リチウムイオン二次電池用正極活物質複合体(Z−10)(粒子(A):粒子(B−10)=70:30(質量比))を得た。
Comparative Example 4 Production of Positive Electrode Active Material Composite (Z-10) for Lithium Ion Secondary Battery
In the same manner as in Example 1, except that the granulated body (C-10) obtained in Production Example 11 was used instead of the granulated body (C-1) obtained in Production Example 2, lithium ion A positive electrode active material complex (Z-10) (particles (A): particles (B-10) = 70: 30 (mass ratio)) of a secondary battery was obtained.

[比較例5:リチウムイオン二次電池用正極活物質複合体(Z−11)の製造]
製造例1で得られた複合体(A)450gと、製造例12で得られた造粒体(C−11)50gを、メカノフュージョン(ホソカワミクロン社製、AMS−Lab)を用いて、2600rpmで5分間の複合化処理を行い、リチウムイオン二次電池用正極活物質複合体(Z−11)(粒子(A):粒子(B−11)=90:10(質量比))を得た。
Comparative Example 5 Production of Positive Electrode Active Material Composite (Z-11) for Lithium Ion Secondary Battery
Using 450 g of the complex (A) obtained in Production Example 1 and 50 g of the granulated product (C-11) obtained in Production Example 12 at 2600 rpm using Mechanofusion (manufactured by Hosokawa Micron, AMS-Lab) The compounding treatment for 5 minutes was performed to obtain a positive electrode active material complex (Z-11) (particles (A): particles (B-11) = 90: 10 (mass ratio)) for a lithium ion secondary battery.

≪造粒体(C)の崩壊強度の評価≫
実施例及び比較例で用いた造粒体(C)について、崩壊強度を評価した。具体的には、造粒体(C)を直径20mmの円筒容器内に3g投入し、高さ1cmからの落下によるタッピングを10回繰返した後の密充填状態における造粒体(C)の層厚t0(mm)と、かかる密充填状態の造粒体(C)に、上部から10KNの荷重を掛けた際の造粒体(C)の層厚t10(mm)を計測した後、上記式(1)にしたがって崩壊強度を算出した。
結果を表1に示す。
«Evaluation of disintegration strength of granulated body (C)»
The disintegration strength was evaluated about the granulated body (C) used by the Example and the comparative example. Specifically, 3 g of the granulated body (C) is placed in a cylindrical container having a diameter of 20 mm, and a layer of the granulated body (C) in a closely packed state after repeated tapping 10 times from a height of 1 cm After measuring the layer thickness t 10 (mm) of the granulated body (C) when applying a load of 10 KN from the top to the thickness t 0 (mm) and the densely packed granulated body (C), The collapse strength was calculated according to the above equation (1).
The results are shown in Table 1.

≪X線光電子分光法による粒子(A)表面の粒子(B)被覆度の評価≫
実施例及び比較例で得られたリチウムイオン二次電池用正極活物質複合体(Z)について、X線光電子分光法(XPS)を用いて複合体粒子表面に存在する元素を分析した。
具体的には、得られたX線光電子分光スペクトル(使用装置:日本電子社製 JPS9010MX)におけるNCM由来のNi2p3/2のピーク強度と、粒子(B)由来のP2pのピーク強度及びC1sのピーク強度から、下記式(2)によりXPSピーク強度比(C)を求めた。このXPSピーク強度比(C)は、値が小さいほどリチウム複合酸化物二次粒子(A)表面がリチウム系ポリアニオン粒子(B)に被覆されていることを示す。
結果を表2に示す。
XPSピーク強度比(C)=(Ni2p3/2のピーク強度)/
((P2pのピーク強度)+(C1sのピーク強度)) ・・・(2)
<< Evaluation of particle (B) coverage of particle (A) surface by X-ray photoelectron spectroscopy >>
About the positive electrode active material composite (Z) for lithium ion secondary batteries obtained in Examples and Comparative Examples, the elements present on the surface of the composite particles were analyzed using X-ray photoelectron spectroscopy (XPS).
Specifically, the peak intensity of Ni2p 3/2 derived from NCM, the peak intensity of P2p derived from particle (B) and the peak of C1s in the obtained X-ray photoelectron spectroscopy spectrum (using device: JPS 9010MX manufactured by Nippon Denshi Co., Ltd.) From the intensities, the XPS peak intensity ratio (C) was determined by the following equation (2). The smaller the value of this XPS peak intensity ratio (C), the lower the value of the lithium composite oxide secondary particle (A) is, the more the surface of the lithium-based polyanion particle (B) is covered.
The results are shown in Table 2.
XPS peak intensity ratio (C) = (peak intensity of Ni 2 p 3/2 ) /
((P2p peak intensity) + (C1s peak intensity)) (2)

≪X線光電子分光法による粒子(A)表面の粒子(B)被覆強度の評価≫
実施例及び比較例で得られたリチウムイオン二次電池用正極活物質複合体(Z)2gとN−メチル−2−ピロリドン10gを、高速ミキサー(プライミクス社製フィルミックス40L型)を用いて2000rpmで3分間攪拌混練した。かかる攪拌混練処理は、実際の二次電池の製造工程における集電体への正極スラリーの塗布工程を強調的に模擬した処理であり、実際の塗布工程で付加されるせん断力以上の力が複合体(Z)に付加されることとなる。
攪拌混練処理後のスラリーを、温風乾燥機を用いて80℃×12時間乾燥した後、回収したリチウムイオン二次電池用正極活物質複合体(Z)について、上記と同様にX線光電子分光法を用いて得られたXPSピーク強度比(D)を求め、前記の攪拌混練処理前のXPSピーク強度比との比率((XPSピーク強度比(D))/(XPSピーク強度比(C)))から、リチウム複合酸化物二次粒子(A)表面におけるリチウム系ポリアニオン粒子(B)の被覆強度を評価した。
このXPSピーク強度比の比率(D/C)は、値が小さく、1に近いほどリチウム複合酸化物二次粒子(A)表面に強固に表面に炭素が担持されたリチウム系ポリアニオン粒子(B)が被覆していることを示す。
結果を表2に示す。
<< Evaluation of particle (B) coating strength on particle (A) surface by X-ray photoelectron spectroscopy >>
Using a high-speed mixer (FILMIX 40L type manufactured by PRIMIX Corporation) 2000 rpm using 2 g of the positive electrode active material complex (Z) for lithium ion secondary batteries obtained in Examples and Comparative Examples and 10 g of N-methyl-2-pyrrolidone The mixture was stirred and kneaded for 3 minutes. The stirring and kneading process is a process emphasizing the step of applying the positive electrode slurry to the current collector in the actual production process of the secondary battery, and the force applied in the actual application step is greater than the shear force applied. It will be added to the body (Z).
The slurry after the stirring and kneading treatment is dried at 80 ° C. for 12 hours using a hot air drier, and then collected for the positive electrode active material composite (Z) for lithium ion secondary battery in the same manner as above, by X-ray photoelectron spectroscopy The XPS peak intensity ratio (D) obtained using the method is determined, and the ratio to the XPS peak intensity ratio before the stirring and kneading treatment ((XPS peak intensity ratio (D)) / (XPS peak intensity ratio (C) From the above), the coating strength of lithium-based polyanion particles (B) on the surface of lithium composite oxide secondary particles (A) was evaluated.
The ratio (D / C) of this XPS peak intensity ratio is smaller, and the lithium composite oxide secondary particles (A) have a value closer to 1, and lithium-based polyanion particles (B) in which carbon is firmly supported on the surface Indicates that it is covered.
The results are shown in Table 2.

≪電解液への遷移金属溶出量≫
全ての実施例及び比較例で得られたリチウムイオン二次電池用正極活物質複合体を正極材料として用い、リチウムイオン二次電池の正極を作製した。具体的には、得られたリチウムイオン二次電池用正極活物質複合体、アセチレンブラック、ポリフッ化ビニリデンを質量比90:5:5の配合割合で混合し、これにN−メチル−2−ピロリドンを加えて充分混練し、正極スラリーを調製した。正極スラリーを厚さ20μmのアルミニウム箔からなる集電体に塗工機を用いて塗布し、80℃で12時間の真空乾燥を行った。その後、φ14mmの円盤状に打ち抜いてハンドプレスを用いて16MPaで2分間プレスし、正極とした。
次いで、上記正極を用いてコイン型二次電池を構築した。負極には、φ15mmに打ち抜いたリチウム箔(リチウムイオン二次電池の場合)を用いた。電解液には、エチレンカーボネート及びエチルメチルカーボネートを体積比3:7の割合で混合した混合溶媒に、LiPF6を1mol/Lの濃度で溶解したものを用いた。セパレータには、ポリプロピレンなどの高分子多孔フィルムなど、公知のものを用いた。これらの電池部品を露点が−50℃以下の雰囲気で常法により組み込み収容し、コイン型二次電池(CR−2032)を得た。
«Transition metal elution amount to electrolyte solution»
Using the positive electrode active material composite for lithium ion secondary batteries obtained in all the Examples and Comparative Examples as a positive electrode material, a positive electrode of a lithium ion secondary battery was produced. Specifically, the obtained positive electrode active material complex for a lithium ion secondary battery, acetylene black and polyvinylidene fluoride are mixed in a blending ratio of 90: 5: 5 in mass ratio, and N-methyl-2-pyrrolidone is added thereto. And the mixture was sufficiently kneaded to prepare a positive electrode slurry. The positive electrode slurry was applied to a current collector made of an aluminum foil with a thickness of 20 μm using a coating machine, and vacuum drying was performed at 80 ° C. for 12 hours. Then, it punched out in disk shape of (phi) 14 mm, and pressed for 2 minutes at 16 MPa using a hand press, and it was set as the positive electrode.
Subsequently, a coin-type secondary battery was constructed using the above positive electrode. As a negative electrode, a lithium foil (in the case of a lithium ion secondary battery) punched out to φ 15 mm was used. The electrolytic solution volume of ethylene carbonate and ethyl methyl carbonate ratio of 3: 7 mixed solvent in a mixing ratio of, with a LiPF 6 that was dissolved at a concentration of 1 mol / L. For the separator, a known one such as a polymeric porous film such as polypropylene was used. These battery parts were incorporated and stored in an atmosphere having a dew point of −50 ° C. or less by a conventional method to obtain a coin-type secondary battery (CR-2032).

得られた二次電池に対し、充電を行った。具体的には、電流170mA/g、電圧4.5Vの定電流充電を行った。
その後、かかる二次電池を解体し、取り出した正極を炭酸ジメチルで洗浄後、電解液に浸した。このときの電解液は、エチレンカーボネート及びエチルメチルカーボネートを体積比1:1の割合で混合した混合溶媒に、LiPF6を1mol/Lの濃度で溶解したものを用いた。正極を浸した電解液を密閉容器に入れ、70℃で1週間静置した。
静置後、正極を取り出した電解液を0.45μmのディスミックフィルタで濾過し、硝酸により酸分解した。酸分解した電解液に含まれるリチウムイオン二次電池用正極活物質複合体由来のMn、Co、Niを、ICP発光分光法(使用装置:堀場製作所製 ULTIMA2)を用いて定量した。
結果を表2に示す。
The obtained secondary battery was charged. Specifically, constant current charging at a current of 170 mA / g and a voltage of 4.5 V was performed.
Thereafter, the secondary battery was disassembled, and the taken-out positive electrode was washed with dimethyl carbonate and then immersed in an electrolytic solution. The electrolyte used at this time was prepared by dissolving LiPF 6 at a concentration of 1 mol / L in a mixed solvent in which ethylene carbonate and ethyl methyl carbonate were mixed at a ratio of 1: 1 in volume ratio. The electrolytic solution in which the positive electrode was immersed was placed in a closed vessel and allowed to stand at 70 ° C. for one week.
After standing, the electrolytic solution from which the positive electrode was taken out was filtered with a 0.45 μm dissic filter and acid-decomposed with nitric acid. Mn, Co, and Ni derived from the positive electrode active material complex for lithium ion secondary batteries contained in the acid-decomposed electrolytic solution were quantified using ICP emission spectroscopy (using apparatus: ULTIMA 2 manufactured by Horiba, Ltd.).
The results are shown in Table 2.

≪放電特性の評価≫
上記の電解液への遷移金属溶出量の評価で製造した二次電池を用いて、放電容量測定装置(HJ−1001SD8、北斗電工製)にて気温30℃環境での、0.2C(34mAh/g)及び3C(510mAh/g)の初期放電容量を測定した。
結果を表2に示す。
«Evaluation of discharge characteristics»
Using the secondary battery manufactured by the above evaluation of the transition metal elution amount to the electrolytic solution, a discharge capacity measuring device (HJ-1001SD8, manufactured by Hokuto Denko) at a temperature of 30 ° C., 0.2 C (34 mAh / hour). The initial discharge capacities of g) and 3C (510 mAh / g) were measured.
The results are shown in Table 2.

Figure 2019050104
Figure 2019050104

Figure 2019050104
Figure 2019050104

表1〜表2の結果より、実施例で用いた造粒体(C)は崩壊性が高いため、リチウムイオン二次電池用正極活物質複合体表面において、リチウム系ポリアニオン粒子が緻密かつ広範囲にわたり、堅固に被覆されていることがわかる。
それ故、得られる二次電池において、良好な放電容量を発現している。
From the results of Tables 1 and 2, the granulated body (C) used in the examples has high disintegration property, so lithium-based polyanion particles are dense and over a wide range on the surface of the positive electrode active material composite for lithium ion secondary batteries. It can be seen that it is firmly coated.
Therefore, good discharge capacity is expressed in the obtained secondary battery.

Claims (7)

下記式(I)、又は(II):
LiNiaCobMnc1 x2・・・(I)
(式(I)中、M1はMg、Ti、Nb、Fe、Cr、Si、Al、Ga、V、Zn、Cu、Sr、Mo、Zr、Sn、Ta、W、La、Ce、Pb、Bi及びGeから選ばれる1種又は2種以上の元素を示す。a、b、c、xは、0.3≦a<1、0<b≦0.7、0<c≦0.7、0≦x≦0.3、かつ3a+3b+3c+(M1の価数)×x=3を満たす数を示す。)
LiNidCoeAlf2 y2 ・・・(II)
(式(II)中、M2はMg、Ti、Nb、Fe、Cr、Si、Ga、V、Zn、Cu、Sr、Mo、Zr、Sn、Ta、W、La、Ce、Pb、Bi及びGeから選ばれる1種又は2種以上の元素を示す。d、e、f、yは、0.4≦d<1、0<e≦0.6、0<f≦0.3、0≦y≦0.3、かつ3d+3e+3f+(M2の価数)×y=3を満たす数を示す。)
で表されるリチウム複合酸化物粒子からなるリチウム複合酸化物二次粒子(A)の表面において、下記式(III):
LiFemMnn3 oPO4・・・(III)
(式(III)中、M3はCo、Ca、Sr、Y、Zr、Mo、Ba、Pb、Bi、La、Ce、Nd又はGdを示す。m、n、及びoは、0≦m≦1、0≦n≦1、0≦o≦0.3、及びm+n≠0を満たし、かつ2m+2n+(M3の価数)×o=2を満たす数を示す。)
で表され、かつ表面に炭素が担持されたリチウム系ポリアニオン粒子(B)が被覆してなるリチウムイオン二次電池用正極活物質複合体の製造方法であって、次の工程(X)〜(Z):
(X)リチウム化合物、ニッケル化合物、コバルト化合物、及びマンガン化合物を含有する混合粉体、或いはリチウム化合物、ニッケル化合物、コバルト化合物、及びアルミニウム化合物を含有する混合粉体を焼成して、リチウム複合酸化物二次粒子(A)を得る工程、
(Y)リチウム化合物、少なくとも鉄化合物又はマンガン化合物を含む金属化合物及びリン酸化合物を水熱反応に付して得られたリチウム系ポリアニオン一次粒子、及び炭素源を含むスラリーを噴霧乾燥して造粒した後に焼成して、空隙率が45〜80体積%に調整されてなり、かつ表面に炭素が担持されたリチウム系ポリアニオン粒子(B)からなる造粒体(C)を得る工程、並びに
(Z)工程(X)で得られるリチウム複合酸化物二次粒子(A)と、工程(Y)で得られる造粒体(C)とを、圧縮力及びせん断力を付加しながら混合して、造粒体(C)を崩壊させながら、リチウム複合酸化物二次粒子(A)と表面に炭素が担持されたリチウム系ポリアニオン粒子(B)とを複合化する工程
を備えるリチウムイオン二次電池用正極活物質複合体の製造方法。
The following formula (I) or (II):
LiNi a Co b Mn c M 1 x O 2 (I)
(In the formula (I), M 1 represents Mg, Ti, Nb, Fe, Cr, Si, Al, Ga, V, Zn, Cu, Sr, Mo, Zr, Sn, Ta, W, La, Ce, Pb, And one or more elements selected from Bi and Ge, a, b, c, x, 0.3 ≦ a <1, 0 <b ≦ 0.7, 0 <c ≦ 0.7, Indicates a number satisfying 0 ≦ x ≦ 0.3 and 3a + 3b + 3c + (valence of M 1 ) × x = 3)
LiNi d Co e Al f M 2 y O 2 (II)
(Wherein M 2 is Mg, Ti, Nb, Fe, Cr, Si, Ga, V, Zn, Cu, Sr, Mo, Zr, Sn, Ta, W, La, Ce, Pb, Bi, and D represents one or more elements selected from Ge, d, e, f and y each satisfy 0.4 ≦ d <1, 0 <e ≦ 0.6, 0 <f ≦ 0.3, 0 ≦ It shows a number satisfying y ≦ 0.3 and 3d + 3e + 3f + (valence of M 2 ) × y = 3)
In the surface of lithium composite oxide secondary particles (A) consisting of lithium composite oxide particles represented by the following formula (III):
LiFe m Mn n M 3 o PO 4 (III)
(In the formula (III), M 3 represents Co, Ca, Sr, Y, Zr, Mo, Ba, Pb, Bi, La, Ce, Nd or Gd. M, n, and o satisfy 0 ≦ m ≦ 1, 0 ≦ n ≦ 1, 0 ≦ o ≦ 0.3, and m + n ≠ 0 are satisfied, and 2m + 2n + (valence number of M 3 ) × o = 2 is satisfied.)
A method for producing a positive electrode active material complex for a lithium ion secondary battery, comprising the step of coating a lithium-based polyanion particle (B) having a surface supported by carbon and being supported on the surface, comprising the steps of Z):
(X) A lithium mixed oxide containing a lithium compound, a nickel compound, a cobalt compound, and a manganese compound, or a mixed powder containing a lithium compound, a nickel compound, a cobalt compound, and an aluminum compound is fired to form a lithium composite oxide Obtaining secondary particles (A),
(Y) A lithium compound, a metal compound containing at least an iron compound or a manganese compound, and a phosphoric acid compound are subjected to a hydrothermal reaction, lithium-based polyanion primary particles obtained, and a slurry containing a carbon source are spray-dried to granulate And calcining to adjust the porosity to 45 to 80% by volume, and obtaining a granulated body (C) comprising lithium-based polyanion particles (B) having carbon supported on the surface, and (Z ) The lithium composite oxide secondary particles (A) obtained in step (X) and the granules (C) obtained in step (Y) are mixed while applying compressive force and shear force to produce A positive electrode for a lithium ion secondary battery, comprising a step of combining the lithium composite oxide secondary particles (A) and the lithium-based polyanion particles (B) having carbon supported on the surface thereof while disintegrating the particles (C) Active material Method of manufacturing a complex.
工程(Y)において、用いるスラリーの固形分濃度が9〜35質量%であり、かつ噴霧乾燥の温度が110〜160℃である請求項1に記載のリチウムイオン二次電池用正極活物質複合体の製造方法。   The positive electrode active material composite for a lithium ion secondary battery according to claim 1, wherein in the step (Y), the solid content concentration of the slurry used is 9 to 35% by mass, and the temperature of spray drying is 110 to 160 ° C. Manufacturing method. 工程(Z)において複合化する時間が、1〜10分である請求項1又は2に記載のリチウムイオン二次電池用正極活物質複合体の製造方法。   The method for producing a positive electrode active material complex for a lithium ion secondary battery according to claim 1 or 2, wherein a time of complexation in the step (Z) is 1 to 10 minutes. 工程(Y)で得られる造粒体(C)のタップ密度が、1.0g/cm3未満である請求項1〜3のいずれか1項に記載のリチウムイオン二次電池用正極活物質複合体の製造方法。 The tap density of the granule (C) obtained by process (Y) is less than 1.0 g / cm < 3 >, The positive electrode active material composite for lithium ion secondary batteries of any one of Claims 1-3. How to make the body. 工程(Y)で得られる造粒体(C)の崩壊強度が、1.8KN/mm以下である請求項1〜4のいずれか1項に記載のリチウムイオン二次電池用正極活物質複合体の製造方法。   The disintegration strength of the granulated body (C) obtained by process (Y) is 1.8 KN / mm or less, The positive electrode active material complex for lithium ion secondary batteries of any one of Claims 1-4. Manufacturing method. リチウム系ポリアニオン粒子(B)の表面に担持された炭素が、セルロースナノファイバー由来の炭素又は水溶性炭素材料由来の炭素である請求項1〜5のいずれか1項に記載のリチウムイオン二次電池用正極活物質複合体の製造方法。   The carbon supported on the surface of the lithium-based polyanion particles (B) is carbon derived from cellulose nanofibers or carbon derived from a water-soluble carbon material, The lithium ion secondary battery according to any one of claims 1 to 5 Method of producing a positive electrode active material composite 工程(Y)において、用いるリチウム系ポリアニオン一次粒子の平均粒径が50〜250nmであり、かつ造粒体(C)の平均粒径が5〜15μmである請求項1〜6のいずれか1項に記載のリチウムイオン二次電池用正極活物質複合体の製造方法。   The average particle size of the lithium-based polyanion primary particles used in the step (Y) is 50 to 250 nm, and the average particle size of the granules (C) is 5 to 15 μm. The manufacturing method of the positive electrode active material complex for lithium ion secondary batteries as described in 4.
JP2017173213A 2017-09-08 2017-09-08 Method of manufacturing positive electrode active material complex for lithium ion secondary battery Active JP6527201B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017173213A JP6527201B2 (en) 2017-09-08 2017-09-08 Method of manufacturing positive electrode active material complex for lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017173213A JP6527201B2 (en) 2017-09-08 2017-09-08 Method of manufacturing positive electrode active material complex for lithium ion secondary battery

Publications (2)

Publication Number Publication Date
JP2019050104A true JP2019050104A (en) 2019-03-28
JP6527201B2 JP6527201B2 (en) 2019-06-05

Family

ID=65905007

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017173213A Active JP6527201B2 (en) 2017-09-08 2017-09-08 Method of manufacturing positive electrode active material complex for lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP6527201B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019169323A (en) * 2018-03-23 2019-10-03 太平洋セメント株式会社 Positive electrode active material composite for lithium ion secondary battery, and method for producing the same
JP2021048038A (en) * 2019-09-18 2021-03-25 太平洋セメント株式会社 Positive electrode active material composite for all-solid-state secondary battery and method for producing the same
JP2021051832A (en) * 2019-09-20 2021-04-01 太平洋セメント株式会社 Mixed type positive electrode active material for lithium ion secondary battery, and method for manufacturing positive electrode for lithium ion secondary battery
JP2021086723A (en) * 2019-11-27 2021-06-03 太平洋セメント株式会社 Positive electrode active material composite for lithium ion secondary battery and manufacturing method thereof
JP2021136206A (en) * 2020-02-28 2021-09-13 太平洋セメント株式会社 Manufacturing method of positive electrode active material composite for lithium ion secondary battery
CN114192080A (en) * 2021-12-09 2022-03-18 安徽工业大学 Nano iron-based particles and preparation method and application thereof
CN116216683A (en) * 2023-03-02 2023-06-06 宁夏百川新材料有限公司 Preparation method of lithium iron manganese phosphate positive electrode material and prepared positive electrode material

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002075368A (en) * 2000-09-05 2002-03-15 Sony Corp Positive electrode active material, nonaqueous electrolyte battery, and their manufacturing method
JP2007022894A (en) * 2005-07-21 2007-02-01 Seimi Chem Co Ltd Method for producing lithium-iron multiple oxide
JP2011502332A (en) * 2007-10-29 2011-01-20 デジョン イーエム カンパニー リミテッド Positive electrode active material for lithium secondary battery, method for producing the same, positive electrode of lithium secondary battery including the same, and lithium secondary battery
JP2011213587A (en) * 2010-03-19 2011-10-27 Toda Kogyo Corp Method of producing lithium ferromanganese phosphate particulate powder, lithium ferromanganese phosphate particulate powder and non-aqueous electrolyte secondary battery using the same
JP2013149615A (en) * 2012-01-17 2013-08-01 Samsung Sdi Co Ltd Positive electrode active material for lithium secondary battery, and lithium secondary battery including the same
WO2014034775A1 (en) * 2012-08-31 2014-03-06 戸田工業株式会社 Method for producing carbon composite lithium manganese iron phosphate particle powder, carbon composite lithium manganese iron phosphate particle powder, and nonaqueous electrolyte secondary battery using carbon composite lithium manganese iron phosphate particle powder
WO2014077277A1 (en) * 2012-11-13 2014-05-22 日揮触媒化成株式会社 Lithium composite oxide, method for producing same, positive electrode active material for secondary batteries containing said lithium composite oxide, positive electrode for secondary batteries containing said positive electrode active material, and lithium ion secondary battery using said positive electrode
JP2014118335A (en) * 2012-12-18 2014-06-30 Jgc Catalysts & Chemicals Ltd Lithium multiple oxide and method for manufacturing the same, anode active material for a secondary battery including the lithium multiple oxide, anode for a secondary battery including the same, and lithium ion secondary battery using the same as an anode
US20150228973A1 (en) * 2014-02-07 2015-08-13 Samsung Sdi Co., Ltd. Positive active material, positive electrode, lithium battery including the same, and method of manufacturing thereof
JP2016081866A (en) * 2014-10-22 2016-05-16 太平洋セメント株式会社 Lithium ferromanganese phosphate positive electrode active material and manufacturing method thereof
JP2016081865A (en) * 2014-10-22 2016-05-16 太平洋セメント株式会社 Positive electrode active material for lithium secondary battery and manufacturing method thereof

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002075368A (en) * 2000-09-05 2002-03-15 Sony Corp Positive electrode active material, nonaqueous electrolyte battery, and their manufacturing method
JP2007022894A (en) * 2005-07-21 2007-02-01 Seimi Chem Co Ltd Method for producing lithium-iron multiple oxide
JP2011502332A (en) * 2007-10-29 2011-01-20 デジョン イーエム カンパニー リミテッド Positive electrode active material for lithium secondary battery, method for producing the same, positive electrode of lithium secondary battery including the same, and lithium secondary battery
JP2011213587A (en) * 2010-03-19 2011-10-27 Toda Kogyo Corp Method of producing lithium ferromanganese phosphate particulate powder, lithium ferromanganese phosphate particulate powder and non-aqueous electrolyte secondary battery using the same
JP2013149615A (en) * 2012-01-17 2013-08-01 Samsung Sdi Co Ltd Positive electrode active material for lithium secondary battery, and lithium secondary battery including the same
WO2014034775A1 (en) * 2012-08-31 2014-03-06 戸田工業株式会社 Method for producing carbon composite lithium manganese iron phosphate particle powder, carbon composite lithium manganese iron phosphate particle powder, and nonaqueous electrolyte secondary battery using carbon composite lithium manganese iron phosphate particle powder
WO2014077277A1 (en) * 2012-11-13 2014-05-22 日揮触媒化成株式会社 Lithium composite oxide, method for producing same, positive electrode active material for secondary batteries containing said lithium composite oxide, positive electrode for secondary batteries containing said positive electrode active material, and lithium ion secondary battery using said positive electrode
JP2014116296A (en) * 2012-11-13 2014-06-26 Jgc Catalysts & Chemicals Ltd Lithium composite oxide and production method therefor, positive electrode active material for secondary battery containing lithium composite oxide, positive electrode for secondary battery containing the same, and lithium ion secondary battery using it as positive electrode
JP2014118335A (en) * 2012-12-18 2014-06-30 Jgc Catalysts & Chemicals Ltd Lithium multiple oxide and method for manufacturing the same, anode active material for a secondary battery including the lithium multiple oxide, anode for a secondary battery including the same, and lithium ion secondary battery using the same as an anode
US20150228973A1 (en) * 2014-02-07 2015-08-13 Samsung Sdi Co., Ltd. Positive active material, positive electrode, lithium battery including the same, and method of manufacturing thereof
JP2016081866A (en) * 2014-10-22 2016-05-16 太平洋セメント株式会社 Lithium ferromanganese phosphate positive electrode active material and manufacturing method thereof
JP2016081865A (en) * 2014-10-22 2016-05-16 太平洋セメント株式会社 Positive electrode active material for lithium secondary battery and manufacturing method thereof

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019169323A (en) * 2018-03-23 2019-10-03 太平洋セメント株式会社 Positive electrode active material composite for lithium ion secondary battery, and method for producing the same
JP2021048038A (en) * 2019-09-18 2021-03-25 太平洋セメント株式会社 Positive electrode active material composite for all-solid-state secondary battery and method for producing the same
JP7366663B2 (en) 2019-09-18 2023-10-23 太平洋セメント株式会社 Positive electrode active material composite for all-solid-state secondary battery and method for manufacturing the same
JP2021051832A (en) * 2019-09-20 2021-04-01 太平洋セメント株式会社 Mixed type positive electrode active material for lithium ion secondary battery, and method for manufacturing positive electrode for lithium ion secondary battery
JP7299119B2 (en) 2019-09-20 2023-06-27 太平洋セメント株式会社 Mixed positive electrode active material for lithium ion secondary battery and method for manufacturing positive electrode for lithium ion secondary battery
JP2021086723A (en) * 2019-11-27 2021-06-03 太平洋セメント株式会社 Positive electrode active material composite for lithium ion secondary battery and manufacturing method thereof
JP7403289B2 (en) 2019-11-27 2023-12-22 太平洋セメント株式会社 Positive electrode active material composite for lithium ion secondary battery and method for manufacturing the same
JP2021136206A (en) * 2020-02-28 2021-09-13 太平洋セメント株式会社 Manufacturing method of positive electrode active material composite for lithium ion secondary battery
JP7421372B2 (en) 2020-02-28 2024-01-24 太平洋セメント株式会社 Method for manufacturing positive electrode active material composite for lithium ion secondary battery
CN114192080A (en) * 2021-12-09 2022-03-18 安徽工业大学 Nano iron-based particles and preparation method and application thereof
CN114192080B (en) * 2021-12-09 2024-03-26 安徽工业大学 Nanometer iron-based particle and preparation method and application thereof
CN116216683A (en) * 2023-03-02 2023-06-06 宁夏百川新材料有限公司 Preparation method of lithium iron manganese phosphate positive electrode material and prepared positive electrode material

Also Published As

Publication number Publication date
JP6527201B2 (en) 2019-06-05

Similar Documents

Publication Publication Date Title
JP6527201B2 (en) Method of manufacturing positive electrode active material complex for lithium ion secondary battery
JP6431236B1 (en) Positive electrode active material composite for lithium ion secondary battery or positive electrode active material composite for sodium ion secondary battery, secondary battery using these, and production method thereof
TWI633698B (en) Positive electrode active material for secondary battery and method of producing the same
JP6549807B2 (en) Positive electrode active material composite for lithium ion secondary battery, secondary battery using the same, and method for manufacturing positive electrode active material composite for lithium ion secondary battery
JP6410384B1 (en) Positive electrode active material composite for lithium ion secondary battery or positive electrode active material composite for sodium ion secondary battery, secondary battery using these, and production method thereof
JP6527200B2 (en) Positive electrode active material for lithium ion secondary battery or positive electrode active material for sodium ion secondary battery, and manufacturing method thereof
JP6442633B2 (en) Positive electrode active material composite for lithium ion secondary battery or positive electrode active material composite for sodium ion secondary battery, secondary battery using these, and production method thereof
JP7366662B2 (en) Positive electrode active material composite for lithium ion secondary battery and method for manufacturing the same
JP7158269B2 (en) Positive electrode active material for secondary battery and method for producing the same
JP2020031028A (en) Mixed positive electrode active material for lithium ion secondary battery and production method of the same
JP7409922B2 (en) Positive electrode active material for multilayer lithium ion secondary battery and method for producing the same
CN107408694B (en) Positive electrode active material for secondary battery and method for producing same
JP7108504B2 (en) Olivine-type lithium-based oxide primary particles for mixed positive electrode active material and method for producing the same
JP6535063B2 (en) Method of manufacturing positive electrode active material complex for lithium ion secondary battery
JP6527972B1 (en) Method of manufacturing positive electrode active material for secondary battery
JP7409923B2 (en) Positive electrode active material for multilayer lithium ion secondary battery and method for producing the same
JP7421372B2 (en) Method for manufacturing positive electrode active material composite for lithium ion secondary battery
JP6590973B2 (en) Positive electrode active material composite for lithium ion secondary battery and method for producing the same
JP7299119B2 (en) Mixed positive electrode active material for lithium ion secondary battery and method for manufacturing positive electrode for lithium ion secondary battery
JP7152974B2 (en) Method for producing composite positive electrode active material particles for all-solid lithium ion secondary battery
JP7165608B2 (en) Positive electrode active material composite for lithium ion secondary battery and method for producing the same
JP6322730B1 (en) Positive electrode active material for lithium ion secondary battery and method for producing the same
JP7320418B2 (en) Mixed positive electrode active material for lithium ion secondary battery and method for manufacturing positive electrode for lithium ion secondary battery
JP7429001B2 (en) Positive electrode for lithium ion secondary batteries and lithium ion secondary batteries
JP7366663B2 (en) Positive electrode active material composite for all-solid-state secondary battery and method for manufacturing the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190402

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190416

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190509

R150 Certificate of patent or registration of utility model

Ref document number: 6527201

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250