JP2019020068A - 熱交換器 - Google Patents

熱交換器 Download PDF

Info

Publication number
JP2019020068A
JP2019020068A JP2017140055A JP2017140055A JP2019020068A JP 2019020068 A JP2019020068 A JP 2019020068A JP 2017140055 A JP2017140055 A JP 2017140055A JP 2017140055 A JP2017140055 A JP 2017140055A JP 2019020068 A JP2019020068 A JP 2019020068A
Authority
JP
Japan
Prior art keywords
fluid
flow paths
flow
heat exchanger
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017140055A
Other languages
English (en)
Other versions
JP7072790B2 (ja
Inventor
耕作 西田
Kosaku Nishida
耕作 西田
雅士 加藤
Masashi Kato
雅士 加藤
光治 榎木
Koji Enoki
光治 榎木
富雄 大川
Tomio Okawa
富雄 大川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mayekawa Manufacturing Co
University of Electro Communications NUC
Original Assignee
Mayekawa Manufacturing Co
University of Electro Communications NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mayekawa Manufacturing Co, University of Electro Communications NUC filed Critical Mayekawa Manufacturing Co
Priority to JP2017140055A priority Critical patent/JP7072790B2/ja
Publication of JP2019020068A publication Critical patent/JP2019020068A/ja
Application granted granted Critical
Publication of JP7072790B2 publication Critical patent/JP7072790B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

【課題】気液二相流を熱交換する熱交換器において、複数の流路間の偏流を抑制し、伝熱性能を高く維持する。【解決手段】一実施形態に係る熱交換器は、第1流体が流れる複数の第1流路を形成する複数の第1プレートと、第2流体が流れる複数の第2流路を形成する複数の第2プレートと、を含む積層された複数のプレートで構成されるプレート構成体を備え、前記第1流路の少なくとも一部で前記第1流体は気液二相状態にあり、前記第1流体の供給部と前記複数の第1プレートの各々に形成された前記複数の第1流路とに連通する第1入口ヘッダ空間と、前記第1流体の排出部と前記複数の第1プレートの各々に形成された前記複数の第1流路とに連通する第1出口ヘッダ空間と、が前記複数の第1プレートに形成され、前記複数の第1流路の各々は、流路形状が波形に形成された上流側領域と、該上流側領域の下流側に位置し流路形状が直線状に形成された下流側領域と、を有する。【選択図】図6

Description

本開示は、熱交換流体の一方が気液二相の流体である熱交換器に関する。
一次冷媒としてNHを用い、二次冷媒としてCOを用いるNH/CO冷凍機は、気液二相のNHを気化させ、これによりCO蒸気を液化させる熱交換器(CO液化器)を備える。従来、この種の液化器には、シェルアンドプレート式熱交換器、プレート式熱交換器やシェルアンドチューブ式熱交換器等が使用されている。
特許文献1には、一次冷媒としてNHを用い、二次冷媒としてCOを用い、これらの流路をいわゆるマイクロチャンネルと称する多数の微細流路で構成することで、両媒体間の伝熱性能を向上させることを目的とした熱交換器が開示されている。
特開2015−114080号公報
管内を流れる気液二相流は、一般に、蒸気の比率が高くなるに伴い、液膜厚さが薄くなるため熱伝達率が向上するが、加熱されて管壁から液分がなくなるドライアウトの状態になると、熱伝達率は急激に低下する。また、液の加熱による沸騰においては、容積が急激に膨張し、並列に分岐した多数の流路から成る熱交換器においては、これにより一部の流路で逆流が生じやすく、逆流が生じることで、熱交換効率が低下する。
また、特許文献1に開示された熱交換器のように、気液二相の流体が複数の流路に分流される熱交換器においては、一般に、液の比率が小さい流路は伝熱性能が大きく低下する。従って、熱伝達率を高くするには、複数の流路間で偏流を抑制し、気液二相流の流量(質量速度)及びクオリテイ(乾き度)を均等にすることで、全体として伝熱性能を高めることが重要になる。
なお、気液密度比が大きいNHが気液二相流となる場合は特に偏流が起きやすい。
一実施形態は、上記課題に鑑み、気液二相流体を複数の流路に分流して熱交換を行う熱交換器において、複数の流路間の偏流を抑制し伝熱性能を高く維持することを目的とする。
(1)一実施形態に係る熱交換器は、
第1流体と第2流体とを熱交換させて該第1流体を気化させる熱交換器であって、
前記第1流体が流れる複数の第1流路を形成する複数の第1プレートと、前記第2流体が流れる複数の第2流路を形成する複数の第2プレートと、を含む積層された複数のプレートで構成されるプレート構成体を備え、
前記第1流路の少なくとも一部で前記第1流体は気液二相状態にあり、
前記第1流体の供給部と前記複数の第1プレートの各々に形成された前記複数の第1流路とに連通する第1入口ヘッダ空間と、前記第1流体の排出部と前記複数の第1プレートの各々に形成された前記複数の第1流路とに連通する第1出口ヘッダ空間と、が前記複数の第1プレートに形成され、
前記複数の第1流路の各々は、流路形状が波形に形成された上流側領域と、該上流側領域の下流側に位置し流路形状が直線状に形成された下流側領域と、を有する。
上記(1)の構成によれば、複数の第1流路は、夫々上流側領域で流路形状が波形に形成され、この波形流路を流れる低クオリテイの第1流体は乱流を形成するため、第2流体との伝熱が促進される。また、乱流を形成することで圧力損失が増加するため、逆流の発生を抑制でき、これによって、処理流量の低下を抑制できる。さらに、圧力損失が増加することで、第1流路間の圧力損失のばらつきが相対的に緩和されるため、複数の第1流路間の偏流が抑制される。これによって、液比率が小さい流路をなくすことができ、熱交換器全体として伝熱性能を高く維持できる。
なお、波形形状とは、流れ方向に向かって直交する方向に交互に蛇行する形状を言う。
また、複数の第1流路は、夫々下流側領域の流路形状が直線状に形成されているため、この直線状流路を流れる高クオリテイの第1流体は圧力損失が減少し、気泡が下流側へ移動しやすくなり、逆流が抑制される。また蒸発によって液分が減少した下流領域においては、波形流路は伝熱壁に形成した液膜の分断を生じさせ、熱伝達率が低下するドライアウトが生じ易くなる。下流側領域の流路形状を直線状にすることにより、ドライアウトの形成を遅らせることができる。これによって、下流側領域においても第1流体の伝熱性能を高く維持できる。
(2)一実施形態では、前記(1)の構成において、
前記複数の第1流路の各々の入口部に絞り部を備える。
上記(2)の構成によれば、複数の第1流路は、夫々入口部に断面積を小さくした絞り部を備え、この絞り部で圧力損失を増加させることで、気化した第1流体の逆流を抑制でき、これによって、処理流量の低下を抑制できる。
(3)一実施形態では、前記(2)の構成において、
前記絞り部において、前記複数の第1流路の各々は流路形状が波形に形成される。
上記(3)の構成によれば、第1流体の入口に形成される絞り部で第1流路の流路形状が波形に形成されることで、第1流路の圧力損失が増加し、絞り効果を向上できる。
(4)一実施形態では、前記(1)〜(3)の何れかの構成において、
前記複数の第1流路の各々の入口部は、前記第1入口ヘッダ空間を流れる前記第1流体
の流れ方向と、前記第1流路に流入するときの前記第1流体の流れ方向の角度の変化が90°未満となるように、前記第1入口ヘッダ空間内の前記第1流体の流れ方向と直交する方向に対して傾斜している。
上記(4)の構成によれば、第1流体が第1入口ヘッダ空間から第1流路に流入するときの角度の変化が90°未満となるので、第1流体が第1入口ヘッダ空間から第1流路に流入するときの圧力損失を低減できる。これによって、複数の第1流路間において、第1流体供給部との距離の違いが、各第1流路への第1流体の流入量に大きく影響しなくなるため、第1流路間の第1流体の偏流を抑制できる。
(5)一実施形態では、前記(1)〜(4)の何れかの構成において、
前記複数の第1流路の各々の前記上流側領域と前記下流側領域との境界は、前記第1流体が環状流を形成している領域にある。
「環状流」とは、気液二相流のうち、流路を形成する壁面に接して液相が環状に形成され、流路の中心側に気相が形成される流れを言い、上記壁面を通した第2流体との熱伝達率が高い。
上記(5)の構成によれば、上流側領域と下流側領域との境界において、第1流体が高い伝熱特性を有する環状流を形成しているために、第1流路において高い伝熱性能を得ることができる。また、下流側領域では、流路形状が直線状を有することでドライアウトを遅らせることができ、これによって、熱交換効率を高く維持できる。
(6)一実施形態では、前記(1)〜(5)の何れかの構成において、
前記複数の第1流路の各々の前記上流側領域と前記下流側領域との境界は、前記第1流体のクオリテイが0.3以上0.8以下の領域にある。
上記(6)の構成によれば、第1流路の上流側領域と下流側領域との境界が、第1流体のクオリテイが0.3〜0.8の領域、即ち、第1流体が環状流を形成している領域にあるために、上流側領域及び下流側領域で第1流体と第2流体間で高い伝熱性能を維持できる。
(7)一実施形態では、前記(1)〜(6)の何れかの構成において、
前記複数の第1流路の各々を構成する第1流路壁は、前記プレート構成体の積層方向から視たとき、対応する前記複数の第2流路の各々を構成する第2流路壁と少なくとも一部の領域で重なっている。
上記(7)の構成によれば、上記第1流路壁と上記第2流路壁とが、プレート構成体の積層方向から視て重なって配置されることで、第1流路が形成された第1プレートと第2流路が形成された第2プレートとを拡散接合するとき、第1流路壁及び第2流路壁に高い接合圧力を加えることができる。これによって、第1プレートと第2プレートとの接合強度を高めることができる。
(8)一実施形態では、前記(1)〜(7)の何れかの構成において、
前記複数の第2流路の各々は、前記第1流路と同一方向に沿って配置された直線状の流路を含み、
前記複数の第1流路の各々の前記上流側領域を構成する第1流路壁は、前記プレート構成体の積層方向から視たとき、対応する前記複数の第2流路の各々の前記直線状の流路を構成する第2流路壁と一定のピッチ(波長/2)で交差するように配置される。
上記(8)の構成によれば、プレート構成体の積層方向から視たとき、第1流路壁は第2流路壁と一定のピッチで交差するように配置されるので、第1流路壁と第2流路壁とは互いに交差する部位で一定のピッチで重なり合う。これによって、拡散接合時に第1流路壁と第2流路壁とに高い接合圧力を付加できるため、第1プレートと第2プレートとの接合強度を高めることができる。
(9)一実施形態では、前記(8)の構成において、
前記ピッチ(波長/2)は1mm以上3mm以下である。
上記(9)の構成によれば、第1流路壁と第2流路壁とは1〜3mmのピッチで重なり合うため、拡散接合時に第1流路壁及び第2流路壁に高い接合圧力を付加できる。これによって、第1プレートと第2プレートとの接合強度を高めることができる。
(10)一実施形態では、前記(1)〜(9)の何れかの構成において、
前記第1出口ヘッダ空間は、前記複数の第2プレートを含む前記プレート構成体の積層方向に沿って貫通した空間を形成している。
第1入口ヘッダ空間から第1出口ヘッダ空間までの第1流体の圧力損失は、第1入口ヘッダ空間、第1流路及び第1出口ヘッダ空間における夫々の第1流体の圧力損失の合計である。
上記(10)の構成によれば、第1出口ヘッダ空間が、複数のプレートの積層方向に沿って貫通した空間を形成しているため、蒸気が流れる第1出口ヘッダ空間の流速を小さくして圧力損失を低減できる。これによって、第1流路における第1流体の圧力損失の占める割合が相対的に増加するため、複数の第1流路間の圧力損失の差は各第1流路の圧力損失の絶対値に比べて相対的に低減する。
また、第1出口ヘッダ空間の圧力損失が低減することで、第1流体は第1流路から第1出口ヘッダ空間に流入しやすくなるため、複数の第1流路の出口部における圧力損失の差も低減する。
こうして、複数の第1流路間における圧力損失の差が低減することで、複数の第1流路間の偏流が抑制され、これによって、第1流路全体としての伝熱性能を高く維持できる。
(11)一実施形態では、前記(1)〜(10)の何れかの構成において、
前記第1入口ヘッダ空間は前記複数の第2プレートによって前記プレート構成体の積層方向に沿って分割されている。
上記(11)の構成によれば、第1入口ヘッダ空間が複数の第2プレートによってプレート積層方向に沿って分割されるため、複数の第1プレート間において、第1流路に流入する第1流体の流量をバランスさせることができる。これによって、複数の第1流路間の偏流抑制効果を向上できる。
(12)一実施形態では、前記(1)〜(11)の何れかの構成において、
前記複数の第1プレートと前記複数の第2プレートとは、前記プレート構成体の積層方向に沿って交互に配置される。
上記(12)の構成によれば、複数の第1プレートと複数の第2プレートとは、プレート積層方向に沿って交互に配置されることで、複数の第1プレート間において、第1流路に連通する第1入口ヘッダ空間の容積を均等に分割できる。これによって、各第1プレート間において、第1流路に流入する第1流体の流量を均等化できるため、複数の第1流路間の偏流抑制効果を向上できる。また、第1流体が流れる第1プレートと第2流路が流れる第2プレートとが積層構造で隣り合って交互に配置されるため、第1流体及び第2流体の伝熱面積を増加でき、これによって、伝熱性能を向上できる。
(13)一実施形態では、前記(1)〜(12)の何れかの構成において、
前記第1入口ヘッダ空間は、前記複数の第1プレートの各々において前記複数の第1流路の各々と前記供給部との距離が離れるにつれて流路断面積が漸減するように構成される(以下この構成を「先細り構造」とも言う。)。
第1入口ヘッダ空間において、各第1プレートに形成された複数の第1流路に対し、上記供給部に近い第1流路から順々に第1流体が流入するために、第1流体の流量は上記供給部から離れるにつれて減少していく。
上記(13)の構成によれば、第1入口ヘッダ空間は先細り構造を有するため、各第1プレートに形成された複数の第1流路に第1流体が分配されて、第1入口ヘッダ空間の第1流体の流量が減少しても、入口ヘッダ空間における第1流体の流速低下を抑制できる。これによって、第1入口ヘッダ空間で環状流の形成が可能になり、第1入口ヘッダ空間で環状流が形成されることにより、複数の第1流路間の偏流を抑制でき、従って、複数の第1流路において第1流体と第2流体との伝熱性能を高く維持できる。
また、複数のプレートが積層されて流路が形成される構造において、先細り構造を採用することで、プレート枚数が大きく増減しても容易に対応でき、かつ複雑なヘッダ構造とならない。これによって、第1流路間の偏流を抑制できる確実な第1流体の供給が可能になる。
(14)一実施形態では、前記(1)〜(13)の何れかの構成において、
前記プレート構成体に前記第1流体供給部及び前記第1流体排出部が前記プレート構成体の積層方向に沿って形成される。
上記(14)の構成によれば、第1流体の供給部及び排出部がプレート構成体に形成されることで、第1流体の供給部及び排出部を別な構成体としてプレート構成体の外側に設ける必要がなくなる。さらに、第1流体の供給部と第1入口ヘッダ空間とを接続する配管、及び第1流体の排出部と第2出口ヘッダ空間とを接続する配管が不要になるので、熱交換器をコンパクト化かつ低コスト化できる。
(15)一実施形態では、前記(1)〜(14)の何れかの構成において、
前記複数の第1プレートの各々において、前記複数の第1流路の各々は互いに並列に配置され、
前記複数の第2プレートの各々において、前記複数の第2流路は互いに並列に配置される。
上記(15)の構成によれば、複数の第1流路及び複数の第2流路が共に並列に配置されることで、第1流路及び第2流路を流路全長に亘って近接配置できる。これによって、第1流体と第2流体間の伝熱性能を向上できる。
特に、複数の第1流路の並列配置と第1入口ヘッダ空間の先細り構造との組合せによって、複数の第1流路間の偏流抑制効果を向上できる。
(16)一実施形態では、前記(1)〜(15)の何れかの構成において、
前記第1入口ヘッダ空間及び前記複数の第1プレートに形成された前記複数の第1流路の少なくとも一部は、前記第1入口ヘッダ空間及び前記複数の第1流路を流れる前記第1流体が環状流を形成するように構成される。
上記(16)の構成によれば、第1入口ヘッダ空間及び各第1流路で、第1流体が第2流体との伝熱特性が高くなる環状流を形成するため、第2流体との伝熱性能を向上できる。
(17)一実施形態では、前記(1)〜(16)の何れかの構成において、
前記複数の第1プレートに形成された前記複数の第1流路及び前記複数の第2プレートに形成された第2流路の最大幅が2mm以下(好ましくは、0.1〜1.0mm)である。
上記(17)の構成によれば、第1流路及び第2流路を最大幅が2mm以下の微細流路とすることで、第1プレートに多数の第1流路を形成できると共に、第2プレートに多数の第2流路を形成できる。これによって、これら流路の伝熱面積を飛躍的に増加できるため、第1流体と第2流体との伝熱性能を飛躍的に増加できる。
(18)一実施形態では、前記(1)〜(17)の何れかの構成において、
前記第2流体の供給部と、該供給部及び前記複数の第2流路の各々に連通する第2入口ヘッダ空間と、前記第2流体の排出部と、該排出部及び前記複数の第2流路の各々に連通する第2出口ヘッダ空間と、が前記プレート構成体に形成され、
前記第2入口ヘッダ空間及び前記第2出口ヘッダ空間は、前記複数の第1流路の各々と交差する方向に沿って前記複数の第1流路の両側に配置され、
前記複数の第2流路の各々は、
前記複数の第1流路の各々と交差する方向に沿って配置される入口側領域及び出口側領域と、
前記複数の第1流路の各々と同一方向に沿って配置される中間領域と、
を含む。
上記(18)の構成によれば、第2流路の第2入口ヘッダ空間及び第2出口ヘッダ空間が第1流路と交差する方向に沿って配置されるため、第2入口ヘッダ空間及び第2出口ヘッダ空間を第1流路の第1入口ヘッダ空間及び第1出口ヘッダ空間と干渉させずに配置でき、これによって、第2入口ヘッダ空間及び第2出口ヘッダ空間の配置の自由度を広げることができる。
また、第2流路の中間領域が第1流路と同一方向に沿って配置されるため、第1流路と第2流路とを近接配置でき、そのため、中間領域における第1流体と第2流体との伝熱性能を向上できる。
さらに、第2流路の入口側領域及び出口側領域は、第1流路と交差する方向に沿って配置されるため、第1流路を構成する第1流路壁と第2流路を構成する第2流路壁とは一定ピッチで重なり合う。従って、第1プレートと第2プレートとを拡散接合するとき、第1流路壁及び第2流路壁に高い接合圧力を加えることができる。これによって、第1プレートと第2プレートとの接合強度を高めることができる。
(19)一実施形態では、前記(1)〜(18)の何れかの構成において、
前記第1流体はNHであり、前記第2流体はCOであり、
前記熱交換器は前記第1流体と前記第2流体とを熱交換させて前記第1流体を気化させるCO液化器である。
上記(19)の構成によれば、気液二相のNHと気体のCOを熱交換させてNHを気化させ、COを液化させるCO液化器において、気液密度比が大きいNHは特に偏流が起きやすいが、第1流体がNHであっても複数の第1流路間の偏流を抑制でき、かつ第1流路の下流側領域で伝熱が低下するドライアウトの形成を遅らせることができるため、NHとCOとの伝熱性能を高く維持できる。
一実施形態によれば、気液二相流体を複数の流路に分流して熱交換を行う熱交換器において、複数の流路間の偏流を抑制することで、熱交換器全体として伝熱性能を高く維持できる。
一実施形態に係る熱交換器の斜視図である。 一実施形態に係る熱交換器の正面図である。 一実施形態に係る熱交換器の側面図である。 図2中のA―A線に沿う断面図である。 図2中のB―B線に沿う断面図である。 一実施形態に係る第1プレートの表面を示す正面図である。 一実施形態に係る第1プレートの裏面を示す正面図である。 一実施形態に係る第1流路の上流側領域を示す正面図である。 図6中のC一C線に沿う断面図である。 図6中のD一D線に沿う断面図である。 一実施形態に係る第2プレートの表面を示す正面図である。 一実施形態に係る第2プレートの裏面を示す正面図である。 図11中のE―E線に沿う断面図である。
以下、添付図面を参照して本発明の幾つかの実施形態について説明する。ただし、実施形態として記載され又は図面に示されている構成部品の寸法、材質、形状、その相対的配置等は、本発明の範囲をこれに限定する趣旨ではなく、単なる説明例にすぎない。
例えば、「ある方向に」、「ある方向に沿って」、「平行」、「直交」、「中心」、「同心」或いは「同軸」等の相対的或いは絶対的な配置を表す表現は、厳密にそのような配置を表すのみならず、公差、若しくは、同じ機能が得られる程度の角度や距離をもって相対的に変位している状態も表すものとする。
例えば、「同一」、「等しい」及び「均質」等の物事が等しい状態であることを表す表現は、厳密に等しい状態を表すのみならず、公差、若しくは、同じ機能が得られる程度の差が存在している状態も表すものとする。
例えば、四角形状や円筒形状等の形状を表す表現は、幾何学的に厳密な意味での四角形状や円筒形状等の形状を表すのみならず、同じ効果が得られる範囲で、凹凸部や面取り部等を含む形状も表すものとする。
一方、一つの構成要素を「備える」、「具える」、「具備する」、「含む」、又は「有する」という表現は、他の構成要素の存在を除外する排他的な表現ではない。
図1〜図13は、幾つかの実施形態に係る熱交換器を示す。
図1〜図3は一実施形態に係る熱交換器の全体図であり、図4は図2中のA―A線に沿う断面図であり、図5は図2中のB−B線に沿う断面図である。
図4及び図5に示すように、熱交換器10は、積層された複数のプレートで構成されるプレート構成体12を備える。プレート構成体12は、複数の第1プレート14と複数の第2プレート16とを含む。複数の第1プレート14には夫々複数の第1流路18が形成され、複数の第2プレート16には夫々複数の第2流路20が形成されている。
図6〜図10は、一実施形態に係る第1プレート14を示す。図6及び図7は第1プレート14の表面及び裏面を示し、図8は第1プレート14の上流側領域18aの拡大断面図であり、図9は図6中のC―C線に沿う断面図であり、図10は図6中のD―D線に沿う断面図である。図8及び図9は第1プレート14に形成された第1流路18を示す。
図11〜図13は幾つかの実施形態に係る第2プレート16を示す。図11及び図12は第2プレート16の表面及び裏面を示し、図13は図11中のE―E線に沿う断面図であり、第2プレート16に形成された第2流路20を示す。
第1流路18の少なくとも一部で第1流体は気液二相状態にある。第1入口ヘッダ空間22及び第1出口ヘッダ空間24がプレート構成体12に形成されている。第1入口ヘッダ空間22は、第1流体供給部26と各第1プレート14に形成された複数の第1流路18とに連通する。第1出口ヘッダ空間24は、第1流体排出部28と各第1プレート14に形成された複数の第1流路18に連通する。
複数の第1流路18は、夫々流路形状が流れ方向に向かって直交する方向に交互に蛇行する波形に形成された上流側領域18aと、上流側領域18aの下流側に位置し第1流体の流路形状が直線状に形成された下流側領域18bと、を有する。
上記構成において、第1流体は気液二相の状態で第1流体供給部26から第1入口ヘッダ空間22を介して複数の第1流路18に流入する。複数の第1流路18で第1流体は複数の第2流路20を流れる第2流体と熱交換し、第2流体によって加熱されて気化し、気化した蒸気は第1出口ヘッダ空間24を介して第1流体排出部28から流出する。
上記構成によれば、低クオリテイの上流側領域18aの一部では、第1流体は伝熱特性が高い環状流にはなっておらず、比較的液比率が高く液中に気泡が混ざったスラグ流の状態である場合がある。上流側領域18aでは、第1流体が波形流路を流れることで乱流を形成し、これによって、第2流体との伝熱が促進される。スラグ流の第1流体が乱流を形成することで特に熱伝達率を高めることができる。
また、第1流体が乱流を形成することで圧力損失が増加するため、逆流の発生を抑制でき、これによって、処理流量の低下を抑制できる。さらに、圧力損失が増加することで、第1流路間の圧力損失のばらつきが相対的に緩和されるため、複数の第1流路間の偏流が抑制される。これによって、液比率が小さい流路をなくすことができ、熱交換器全体として伝熱性能を高く維持できる。
また、下流側領域18bにおいて、複数の第1流路18は、夫々流路形状が直線状に形成されているため、直線状流路を流れる高クオリテイの第1流体は圧力損失が減少し、気泡が下流側へ移動しやすくなり逆流が抑制される。また蒸発によって液分が減少した下流側領域18bにおいては、波形流路は伝熱壁に形成した液膜の分断を生じさせ、熱伝達率が低下するドライアウトが生じ易くなる。下流側領域18bの流路形状を直線状にすることにより、ドライアウトの形成を遅らせることができる。これによって、下流側領域18bにおいても第1流体の伝熱性能を高く維持できる。
一実施形態では、第1流路18及び第2流路20は、図4及び図5に示すように、プレートに形成された溝で構成される。
別な実施形態では、第1流路18及び第2流路20は、第1プレート14又は第2プレート16の表裏に貫通するスリット孔を形成し、このスリット孔を両側から別な2枚のプレートで挟んで形成される流路であってもよい。
一実施形態では、図6及び図8に示すように、複数の第1流路18は、夫々の入口部に断面積を小さくした絞り部30を備える。
第1流体が第1流路18で気化して急激に膨張することで逆流が発生する場合がある。
この実施形態によれば、複数の第1流路18は、夫々絞り部30で圧力損失が増加するため、第1流体の逆流を抑制でき、これによって、処理流量の低下を抑制できる。
図6及び図8に示す実施形態では、絞り部30の流路の断面積を全長に亘り小さくしているが、オリフィスなどのように絞り部30の流路の一部のみの断面積を小さくした構成としてもよい。
一実施形態では、図8に示すように、絞り部30において、複数の第1流路18は夫々流路形状が波形に形成される。図中、31は第1流路18の入口部に形成された波形の流路を示す。
この実施形態によれば、絞り部30において、第1流路18の流路形状が波形に形成されることで、第1流路18の圧力損失がさらに増加し、絞り効果を向上できる。
一実施形態では、図8に示すように、複数の第1流路18の入口部は、夫々第1入口ヘッダ空間22を流れる第1流体fが第1流路18に流入するときの第1流体の流れの偏向角度θが90°未満となるように、第1入口ヘッダ空間内の第1流体fの流れ方向と直交する方向に対して傾斜している。
この実施形態によれば、第1入口ヘッダ空間22を流れる第1流体fが第1流路18に流入するときの流れの偏向角度θが90°未満となるので、第1流体fが第1入口ヘッダ空間22から第1流路18に流入するときの圧力損失を低減できる。これによって、第1流体供給部26と第1流路18の入口との距離の違いが、各第1流路18への第1流体fの流入量に大きく影響しなくなるため、第1流路18における第1流体fの偏流を抑制できる。
一実施形態では、各第1流路18において、上流側領域18aと下流側領域18bとの境界は、第1流体が環状流を形成している領域にある。
この実施形態によれば、上流側領域18aと下流側領域18bとの境界が、第1流体が高い伝熱特性を有する環状流を形成している領域にあるため、上流側領域18aでは高い伝熱性能を得ることができる。また、下流側領域18bでは、流路形状が直線状を有することで、ドライアウトを遅らせることができるため、伝熱性能の低下を抑制できる。
一実施形態では、複数の第1流路18は、夫々上流側領域18aと下流側領域18bとの境界が、第1流体のクオリテイが0.3以上0.8以下の領域にある。
この実施形態によれば、第1流路18の上流側領域18aと下流側領域18bとの境界が、第1流体のクオリテイが0.3〜0.8の領域、即ち、第1流体が環状流を形成している領域にあることで、上流側領域及び下流側領域で第1流体と第2流体間で高い伝熱性能を維持できる。
一実施形態では、図8に示すように、複数の第1流路18を夫々構成する第1流路壁32は、プレート構成体12の積層方向(図1及び図3中の矢印X方向)から視たとき、対応する複数の第2流路20を夫々構成する第2流路壁33と少なくとも一部の領域で重なっている。
この実施形態によれば、第1流路壁32と第2流路壁33とが、プレート構成体12の積層方向から視て重なって配置されることで、第1流路18が形成された第1プレート14と第2流路20が形成された第2プレート16とを拡散接合するとき、第1流路壁32及び第2流路壁33に高い接合圧力を加えることができるため、第1プレート14と第2プレート16との接合強度を高めることができる。
一実施形態では、図8に示すように、複数の第2流路20は、第1流路18と同一方向に沿って配置された直線状の流路を有する。複数の第1流路18の上流側領域18aを構成する第1流路壁32は、プレート構成体12の積層方向から視たとき、対応する複数の第2流路20の直線状の流路を構成する第2流路壁33と一定のピッチ(波長/2)Pで交差するように配置される。
この実施形態によれば、第1流路壁32は第2流路壁33とが一定のピッチPで交差するように配置されるので、第1流路壁32と第2流路壁33とは互いに交差する部位で一定のピッチPで重なり合う。従って、拡散接合時に第1流路壁32及び第2流路壁33に高い接合圧力を付加できるため、第1プレート14と第2プレート16との接合強度を高めることができる。
一実施形態では、ピッチPは1〜3mmである。この実施形態によれば、第1流路壁32と第2流路壁33とは1〜3mmのピッチPで重なり合うため、拡散接合時に第1流路壁32と第2流路壁33に高い接合圧力を付加できる。これによって、第1プレート14と第2プレート16との接合強度を高めることができる。
一実施形態では、図2及び図6に示すように、第1出口ヘッダ空間24は、複数の第2プレート16を含むプレート構成体12の積層方向に沿って貫通した空間を形成している。
第1入口ヘッダ空間22から第1出口ヘッダ空間24までの第1流体の圧力損失は、第1入口ヘッダ空間22、第1流路18及び第1出口ヘッダ空間24における夫々の第1流体の圧力損失の合計である。
図6において、第1流体供給部26における第1流体の圧力をPinとし、第1入口ヘッダ空間22における第1流体の圧力をPとし、任意の第1流路18における第1流体の圧力をPとし、第1出口ヘッダ空間24における第1流体の圧力をPとし、第1流体排出部28における第1流体の圧力をPoutとする。すべての第1流路18において第1流体供給部26と第1流体排出部28との間の第1流体の圧力損失ΔPは、第1入口ヘッダ空間22の圧力損失ΔPと、第1流路18の圧力損失ΔPと、第1出口ヘッダ空間24の圧力損失ΔPとの合計であるから、次の式(1)及び(2)が成り立つ。
ΔP=Pin−Pout
=ΔP+ΔP+ΔP
=(Pin−P)+(P−P)+(P−Pout) (1)
>P>P (2)
気液二相の第1流体が流れる第1流路18の出口部は、第1流路18で第1流体が蒸気となることで第1流体の圧力損失が増大しやすい。従って、第1出口ヘッダ空間24における第1流体の圧力損失ΔPが大きいと、複数の第1流路18間の圧力損失差も増大する。
第1出口ヘッダ空間24が、プレート積層方向に沿って貫通した空間を形成しているため、第1出口ヘッダ空間24の圧力損失ΔPを低減できる。これによって、第1流路18における第1流体の圧力損失ΔPの占める割合が相対的に増加する。
また、第1出口ヘッダ空間24の圧力損失ΔPが低減することで、第1流体は第1流路18から第1出口ヘッダ空間24へ流入しやすくなるため、複数の第1流路18の出口部における圧力損失の差も低減する。
これによって、複数の第1流路間の偏流を抑制でき、第1流路間の第1流体の偏流によって生じる一部の第1流路における第1流路と第2流路との伝熱性能の低下を抑制できる。従って、複数の第1流路間の伝熱性能を均一化できるため、第1流路全体として伝熱性能を高く維持できる。
一実施形態では、第1入口ヘッダ空間22は複数の第2プレート16によってプレート構成体12の積層方向に沿って分割されている。
この実施形態によれば、第1入口ヘッダ空間22が複数の第2プレート16によってプレート積層方向に沿って分割されるため、複数の第1プレート14間において、第1流路18に流入する第1流体の流量をバランスさせることができ、これによって、複数の第1流路間の偏流抑制効果を向上できる。
一実施形態では、図4及び図5に示すように、複数の第1プレート14と複数の第2プレート16とは、プレート積層方向に沿って交互に配置される。
この実施形態によれば、複数の第1プレート14と複数の第2プレート16とがプレート積層方向に沿って交互に配置されることで、複数の第1プレート間において、第1流路18に連通する第1入口ヘッダ空間22の容積を均等に分割できる。これによって、複数の第1プレート間において、第1流路18に流入する第1流体の流量を均等化できるため、複数の第1流路間の偏流抑制効果を向上できる。
また、第1流体が流れる第1プレート14と第2流体が流れる第2プレート16とが積層構造で隣り合って交互に配置されるため、第1流体及び第2流体の伝熱面積を増加でき、これによって、伝熱性能を向上できる。
一実施形態では、図6及び図7に示すように、第1入口ヘッダ空間22は、各第1プレート14において複数の第1流路18と第1流体供給部26との距離が離れるにつれて流路断面積が漸減するように構成される。
この実施形態によれば、第1入口ヘッダ空間22は先細り構造を有するため、各第1プレート14に形成された複数の第1流路18に第1流体が分配されて、第1入口ヘッダ空間22の第1流体の流量が減少しても、第1入口ヘッダ空間22における第1流体の流速低下を抑制できる。これによって、第1入口ヘッダ空間22で環状流の形成が可能になり、第1入口ヘッダ空間22で環状流が形成されることにより、複数の第1流路間の偏流を抑制できる。従って、複数の第1流路18において第1流体と第2流体との伝熱性能を高く維持できる。
また、複数のプレートが積層されて流路が形成される構造において、先細り構造を採用することで、プレート枚数が大きく増減しても容易に対応でき、かつ複雑なヘッダ構造とならない。これによって、第1流路間の偏流を抑制できる確実な第1流体の供給が可能になる。
一実施形態では、図6及び図7に示すように、第1流体供給部26及び第1流体排出部28がプレート構成体12の積層方向に沿って形成される。
この実施形態によれば、第1流体供給部26及び第1流体排出部28をプレート構成体12に形成することで、第1流体供給部26及び第1流体排出部28を別な構造体としてプレート構成体12の外側に設置する必要がなくなる。さらに、第1流体供給部26と第1入口ヘッダ空間22とを接続する配管、及び第1流体排出部28と第1出口ヘッダ空間24とを接続する配管が不要になる。これによって、熱交換器10をコンパクト化かつ低コスト化できる。
一実施形態では、図6に示すように、各第1プレート14において、複数の第1流路18は互いに並列に配置される。また、図11に示すように、各第2プレート16において、複数の第2流路20は互いに並列に配置される。
この実施形態によれば、複数の第1流路18及び複数の第2流路20が共に並列に配置されることで、第1流路18及び第2流路20を流路全長に亘って近接配置できる。これによって、第1流体と第2流体間の伝熱性能を向上できる。
特に、複数の第1流路18の並列配置と第1入口ヘッダ空間22の先細り構造との組合せによって、複数の第1流路間の偏流抑制効果を向上できる。
一実施形態では、複数の第1流路18及び複数の第2流路20は、夫々同一間隔で平行に配置される。
一実施形態では、第1流路18と第2流路20とはプレート積層方向で重なる位置に配置される。これによって、第1流路18と第2流路20とを最も接近位置に配置できるので、第1流体と第2流体との伝熱性能を最大にできる。
一実施形態では、第1入口ヘッダ空間22及び複数の第1プレート14に形成された複数の第1流路18の少なくとも一部は、これらの流れの場で第1流体環状流を形成するように構成される。第1入口ヘッダ空間22及び第1流路18の構成、これら流路を流れる第1流体の種類(例えば、密度、粘性係数等に基づく種類の選定)及び運転条件(例えば、第1流体の流量、流速等)は、例えば、気液二相流の流動様式を表したベーカ(Baker)線図などによって決められる。
上記構成によれば、第1入口ヘッダ空間22及び第1流路18において第1流体が環状流を形成するため、これらの流場で気液が混じり合った状態となり、気液の分離が起こらない。従って、第1入口ヘッダ空間22及び複数の第1流路間で気液混合率を均等に保持できるため、全体として第1流体と第2流体との熱交換効率を向上できる。
一実施形態では、図5、図8〜10及び図13に示すように、複数の第1プレート14に夫々形成された複数の第1流路18、及び複数の第2プレート16に夫々形成された複数の第2流路20の最大幅が2mm以下(好ましくは、0.1〜1.0mm)とする。
この実施形態によれば、第1流路18及び第2流路20を最大幅が2mm以下の微細流路とすることで、第1プレート14に多数の第1流路を形成できると共に、第2プレート16に多数の第2流路20を形成できる。これによって、これら流路の伝熱面積を飛躍的に増加できるため、第1流体と第2流体との熱交換効率を飛躍的に増加できる。
なお、好ましくは、伝熱性能を増加させるために、第1流路18及び第2流路20の最大幅を1mm以下とする。また、好ましくは、第1流路18及び第2流路20の加工の容易さの観点から、第1流路18及び第2流路20の幅を0.1mm以上とする。
なお、図示した実施形態では、第1流路18及び第2流路20の横断面は半円形であるが、角形など他の断面形状にしてもよい。
一実施形態では、図2、6及び図11、12に示すように、第2流体供給部34と、第2流体供給部34及び複数の第2流路20に連通する第2入口ヘッダ空間38と、第2流体排出部36と、第2流体排出部36及び複数の第2流路20に連通する第2出口ヘッダ空間40と、がプレート構成体12に形成される。
また、第2入口ヘッダ空間38及び第2出口ヘッダ空間40は、複数の第1流路18と交差する方向に沿って複数の第1流路18の両側に配置される。さらに、図11に示すように、複数の第2流路20は、複数の第1流路18と交差する方向に沿って配置される入口側領域20a及び出口側領域20cと、複数の第1流路18と同一方向に沿って配置される中間領域20bと、を含む。
この実施形態によれば、第2流路20の第2入口ヘッダ空間38及び第2出口ヘッダ空間40が第1流路18と交差する方向に沿って配置されるため、第2入口ヘッダ空間38及び第2出口ヘッダ空間40を第1流路18の第1入口ヘッダ空間22及び第1出口ヘッダ空間24と干渉させずに配置できる。従って、第2入口ヘッダ空間38及び第2出口ヘッダ空間40の配置の自由度を広げることができる。
また、第2流路20の中間領域20bが第1流路18と同一方向に沿って配置されるため、第1流路18と第2流路20とを近接配置でき、そのため、中間領域20bにおける第1流体と第2流体との伝熱性能を向上できる。
さらに、第2流路20の入口側領域20a及び出口側領域20cは、第1流路18と交差する方向に沿って配置されるため、第1流路18を構成する第1流路壁32と第2流路20を構成する第2流路壁33とは一定ピッチで重なり合う。従って、第1プレート14と第2プレート16とを拡散接合するとき、第1流路壁32及び第2流路壁33に高い接合圧力を加えることができる。これによって、第1プレート14と第2プレート16との接合強度を高めることができる。
一実施形態では、第1流体はNHであり、第2流体はCOであり、熱交換器10は、例えば一次冷媒をNHとし、二次冷媒をCOとするNH/CO冷凍機に設けられ、気液二相の一次冷媒と二次冷媒とを熱交換させ一次冷媒を加熱して気化させるCO液化器である。
このCO液化器において、気液二相のNHが流れる複数の流路間で偏流を抑制でき、これによって、複数の第1流路18の伝熱性能を均一化できると共に、第1流路18の圧力損失を抑制できるため、一次冷媒と二次冷媒との伝熱性能を高く維持できる。
気液密度比が大きいNHは特に偏流が起きやすいが、NHであっても複数の流路間の偏流を抑制でき、かつ流路の下流側領域で伝熱が低下するドライアウトの形成を遅らせることができるため、NHとCOとの伝熱性能を高く維持できる。
一実施形態では、図1に示すように、プレート構成体12の両側面には端板42及び44が設けられる。一方の端板42には、図2に示すように、第1流体供給部26に連通する孔46、第1流体排出部28に連通する孔48、第2流体供給部34に連通する孔50、及び第2流体排出部36に連通する孔52が形成されている。そして、孔46を囲むように第1流体入口管54が設けられ、孔48を囲むように第1流体出口管56が設けられ、孔50を囲むように第2流体入口管58が設けられ、孔52を囲むように第2流体出口管60が設けられる。
一実施形態では、第1流体入口管54は上流側で第1流体供給管(不図示)に連結され、第1流体出口管56は下流側で第1流体排出管(不図示)に連結される。第2流体入口管58は上流側で第2流体供給管(不図示)に連結され、第2流体出口管60は下流側で第2流体排出管(不図示)に連結される。
一実施形態では、端板42及び44は平坦な板状体で構成され、端板44は孔、開口等がない板状体で構成される。
一実施形態では、図1及び図3に示すように、第1プレート14及び第2プレート16は平坦な板状体で構成される。
一実施形態では、第1プレート14、第2プレート16、及び端板42、44は、互いに拡散接合法で接合される。拡散接合法を採用することで、上記複数種のプレートを1工程で接合できる。
一実施形態では、図1及び図3に示すように、第1プレート14、第2プレート16、及び端板42、44は四角形の外形を有する。
一実施形態では、図1に示すように、熱交換器10は、第1流体fが流入する第1流体入口管54及び第2流体fが流出する第2流体出口管60が下方に配置され、第1流体出口管56及び第2流体入口管58が上方に配置されるように上下方向に沿って配置される。
一実施形態では、第1プレート14及び第2プレート16は、熱伝導係数が大きくかつ高強度の材料で構成される。これによって、伝熱性能が良くかつ第1プレート14及び第2プレート16の薄肉化が可能になる。
一実施形態によれば、一方の流体が気液二相の流体であり、気液二相の流体を複数の流路に分流させて熱交換する熱交換器において、複数の熱交換流路に流入する気液二相流体の偏流を抑制して伝熱性能を高く維持できる。
10 熱交換器
12 プレート構成体
14 第1プレート
16 第2プレート
18 第1流路
18a 上流側領域
18b 下流側領域
20 第2流路
20a 入口側領域
20b 中間領域
20c 出口側領域
22 第1入口ヘッダ空間
24 第1出口ヘッダ空間
26 第1流路供給部
28 第1流路排出部
30 絞り部
31 波形流路
32 第1流路壁
33 第2流路壁
34 第2流路供給部
36 第2流路排出部
38 第2入口ヘッダ空間
40 第2出口ヘッダ空間
42、44 端板
46、48、50、52 孔
54 第1流体入口管
56 第1流体出口管
58 第2流体入口管
60 第2流体出口管
P ピッチ
X 積層方向
第1流体
第2流体
θ 偏向角度

Claims (19)

  1. 第1流体と第2流体とを熱交換させて該第1流体を気化させる熱交換器であって、
    前記第1流体が流れる複数の第1流路を形成する複数の第1プレートと、前記第2流体が流れる複数の第2流路を形成する複数の第2プレートと、を含む積層された複数のプレートで構成されるプレート構成体を備え、
    前記第1流路の少なくとも一部で前記第1流体は気液二相状態にあり、
    前記第1流体の供給部と前記複数の第1プレートの各々に形成された前記複数の第1流路とに連通する第1入口ヘッダ空間と、前記第1流体の排出部と前記複数の第1プレートの各々に形成された前記複数の第1流路とに連通する第1出口ヘッダ空間と、が前記複数の第1プレートに形成され、
    前記複数の第1流路の各々は、流路形状が波形に形成された上流側領域と、該上流側領域の下流側に位置し流路形状が直線状に形成された下流側領域と、を有することを特徴とする熱交換器。
  2. 前記複数の第1流路の各々の入口部に絞り部を備えることを特徴とする請求項1に記載の熱交換器。
  3. 前記絞り部において、前記複数の第1流路の各々は流路形状が波形に形成されることを特徴とする請求項2に記載の熱交換器。
  4. 前記複数の第1流路の各々の入口部は、前記第1入口ヘッダ空間を流れる前記第1流体の流れ方向と、前記第1流路に流入するときの前記第1流体の流れ方向の角度の変化が90°未満となるように、前記第1入口ヘッダ空間内の前記第1流体の流れ方向と直交する方向に対して傾斜していることを特徴とする請求項1乃至3の何れか一項に記載の熱交換器。
  5. 前記複数の第1流路の各々の前記上流側領域と前記下流側領域との境界は、前記第1流体が環状流を形成している領域にあることを特徴とする請求項1乃至4の何れか一項に記載の熱交換器。
  6. 前記複数の第1流路の各々の前記上流側領域と前記下流側領域との境界は、前記第1流体のクオリテイが0.3以上0.8以下の領域にあることを特徴とする請求項1乃至5の何れか一項に記載の熱交換器。
  7. 前記複数の第1流路の各々を構成する第1流路壁は、前記プレート構成体の積層方向から視たとき、対応する前記複数の第2流路の各々を構成する第2流路壁と少なくとも一部の領域で重なっていることを特徴とする請求項1乃至6の何れか一項に記載の熱交換器。
  8. 前記複数の第2流路の各々は、前記第1流路と同一方向に沿って配置された直線状の流路を含み、
    前記複数の第1流路の各々の前記上流側領域を構成する第1流路壁は、前記プレート構成体の積層方向から視たとき、対応する前記複数の第2流路の各々の前記直線状の流路を構成する第2流路壁と一定のピッチで交差するように配置されることを特徴とする請求項1乃至7の何れか一項に記載の熱交換器。
  9. 前記ピッチは1mm以上3mm以下であることを特徴とする請求項8に記載の熱交換器。
  10. 前記第1出口ヘッダ空間は、前記複数の第2プレートを含む前記プレート構成体の積層方向に沿って貫通した空間を形成していることを特徴とする請求項1乃至9の何れか一項に記載の熱交換器。
  11. 前記第1入口ヘッダ空間は前記複数の第2プレートによって前記プレート構成体の積層方向に沿って分割されていることを特徴とする請求項1乃至10の何れか一項に記載の熱交換器。
  12. 前記複数の第1プレートと前記複数の第2プレートとは、前記プレート構成体の積層方向に沿って交互に配置されることを特徴とする請求項1乃至11の何れか一項に記載の熱交換器。
  13. 前記第1入口ヘッダ空間は、前記複数の第1プレートの各々において前記複数の第1流路の各々と前記供給部との距離が離れるにつれて流路断面積が漸減するように構成されることを特徴とする請求項1乃至12の何れか一項に記載の熱交換器。
  14. 前記プレート構成体に前記第1流体の前記供給部及び前記第1流体の前記排出部が前記プレート構成体の積層方向に沿って形成されることを特徴とする請求項1乃至13の何れか一項に記載の熱交換器。
  15. 前記複数の第1プレートの各々において、前記複数の第1流路の各々は互いに並列に配置され、
    前記複数の第2プレートの各々において、前記複数の第2流路の各々は互いに並列に配置されることを特徴とする請求項1乃至14の何れか一項に記載の熱交換器。
  16. 前記第1入口ヘッダ空間及び前記複数の第1プレートに形成された前記複数の第1流路の少なくとも一部は、前記第1入口ヘッダ空間及び前記複数の第1流路を流れる前記第1流体が環状流を形成するように構成されることを特徴とする請求項1乃至15の何れか一項に記載の熱交換器。
  17. 前記複数の第1プレートに形成された前記複数の第1流路及び前記複数の第2プレートに形成された前記複数の第2流路の最大幅が2mm以下であることを特徴とする請求項1乃至16の何れか一項に記載の熱交換器。
  18. 前記第2流体の供給部と、該供給部及び前記複数の第2流路の各々に連通する第2入口ヘッダ空間と、前記第2流体の排出部と、該排出部及び前記複数の第2流路の各々に連通する第2出口ヘッダ空間と、が前記プレート構成体に形成され、
    前記第2入口ヘッダ空間及び前記第2出口ヘッダ空間は、前記複数の第1流路の各々と交差する方向に沿って前記複数の第1流路の両側に配置され、
    前記複数の第2流路の各々は、
    前記複数の第1流路の各々と交差する方向に沿って配置される入口側領域及び出口側領域と、
    前記複数の第1流路の各々と同一方向に沿って配置される中間領域と、
    を含むことを特徴とする請求項1乃至17の何れか一項に記載の熱交換器。
  19. 前記第1流体はNHであり、前記第2流体はCOであり、
    前記熱交換器は前記第1流体と前記第2流体とを熱交換させて前記第1流体を気化させるCO液化器であることを特徴とする請求項1乃至18の何れか一項に記載の熱交換器。
JP2017140055A 2017-07-19 2017-07-19 熱交換器 Active JP7072790B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017140055A JP7072790B2 (ja) 2017-07-19 2017-07-19 熱交換器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017140055A JP7072790B2 (ja) 2017-07-19 2017-07-19 熱交換器

Publications (2)

Publication Number Publication Date
JP2019020068A true JP2019020068A (ja) 2019-02-07
JP7072790B2 JP7072790B2 (ja) 2022-05-23

Family

ID=65353946

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017140055A Active JP7072790B2 (ja) 2017-07-19 2017-07-19 熱交換器

Country Status (1)

Country Link
JP (1) JP7072790B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021162035A1 (ja) * 2020-02-10 2021-08-19 ダイキン工業株式会社 熱交換器及びそれを有するヒートポンプシステム
WO2023127625A1 (ja) 2021-12-28 2023-07-06 株式会社前川製作所 熱交換器用プレート、熱交換器用プレート積層体、及びマイクロチャンネル熱交換器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080164015A1 (en) * 2007-01-04 2008-07-10 Steven James Papapanu Contra-tapered tank design for cross-counterflow radiator
JP2013134024A (ja) * 2011-12-27 2013-07-08 Panasonic Corp 冷凍サイクル装置
JP2015114080A (ja) * 2013-12-13 2015-06-22 株式会社前川製作所 マイクロチャンネル熱交換器
WO2016051608A1 (en) * 2014-10-01 2016-04-07 Mitsubishi Heavy Industries Compressor Corporation Plate laminated type heat exchanger
US20160282064A1 (en) * 2013-10-17 2016-09-29 Korea Atomic Energy Research Institute Heat exchanger for steam generator and steam generator comprising same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080164015A1 (en) * 2007-01-04 2008-07-10 Steven James Papapanu Contra-tapered tank design for cross-counterflow radiator
JP2013134024A (ja) * 2011-12-27 2013-07-08 Panasonic Corp 冷凍サイクル装置
US20160282064A1 (en) * 2013-10-17 2016-09-29 Korea Atomic Energy Research Institute Heat exchanger for steam generator and steam generator comprising same
JP2015114080A (ja) * 2013-12-13 2015-06-22 株式会社前川製作所 マイクロチャンネル熱交換器
WO2016051608A1 (en) * 2014-10-01 2016-04-07 Mitsubishi Heavy Industries Compressor Corporation Plate laminated type heat exchanger

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021162035A1 (ja) * 2020-02-10 2021-08-19 ダイキン工業株式会社 熱交換器及びそれを有するヒートポンプシステム
JP2021127844A (ja) * 2020-02-10 2021-09-02 ダイキン工業株式会社 熱交換器及びそれを有するヒートポンプシステム
CN115023580A (zh) * 2020-02-10 2022-09-06 大金工业株式会社 热交换器及具有该热交换器的热泵系统
US11619427B2 (en) 2020-02-10 2023-04-04 Daikin Industries, Ltd. Heat exchanger and heat pump system having same
EP4086553A4 (en) * 2020-02-10 2023-05-31 Daikin Industries, Ltd. HEAT EXCHANGER AND HEAT PUMP SYSTEM WITH IT
CN115023580B (zh) * 2020-02-10 2023-10-13 大金工业株式会社 热交换器及具有该热交换器的热泵系统
WO2023127625A1 (ja) 2021-12-28 2023-07-06 株式会社前川製作所 熱交換器用プレート、熱交換器用プレート積層体、及びマイクロチャンネル熱交換器
KR20230163482A (ko) 2021-12-28 2023-11-30 가부시끼가이샤 마에가와 세이사꾸쇼 열교환기용 플레이트, 열교환기용 플레이트 적층체, 및 마이크로 채널 열교환기

Also Published As

Publication number Publication date
JP7072790B2 (ja) 2022-05-23

Similar Documents

Publication Publication Date Title
JP2018189352A (ja) 熱交換器
WO2014147804A1 (ja) プレート式熱交換器及びそれを備えた冷凍サイクル装置
JP4550885B2 (ja) 流体流分配装置
WO2020161761A1 (ja) 熱交換器およびこれを備えた空気調和装置
JP6118008B1 (ja) 熱交換器
US11118848B2 (en) Heat-exchanging plate, and plate heat exchanger using same
WO2012176336A1 (ja) プレート式熱交換器及び冷凍サイクル装置
EP3059542B1 (en) Laminated header, heat exchanger, and air-conditioner
JP2010114174A (ja) ヒートシンク用コア構造
JP2013537298A (ja) 冷媒導管とその冷媒導管を備えた熱交換器
US11828543B2 (en) Stacked heat exchanger
JP7072790B2 (ja) 熱交換器
US10876801B2 (en) Heat-exchanging plate, and plate heat exchanger using same
JP5881483B2 (ja) 多流路機器
JP7552427B2 (ja) 熱交換器
KR102010156B1 (ko) 쉘앤플레이트 열교환기용 쉘 및 이를 구비한 쉘앤플레이트 열교환기
JPH11166795A (ja) 熱交換器
JP6281422B2 (ja) 積層型熱交換器
US20230087617A1 (en) Heat exchanger core
US20190376750A1 (en) Water heat exchanger
JP6432613B2 (ja) 水熱交換器
CN113950605A (zh) 热交换器
JP2019211174A (ja) 熱交換器
JP2019007657A (ja) マイクロチャンネル熱交換器
JP2016151386A (ja) 熱交換器および熱交換器用プレートユニット

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200618

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210330

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210525

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20211005

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211223

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20211223

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20211224

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20220202

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20220208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220425

R150 Certificate of patent or registration of utility model

Ref document number: 7072790

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150