JP2018162489A - Copper alloy for electronic material - Google Patents

Copper alloy for electronic material Download PDF

Info

Publication number
JP2018162489A
JP2018162489A JP2017059709A JP2017059709A JP2018162489A JP 2018162489 A JP2018162489 A JP 2018162489A JP 2017059709 A JP2017059709 A JP 2017059709A JP 2017059709 A JP2017059709 A JP 2017059709A JP 2018162489 A JP2018162489 A JP 2018162489A
Authority
JP
Japan
Prior art keywords
mass
copper alloy
less
electronic materials
bending
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017059709A
Other languages
Japanese (ja)
Other versions
JP6618945B2 (en
Inventor
祐太 中村
Yuta Nakamura
祐太 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2017059709A priority Critical patent/JP6618945B2/en
Publication of JP2018162489A publication Critical patent/JP2018162489A/en
Application granted granted Critical
Publication of JP6618945B2 publication Critical patent/JP6618945B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Conductive Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a copper alloy for an electronic material with high reliability, having 0.2% proof stress, conductivity and flexure processability appropriate when used in an electronic material, while suppressing a springback at flexure processing.SOLUTION: A copper alloy for an electronic material includes 0.5-3.0 mass% Co and 0.1-1.0 mass% Ni, with a mass ratio (Ni/Co) of Ni to Co being 0.1-1.0, and further includes Si such that a mass ratio (Ni+Co)/Si is 3-5, and the balance copper with inevitable impurities. If the degrees of integration of crystal orientation in box numbers 1, 21 and 36 obtained by performing an equal area division used in a display by a vector method, to a stereo triangle showing crystal orientation in a rolling parallel direction (RD) obtained by EBSD (Electron Back Scatter Diffraction) measurement are S, Sand S, respectively, a relation S=S/(S+S)≥0.5 is satisfied.SELECTED DRAWING: Figure 2

Description

この発明は、各種電子部品に用いることに好適な析出硬化型銅合金であるCu−Co−Ni−Si系合金に関するものであり、特には、曲げ加工時の寸法精度を向上させることのできる技術を提案するものである。   The present invention relates to a Cu—Co—Ni—Si alloy which is a precipitation hardening type copper alloy suitable for use in various electronic components, and in particular, a technique capable of improving the dimensional accuracy during bending. This is a proposal.

コネクタ、スイッチ、リレー、ピン、端子、リードフレーム等の各種電子部品に使用される電子材料用銅合金には、基本特性として高強度及び高導電性(又は熱伝導性)を両立させることが要求される。そして、近年は、電子部品の高集積化及び小型化・薄肉化が急速に進み、これに伴って電子機器部品に使用される銅合金に対する要求はさらに高度化している。特にコネクタを大型化させないためには、650MPa以上の圧延平行方向の0.2%耐力と50%IACS以上の導電率が望まれる。   Copper alloys for electronic materials used in various electronic parts such as connectors, switches, relays, pins, terminals, and lead frames are required to have both high strength and high conductivity (or thermal conductivity) as basic characteristics. Is done. In recent years, electronic parts have been highly integrated, miniaturized and thinned, and the demand for copper alloys used in electronic equipment parts has further increased. In particular, in order not to increase the size of the connector, a 0.2% proof stress in the rolling parallel direction of 650 MPa or more and a conductivity of 50% IACS or more are desired.

高強度及び高導電性の観点から、電子材料用銅合金として従来のりん青銅、黄銅等に代表される固溶強化型銅合金に代えて、析出硬化型銅合金の使用量が増加している。析出硬化型銅合金では、溶体化処理された過飽和固溶体を時効処理することにより、微細な析出物が均一に分散して、合金の強度が高くなると同時に、銅中の固溶元素量が減少し電気伝導性が向上する。このため、ばね性などの機械的性質に優れ、しかも電気伝導性、熱伝導性が良好な材料が得られる。   From the viewpoint of high strength and high conductivity, the amount of precipitation hardening type copper alloys used in place of solid solution strengthened copper alloys represented by conventional phosphor bronze, brass, etc. is increasing as copper alloys for electronic materials. . In precipitation-hardened copper alloys, by aging the supersaturated solid solution that has undergone solution treatment, fine precipitates are uniformly dispersed, increasing the strength of the alloy and reducing the amount of solid solution elements in the copper. Electrical conductivity is improved. For this reason, it is possible to obtain a material having excellent mechanical properties such as springiness and excellent electrical conductivity and thermal conductivity.

析出硬化型銅合金のうち、コルソン系合金と一般に称されるCu−Ni−Si系合金は比較的高い導電性、強度、及び曲げ加工性を有する代表的な銅合金であり、当業界では現在活発に開発が行われている合金の一つである。この銅合金では、銅マトリックス中に微細なNi−Si系金属間化合物粒子を析出させることにより、強度と導電率の向上を図ることができる。
このようなコルソン系合金では、更なる特性の改善を目的として、Coを添加し、またはNiをCoに置き換えたCu−Co−Si系合金が提案されている。
Of the precipitation hardening type copper alloys, Cu—Ni—Si alloys generally referred to as Corson alloys are representative copper alloys having relatively high electrical conductivity, strength, and bending workability. It is one of the actively developed alloys. In this copper alloy, strength and conductivity can be improved by precipitating fine Ni—Si intermetallic compound particles in a copper matrix.
In such a Corson alloy, a Cu—Co—Si alloy in which Co is added or Ni is replaced with Co has been proposed for the purpose of further improving the characteristics.

Cu−Co−Si系合金は一般の曲げ加工性に関し、特許文献1及び2には、Cu−Co−Si系合金で結晶方位を制御する技術が記載されている。   Regarding Cu-Co-Si-based alloys, with respect to general bending workability, Patent Documents 1 and 2 describe techniques for controlling crystal orientation with Cu-Co-Si-based alloys.

具体的には、特許文献1では、EBSD(Electron Back−Scatter Diffraction:電子後方散乱回折)測定における結晶方位解析において、Brass方位{110}<112>の面積率が20%以下、Copper方位{121}<111>の面積率が20%以下、Cube方位{001}<100>の面積率が5〜60%であり、0.2%耐力が500MPa以上、導電率が30%IACS以上であることを特徴とする銅合金材料が記載されている。また、特許文献2には、EBSD測定における結晶方位解析において、cube方位{001}<100>の面積率が7〜47%であることを特徴とする銅合金板材、さらには、S方位{231}<346>の面積率が5〜40%である銅合金板材が記載されている。   Specifically, in Patent Document 1, in the crystal orientation analysis in the EBSD (Electron Back-Scatter Diffraction) measurement, the area ratio of the Brass orientation {110} <112> is 20% or less, and the Copper orientation {121 } The area ratio of <111> is 20% or less, the area ratio of the Cube orientation {001} <100> is 5 to 60%, the 0.2% proof stress is 500 MPa or more, and the conductivity is 30% IACS or more. A copper alloy material is described. Patent Document 2 discloses a copper alloy sheet material in which the area ratio of the cube orientation {001} <100> is 7 to 47% in the crystal orientation analysis in the EBSD measurement, and further, the S orientation {231 } A copper alloy sheet material in which the area ratio of <346> is 5 to 40% is described.

特開2011−017072号公報JP 2011-017072 A 特許4875768号公報Japanese Patent No. 4875768

しかしながら、特許文献1及び2に係る銅合金板材は、曲げ加工性が優れているものの、曲げ加工時におけるスプリングバックについてはなお不十分な点が存するものと考えられる。スプリングバックとは、曲げ加工において、材料から成形工具を離すと材料の変形が若干戻ってしまう現象のことである。スプリングバックは、完成部品の寸法精度に悪影響を及ぼす。   However, although the copper alloy sheet materials according to Patent Documents 1 and 2 are excellent in bending workability, it is considered that there are still insufficient points regarding the spring back during bending. Springback is a phenomenon in which deformation of a material returns slightly when the forming tool is separated from the material in bending. Springback adversely affects the dimensional accuracy of the finished part.

特許文献1及び2に係る銅合金板材は、Cube方位{001}<100>を発達させて曲げ加工性を改善しているが、Cube方位{001}<100>を発達させた材料のヤング率が低下する傾向にある。一方、スプリングバックの量は、材料の降伏応力に比例し、ヤング率に反比例するため、Cube方位{001}<100>を発達させればスプリングバックが大きくなってしまう。   The copper alloy sheet materials according to Patent Documents 1 and 2 improve the bending workability by developing the Cube orientation {001} <100>, but the Young's modulus of the material having the Cube orientation {001} <100> developed. Tend to decrease. On the other hand, the amount of springback is proportional to the yield stress of the material and inversely proportional to Young's modulus. Therefore, if the Cube orientation {001} <100> is developed, the springback becomes large.

このように、特許文献1及び2に係る銅合金板材は、曲げ加工時におけるスプリングバックにより、完成部品の寸法精度が十分ではなかった。
スプリングバック対策としては、合金に曲げ加工を施す前に曲げ部にVノッチを施す方法などがあるが、不可避的に曲げ部強度が低下し、割れが生じやすくなる。
As described above, the copper alloy sheet materials according to Patent Documents 1 and 2 have insufficient dimensional accuracy of the finished part due to the spring back during bending.
As a countermeasure against springback, there is a method of giving a V-notch to a bent part before bending the alloy, but the strength of the bent part is inevitably lowered and cracking is likely to occur.

この発明は、このような問題を解決することを課題とするものであり、その目的は、電子材料に用いて好適な0.2%耐力、導電率及び曲げ加工性を有するとともに、曲げ加工時におけるスプリングバックを抑制した信頼性の高い電子材料用銅合金を提供することにある。   An object of the present invention is to solve such problems, and the object thereof is to have 0.2% proof stress, conductivity and bending workability suitable for use in electronic materials, and at the time of bending work. It is an object of the present invention to provide a highly reliable copper alloy for electronic materials in which spring back is suppressed.

発明者は鋭意検討の結果、Cu−Co−Si系合金のCoの一部をNiに置換したCu−Co−Ni−Si系合金において、圧延平行方向の結晶方位を表したステレオ三角に対し、ベクトル法による表示で用いられる等面積分割を行って得られた所定位置の結晶方位の集積度を制御することで、曲げ加工時におけるスプリングバックを抑制することができることを見出した。そして、このような結晶方位の集積度の制御は、均質化焼鈍、熱間圧延及び溶体化処理など処理条件を調節することにより実現できるとの新たな知見を得た。   As a result of intensive studies, the inventors of the Cu-Co-Ni-Si-based alloy in which a part of Co in the Cu-Co-Si-based alloy is replaced with Ni, a stereo triangle representing a crystal orientation in the rolling parallel direction, It has been found that by controlling the degree of integration of crystal orientations at predetermined positions obtained by performing equal area division used in the display by the vector method, springback during bending can be suppressed. And the new knowledge that such control of the accumulation degree of crystal orientation was realizable by adjusting process conditions, such as homogenization annealing, hot rolling, and solution treatment, was acquired.

上記の知見の下、本発明は、0.5〜3.0質量%のCo、0.1〜1.0質量%のNiを含有し、Coに対するNiの質量比(Ni/Co)が0.1〜1.0であり、さらにSiを質量割合で(Ni+Co)/Siが3〜5となるように含有し、残部が銅および不可避的不純物からなり、EBSD(Electron Back Scatter Diffraction:電子後方散乱回折)測定から得られる圧延平行方向(RD)の結晶方位を表したステレオ三角に対し、ベクトル法による表示で用いられる等面積分割を行って得られたボックス番号1、21、36の結晶方位の集積度をそれぞれS1、S21、S36としたとき、
S=S21/(S1+S36)≧0.5
の関係を満たす電子材料用銅合金である。
Under the above knowledge, the present invention contains 0.5 to 3.0 mass% Co, 0.1 to 1.0 mass% Ni, and the mass ratio of Ni to Co (Ni / Co) is 0. 0.1 to 1.0, Si is contained in a mass ratio such that (Ni + Co) / Si is 3 to 5, the remainder is made of copper and inevitable impurities, and EBSD (Electron Back Scatter Diffraction: back of the electron) The crystal orientations of box numbers 1, 21, and 36 obtained by performing equal area division used in the display by the vector method for the stereo triangle representing the crystal orientation in the rolling parallel direction (RD) obtained from (scattering diffraction) measurement When the integration degree is S 1 , S 21 , S 36 , respectively,
S = S 21 / (S 1 + S 36 ) ≧ 0.5
It is a copper alloy for electronic materials that satisfies the above relationship.

本発明の電子材料用銅合金は、JIS H3130(2012)に準拠した90°W曲げ試験において、曲げ試験片における曲げ加工部(3箇所のうち中央部)の実際の曲げ変形角度をθ(°)とするとき、スプリングバック量Δθを示すθ−90°の値が5°以下であることが好ましい。   The copper alloy for electronic materials of the present invention has an actual bending deformation angle of θ (° in the bending portion (center portion of the three locations) of the bending test piece in a 90 ° W bending test in accordance with JIS H3130 (2012). ), The value of θ−90 ° indicating the springback amount Δθ is preferably 5 ° or less.

本発明の電子材料用銅合金は、JIS H3130(2012)に準拠した90°W曲げ試験において、曲げ試験片における曲げ加工部(3箇所のうち中央部)の外周表面におけるJIS B0601(2013)に準拠した表面平均粗さRaが1.0μm以下であることが好ましい。   The copper alloy for electronic materials according to the present invention is applied to JIS B0601 (2013) on the outer peripheral surface of a bent portion (center portion of three locations) in a bending test piece in a 90 ° W bending test according to JIS H3130 (2012). The compliant surface average roughness Ra is preferably 1.0 μm or less.

本発明の電子材料用銅合金は、さらにCrを0.5質量%以下で含有することが好ましい。   The copper alloy for electronic materials of the present invention preferably further contains Cr at 0.5% by mass or less.

本発明の電子材料用銅合金は、さらにZn及びSnをそれぞれ0.5質量%以下、Mg、Mn、Fe、Ti、Al、P及びBをそれぞれ最大0.2質量%以下で含有し、それらのZn、Sn、Mg、Mn、Fe、Ti、Al、P及びBから選択される少なくとも一種類以上の合計が1.0質量%以下であることが好ましい。   The copper alloy for electronic materials of the present invention further contains Zn and Sn at 0.5% by mass or less, and Mg, Mn, Fe, Ti, Al, P and B at 0.2% by mass or less, respectively. The total of at least one selected from Zn, Sn, Mg, Mn, Fe, Ti, Al, P and B is preferably 1.0% by mass or less.

さらに、本発明は、本発明の電子材料用銅合金を備えた電子部品も提供する。   Furthermore, this invention also provides the electronic component provided with the copper alloy for electronic materials of this invention.

本発明によれば、好適な0.2%耐力、導電率及び曲げ加工性を有するとともに、曲げ加工時におけるスプリングバックを抑制した信頼性の高い電子材料用銅合金を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, while having suitable 0.2% yield strength, electrical conductivity, and bending workability, the reliable copper alloy for electronic materials which suppressed the springback at the time of bending work can be provided.

図1は、結晶方位を表すWilliams法とベクトル法の回転角のステレオ投影図表示を示す。FIG. 1 shows a stereo projection diagram display of the rotation angle of the Williams method and the vector method representing the crystal orientation. 図2は、等面積分割で36個に区分したステレオ三角を示す。FIG. 2 shows a stereo triangle divided into 36 pieces by equal area division.

以下に、この発明の実施の形態について詳細に説明する。
この発明の一の実施形態の電子材料用銅合金は、0.5〜3.0質量%のCo、0.1〜1.0質量%のNiを含有し、Coに対するNiの質量比(Ni/Co)が0.1〜1.0であり、さらにSiを質量割合で(Ni+Co)/Siが3〜5となるように含有し、残部が銅および不可避的不純物からなり、EBSD(Electron Back Scatter Diffraction:電子後方散乱回折)測定から得られる圧延平行方向(RD)の結晶方位を表したステレオ三角に対し、ベクトル法による表示で用いられる等面積分割を行って得られたボックス番号1、21、36の結晶方位の集積度をそれぞれS1、S21、S36としたとき、
S=S21/(S1+S36)≧0.5
の関係を満たす。
Hereinafter, embodiments of the present invention will be described in detail.
The copper alloy for electronic materials according to one embodiment of the present invention contains 0.5 to 3.0% by mass of Co and 0.1 to 1.0% by mass of Ni, and the mass ratio of Ni to Co (Ni / Co) is 0.1 to 1.0, Si is contained in a mass ratio such that (Ni + Co) / Si is 3 to 5, the balance is made of copper and inevitable impurities, and EBSD (Electron Back). Box numbers 1, 21 obtained by performing equal area division used in the display by the vector method on stereo triangles representing crystal orientations in the rolling parallel direction (RD) obtained from Scatter Diffraction (electron backscatter diffraction) measurement. , 36 when the integration degree of crystal orientation is S 1 , S 21 , S 36 , respectively.
S = S 21 / (S 1 + S 36 ) ≧ 0.5
Satisfy the relationship.

(Co、Niの添加量)
Co、NiおよびSiは、適当な熱処理を施すことによりCo2SiやNi2Siとして母相中に析出し、導電率を劣化させずに高強度化が図れる。ただし、Ni濃度が0.1質量%未満の場合、またはCo濃度が0.5質量%未満の場合は析出硬化が不十分となり、他方の成分を添加しても所望とする強度が得られない。また、Ni濃度が1.0質量%を超える場合、またはCo濃度が3.0質量%を超える場合は十分な強度が得られるものの、導電性や曲げ加工性、熱間加工性が低下する。
好ましくは、0.2〜0.8質量%のNi、1.0〜2.5質量%のCoとする。
(Co and Ni addition amount)
Co, Ni, and Si are precipitated in the parent phase as Co 2 Si or Ni 2 Si by performing an appropriate heat treatment, and the strength can be increased without deteriorating the conductivity. However, when the Ni concentration is less than 0.1% by mass, or when the Co concentration is less than 0.5% by mass, the precipitation hardening becomes insufficient, and even if the other component is added, the desired strength cannot be obtained. . Moreover, when Ni concentration exceeds 1.0 mass% or Co concentration exceeds 3.0 mass%, sufficient strength can be obtained, but conductivity, bending workability, and hot workability are deteriorated.
Preferably, 0.2 to 0.8 mass% Ni and 1.0 to 2.5 mass% Co are used.

(Coに対するNiの濃度比(Ni/Co))
Ni/Coを調整することにより、強度と導電率の両立を図る。Niの比率を高くする(Coの比率を低くする)と、強度は高くなり、導電率は低下する。一方、Coの比率を高くする(Niの比率を低くする)と、強度は低下し、導電率は高くなる。圧延方向に平行な方向での0.2%耐力を650MPa以上とし、かつ、導電率を50%IACS以上とするためには、Ni/Coを0.1〜1.0、好ましくは0.2〜0.7となるように調整しておくとよい。
(Concentration ratio of Ni to Co (Ni / Co))
By adjusting Ni / Co, both strength and electrical conductivity are achieved. Increasing the Ni ratio (lowering the Co ratio) increases the strength and decreases the conductivity. On the other hand, when the Co ratio is increased (Ni ratio is decreased), the strength decreases and the conductivity increases. In order to set the 0.2% proof stress in the direction parallel to the rolling direction to 650 MPa or more and the conductivity to 50% IACS or more, Ni / Co is 0.1 to 1.0, preferably 0.2. It is good to adjust so that it may be set to -0.7.

(Siの添加量)
Siは質量割合で(Ni+Co)/Siが3〜5となるように調整する。上記割合とすれば、析出硬化後の強度と導電率を共に向上させることができる。上記割合が5を超えると、時効処理でのCo2SiやNi2Siの析出が不十分になり、強度が低下する。上記割合が3未満であると、Co2SiやNi2Siとして析出しないSiが母相中に固溶し、導電率が低下する。
(Addition amount of Si)
Si is adjusted by mass ratio so that (Ni + Co) / Si is 3-5. If it is set as the said ratio, both the intensity | strength and electrical conductivity after precipitation hardening can be improved. When the ratio exceeds 5, the precipitation of Co 2 Si and Ni 2 Si in the aging treatment becomes insufficient and the strength is lowered. When the ratio is less than 3, Si that does not precipitate as Co 2 Si or Ni 2 Si is solid-solved in the matrix phase and the electrical conductivity is lowered.

(Crの添加量)
Crは溶解鋳造時の冷却過程において結晶粒界に優先析出するため粒界を強化でき、熱間加工時の割れが発生しにくくなり、歩留低下を抑制できる。すなわち、溶解鋳造時に粒界析出したCrは溶体化処理などで再固溶するが、続く時効析出時にCrを主成分としたbcc構造の析出粒子またはSiとの化合物を生成する。通常のCu−Co−Ni−Si系合金では添加したSi量のうち、時効析出に寄与しなかったSiは母相に固溶したまま導電率の上昇を抑制するが、珪化物形成元素であるCrを添加して、珪化物をさらに析出させることにより、固溶Si量を低減でき、強度を損なわずに導電率を上昇できる。しかしながら、Cr濃度が0.5質量%を超えると粗大な第二相粒子を形成しやすくなるため、製品特性を損なう。従って、この発明では、Crを最大で0.5質量%添加することができる。但し、0.03質量%未満ではその効果が小さいので、好ましくは0.03〜0.5質量%、より好ましくは0.09〜0.3質量%添加するのがよい。
(Addition amount of Cr)
Since Cr preferentially precipitates at the crystal grain boundaries during the cooling process during melt casting, the grain boundaries can be strengthened, cracks during hot working are less likely to occur, and yield reduction can be suppressed. That is, Cr that has precipitated at the grain boundaries during melt casting is re-dissolved by solution treatment or the like, but during subsequent aging precipitation, precipitated particles having a bcc structure mainly composed of Cr or a compound with Si are generated. In a normal Cu-Co-Ni-Si alloy, Si that did not contribute to aging precipitation among the added Si amount suppresses the increase in conductivity while being dissolved in the matrix, but is a silicide-forming element. By adding Cr and further depositing silicide, the amount of dissolved Si can be reduced, and the electrical conductivity can be increased without impairing the strength. However, when the Cr concentration exceeds 0.5% by mass, coarse second-phase particles are easily formed, so that product characteristics are impaired. Therefore, in this invention, Cr can be added up to 0.5% by mass. However, since the effect is small if it is less than 0.03 mass%, it is preferable to add 0.03-0.5 mass%, more preferably 0.09-0.3 mass%.

(Sn及びZnの添加量)
Sn及びZnにおいても、微量の添加で、導電率を損なわずに強度、応力緩和特性、めっき性等の製品特性を改善する。添加の効果は主に母相への固溶により発揮される。しかしながら、Sn及びZnの各濃度が0.5質量%を超えると特性改善効果が飽和するうえ、製造性を損なう。従って、この発明では、Sn及びZnはそれぞれ最大0.5質量%添加することができる。但し、Sn及びZnの合計が0.05質量%未満ではその効果が小さいので、Sn及びZnの合計は、好ましくは0.05〜1.0質量%、より好ましくは0.1〜0.5質量%とすることができる。
(Addition amount of Sn and Zn)
Even in the case of Sn and Zn, addition of a small amount improves product characteristics such as strength, stress relaxation characteristics, and plating properties without impairing electrical conductivity. The effect of addition is exhibited mainly by solid solution in the matrix. However, if the concentrations of Sn and Zn exceed 0.5% by mass, the effect of improving characteristics is saturated and manufacturability is impaired. Therefore, in this invention, Sn and Zn can each be added up to 0.5% by mass. However, since the effect is small when the total of Sn and Zn is less than 0.05% by mass, the total of Sn and Zn is preferably 0.05 to 1.0% by mass, more preferably 0.1 to 0.5%. It can be made into the mass%.

(Mg、Mn、Fe、Ti、Al、P及びBの添加量)
Mg、Mn、Fe、Ti、Alは、微量の添加で、導電率を損なわずに強度、応力緩和特性等の製品特性を改善する。Pは脱酸効果を有し、Bは鋳造組織の微細化効果を有し、熱間加工性を向上させる効果を有する。添加の効果は主に母相への固溶により発揮されるが、第二相粒子に含有されることで一層の効果を発揮させることもできる。しかしながら、Mg、Mn、Fe、Ti、Al、P及びBの各濃度が0.2質量%を超えると特性改善効果が飽和するうえ、製造性を損なう。従って、この発明では、Mg、Mn、Fe、Ti、Al、P及びBをそれぞれ最大0.2質量%添加することができる。但し、Mg、Mn、Fe、Ti、Al、P及びBの合計が0.01質量%未満ではその効果が小さいので、Mg、Mn、Fe、Ti、Al、P及びBの合計は、好ましくは0.01〜0.2質量%、より好ましくは0.04〜0.2質量%とすることができる。
(Addition amount of Mg, Mn, Fe, Ti, Al, P and B)
Mg, Mn, Fe, Ti, and Al can be added in small amounts to improve product properties such as strength and stress relaxation properties without impairing electrical conductivity. P has a deoxidizing effect, B has an effect of refining the cast structure, and has an effect of improving hot workability. The effect of addition is exhibited mainly by solid solution in the matrix phase, but further effects can be exhibited by inclusion in the second phase particles. However, if each concentration of Mg, Mn, Fe, Ti, Al, P, and B exceeds 0.2% by mass, the effect of improving the characteristics is saturated and the productivity is impaired. Therefore, in this invention, Mg, Mn, Fe, Ti, Al, P, and B can each be added up to 0.2% by mass. However, since the effect is small when the total of Mg, Mn, Fe, Ti, Al, P and B is less than 0.01% by mass, the total of Mg, Mn, Fe, Ti, Al, P and B is preferably It can be 0.01-0.2 mass%, More preferably, it can be 0.04-0.2 mass%.

上述したZn、Sn、Mg、Mn、Fe、Ti、Al、P及びBを含有する場合、それらのZn、Sn、Mg、Mn、Fe、Ti、Al、P及びBから選択される少なくとも一種類以上の合計は1.0質量%以下とする。この合計が1.0質量%を超えると、導電率や曲げ加工性が低下し、また製造性が悪化する。   In the case of containing Zn, Sn, Mg, Mn, Fe, Ti, Al, P and B described above, at least one kind selected from Zn, Sn, Mg, Mn, Fe, Ti, Al, P and B The above total is 1.0 mass% or less. When this total exceeds 1.0 mass%, electrical conductivity and bending workability will fall, and manufacturability will deteriorate.

(0.2%耐力)
コネクタ等の所定の電子材料で要求される特性を満たすため、圧延平行方向の0.2%耐力は好ましくは650MPa以上、より好ましくは680MPa以上とする。0.2%耐力の上限値は、特に規制されないが、50%IACS以上の導電率となるには、典型的には850MPa以下である。
0.2%耐力は、引張試験機を用いてJIS Z2241に準拠して測定する。
(0.2% yield strength)
In order to satisfy characteristics required for a predetermined electronic material such as a connector, the 0.2% proof stress in the rolling parallel direction is preferably 650 MPa or more, more preferably 680 MPa or more. The upper limit value of the 0.2% proof stress is not particularly limited, but is typically 850 MPa or less in order to obtain a conductivity of 50% IACS or more.
The 0.2% proof stress is measured according to JIS Z2241 using a tensile tester.

(導電率)
導電率は50%IACS以上とする。これにより、電子材料として有効に用いることができる。導電率はJIS H0505に準拠して4端子法で測定することができる。導電率は、55%IACS以上であることが好ましい。
(conductivity)
The conductivity is 50% IACS or more. Thereby, it can use effectively as an electronic material. The conductivity can be measured by a four-terminal method in accordance with JIS H0505. The conductivity is preferably 55% IACS or more.

(結晶方位の集積度)
圧延平行方向(RD)の結晶方位を表したステレオ三角に対し、ベクトル法による表示で用いられる等面積分割を行って得られたボックス番号1、21、36の結晶方位の集積度をそれぞれS1、S21、S36としたとき、
S=S21/(S1+S36)≧0.5
の関係を満たせば、曲げ加工性が良好となり、また曲げ加工時におけるスプリングバックを有効に抑制することができる。
ここで、S1は<001>方向、S21は<211>方向、S36は<111>方向の集積度に相当する。
理由は必ずしも明らかではなくあくまでも推定であるが、結晶の塑性変形のしやすさを表すシュミット(Schmid)因子が、S21:<211>では0.41であり、S36:<111>方向では0.27であることから、シュミット因子の小さいS36の集積度を減らし、Schmid因子の大きいS21の集積度を大きくすることで、曲げ加工性を向上させることができると考えられる。またS1:<001>はスプリングバックに悪影響をもたらすCube方位{001}<100>の集積に従って増加するため、S1の集積度を小さくすることでスプリングバックを低減させられると考えられる。
この観点から、Sは、好ましくは 1.0以上、さらに好ましくは2.0以上とする。
結晶方位の集積度は、EBSD(Electron Back Scatter Diffraction:電子後方散乱回折)測定により測定することができる。
図1は、銅合金の結晶方位を表すベクトル法(2軸極点図法)の回転角のステレオ投影図表示である。図1において、銅合金板表面の圧延平行方向(RD)を表す点RDは、それが載っているステレオ三角(T1)上の座標(ψ、λ)で示されている。このステレオ三角を、等面積分割(Ruerらによる)で36個に区分したものが図2である。この図2のステレオ三角における結晶方位のうち、番号1で示された領域にあるものが「ボックス番号1の結晶方位」である(古林、「再結晶と材料組織」、第1版、内田老鶴圃、第88〜89頁参照)。また、「ボックス番号1の結晶方位の集積度」は、ボックス番号1に相当する方位で表される極点図上の区画の平均強度を表す。ボックス番号21、36の結晶方位についても同様に規定する。
(Accumulation degree of crystal orientation)
The degree of integration of crystal orientations in box numbers 1, 21, and 36 obtained by performing equal area division used in the display by the vector method for stereo triangles representing the crystal orientation in the rolling parallel direction (RD) is S 1. , when the S 21, S 36,
S = S 21 / (S 1 + S 36 ) ≧ 0.5
If the relationship is satisfied, bending workability is improved, and spring back during bending can be effectively suppressed.
Here, S 1 corresponds to the <001> direction, S 21 corresponds to the <211> direction, and S 36 corresponds to the <111> direction.
The reason is not necessarily clear and is only an estimate, but the Schmid factor representing the ease of plastic deformation of the crystal is 0.41 in S 21 : <211>, and in the S 36 : <111> direction. since it is 0.27, reducing the degree of integration of small S 36 of the Schmid factor, by increasing the degree of integration of a large S 21 of Schmid factor is considered possible to improve the bending workability. Further, since S 1 : <001> increases with the accumulation of the Cube orientation {001} <100> that adversely affects the spring back, it is considered that the spring back can be reduced by reducing the degree of integration of S 1 .
From this viewpoint, S is preferably 1.0 or more, more preferably 2.0 or more.
The degree of integration of crystal orientation can be measured by EBSD (Electron Back Scatter Diffraction) measurement.
FIG. 1 is a stereo projection diagram display of a rotation angle of a vector method (biaxial pole projection method) representing a crystal orientation of a copper alloy. In FIG. 1, a point RD representing the rolling parallel direction (RD) on the surface of the copper alloy sheet is indicated by coordinates (ψ, λ) on the stereo triangle (T1) on which the point is placed. FIG. 2 shows the stereo triangle divided into 36 by equal area division (by Ruer et al.). Among the crystal orientations in the stereo triangle of FIG. 2, those in the region indicated by number 1 are “the crystal orientation of box number 1” (Furubayashi, “Recrystallization and Material Structure”, 1st edition, Ochida Obi Tsuruno, see pages 88-89). The “degree of integration of crystal orientation of box number 1” represents the average intensity of the section on the pole figure represented by the orientation corresponding to box number 1. The crystal orientations of the box numbers 21 and 36 are similarly defined.

(スプリングバック量Δθ)
スプリングバック量Δθが小さいことは、曲げ加工時におけるスプリングバックが有効に抑制されたことの現れである。この観点から、スプリングバック量Δθは5°以下とし、好ましくは 4.0°以下、さらに好ましくは 3.5°以下とする。
スプリングバック量Δθは、JIS H3130(2012)に準拠した90°W曲げ試験において、曲げ試験片における曲げ加工部(3箇所のうち中央部)の実際の曲げ変形角度をθ(°)とするとき、θ−90°の式にて測定することができる。
(Springback amount Δθ)
The small amount of spring back Δθ is an indication that the spring back during bending is effectively suppressed. From this viewpoint, the springback amount Δθ is set to 5 ° or less, preferably 4.0 ° or less, and more preferably 3.5 ° or less.
The spring back amount Δθ is obtained when the actual bending deformation angle of the bent portion (center portion of the three locations) of the bending test piece is θ (°) in a 90 ° W bending test in accordance with JIS H3130 (2012). , Θ−90 ° can be measured.

(曲げ加工部外周表面粗さRa)
材料表面の微小な凹凸が起点となって亀裂へと成長していく現象があるため、曲げ加工部外周表面粗さRaが小さければ、亀裂への成長がしにくく、曲げ加工しやすい。この観点から、曲げ加工部外周表面粗さRaは1.0μm以下とし、好ましくは0.8μm以下、さらに好ましくは0.6μm以下とする。
曲げ加工部外周表面粗さRaは、JIS H3130(2012)に準拠した90°W曲げ試験において、曲げ試験片における曲げ加工部(3箇所のうち中央部)の外周表面につき、JIS B0601(2013)に準拠して測定することができる。
(Roughness Ra of the outer peripheral surface of the bent portion)
Since there is a phenomenon in which minute unevenness on the surface of the material starts to grow into a crack, if the outer peripheral surface roughness Ra of the bent portion is small, it is difficult to grow into a crack and bend easily. From this viewpoint, the outer peripheral surface roughness Ra of the bent portion is 1.0 μm or less, preferably 0.8 μm or less, and more preferably 0.6 μm or less.
The outer peripheral surface roughness Ra of the bent portion is JIS B0601 (2013) with respect to the outer peripheral surface of the bent portion (center portion of the three portions) in the bending test piece in the 90 ° W bending test according to JIS H3130 (2012). It can be measured according to.

(製造方法)
上述したようなCu−Co−Ni−Si系合金は、インゴットを製造する工程、均質化焼鈍工程、熱間圧延工程、溶体化処理工程、時効処理工程、最終冷間圧延工程を順次に行うことにより製造することができる。なお熱間圧延後、必要に応じて面削を行うことが可能である。
(Production method)
For the Cu-Co-Ni-Si alloy as described above, an ingot production process, a homogenization annealing process, a hot rolling process, a solution treatment process, an aging treatment process, and a final cold rolling process are sequentially performed. Can be manufactured. In addition, after hot rolling, it is possible to chamfer as necessary.

具体的には、まず大気溶解炉等を用いて電気銅、Co、Ni、Si等の原料を溶解し、所望の組成の溶湯を得る。そしてこの溶湯をインゴットに鋳造する。その後、熱間圧延を行い、溶体化処理、時効処理(450〜550℃で1〜24時間)、最終冷間圧延(加工度10〜50%)を行う。最終冷間圧延後に歪取焼鈍を行ってもよい。歪取焼鈍は、通常Ar等の不活性雰囲気中で400〜600℃で30〜300秒間にわたって行うことができる。なお、溶体化処理後に時効処理、最終冷間圧延の順に行ってもよい。   Specifically, first, raw materials such as electrolytic copper, Co, Ni, and Si are melted using an air melting furnace or the like to obtain a molten metal having a desired composition. This molten metal is cast into an ingot. Thereafter, hot rolling is performed, and solution treatment, aging treatment (450 to 550 ° C. for 1 to 24 hours), and final cold rolling (working degree 10 to 50%) are performed. Strain relief annealing may be performed after the final cold rolling. The strain relief annealing can be usually performed in an inert atmosphere such as Ar at 400 to 600 ° C. for 30 to 300 seconds. In addition, you may perform in order of an aging treatment and the last cold rolling after solution treatment.

ここで、この製造方法では、インゴット製造の後に、所定の条件の均質化焼鈍、熱間圧延及び溶体化処理を行うことが肝要である。従来技術では、これらの工程の条件が最適化されず、この発明のような特性を得ることができず、特にスプリングバックを有意に抑制し得なかった。
以下に、これらの均質化焼鈍、熱間圧延及び溶体化処理の各工程を中心に詳細に述べる。なおその他の工程は、Cu−Co−Ni−Si系合金の製造工程において通常採用される条件とすることが可能である。
Here, in this manufacturing method, it is important to perform homogenization annealing, hot rolling, and solution treatment under predetermined conditions after ingot manufacture. In the prior art, the conditions of these steps are not optimized, the characteristics as in the present invention cannot be obtained, and in particular, the springback cannot be significantly suppressed.
Below, it describes in detail focusing on each process of these homogenization annealing, hot rolling, and solution treatment. Note that the other steps can be the conditions normally employed in the manufacturing process of the Cu—Co—Ni—Si alloy.

<インゴット製造>
溶解鋳造は一般的には大気溶解炉で行うが、真空中又は不活性ガス雰囲気中で行うことも可能である。電気銅を溶解した後に、Co、Ni、Si等各試料の組成に応じて原料を添加し、撹拌後一定時間保持して、所望の組成の溶湯を得る。そして、この溶湯を1250℃以上に調整した後、インゴットに鋳造する。Ni、Co、Si以外、Crを0.5質量%以下、Zn、Sn、Mg、Mn、Fe、Ti、Al、P及びBから選択される少なくとも一種類以上を合計1.0質量%以下になるように添加することもできる。
<Ingot manufacturing>
Melting and casting is generally performed in an atmospheric melting furnace, but can also be performed in a vacuum or in an inert gas atmosphere. After the electrolytic copper is melted, raw materials are added according to the composition of each sample such as Co, Ni, Si, and held for a certain time after stirring to obtain a molten metal having a desired composition. And after adjusting this molten metal to 1250 degreeC or more, it casts to an ingot. Other than Ni, Co and Si, Cr is 0.5% by mass or less, and at least one selected from Zn, Sn, Mg, Mn, Fe, Ti, Al, P and B is made 1.0% by mass or less in total. It can also be added.

<均質化焼鈍>
均質化焼鈍を適切な温度・時間で行うことで、鋳造時に生じた粗大なCo−Ni−Si粒子を母相に固溶させ、積層欠陥エネルギーを低い状態にすることができる。積層欠陥エネルギーが低い材料では交差すべりが困難なために、動的回復が起こりにくく、転位が蓄積されやすい。続く熱間圧延において、この蓄積された転位を駆動力として動的再結晶が起こり、結晶粒が微細化される。製品において目的の結晶方位の集積度(S21/(S1+S36)≧0.5)を得るためには、この熱間圧延終了時の結晶粒径が小さい方が好ましい。均質化焼鈍の温度が高すぎる場合、材料が溶解する可能性があるほか、動的再結晶が進行しすぎて熱間圧延終了時の結晶粒が粗大になり、製品において目的の結晶方位の集積度が得られない。均質化焼鈍の温度が低すぎる場合、粗大なCo−Ni−Si粒子を母相に固溶させることができず、製品において目的の方位が得られない。具体的には均質化温度は950〜1025℃が好ましく、時間は1〜24hが好ましい。
<Homogenization annealing>
By performing the homogenization annealing at an appropriate temperature and time, coarse Co—Ni—Si particles generated during casting can be dissolved in the matrix and the stacking fault energy can be lowered. A material having a low stacking fault energy is difficult to cross-slip, so that dynamic recovery hardly occurs and dislocations are likely to accumulate. In the subsequent hot rolling, dynamic recrystallization occurs using the accumulated dislocations as a driving force, and crystal grains are refined. In order to obtain the desired degree of crystal orientation (S 21 / (S 1 + S 36 ) ≧ 0.5) in the product, it is preferable that the crystal grain size at the end of this hot rolling is small. If the homogenization annealing temperature is too high, the material may melt, and dynamic recrystallization will proceed too much, resulting in coarse grains at the end of hot rolling, and accumulation of the desired crystal orientation in the product. The degree is not obtained. When the homogenization annealing temperature is too low, coarse Co—Ni—Si particles cannot be dissolved in the parent phase, and the desired orientation cannot be obtained in the product. Specifically, the homogenization temperature is preferably 950 to 1025 ° C., and the time is preferably 1 to 24 hours.

<熱間圧延>
均質化焼鈍終了後のインゴットを炉から抽出して熱間圧延を行う。熱間圧延の最終パスにおける圧延ひずみ速度ε(sec-1)を大きくすることによって、より大きなエネルギーで強加工することができ、動的再結晶により熱間圧延終了時の結晶粒径を小さくすることができる。ここで圧延ひずみ速度εは次式で表される。
式中、n:ロール回転速度(rpm)、r:圧下率、R:ロール半径(mm)、H0:入側板厚(mm)である。ひずみ速度εが小さすぎる場合、熱間圧延終了時の結晶粒の微細化が不十分となり、製品において目的の結晶方位の集積度が得られない。ひずみ速度εが大きすぎる場合は、圧延機の負荷荷重が過大となり現実的ではない。具体的にはひずみ速度は30〜60sec-1、好ましくは40〜60sec-1とする。
また熱間圧延後は速やかに冷却することが望ましい。冷却速度が遅い場合、粗大なCo−Ni−Si粒子が析出してしまう。粗大なCo−Ni−Si粒子が多く存在した場合、これらを溶体化処理にて十分に固溶させることができず、製品において所定の強度が得られない。また、ボックス番号21に相当する方位の集積度が十分に発達せず、曲げ加工性が低下する。この化合物の析出温度域は400℃以上であるため、熱間圧延終了後400℃以下まで急冷(例えば、水冷)することにより、この析出を抑制することができる。具体的には、400℃までの冷却速度は15℃/sec以上、好ましくは20℃/sec以上とする。
<Hot rolling>
The ingot after completion of homogenization annealing is extracted from the furnace and hot rolled. By increasing the rolling strain rate ε (sec -1 ) in the final pass of hot rolling, it is possible to perform strong processing with larger energy and to reduce the crystal grain size at the end of hot rolling by dynamic recrystallization. be able to. Here, the rolling strain rate ε is expressed by the following equation.
In the formula, n: roll rotation speed (rpm), r: rolling reduction, R: roll radius (mm), H 0 : entry side plate thickness (mm). If the strain rate ε is too small, the crystal grains are not sufficiently refined at the end of hot rolling, and the desired degree of crystal orientation cannot be obtained in the product. When the strain rate ε is too large, the load of the rolling mill becomes excessive, which is not realistic. Specifically, the strain rate is 30 to 60 sec −1 , preferably 40 to 60 sec −1 .
Moreover, it is desirable to cool rapidly after hot rolling. When the cooling rate is low, coarse Co—Ni—Si particles are precipitated. When many coarse Co—Ni—Si particles are present, they cannot be sufficiently solid solutionized by the solution treatment, and a predetermined strength cannot be obtained in the product. Further, the degree of integration of the orientation corresponding to the box number 21 is not sufficiently developed, and the bending workability is lowered. Since the precipitation temperature range of this compound is 400 ° C. or higher, this precipitation can be suppressed by rapid cooling (for example, water cooling) to 400 ° C. or lower after completion of hot rolling. Specifically, the cooling rate to 400 ° C. is 15 ° C./sec or more, preferably 20 ° C./sec or more.

<溶体化処理>
溶体化処理の目的は、熱間圧延時に析出したCo−Ni−Si粒子を固溶させ、溶体化処理以降の時効硬化能を高めることである。溶体化処理の温度が低すぎると、これらの析出物を十分に固溶させることができず、所定の強度が得られない。またボックス番号21に相当する方位の集積度が十分に発達せず、曲げ加工性が低下する。溶体化処理の温度が高すぎると、析出物による粒界のピン止め効果がなくなり、結晶粒が粗大化して強度が低下する。またボックス番号1に相当する方位の集積度が大きくなり、曲げ加工時のスプリングバックが大きくなる。溶体化処理の温度としては、溶体化処理前の銅合金素材が、第二相粒子組成の固溶限付近の温度になるまで加熱することが好ましい。具体的には、850〜1000℃で0.5〜10min加熱する。また、第二相粒子の析出や再結晶粒の粗大化を防止する観点から、溶体化処理後の冷却速度はできるだけ高い方が好ましい。具体的には、材料温度が溶体化処理温度から400℃まで低下するときの平均冷却速度を15℃/sec以上とするのが好ましく、50℃/sec以上とするのがより好ましい。
<Solution treatment>
The purpose of the solution treatment is to solidify the Co—Ni—Si particles precipitated during the hot rolling to increase the age hardening ability after the solution treatment. If the temperature of the solution treatment is too low, these precipitates cannot be sufficiently dissolved, and a predetermined strength cannot be obtained. Further, the degree of integration of the orientation corresponding to the box number 21 is not sufficiently developed, and the bending workability is lowered. When the temperature of the solution treatment is too high, the grain boundary pinning effect due to precipitates is lost, and the crystal grains become coarse and the strength decreases. Further, the degree of integration of the orientation corresponding to box number 1 is increased, and the spring back during bending is increased. As the temperature of the solution treatment, it is preferable to heat until the copper alloy material before the solution treatment reaches a temperature near the solid solution limit of the second phase particle composition. Specifically, heating is performed at 850 to 1000 ° C. for 0.5 to 10 minutes. Further, from the viewpoint of preventing the precipitation of the second phase particles and the coarsening of the recrystallized grains, the cooling rate after the solution treatment is preferably as high as possible. Specifically, the average cooling rate when the material temperature decreases from the solution treatment temperature to 400 ° C. is preferably 15 ° C./sec or more, and more preferably 50 ° C./sec or more.

<時効処理>
溶体化処理に引き続いて、適切な大きさの析出物が均一に分布するように時効処理を行うことで、所望の強度および導電率が得られる。時効処理の温度は、450℃より低いと導電率が低くなり、550℃より高いと強度が低下するので、450〜550℃とすることが好ましい。また時効処理の時間は1〜24hが好ましい。時効処理は、酸化被膜の発生を抑制するためにAr、N2、H2等の不活性雰囲気で行うことが好ましい。
<Aging treatment>
Subsequent to the solution treatment, an aging treatment is performed so that precipitates of an appropriate size are uniformly distributed, whereby a desired strength and conductivity can be obtained. When the temperature of the aging treatment is lower than 450 ° C., the conductivity is lowered, and when it is higher than 550 ° C., the strength is lowered, so that the temperature is preferably 450 to 550 ° C. The aging treatment time is preferably 1 to 24 hours. The aging treatment is preferably performed in an inert atmosphere of Ar, N 2 , H 2 or the like in order to suppress the generation of an oxide film.

<最終冷間圧延>
時効処理後に引き続いて最終の冷間圧延を行うことで、転位を導入し強度上昇をはかる。圧延加工度が高いほど高強度の材料が得られるが、圧延加工度が高すぎるとせん断帯の存在する結晶粒の割合が多くなり曲げ加工性が悪化する。そこで、強度と曲げ加工性の良好なバランスを得るために、最終冷間圧延加工度を10〜50%、好ましくは20〜40%とする。
<Final cold rolling>
By performing the final cold rolling after the aging treatment, dislocation is introduced and the strength is increased. The higher the rolling degree, the higher the strength of the material is obtained. However, when the rolling degree is too high, the ratio of crystal grains in which shear bands are present increases and the bending workability deteriorates. Therefore, in order to obtain a good balance between strength and bending workability, the final cold rolling degree is set to 10 to 50%, preferably 20 to 40%.

<歪取焼鈍>
最終の冷間圧延に引き続いて、歪取焼鈍を行うことによって、加工中に材料に生じた残留応力を取り除くことができ、ばね性が向上する。歪取焼鈍の保持温度が高すぎると、また保持時間が長すぎると粗大なCo−Ni−Si粒子が析出して強度低下を招く。保持温度は400〜600℃、好ましくは450〜550℃とする。また保持時間は0.5〜5min、好ましくは1〜3minとする。
<Strain relief annealing>
Subsequent to the final cold rolling, by performing strain relief annealing, residual stress generated in the material during processing can be removed, and the spring property is improved. If the holding temperature for strain relief annealing is too high, or if the holding time is too long, coarse Co—Ni—Si particles are precipitated, leading to a decrease in strength. The holding temperature is 400 to 600 ° C, preferably 450 to 550 ° C. The holding time is 0.5 to 5 minutes, preferably 1 to 3 minutes.

なお、上記各工程の合間に適宜、表面の酸化スケール除去のための研削、研磨、ショットブラスト酸洗等の工程を行なうことができる。   In addition, steps such as grinding, polishing, and shot blast pickling for removing oxide scale on the surface can be appropriately performed between the above steps.

この発明のCu−Co−Ni−Si系合金は種々の伸銅品、例えば板、条、管、棒及び線に加工することができ、更に、このCu−Co−Ni−Si系銅合金は、リードフレーム、コネクタ、ピン、端子、リレー、スイッチ、二次電池用箔材等の電子部品等に使用することができる。特に、コネクタを製造する際のプレス時による高い寸法精度を得ることができる。   The Cu—Co—Ni—Si based alloy of the present invention can be processed into various copper products, such as plates, strips, tubes, bars and wires, and this Cu—Co—Ni—Si based copper alloy It can be used for electronic components such as lead frames, connectors, pins, terminals, relays, switches, and foil materials for secondary batteries. In particular, it is possible to obtain high dimensional accuracy during pressing when manufacturing the connector.

次に、この発明の電子材料用銅合金を試作し、その性能を確認したので以下に説明する。但し、ここでの説明は単なる例示を目的とするものであり、それに限定されることを意図するものではない。   Next, a copper alloy for electronic materials according to the present invention was prototyped and its performance was confirmed, which will be described below. However, the description here is for illustrative purposes only and is not intended to be limiting.

表1に示す成分組成の銅合金を、高周波溶解炉を用いて1300℃で溶製し、厚さ30mmのインゴットに鋳造した。次いで、このインゴットを表1に示す条件で均質化した後、表1に記載の圧延ひずみ速度で板厚10mmまで熱間圧延し、熱間圧延終了温度を900℃とした。熱間圧延終了後は材料温度が400℃となるまで表1に示す平均冷却速度で水冷却し、その後は空気中に放置して冷却した。そして、表面のスケール除去のため厚さ9mmまで面削を施した後、冷間圧延を行い、表1に示す条件で溶体化処理を実施した後、500℃で12hの時効処理を行い、最終冷間圧延により厚さ0.1mmの板とした。最後に、500℃で1分間の歪取焼鈍を行った。
このようにして得られた各試験片に対し、以下の特性評価を行った。その結果を表2に示す。
Copper alloys having the component compositions shown in Table 1 were melted at 1300 ° C. using a high-frequency melting furnace, and cast into 30 mm thick ingots. Next, the ingot was homogenized under the conditions shown in Table 1, and then hot-rolled to a sheet thickness of 10 mm at the rolling strain rate shown in Table 1, and the hot rolling end temperature was set to 900 ° C. After the hot rolling was completed, water cooling was performed at an average cooling rate shown in Table 1 until the material temperature reached 400 ° C., and then the mixture was left in the air for cooling. Then, after surface chamfering to a thickness of 9 mm for removing the scale of the surface, cold rolling is performed, and a solution treatment is performed under the conditions shown in Table 1, followed by an aging treatment at 500 ° C. for 12 hours, and finally A plate having a thickness of 0.1 mm was formed by cold rolling. Finally, strain relief annealing was performed at 500 ° C. for 1 minute.
The following characteristics evaluation was performed on each test piece thus obtained. The results are shown in Table 2.

<強度(0.2%耐力)>
各試験片に対し、JIS Z2241に基づいて圧延平行方向及び圧延直角方向の各方向の引張り試験を行って、0.2%耐力(YS:MPa)を測定し、また、それらの0.2%耐力の差を算出した。
<導電率>
導電率(EC;%IACS)については、JIS H0505に準拠し、ダブルブリッジによる体積抵抗率測定により求めた。
<結晶方位の集積度>
結晶方位の集積度はEBSD(Electron Back Scatter Diffraction:電子後方散乱回折)測定を用いて評価した。まず試験片を20mm四方に切り出し、圧延面表面をリン酸67%+硫酸10%溶液中で電圧15Vで60sec電解研磨して、組織を現出させた。測定には日本電子株式会社製JXA8500Fを用い、試験片の圧延面法線方向(ND:Normal Direction)を入射電子線に対して70°傾け、圧延平行方向(RD:Rolling Direction)を試料ホルダーの傾斜方向に合わせて設置し、その傾斜面にフォーカスした電子線を照射した。加速電圧:15.0kV、照射電流量:5×10-8A、ワーキングディスタンス:15mmとし、観察視野500μm×500μm(ステップ幅1μm)でn=5で測定を行い、その平均値を算出して測定値とした。測定プログラムはTSL OIM data collection、解析プログラムはTSL OIM Analysisを用いた。圧延平行方向(RD)から逆極点図を撮影した場合に得られるステレオ三角に対し、ベクトル法による表示で用いられる等面積分割を行って得られたボックス番号1、21、36の結晶方位の集積度をそれぞれS1、S21、S36とし、S=S21/(S1+S36)の値を評価した。
<曲げ加工性(曲げ加工後の表面平均粗さRa)>
JIS−H3130(2012)に従いW曲げ試験をGoodway(曲げ軸が圧延方向と直交)、R/t=1.0(t=0.1mm)で実施し、この試験片の曲げ部の外周表面を観察した。観察方法はレーザーテック社製コンフォーカル顕微鏡HD100を用いて曲げ部の外周表面を撮影し、付属のソフトウェアを用いて平均粗さRa(JIS−B0601:2013に準拠)を測定し、比較した。なお、曲げ加工前の試料表面はコンフォーカル顕微鏡を用いて観察したところ凹凸は確認できず、平均粗さRaはいずれも0.2μm以下であった。
曲げ加工後の表面平均粗さRaが1.0μm以下の場合を○、Raが1.0μmを超える場合を×と評価した。
<スプリングバック角度Δθ>
JIS H3130(2012)に準拠した90°W曲げ加工を行った試験片について、KEYENCE社製マイクロスコープVW−6000を用いて曲げ断面を観察し曲げ角度θ(deg)を測定した。この曲げ角度と、金型で負荷した時の曲げ角度(=90°)の差θ−90°をスプリングバック角度Δθ(deg)とした。
<Strength (0.2% yield strength)>
Each test piece was subjected to a tensile test in each direction in the rolling parallel direction and the direction perpendicular to the rolling in accordance with JIS Z2241, and 0.2% proof stress (YS: MPa) was measured. The difference in yield strength was calculated.
<Conductivity>
The electrical conductivity (EC;% IACS) was determined by volume resistivity measurement using a double bridge according to JIS H0505.
<Accumulation degree of crystal orientation>
The degree of integration of crystal orientation was evaluated using EBSD (Electron Back Scatter Diffraction) measurement. First, a test piece was cut into a 20 mm square, and the rolled surface was electropolished in a 67% phosphoric acid + 10% sulfuric acid solution at a voltage of 15 V for 60 seconds to reveal a structure. JXA8500F manufactured by JEOL Ltd. was used for the measurement, the rolling surface normal direction (ND: Normal Direction) of the test piece was tilted by 70 ° with respect to the incident electron beam, and the rolling parallel direction (RD: Rolling Direction) was set on the sample holder. It was installed according to the inclination direction, and the focused electron beam was irradiated onto the inclined surface. Acceleration voltage: 15.0 kV, irradiation current amount: 5 × 10 −8 A, working distance: 15 mm, measurement is performed with an observation field of view of 500 μm × 500 μm (step width 1 μm) and n = 5, and the average value is calculated. The measured value was used. The measurement program was TSL OIM data collection, and the analysis program was TSL OIM Analysis. Accumulation of crystal orientations of box numbers 1, 21, and 36 obtained by performing equal area division used for display by the vector method on a stereo triangle obtained when a reverse pole figure is taken from the rolling parallel direction (RD) The degrees were S 1 , S 21 and S 36 , respectively, and the value of S = S 21 / (S 1 + S 36 ) was evaluated.
<Bending workability (average surface roughness Ra after bending)>
In accordance with JIS-H3130 (2012), a W-bend test was performed with Goodway (bending axis orthogonal to the rolling direction), R / t = 1.0 (t = 0.1 mm), and the outer peripheral surface of the bent portion of this test piece was Observed. As an observation method, the outer peripheral surface of the bent part was photographed using a laser tech confocal microscope HD100, and the average roughness Ra (conforming to JIS-B0601: 2013) was measured using the attached software and compared. In addition, when the sample surface before a bending process was observed using the confocal microscope, the unevenness | corrugation was not able to be confirmed but all average roughness Ra was 0.2 micrometer or less.
The case where the surface average roughness Ra after bending was 1.0 μm or less was evaluated as “◯”, and the case where Ra exceeded 1.0 μm was evaluated as “×”.
<Springback angle Δθ>
About the test piece which performed 90 degreeW bending process based on JISH3130 (2012), the bending cross section was observed using the microscope VW-6000 by KEYENCE, and bending angle (theta) (deg) was measured. The difference θ−90 ° between this bending angle and the bending angle (= 90 °) when loaded with a mold was taken as the spring back angle Δθ (deg).

表1、2に示すように、発明例1〜19はいずれも、所定の条件の均質化焼鈍、熱間圧延及び溶体化処理等を行ったことにより、圧延平行方向の0.2%耐力が650MPa以上、導電率が50%IACS以上、さらに、S=S21/(S1+S36)≧0.5となった。その結果、良好な曲げ加工部外周表面粗さRa、スプリングバック角度Δθを得ることができた。 As shown in Tables 1 and 2, all of Inventive Examples 1 to 19 have 0.2% proof stress in the rolling parallel direction by performing homogenization annealing, hot rolling, solution treatment, and the like under predetermined conditions. 650 MPa or more, electrical conductivity of 50% IACS or more, and S = S 21 / (S 1 + S 36 ) ≧ 0.5. As a result, it was possible to obtain a favorable bent portion outer peripheral surface roughness Ra and a springback angle Δθ.

比較例1は、熱間圧延のひずみ速度が小さすぎるため、S=S21/(S1+S36)が小さくなり、曲げ加工部外周表面粗さRa及びスプリングバック角度Δθが悪化した。
比較例2は、熱間圧延のひずみ速度が大きすぎるため、熱間圧延に割れが生じてしまい、製品を得ることができなかった。
比較例3は、均質化処理における温度が低すぎたことにより、粗大なCo−Ni−Si粒子を母相に固溶させることができず、S=S21/(S1+S36)が小さくなり0.2%耐力、曲げ加工部外周表面粗さRa及びスプリングバック角度Δθが悪化した。
比較例4は、均質化処理における温度が高すぎたことにより、熱間圧延後の結晶粒が粗大になり、S=S21/(S1+S36)が小さくなり、曲げ加工部外周表面粗さRa及びスプリングバック角度Δθが悪化した。
比較例5は、熱間処理後の冷却速度が遅すぎたため、粗大なCo−Ni−Si粒子が析出してしまい、S=S21/(S1+S36)が小さくなって、0.2%耐力及び曲げ加工部外周表面粗さRaが悪化した。
比較例6は、溶体化処理における温度が高すぎたため、0.2%耐力が悪化し、またS=S21/(S1+S36)が小さくなり、スプリングバック角度Δθが悪化した。
比較例7は、溶体化処理における温度が低すぎたため、0.2%耐力が悪化し、またS=S21/(S1+S36)が小さくなり、曲げ加工部外周表面粗さRaが悪化した。
比較例8、9は、Ni/Coが所定の範囲から外れたことにより、0.2%耐力ないし導電率が悪化した。
比較例10〜13は、Co又はNi量が所定の範囲から外れたことにより、0.2%耐力、導電率ないし曲げ加工部外周表面粗さRaが悪化した。
比較例14、15は、質量割合で(Ni+Co)/Siが所定の範囲から外れたことにより0.2%耐力又は導電率が低くなった。
比較例16は、Cu、Co、Ni、Si以外の添加元素の質量が大きすぎたことにより、導電率及び曲げ加工部外周表面粗さRaが悪化した。
In Comparative Example 1, since the strain rate of hot rolling was too small, S = S 21 / (S 1 + S 36 ) was reduced, and the outer peripheral surface roughness Ra and the springback angle Δθ were deteriorated.
In Comparative Example 2, since the strain rate of hot rolling was too high, cracking occurred in hot rolling, and a product could not be obtained.
In Comparative Example 3, since the temperature in the homogenization treatment is too low, coarse Co—Ni—Si particles cannot be dissolved in the matrix, and S = S 21 / (S 1 + S 36 ) is small. The 0.2% proof stress, the bent portion outer peripheral surface roughness Ra, and the spring back angle Δθ deteriorated.
In Comparative Example 4, since the temperature in the homogenization treatment is too high, the crystal grains after hot rolling become coarse, S = S 21 / (S 1 + S 36 ) becomes small, and the outer peripheral surface roughness of the bent portion is reduced. Ra and springback angle Δθ deteriorated.
In Comparative Example 5, since the cooling rate after the hot treatment was too slow, coarse Co—Ni—Si particles were precipitated, and S = S 21 / (S 1 + S 36 ) was reduced to 0.2. % Proof stress and bending portion outer peripheral surface roughness Ra deteriorated.
In Comparative Example 6, since the temperature in the solution treatment was too high, the 0.2% yield strength deteriorated, S = S 21 / (S 1 + S 36 ) decreased, and the springback angle Δθ deteriorated.
In Comparative Example 7, since the temperature in the solution treatment was too low, the 0.2% yield strength was deteriorated, S = S 21 / (S 1 + S 36 ) was reduced, and the outer peripheral surface roughness Ra of the bent portion was deteriorated. did.
In Comparative Examples 8 and 9, 0.2% proof stress or conductivity deteriorated due to Ni / Co being out of the predetermined range.
In Comparative Examples 10 to 13, when the amount of Co or Ni deviated from the predetermined range, the 0.2% yield strength, the conductivity, or the outer peripheral surface roughness Ra of the bent portion was deteriorated.
In Comparative Examples 14 and 15, (Ni + Co) / Si by mass ratio was out of the predetermined range, and thus the 0.2% proof stress or conductivity was low.
In Comparative Example 16, the conductivity and the outer peripheral surface roughness Ra of the bent portion were deteriorated because the mass of additive elements other than Cu, Co, Ni, and Si was too large.

以上より、この発明によれば、電子材料に用いて好適な0.2%耐力、導電率及び曲げ加工性を有するとともに、曲げ加工時におけるスプリングバックを抑制した信頼性の高い電子材料用銅合金が得られることが解かった。   As described above, according to the present invention, a highly reliable copper alloy for electronic materials having 0.2% proof stress, electrical conductivity, and bending workability suitable for use in electronic materials, and suppressing springback during bending work. Was found to be obtained.

Claims (6)

0.5〜3.0質量%のCo、0.1〜1.0質量%のNiを含有し、Coに対するNiの質量比(Ni/Co)が0.1〜1.0であり、さらにSiを質量割合で(Ni+Co)/Siが3〜5となるように含有し、残部が銅および不可避的不純物からなり、EBSD(Electron Back Scatter Diffraction:電子後方散乱回折)測定から得られる圧延平行方向(RD)の結晶方位を表したステレオ三角に対し、ベクトル法による表示で用いられる等面積分割を行って得られたボックス番号1、21、36の結晶方位の集積度をそれぞれS1、S21、S36としたとき、
S=S21/(S1+S36)≧0.5
の関係を満たす電子材料用銅合金。
0.5 to 3.0 mass% Co, 0.1 to 1.0 mass% Ni, and the mass ratio of Ni to Co (Ni / Co) is 0.1 to 1.0, The rolling parallel direction obtained from EBSD (Electron Back Scatter Diffraction) measurement, containing Si in a mass ratio such that (Ni + Co) / Si is 3 to 5, with the balance being copper and inevitable impurities. The degree of integration of crystal orientations of box numbers 1 , 21 , and 36 obtained by performing equal area division used in the display by the vector method on the stereo triangle representing the crystal orientation of (RD) is S 1 and S 21 , respectively. , S 36 ,
S = S 21 / (S 1 + S 36 ) ≧ 0.5
Copper alloy for electronic materials that satisfies this relationship.
JIS H3130(2012)に準拠した90°W曲げ試験において、曲げ試験片における曲げ加工部(3箇所のうち中央部)の実際の曲げ変形角度をθ(°)とするとき、スプリングバック量Δθを示すθ−90°の値が5°以下である請求項1に記載の電子材料用銅合金。   In the 90 ° W bending test in accordance with JIS H3130 (2012), when the actual bending deformation angle of the bent portion (center portion of the three locations) in the bending test piece is θ (°), the springback amount Δθ is The copper alloy for electronic materials according to claim 1, wherein the indicated value of θ-90 ° is 5 ° or less. JIS H3130(2012)に準拠した90°W曲げ試験において、曲げ試験片における曲げ加工部(3箇所のうち中央部)の外周表面におけるJIS B0601(2013)に準拠した表面平均粗さRaが1.0μm以下である請求項1または2に記載の電子材料用銅合金。   In the 90 ° W bending test in accordance with JIS H3130 (2012), the surface average roughness Ra in accordance with JIS B0601 (2013) on the outer peripheral surface of the bent portion (center portion of the three locations) in the bending test piece is 1. The copper alloy for electronic materials according to claim 1 or 2, wherein the copper alloy is 0 µm or less. さらにCrを0.5質量%以下で含有する請求項1〜3のいずれか一項に記載の電子材料用銅合金。   Furthermore, the copper alloy for electronic materials as described in any one of Claims 1-3 which contains Cr 0.5 mass% or less. さらにZn及びSnをそれぞれ0.5質量%以下、Mg、Mn、Fe、Ti、Al、P及びBをそれぞれ最大0.2質量%以下で含有し、それらのZn、Sn、Mg、Mn、Fe、Ti、Al、P及びBから選択される少なくとも一種類以上の合計が1.0質量%以下である請求項1〜4のいずれか一項に記載の電子材料用銅合金。   Further, Zn and Sn are each contained in an amount of 0.5% by mass or less, and Mg, Mn, Fe, Ti, Al, P and B are respectively contained in a maximum of 0.2% by mass or less, and their Zn, Sn, Mg, Mn, Fe The total of at least 1 or more types selected from Ti, Al, P, and B is 1.0 mass% or less, The copper alloy for electronic materials as described in any one of Claims 1-4. 請求項1〜5のいずれか一項に記載の電子材料用銅合金を備えた電子部品。   The electronic component provided with the copper alloy for electronic materials as described in any one of Claims 1-5.
JP2017059709A 2017-03-24 2017-03-24 Copper alloy for electronic materials Active JP6618945B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017059709A JP6618945B2 (en) 2017-03-24 2017-03-24 Copper alloy for electronic materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017059709A JP6618945B2 (en) 2017-03-24 2017-03-24 Copper alloy for electronic materials

Publications (2)

Publication Number Publication Date
JP2018162489A true JP2018162489A (en) 2018-10-18
JP6618945B2 JP6618945B2 (en) 2019-12-11

Family

ID=63860992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017059709A Active JP6618945B2 (en) 2017-03-24 2017-03-24 Copper alloy for electronic materials

Country Status (1)

Country Link
JP (1) JP6618945B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019077890A (en) * 2017-10-19 2019-05-23 Jx金属株式会社 Copper alloy for electronic material
JP2020029593A (en) * 2018-08-22 2020-02-27 Jx金属株式会社 Copper alloy for electronic material

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011068135A1 (en) * 2009-12-02 2011-06-09 古河電気工業株式会社 Copper alloy sheet and process for producing same
WO2011068134A1 (en) * 2009-12-02 2011-06-09 古河電気工業株式会社 Copper alloy sheet material having low young's modulus and method for producing same
JP2014080677A (en) * 2012-09-28 2014-05-08 Jx Nippon Mining & Metals Corp Copper alloy sheet having excellent heat dissipation and repeated bendability
JP2015036438A (en) * 2013-08-13 2015-02-23 Jx日鉱日石金属株式会社 Copper alloy sheet having excellent conductivity and bending deflection coefficient
JP2015048519A (en) * 2013-09-03 2015-03-16 Jx日鉱日石金属株式会社 Copper alloy sheet excellent in conductivity and bending deflection coefficient
WO2015099097A1 (en) * 2013-12-27 2015-07-02 古河電気工業株式会社 Copper alloy sheet material, connector, and production method for copper alloy sheet material
JP2016199808A (en) * 2016-07-12 2016-12-01 Jx金属株式会社 Cu-Co-Si-BASED ALLOY AND PRODUCTION METHOD THEREFOR

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011068135A1 (en) * 2009-12-02 2011-06-09 古河電気工業株式会社 Copper alloy sheet and process for producing same
WO2011068134A1 (en) * 2009-12-02 2011-06-09 古河電気工業株式会社 Copper alloy sheet material having low young's modulus and method for producing same
JP2014080677A (en) * 2012-09-28 2014-05-08 Jx Nippon Mining & Metals Corp Copper alloy sheet having excellent heat dissipation and repeated bendability
JP2015036438A (en) * 2013-08-13 2015-02-23 Jx日鉱日石金属株式会社 Copper alloy sheet having excellent conductivity and bending deflection coefficient
JP2015048519A (en) * 2013-09-03 2015-03-16 Jx日鉱日石金属株式会社 Copper alloy sheet excellent in conductivity and bending deflection coefficient
WO2015099097A1 (en) * 2013-12-27 2015-07-02 古河電気工業株式会社 Copper alloy sheet material, connector, and production method for copper alloy sheet material
JP2016199808A (en) * 2016-07-12 2016-12-01 Jx金属株式会社 Cu-Co-Si-BASED ALLOY AND PRODUCTION METHOD THEREFOR

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019077890A (en) * 2017-10-19 2019-05-23 Jx金属株式会社 Copper alloy for electronic material
JP2020029593A (en) * 2018-08-22 2020-02-27 Jx金属株式会社 Copper alloy for electronic material

Also Published As

Publication number Publication date
JP6618945B2 (en) 2019-12-11

Similar Documents

Publication Publication Date Title
JP4006460B1 (en) Copper alloy excellent in high strength, high conductivity and bending workability, and method for producing the same
JP4596493B2 (en) Cu-Ni-Si alloy used for conductive spring material
TWI513833B (en) Copper alloy for electronic device, method for manufacturing copper alloy for electronic device, wrought copper alloy material for electronic device, and part for electronic device
JP6306632B2 (en) Copper alloy for electronic materials
JP2011214088A (en) Cu-Ni-Si-Co COPPER ALLOY FOR ELECTRONIC MATERIAL AND PROCESS FOR PRODUCING SAME
JP2010126783A (en) Copper alloy sheet or strip for electronic material
JP2008081762A (en) Cu-Cr-BASED COPPER ALLOY FOR ELECTRONIC MATERIAL
US10157694B2 (en) Copper alloy for electronic/electric device, copper alloy plastic working material for electronic/electric device, and component and terminal for electronic/electric device
US20130180630A1 (en) Cu-Co-Si-BASED ALLOY FOR ELECTRONIC MATERIAL AND METHOD OF MANUFACTURING THE SAME
JP3962751B2 (en) Copper alloy sheet for electric and electronic parts with bending workability
JP6222885B2 (en) Cu-Ni-Si-Co based copper alloy for electronic materials
JP6494681B2 (en) Copper alloy and electronic parts for electronic materials
JP6618945B2 (en) Copper alloy for electronic materials
JP6730784B2 (en) Cu-Ni-Co-Si alloy for electronic parts
JP2016176106A (en) ELECTRONIC COMPONENT Cu-Ni-Co-Si ALLOY
US10358697B2 (en) Cu—Co—Ni—Si alloy for electronic components
JP6246174B2 (en) Cu-Co-Ni-Si alloy for electronic parts
JP7046032B2 (en) Copper alloys for electronic materials, manufacturing methods and electronic parts for copper alloys for electronic materials
JP2019077889A (en) Copper alloy for electronic material
JP6671416B2 (en) Copper alloy for electronic materials
JP6671434B2 (en) Copper alloy for electronic materials
JP6370692B2 (en) Cu-Zr-based copper alloy plate and manufacturing method thereof
JP2016183418A (en) Cu-Ni-Si-Co-BASED COPPER ALLOY FOR ELECTRONIC MATERIAL
JP6310004B2 (en) Cu-Co-Ni-Si alloy for electronic parts
JP2019077890A (en) Copper alloy for electronic material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190305

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190422

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190521

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191029

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191113

R150 Certificate of patent or registration of utility model

Ref document number: 6618945

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250