JP2018073680A - Accelerator - Google Patents

Accelerator Download PDF

Info

Publication number
JP2018073680A
JP2018073680A JP2016213670A JP2016213670A JP2018073680A JP 2018073680 A JP2018073680 A JP 2018073680A JP 2016213670 A JP2016213670 A JP 2016213670A JP 2016213670 A JP2016213670 A JP 2016213670A JP 2018073680 A JP2018073680 A JP 2018073680A
Authority
JP
Japan
Prior art keywords
voltage
circuit
series
accelerator
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016213670A
Other languages
Japanese (ja)
Other versions
JP6793941B2 (en
Inventor
雄二 古久保
Yuji Kokubo
雄二 古久保
良雄 堀井
Yoshio Horii
良雄 堀井
木下 大日郎
Daijiro Kinoshita
大日郎 木下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fukushima Sic Applied Engineering Inc
Original Assignee
Fukushima Sic Applied Engineering Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fukushima Sic Applied Engineering Inc filed Critical Fukushima Sic Applied Engineering Inc
Priority to JP2016213670A priority Critical patent/JP6793941B2/en
Publication of JP2018073680A publication Critical patent/JP2018073680A/en
Application granted granted Critical
Publication of JP6793941B2 publication Critical patent/JP6793941B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Particle Accelerators (AREA)
  • Dc-Dc Converters (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an accelerator capable of ensuring the uniformity of a voltage gradient in an accelerating tube even when a high-current ion beam is accelerated and thereby capable of maintaining an ion beam diameter, and a neutron generator including the accelerator.SOLUTION: An accelerator includes: a charged particle source; an accelerating tube which includes a plurality of electrodes and in which a charged particle emitted from the charged particle source is accelerated; and a voltage supply mechanism supplying a DC voltage to each of the electrodes. The voltage supply mechanism includes a plurality of stages of series resonant circuits connected in series therein, each of the series resonant circuits including an SiC-MOSFET. The output voltages of the plurality of stages of series resonant circuits are separately supplied to the respective electrodes.SELECTED DRAWING: Figure 2

Description

本発明は、荷電粒子を加速して荷電粒子ビームを得る加速器に関するものである。   The present invention relates to an accelerator that obtains a charged particle beam by accelerating charged particles.

例えば中性子ビームを得るために特許文献1に示されているような加速器により大電流のイオンビームを引き出し、ベリリウムのターゲットに対して照射することが行われている。   For example, in order to obtain a neutron beam, an ion beam having a large current is extracted by an accelerator as shown in Patent Document 1 and irradiated to a beryllium target.

このような加速器100Aは図5に示すようにイオン源1Aと、イオンを加速するための電界が内部に形成される筒状の加速管2Aとを備えている。前記加速管2Aは、リング状の導電体で形成された電極21Aと絶縁体2IAとが軸方向に対して複数交互に並べて設けられたものであり、各電極21Aに対して電圧供給機構3Eによりそれぞれ所定の電圧が印加される。   As shown in FIG. 5, the accelerator 100A includes an ion source 1A and a cylindrical acceleration tube 2A in which an electric field for accelerating ions is formed. The acceleration tube 2A includes a plurality of electrodes 21A and insulators 2IA formed of a ring-shaped conductor, which are alternately arranged in the axial direction. The voltage supply mechanism 3E applies each electrode 21A to the acceleration tube 2A. A predetermined voltage is applied to each.

イオンビームが加速管2A内で内壁面にぶつからないように加速するためには前記加速管2Aのイオン源1Aと接する基端側からイオンビームが射出される先端側に至るまでの電圧勾配が一定となるように電界を形成する必要がある。このため、図5に示すように前記電圧供給機構3Eは、前記加速管2Aの先端の電極21Aに対して高電圧を発生させるためにコッククロフト電源3Aと、前記コッククロフト電源3Aにより印加される電圧を分圧するための分圧回路3Bとを備えている。   In order to accelerate the ion beam so that it does not collide with the inner wall surface in the acceleration tube 2A, the voltage gradient from the base end side in contact with the ion source 1A of the acceleration tube 2A to the tip side where the ion beam is emitted is constant. It is necessary to form an electric field so that For this reason, as shown in FIG. 5, the voltage supply mechanism 3E uses a cockcroft power supply 3A and a voltage applied by the cockcroft power supply 3A to generate a high voltage for the electrode 21A at the tip of the acceleration tube 2A. And a voltage dividing circuit 3B for voltage division.

前記分圧回路3Bは例えば図5及び図6に示されるように各電極間にそれぞれ接続される複数の分圧抵抗から構成されている。   For example, as shown in FIGS. 5 and 6, the voltage dividing circuit 3B includes a plurality of voltage dividing resistors connected between the electrodes.

特開2015−53187号公報Japanese Patent Laying-Open No. 2015-53187

しかしながら、上述したような分圧回路3Bにより各電極21Aへ電圧を印加すると、電極21A部分のインピーダンスを小さくしにくいため、ビーム電流が数ミリAを超えるような大きな電流値を持った場合、電圧勾配の均一性が崩れてしまうことがある。そうすると、所定のイオンビーム径を維持することが難しくなってしまう。   However, if a voltage is applied to each electrode 21A by the voltage dividing circuit 3B as described above, it is difficult to reduce the impedance of the electrode 21A portion. Therefore, if the beam current has a large current value exceeding several milliamperes, the voltage The uniformity of the gradient may be lost. Then, it becomes difficult to maintain a predetermined ion beam diameter.

かといってインピーダンスを小さくするために分圧回路3Bを用いずに図7に示されるようにコッククロフト電源3Aから定格出力取出端子RT以外に中間電圧を出力するための中間出力端子ITを設けて各電極にそれぞれ異なる電圧を印加しようとすると、今度はコッククロフト電源3A自体の昇圧整流動作が不安定になってしまい、加速器100A自体の動作に悪影響を与えてしまう。   However, in order to reduce the impedance, an intermediate output terminal IT for outputting an intermediate voltage other than the rated output extraction terminal RT is provided from the cockcroft power supply 3A as shown in FIG. 7 without using the voltage dividing circuit 3B. If different voltages are applied to the electrodes, the step-up rectification operation of the cockcroft power supply 3A itself becomes unstable and adversely affects the operation of the accelerator 100A itself.

このようなことから従来は加速管の各電極21Aにそれぞれ異なる電圧を印加し、均一な電圧勾配を実現するために余分なハードウェアである分圧回路3Bを使わざるを得なかった。   For this reason, conventionally, a different voltage must be applied to each electrode 21A of the accelerating tube, and a voltage dividing circuit 3B, which is extra hardware, has to be used to realize a uniform voltage gradient.

本発明は上述したような問題を鑑みてなされたものであり、大電流イオンビームを加速する場合でも加速管内の電圧勾配の均一性を確保でき、イオンビーム径を維持できる加速器、及び、この加速器を用いた中性子発生装置を提供することを目的とする。   The present invention has been made in view of the above-described problems. An accelerator capable of ensuring the uniformity of the voltage gradient in the acceleration tube and maintaining the ion beam diameter even when accelerating a large current ion beam, and the accelerator An object of the present invention is to provide a neutron generating apparatus using a neutron.

すなわち、本発明に係る加速器は、荷電粒子源と、複数の電極を具備し、前記荷電粒子源から射出された荷電粒子が加速される加速管と前記複数の電極にそれぞれ直流電圧を供給する電圧供給機構と、を備え、前記電圧供給機構が、SiC−MOSFETを具備する直列共振回路が複数段直列に接続されて構成されており、複数段の直列共振回路の出力電圧が前記複数の電極にそれぞれ別々に供給されていることを特徴とする。   That is, the accelerator according to the present invention includes a charged particle source and a plurality of electrodes, and supplies a DC voltage to each of the acceleration tube and the plurality of electrodes in which charged particles emitted from the charged particle source are accelerated. A supply mechanism, wherein the voltage supply mechanism is configured by connecting a plurality of series resonant circuits including SiC-MOSFETs in series, and an output voltage of the plurality of series resonant circuits is applied to the plurality of electrodes. It is characterized by being supplied separately.

このようなものであれば、素子耐圧の大きなSiC−MOSFETを適用することにより1つの直列共振回路で昇圧できる電圧を、Si−MOSFETを適用した従来品よりも大きくでき、少ない直列数でコッククロフト回路に比較してはるかに小さな製造コストで加速器に必要な直流高電圧を得ることができる。また、直列共振回路の段数ごとに印加できる電圧を比例させて変化させることができ、従来のように分圧抵抗を用いた分圧回路を設ける必要が無い。このため、小さなインピーダンスで前記加速管の各電極に対して適正な電圧を供給でき、前記加速管内に均一な電圧勾配を実現して高電流の荷電粒子ビームを引き出しても前記加速管内面に荷電粒子が衝突しないようにでき、所望のビーム径を確保できる。   If this is the case, the voltage that can be boosted by one series resonant circuit by applying a SiC-MOSFET having a high element breakdown voltage can be made larger than that of a conventional product using a Si-MOSFET, and the cockcroft circuit can be reduced in number of series. Compared to the above, the DC high voltage required for the accelerator can be obtained at a much lower manufacturing cost. Further, the voltage that can be applied for each stage of the series resonant circuit can be changed in proportion, and there is no need to provide a voltage dividing circuit using a voltage dividing resistor as in the prior art. For this reason, an appropriate voltage can be supplied to each electrode of the accelerating tube with a small impedance, and even if a high-current charged particle beam is extracted by realizing a uniform voltage gradient in the accelerating tube, the inner surface of the accelerating tube is charged. Particles can be prevented from colliding and a desired beam diameter can be secured.

形成したい電界や加速管の特性に合わせて適切な電圧を各電極に対して印加できるようにするには、任意の段の直列共振回路の出力電圧が前記電極のいずれかに供給可能に構成されていればよい。   In order to be able to apply an appropriate voltage to each electrode according to the electric field to be formed and the characteristics of the accelerating tube, the output voltage of the series resonance circuit at any stage is configured to be supplied to any one of the electrodes. It only has to be.

簡単な回路構成で例えば各段の昇圧を実現するには、前記直列共振回路が、2つのSiC−MOSFETからなるハーフブリッジ回路、及び、共振回路を具備する直列駆動回路と、前記直列駆動回路に接続された送電コイルと、前記送電コイルから受電する受電コイルと、前記受電コイルに接続された整流回路と、を備えたものであればよい。   For example, in order to realize boosting at each stage with a simple circuit configuration, the series resonant circuit includes a half bridge circuit composed of two SiC-MOSFETs, a series drive circuit including the resonant circuit, and the series drive circuit. What is necessary is just to be provided with the connected power transmission coil, the power reception coil which receives electric power from the said power transmission coil, and the rectifier circuit connected to the said power reception coil.

一段当たりの昇圧量を大きくし、前記直列共振回路が直列接続されている段数を低減できるようにするには、前記整流回路が、コッククロフト回路のような昇圧型の整流回路であればよい。   In order to increase the boost amount per stage and reduce the number of stages where the series resonant circuits are connected in series, the rectifier circuit may be a boost type rectifier circuit such as a cockcroft circuit.

このように本発明に係る加速器によれば、複数段直列に接続された直列共振回路により、段数に比例した電圧を出力することができ、分圧抵抗を用いる必要がないので低インピーダンスで各電極に所望の電圧を印加できる。したがって、大電流の荷電粒子ビームが引き出される場合でも加速管内に均一な電圧勾配を実現でき、加速管内面への荷電粒子の衝突をなくし、所望のビーム径を得ることができる。   As described above, according to the accelerator according to the present invention, a voltage proportional to the number of stages can be output by a series resonant circuit connected in series in a plurality of stages, and it is not necessary to use a voltage dividing resistor. A desired voltage can be applied. Therefore, even when a charged particle beam with a large current is drawn out, a uniform voltage gradient can be realized in the accelerating tube, and collision of charged particles on the inner surface of the accelerating tube can be eliminated, and a desired beam diameter can be obtained.

本発明の第1実施形態に係る加速器を示す模式図。The schematic diagram which shows the accelerator which concerns on 1st Embodiment of this invention. 第1実施形態の複数段直列に接続された直列共振回路を示す回路構成図。The circuit block diagram which shows the series resonance circuit connected in multiple steps of series of 1st Embodiment. 第1実施形態の直列共振回路の詳細について示す模式図。The schematic diagram shown about the detail of the series resonance circuit of 1st Embodiment. 本発明の第2実施形態に係る加速器の複数段直列に接続された直列共振回路を示す回路構成図。The circuit block diagram which shows the series resonance circuit connected in multiple stages of the accelerator which concerns on 2nd Embodiment of this invention. 従来の加速器を示す模式図。The schematic diagram which shows the conventional accelerator. 従来の加速器に用いられる分圧回路の一例を示す回路図。The circuit diagram which shows an example of the voltage dividing circuit used for the conventional accelerator. 途中電圧を出力する端子を設けたコッククロフト回路を示す回路図。The circuit diagram which shows the cockcroft circuit which provided the terminal which outputs a voltage in the middle.

本発明の第1実施形態に係る加速器100について各図を参照しながら説明する。   The accelerator 100 according to the first embodiment of the present invention will be described with reference to the drawings.

この加速器100は、図1に示すように荷電粒子源であるイオン源1と、イオン源1に基端が接続された加速管2と、前記加速管2の各部に対してそれぞれ異なる電圧を印加する電圧供給機構3と、を備えたものである。   As shown in FIG. 1, the accelerator 100 applies different voltages to the ion source 1 that is a charged particle source, the acceleration tube 2 whose base end is connected to the ion source 1, and each part of the acceleration tube 2. And a voltage supply mechanism 3 to be used.

前記イオン源1は、正の荷電粒子からなるイオンビームを発射するものである。このイオン源1は接地してある。   The ion source 1 emits an ion beam made of positively charged particles. This ion source 1 is grounded.

前記加速管2は、図1に示すように円筒状のものであり、電極2F、21、22、23、24、25、26、2Rを構成する導体部分と絶縁体部分2Iが交互に軸方向に並んで設けられたものである。導体部分及び絶縁体部分2Iはそれぞれリング状をなすものである。導体部分には負の電圧が印加されており、前記イオン源1から引き出されたイオンビームはこの加速管2内で加速されて、先端から射出される。   The acceleration tube 2 has a cylindrical shape as shown in FIG. 1, and the conductor portions and the insulator portions 2I constituting the electrodes 2F, 21, 22, 23, 24, 25, 26, 2R are alternately in the axial direction. It is provided side by side. Each of the conductor portion and the insulator portion 2I has a ring shape. A negative voltage is applied to the conductor portion, and the ion beam extracted from the ion source 1 is accelerated in the acceleration tube 2 and emitted from the tip.

前記電極2F、21、22、23、24、25、26、2Rは、軸方向にそって等間隔で配置してあり、基端の電極2R、及び、先端の電極2Fは中央部の電極21、22、23、24、25、26と比較してその外形が大きく形成してある。以下の説明では基端の電極2Fについては基端フランジ、先端の電極2Rについては先端フランジとも呼称する。各電極2F、21、22、23、24、25、26、2Rについては基端側から先端側へ進むにつれて低い電圧が一定の勾配で印加される。   The electrodes 2F, 21, 22, 23, 24, 25, 26, 2R are arranged at equal intervals along the axial direction, and the proximal electrode 2R and the distal electrode 2F are the central electrode 21. 22, 22, 23, 24, 25, and 26, the outer shape is formed larger. In the following description, the proximal electrode 2F is also referred to as a proximal flange, and the distal electrode 2R is also referred to as a distal flange. For each of the electrodes 2F, 21, 22, 23, 24, 25, 26, 2R, a lower voltage is applied with a constant gradient from the proximal end side toward the distal end side.

前記電圧供給機構3は図1及び図2に示すように、商用交流電源から前記加速管2の各電極2F、21、22、23、24、25、26、2Rに印加される負の直流電圧をそれぞれ生成し、印加するものである。この電圧供給機構3は複数の直列共振回路4を具備し、各直列共振回路4が複数段直列に接続されてなるものである。各直列共振回路4は商用交流電源から供給される交流電圧を直流に変換する三相全波整流回路45に接続してある。   As shown in FIGS. 1 and 2, the voltage supply mechanism 3 is a negative DC voltage applied to each electrode 2F, 21, 22, 23, 24, 25, 26, 2R of the acceleration tube 2 from a commercial AC power source. Are respectively generated and applied. The voltage supply mechanism 3 includes a plurality of series resonance circuits 4, and each series resonance circuit 4 is connected in series in a plurality of stages. Each series resonant circuit 4 is connected to a three-phase full-wave rectifier circuit 45 that converts an AC voltage supplied from a commercial AC power source into a DC voltage.

前記直列共振回路4は、いわゆる絶縁型のDC−DCコンバータであって図3に示すように2つのSiC−MOSFET46からなるハーフブリッジ回路4A、及び、コンデンサ及びコイルからなる共振回路4Bを具備する直列駆動回路41と、前記直列駆動回路41に接続された送電コイル42と、前記送電コイル42から受電する受電コイル44と、前記受電コイル44に接続された整流回路45と、を備えたものである。図2に示されるように各受電コイル44と各送電コイル42との間には共通の絶縁体43が配置してあり、その厚み寸法は30mmにしてある。前記SiC−MOSFET46はSi−MOSFETと比較して素子耐圧を大きくすることができ、前記送電コイル42を800Vp−p程度の高電圧で駆動している。また、前記加速管2の基端フランジに接続される1段目の直列共振回路4の出力はアース電位(±0V)に接地してあり、1段ごとに2kV電圧低下するようにしてある。第1実施形態では140段の直列共振回路4が直列に接続してあるので、前記加速管2の先端フランジに接続される最終段の直列共振回路4からは−280kVが印加される。さらに前記加速管2の中央部の各電極21、22、23、24、25、26については基端側から先端側に掛けて−40kV、−80kV、−120kV、−160kV、−200kV、−240kVが印加される。   The series resonance circuit 4 is a so-called insulation type DC-DC converter, and includes a half bridge circuit 4A composed of two SiC-MOSFETs 46 and a resonance circuit 4B composed of a capacitor and a coil as shown in FIG. A drive circuit 41, a power transmission coil 42 connected to the series drive circuit 41, a power reception coil 44 that receives power from the power transmission coil 42, and a rectifier circuit 45 connected to the power reception coil 44. . As shown in FIG. 2, a common insulator 43 is disposed between each power receiving coil 44 and each power transmitting coil 42, and its thickness dimension is 30 mm. The SiC-MOSFET 46 can increase the device withstand voltage compared to the Si-MOSFET, and drives the power transmission coil 42 at a high voltage of about 800 Vp-p. The output of the first stage series resonance circuit 4 connected to the proximal flange of the accelerating tube 2 is grounded to the ground potential (± 0 V), and the voltage is lowered by 2 kV for each stage. In the first embodiment, since the 140-stage series resonance circuit 4 is connected in series, −280 kV is applied from the last-stage series resonance circuit 4 connected to the tip flange of the acceleration tube 2. Further, the electrodes 21, 22, 23, 24, 25, and 26 at the center of the acceleration tube 2 are −40 kV, −80 kV, −120 kV, −160 kV, −200 kV, −240 kV from the proximal end side to the distal end side. Is applied.

このように構成された第1実施形態の加速器100によれば、SiC−MOSFET46を具備する直列共振回路4を複数段直列に接続して設けることで、直列共振回路4の段数に比例させてそれぞれ異なる直流電圧を出力できる。また、SiC−MOSFET46の素子耐圧が大きく、送電コイル42を800Vp−p程度の高電圧駆動が可能なので、送電コイル42と受電コイル44の巻き数比をそれほど大きくしなくても整流回路45から高電圧を取りだすことができる。   According to the accelerator 100 of the first embodiment configured as described above, the series resonant circuit 4 including the SiC-MOSFET 46 is provided in a plurality of stages connected in series, thereby being proportional to the number of stages of the series resonant circuit 4. Different DC voltages can be output. Moreover, since the element breakdown voltage of the SiC-MOSFET 46 is large and the power transmission coil 42 can be driven at a high voltage of about 800 Vp-p, the high voltage from the rectifier circuit 45 can be achieved without increasing the turns ratio of the power transmission coil 42 and the power reception coil 44 so much. The voltage can be taken out.

したがって、受電コイル44と送電コイル42との間の絶縁耐力を大きくできるので、コッククロフト回路を用いなくても最終段の直列共振回路4の出力として数百kVから数MVの直流高電圧を発生させることができる。   Accordingly, since the dielectric strength between the power receiving coil 44 and the power transmitting coil 42 can be increased, a DC high voltage of several hundred kV to several MV is generated as the output of the series resonance circuit 4 at the final stage without using a cockcroft circuit. be able to.

さらに1段目と最終段との間にある任意の段の直列共振回路4における整流回路45から電圧出力を行っても、規定電流以下であれば最終段の直列共振回路4から出力される電圧が不安定にあることがない。また、従来のように高電圧をまず供給して各電極2F、21、22、23、24、25、26、2Rに分圧するための分圧回路を設ける必要がない。   Furthermore, even if a voltage is output from the rectifier circuit 45 in the series resonant circuit 4 at an arbitrary stage between the first stage and the final stage, the voltage output from the series resonant circuit 4 at the final stage is not more than a specified current. Is not unstable. Further, unlike the prior art, it is not necessary to provide a voltage dividing circuit for supplying a high voltage first and dividing the voltage into the electrodes 2F, 21, 22, 23, 24, 25, 26, 2R.

これらのことから、大電流のイオンビームを加速管2において加速する場合でも当該加速管2内における電圧勾配の均一性を保ち、内壁面に衝突するイオンを無くし、所望のビーム径を確保することができる。   For these reasons, even when a high-current ion beam is accelerated in the acceleration tube 2, the voltage gradient in the acceleration tube 2 is kept uniform, ions that collide with the inner wall surface are eliminated, and a desired beam diameter is secured. Can do.

次に本発明の第2実施形態に係る加速器100について図4を参照しながら説明する。なお、第1実施形態において説明した部材と対応する部材には同じ符号を付すこととする。   Next, an accelerator 100 according to a second embodiment of the present invention will be described with reference to FIG. Note that members corresponding to those described in the first embodiment are denoted by the same reference numerals.

図4に示すように第2実施形態の加速器100は、第1実施形態の加速器100と比較して整流回路45の構成と直列共振回路4の段数が異なっている。より具体的には整流回路45としてコックロフト回路を用いており、1段当たりの昇圧量を大きく第1実施形態よりも大きくしてあり、1段ごとに10kVだけ電圧が低下するようにしてある。このため、最終段の直列共振回路4の出力として−280kVが得られるように28段分直列共振回路4を直列に接続してある。また、各直列共振回路4の出力はコッククロフト回路の定格電圧取出端子を経由して外部へ電圧を供給するように構成してある。   As shown in FIG. 4, the accelerator 100 according to the second embodiment differs from the accelerator 100 according to the first embodiment in the configuration of the rectifier circuit 45 and the number of stages of the series resonant circuit 4. More specifically, a cock loft circuit is used as the rectifier circuit 45, and the boosting amount per stage is larger than that in the first embodiment, and the voltage is lowered by 10 kV per stage. . For this reason, 28 stages of series resonant circuits 4 are connected in series so that -280 kV is obtained as the output of the series resonant circuit 4 at the final stage. The output of each series resonance circuit 4 is configured to supply a voltage to the outside via the rated voltage extraction terminal of the cockcroft circuit.

このような第2実施形態の加速器100であれば、直列共振回路4の段数を減らしながら第1実施形態と同様の高電圧を得られる。   With such an accelerator 100 according to the second embodiment, a high voltage similar to that of the first embodiment can be obtained while reducing the number of stages of the series resonant circuit 4.

また、コッククロフト回路の定格電圧取出端子から電圧を出力するようにしているので最終段の出力電圧が不安定になることはない。   Further, since the voltage is output from the rated voltage extraction terminal of the cockcroft circuit, the output voltage at the final stage does not become unstable.

さらに第2実施形態の加速器100は、第1実施形態と同様に分圧回路を用いる必要がないので均一な加速電界勾配を維持していわゆる大きなビームローディングを提供できる。   Further, the accelerator 100 according to the second embodiment does not require the use of a voltage dividing circuit as in the first embodiment, and thus can provide a so-called large beam loading while maintaining a uniform acceleration electric field gradient.

その他の実施形態について説明する。   Other embodiments will be described.

荷電粒子源は正のイオンが射出されるイオン源に限られず、負のイオンが射出されるイオン源であっても構わない。   The charged particle source is not limited to an ion source from which positive ions are ejected, and may be an ion source from which negative ions are ejected.

各直流共振回路の外部出力は各実施形態に示したように一部の直流共振回路からのみ行ってもよいし、全ての直流共振回路から外部へ電圧を供給するようにしてもよい。また、加速管の電極は等間隔に設けたものに限られない。加速管内に形成した電界に応じて電極の配置を決定し、各電極に応じた電圧を電圧供給機構から供給するようにすればよい。   The external output of each DC resonance circuit may be performed only from a part of the DC resonance circuits as shown in each embodiment, or a voltage may be supplied to the outside from all the DC resonance circuits. Further, the electrodes of the acceleration tube are not limited to those provided at equal intervals. The arrangement of the electrodes may be determined according to the electric field formed in the acceleration tube, and the voltage corresponding to each electrode may be supplied from the voltage supply mechanism.

その他、本発明の趣旨に反しない限りにおいて様々な実施形態の変形や組み合わせを行っても構わない。   In addition, various modifications and combinations of the embodiments may be made without departing from the spirit of the present invention.

100・・・加速器
1 ・・・イオン源(荷電粒子源)
2 ・・・加速管
3 ・・・電圧供給機構
4 ・・・直列共振回路
100 ... Accelerator 1 ... Ion source (charged particle source)
2 ... Accelerating tube 3 ... Voltage supply mechanism 4 ... Series resonance circuit

Claims (4)

荷電粒子源と、
複数の電極を具備し、前記荷電粒子源から射出された荷電粒子が加速される加速管と、
前記複数の電極にそれぞれ直流電圧を供給する電圧供給機構と、を備え、
前記電圧供給機構が、SiC−MOSFETを具備する直列共振回路が複数段直列に接続されて構成されており、
複数段の直列共振回路の出力電圧が前記複数の電極にそれぞれ別々に供給されていることを特徴とする加速器。
A charged particle source;
An accelerating tube comprising a plurality of electrodes and for accelerating charged particles emitted from the charged particle source;
A voltage supply mechanism for supplying a DC voltage to each of the plurality of electrodes,
The voltage supply mechanism is configured by connecting a series resonant circuit including a SiC-MOSFET in a plurality of stages in series,
An accelerator, wherein output voltages of a plurality of stages of series resonance circuits are separately supplied to the plurality of electrodes.
任意の段の直列共振回路の出力電圧が前記電極のいずかに供給可能に構成されている請求項1記載の加速器。   The accelerator according to claim 1, wherein an output voltage of a series resonance circuit of an arbitrary stage is configured to be supplied to one of the electrodes. 前記直列共振回路が、
2つのSiC−MOSFETからなるハーフブリッジ回路、及び、共振回路を具備する直列駆動回路と、
前記直列駆動回路に接続された送電コイルと、
前記送電コイルから受電する受電コイルと、
前記受電コイルに接続された整流回路と、を備えた請求項1又は2記載の加速器。
The series resonant circuit is
A half-bridge circuit composed of two SiC-MOSFETs, and a series drive circuit including a resonance circuit;
A power transmission coil connected to the series drive circuit;
A power receiving coil for receiving power from the power transmitting coil;
The accelerator of Claim 1 or 2 provided with the rectifier circuit connected to the said receiving coil.
前記整流回路が、コッククロフト回路である請求項3記載の加速器。   The accelerator according to claim 3, wherein the rectifier circuit is a cockcroft circuit.
JP2016213670A 2016-10-31 2016-10-31 Accelerator Active JP6793941B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016213670A JP6793941B2 (en) 2016-10-31 2016-10-31 Accelerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016213670A JP6793941B2 (en) 2016-10-31 2016-10-31 Accelerator

Publications (2)

Publication Number Publication Date
JP2018073680A true JP2018073680A (en) 2018-05-10
JP6793941B2 JP6793941B2 (en) 2020-12-02

Family

ID=62115793

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016213670A Active JP6793941B2 (en) 2016-10-31 2016-10-31 Accelerator

Country Status (1)

Country Link
JP (1) JP6793941B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023526275A (en) * 2020-05-13 2023-06-21 ニュートロン・セラピューティクス・インコーポレイテッド Overvoltage protection for accelerator components

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5568021A (en) * 1993-03-22 1996-10-22 Gesellschaftfur Schwerionenforschung mbH Electrostatic accelerator up to 200 kV
JP2000324837A (en) * 1999-04-23 2000-11-24 Lg Electronics Inc Dc power supply circuit
JP2001045761A (en) * 1999-08-03 2001-02-16 Shimadzu Corp High voltage power supply for x-ray source
JP2013545255A (en) * 2010-12-08 2013-12-19 ジーティーエイティー・コーポレーション DC charged particle accelerator, method for accelerating charged particles using DC voltage, and high voltage power supply for the use
JP2016001980A (en) * 2014-05-19 2016-01-07 ローム株式会社 Power supply unit

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5568021A (en) * 1993-03-22 1996-10-22 Gesellschaftfur Schwerionenforschung mbH Electrostatic accelerator up to 200 kV
JP2000324837A (en) * 1999-04-23 2000-11-24 Lg Electronics Inc Dc power supply circuit
JP2001045761A (en) * 1999-08-03 2001-02-16 Shimadzu Corp High voltage power supply for x-ray source
JP2013545255A (en) * 2010-12-08 2013-12-19 ジーティーエイティー・コーポレーション DC charged particle accelerator, method for accelerating charged particles using DC voltage, and high voltage power supply for the use
JP2016001980A (en) * 2014-05-19 2016-01-07 ローム株式会社 Power supply unit

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ISE,T ET AL.: "Study on Application of Next Generation Power Devices fot the Fusion System", ANNUAL REPORT OF NATIONAL INSTITUTE FOR FUSION SCIENCE, vol. April 2009-March 2010, JPN6020040142, November 2010 (2010-11-01), pages 117, ISSN: 0004374322 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023526275A (en) * 2020-05-13 2023-06-21 ニュートロン・セラピューティクス・インコーポレイテッド Overvoltage protection for accelerator components
JP7505809B2 (en) 2020-05-13 2024-06-25 ニュートロン・セラピューティクス・エルエルシー Overvoltage protection for accelerator components

Also Published As

Publication number Publication date
JP6793941B2 (en) 2020-12-02

Similar Documents

Publication Publication Date Title
JP5666627B2 (en) Accelerator for charged particles
JP5698271B2 (en) DC high voltage source
RU2531635C2 (en) Cascade accelerator
US20220247322A1 (en) Apparatuses and methods involving power conversion using multiple rectifier circuits
US20200126763A1 (en) Plasma processing apparatus
EP3199000B1 (en) High voltage generator
US20140205072A1 (en) Power generation system and package
US9144146B2 (en) High voltage driving device for X-ray tube
JP6793941B2 (en) Accelerator
JP5507710B2 (en) DC high voltage source and particle accelerator
US8155271B2 (en) Potential control for high-voltage devices
JP2010015818A (en) Electron source device and ion system
US20160196915A1 (en) Isolation transformer, and x-ray generating apparatus and radiography system including the same
Adler et al. Advances in the development of the Nested High Voltage Generator
JP2004281170A (en) High voltage device for x-ray tube
EP4274388A1 (en) X-ray source driving circuit, and x-ray generation device using same
JP5448149B2 (en) Circular particle beam accelerator with distributed low voltage accelerator
JPH05135899A (en) Accelerating tube for direct-current voltage type accelerator
JPH01231307A (en) Flux coupling voltage multiplier
JPH01183097A (en) Electric power supply for accelerating charged particle
JP2004342462A (en) Ion source drive power supply device
JPH01124950A (en) High voltage generating device for charged particle beam device
JPH03147296A (en) Ion accelerator
JP2017157468A (en) High breakdown voltage transformer for x-ray tube and x-ray device using the same
SE427233B (en) X-ray layout of pulse type with an x-ray tube of pulse type

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191029

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200925

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201027

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201104

R150 Certificate of patent or registration of utility model

Ref document number: 6793941

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250