JP2018054408A - Surveying device - Google Patents
Surveying device Download PDFInfo
- Publication number
- JP2018054408A JP2018054408A JP2016189365A JP2016189365A JP2018054408A JP 2018054408 A JP2018054408 A JP 2018054408A JP 2016189365 A JP2016189365 A JP 2016189365A JP 2016189365 A JP2016189365 A JP 2016189365A JP 2018054408 A JP2018054408 A JP 2018054408A
- Authority
- JP
- Japan
- Prior art keywords
- scanner
- surveying instrument
- axis
- horizontal
- rotation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000005259 measurement Methods 0.000 description 36
- 238000010586 diagram Methods 0.000 description 11
- 238000012986 modification Methods 0.000 description 11
- 230000004048 modification Effects 0.000 description 11
- 230000003287 optical effect Effects 0.000 description 6
- 238000004364 calculation method Methods 0.000 description 4
- 238000003384 imaging method Methods 0.000 description 4
- 238000000034 method Methods 0.000 description 3
- 239000000284 extract Substances 0.000 description 2
- 238000004088 simulation Methods 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
Landscapes
- Optical Radar Systems And Details Thereof (AREA)
Abstract
Description
本発明は、測定対象物の三次元形状を測定するのに用いられるスキャナを搭載した測量装置に関する。 The present invention relates to a surveying instrument equipped with a scanner used for measuring a three-dimensional shape of a measurement object.
近年、測定対象物の三次元形状を測定するために、広範囲に複数設置されたターゲットの位置を検出できる三次元レーザスキャナ(以下、スキャナ)が利用されている。スキャナは、測定対象物を含む所定の測定エリアにパルスレーザを走査し、パルス毎の反射光を受光して距離測定を行うとともに、測距時のパルスレーザの方向から水平角,鉛直角を測定して、三次元点群データを取得する(例えば特許文献1)。 In recent years, in order to measure a three-dimensional shape of a measurement object, a three-dimensional laser scanner (hereinafter referred to as a scanner) capable of detecting the positions of a plurality of targets installed in a wide range has been used. The scanner scans the pulsed laser in a predetermined measurement area including the measurement object, receives the reflected light for each pulse, measures the distance, and measures the horizontal and vertical angles from the direction of the pulsed laser during distance measurement. Then, three-dimensional point cloud data is acquired (for example, Patent Document 1).
これに対し、出願人は、図10に示すように、光波距離計(測量機2)とスキャナ22を組み合わせ、まずスキャナ22によるスキャニングでターゲットの概略位置を抽出し、測量機2で各ターゲットの概略位置を測距,測角することで、広範囲に複数設置されたターゲット9−1,9−2,9−3,…9−nの位置を、短時間かつ高精度に測定することのできる測量装置1について出願した。 On the other hand, as shown in FIG. 10, the applicant combines the optical distance meter (surveying instrument 2) and the scanner 22, first extracts the approximate position of the target by scanning with the scanner 22, and the surveying instrument 2 extracts each target. By measuring the approximate position and measuring the angle, the positions of a plurality of targets 9-1, 9-2, 9-3,..., 9-n installed in a wide range can be measured in a short time with high accuracy. Filed an application for surveying instrument 1.
図10の測量装置1の構成では、スキャナ22は、内部に有する回動ミラー33(破線で示す)を、一軸(水平軸R−R)周りに一定角速度で高速回転させて鉛直方向を走査するとともに、スキャナ22自体は、測量機2の水平回転機構を利用して、鉛直軸H−Hを中心に一定角速度で水平回転することで、鉛直および水平方向をスキャニングする。図10には、図10の測量装置1の構成で得られる水平方向の点群データが模式的に示されている。なお、符号5はある時間のスキャナ22の光軸を示し、符号10はその時の測定点(照射点)を示し、符号SLはスキャンラインを示している。 In the configuration of the surveying apparatus 1 in FIG. 10, the scanner 22 scans the vertical direction by rotating a rotating mirror 33 (shown by a broken line) inside at a high angular velocity around one axis (horizontal axis RR). At the same time, the scanner 22 itself uses the horizontal rotation mechanism of the surveying instrument 2 to perform horizontal rotation at a constant angular velocity about the vertical axis H-H, thereby scanning in the vertical and horizontal directions. FIG. 10 schematically shows horizontal point cloud data obtained by the configuration of the surveying instrument 1 of FIG. Reference numeral 5 represents the optical axis of the scanner 22 at a certain time, reference numeral 10 represents a measurement point (irradiation point) at that time, and reference numeral SL represents a scan line.
しかし、この構成では、スキャナ22自体は、鉛直軸H−Hを中心として、即ち鉛直方向をスキャナの極方向として、水平方向に回転するため、得られる三次元点群データの点密度は、図7に示すように、天頂および天底に偏っていた。 However, in this configuration, the scanner 22 itself rotates in the horizontal direction about the vertical axis H-H, that is, the vertical direction is the polar direction of the scanner, so the point density of the obtained three-dimensional point cloud data is as shown in FIG. As shown in FIG. 7, it was biased toward the zenith and nadir.
本発明は、従来技術の問題に鑑みて、スキャナで得られる三次元点群データの点密度の高いエリアを、即ちスキャナの極方向を、水平方向に向けるように構成された測量装置を提供することを目的とする。 SUMMARY OF THE INVENTION In view of the problems of the prior art, the present invention provides a surveying apparatus configured to orient an area where the point density of 3D point cloud data obtained by a scanner is high, that is, the polar direction of the scanner, in the horizontal direction. For the purpose.
上記課題を解決するために、本発明のある態様の測量装置は、鉛直軸を中心に水平回転する筐体と、前記筐体に支承されて水平軸を中心に鉛直回転する望遠鏡と、を有する測量機と、少なくとも一軸周りに回動する回動部によってスキャン光を走査し、点群データを取得するスキャナと、を備え、前記スキャナは、前記測量機の前記水平軸と平行な方向にスキャナ自体の回転軸が配置される。 In order to solve the above problems, a surveying device according to an aspect of the present invention includes a housing that rotates horizontally around a vertical axis, and a telescope that is supported by the housing and rotates vertically around a horizontal axis. A surveying instrument and a scanner that scans scanning light by a rotating unit that rotates at least about one axis and acquires point cloud data. The scanner is in a direction parallel to the horizontal axis of the surveying instrument. Its own axis of rotation is arranged.
上記態様において、前記スキャナ自体の回転軸は、前記水平軸と一致するように構成されるのも好ましい。 In the above aspect, the rotation axis of the scanner itself is preferably configured to coincide with the horizontal axis.
上記態様において、前記スキャナ自体の回転軸は、水平方向に延長された前記水平軸で形成されるのも好ましい。 In the above aspect, the rotation axis of the scanner itself is preferably formed by the horizontal axis extending in the horizontal direction.
本発明の測量装置によれば、スキャナ装置で得られる三次元点群データの点密度の高いエリアを、測定対象物に向けることができる。 According to the surveying apparatus of the present invention, an area having a high point density of the three-dimensional point group data obtained by the scanner apparatus can be directed to the measurement object.
次に、本発明の好適な実施の形態について、図面を参照して説明する。 Next, preferred embodiments of the present invention will be described with reference to the drawings.
図1は実施の形態に係る測量装置の外観斜視図、図2は実施の形態に係る測量装置の右側面図、図3は実施の形態に係る測量装置の縦断面図である。図1に示すように、本形態の測量装置1は、測量機2と、スキャナ22を有する。図1の符号5はある時間のスキャナ22の光軸を示し、符号10はその時の測定点を示し、符号SLはスキャンラインを示している。 1 is an external perspective view of a surveying instrument according to an embodiment, FIG. 2 is a right side view of the surveying instrument according to the embodiment, and FIG. 3 is a longitudinal sectional view of the surveying instrument according to the embodiment. As shown in FIG. 1, the surveying apparatus 1 of this embodiment includes a surveying instrument 2 and a scanner 22. Reference numeral 5 in FIG. 1 indicates the optical axis of the scanner 22 at a certain time, reference numeral 10 indicates a measurement point at that time, and reference numeral SL indicates a scan line.
測量機2は、いわゆるモータドライブトータルステーションであり、三脚を用いて既知の点に据え付けられている。測量機2は、図2に示すように、下方から、整準部の上に設けられた基盤部2cと、該基盤部2c上を、鉛直軸6(図3)周りに回転する筐体2bと、筐体2bの中央で、水平軸7(図3)周りに回転する望遠鏡2aと、を有する。図1に示す符号A6は、鉛直軸6の中心線を延長した鉛直方向を、符号A7は、水平軸7の中心線を延長した水平方向を示したものである。 The surveying instrument 2 is a so-called motor drive total station, and is installed at a known point using a tripod. As shown in FIG. 2, the surveying instrument 2 includes, from below, a base part 2c provided on the leveling part, and a casing 2b that rotates around the vertical axis 6 (FIG. 3) on the base part 2c. And a telescope 2a that rotates around the horizontal axis 7 (FIG. 3) at the center of the housing 2b. 1 indicates a vertical direction in which the center line of the vertical axis 6 is extended, and reference numeral A7 indicates a horizontal direction in which the center line of the horizontal axis 7 is extended.
図4(a)は実施の形態に係る測量装置の構成ブロック図,図4(b)はスキャナの構成ブロック図である。図4(a)に示すように、測量装置1は、水平角検出器11と、鉛直角検出器12と、水平回転駆動部13と、鉛直回転駆動部14と、表示操作部15と、演算制御部17と、追尾部18と、測距部19と、記憶部20と、スキャナ22とを備える。 4A is a configuration block diagram of the surveying instrument according to the embodiment, and FIG. 4B is a configuration block diagram of the scanner. As shown in FIG. 4A, the surveying instrument 1 includes a horizontal angle detector 11, a vertical angle detector 12, a horizontal rotation drive unit 13, a vertical rotation drive unit 14, a display operation unit 15, and a calculation. A control unit 17, a tracking unit 18, a distance measuring unit 19, a storage unit 20, and a scanner 22 are provided.
水平回転駆動部13と鉛直回転駆動部14は、モータである。水平回転駆動部13は、基盤部2cに設けられ、鉛直軸6を駆動する。鉛直回転駆動部14は、筐体2bに設けられ、水平軸7を駆動する。測量機2では、筐体2bの水平回転と望遠鏡2aの鉛直回転の協働により、望遠鏡2aから測距光(または追尾光)が出射される。水平角検出器11と鉛直角検出器12は、ロータリエンコーダである。図3に示すように、水平角検出器11は鉛直軸6に対して設けられ、筐体2bの水平方向の回転角を検出する。鉛直角検出器12は水平軸7に対して設けられ、望遠鏡2aの鉛直方向の回転角を検出する。表示操作部15は、図2に示すように、基盤部2cの前面に設けられた測量装置1のインターフェースであり、測定作業の指令・設定や作業状況および測定結果の確認などが行える。なお、図2の符号15´は、副表示操作部であり、測量装置1の前後何れからも操作が可能となるように設けられている。 The horizontal rotation drive unit 13 and the vertical rotation drive unit 14 are motors. The horizontal rotation drive unit 13 is provided on the base unit 2 c and drives the vertical shaft 6. The vertical rotation driving unit 14 is provided in the housing 2 b and drives the horizontal shaft 7. In the surveying instrument 2, distance measuring light (or tracking light) is emitted from the telescope 2a by the cooperation of the horizontal rotation of the housing 2b and the vertical rotation of the telescope 2a. The horizontal angle detector 11 and the vertical angle detector 12 are rotary encoders. As shown in FIG. 3, the horizontal angle detector 11 is provided with respect to the vertical axis 6, and detects the horizontal rotation angle of the housing 2b. The vertical angle detector 12 is provided with respect to the horizontal axis 7 and detects the vertical rotation angle of the telescope 2a. As shown in FIG. 2, the display operation unit 15 is an interface of the surveying instrument 1 provided on the front surface of the base unit 2 c, and can perform measurement work command / setting, work status, and confirmation of measurement results. Note that reference numeral 15 ′ in FIG. 2 is a sub-display operation unit, which is provided so that it can be operated from either before or after the surveying instrument 1.
測距部19および追尾部18は、望遠鏡2aに設けられている。測距部19は、測距光として赤外パルスレーザ光をターゲット9−nに送光する。そして、ターゲット9−nからの反射光を例えばフォトダイオード等の受光部で受光し、測距信号に変換する。追尾部18は、追尾光として測距光とは異なる波長の赤外レーザ光を送光する。そして、イメージセンサ等の受光部で追尾光を含む風景画像と追尾光を除いた風景画像を取得する。演算制御部17では、両画像の差分からターゲット9−nの位置を検出し、常に望遠鏡2aがターゲット9−nの方向を向くように自動で追尾する。 The distance measuring unit 19 and the tracking unit 18 are provided in the telescope 2a. The distance measuring unit 19 transmits infrared pulse laser light to the target 9-n as distance measuring light. Then, the reflected light from the target 9-n is received by a light receiving unit such as a photodiode, for example, and converted into a distance measurement signal. The tracking unit 18 transmits infrared laser light having a wavelength different from that of the distance measuring light as tracking light. Then, a landscape image including the tracking light and a landscape image excluding the tracking light are acquired by a light receiving unit such as an image sensor. The arithmetic control unit 17 detects the position of the target 9-n from the difference between both images, and automatically tracks so that the telescope 2a always faces the target 9-n.
演算制御部17は、例えばCPU,ROM,RAM等を集積回路に実装したマイクロコントローラであり、筐体2bに設けられ、後述するスキャナ22の演算制御部35と電気的に接続されている。演算制御部17は、回転駆動部13,14を制御し、追尾部18による自動追尾を行い、測距信号の出力を対比処理することで自動視準を行う。また、送光から受光までに光波が発振した回数に基づいて,ターゲット9−nの距離を測定し、水平角検出器11と鉛直角検出器12の値から、ターゲット9−nの角度を測定して、各ターゲットのX座標,Y座標,Z座標を測定する。記憶部20は、例えばハードディスクドライブであり、上記演算制御のためのプログラムが格納されており、取得した測定データが記憶される。 The arithmetic control unit 17 is a microcontroller in which, for example, a CPU, a ROM, a RAM, and the like are mounted on an integrated circuit. The arithmetic control unit 17 is provided in the housing 2b and is electrically connected to an arithmetic control unit 35 of the scanner 22 described later. The arithmetic control unit 17 controls the rotation driving units 13 and 14, performs automatic tracking by the tracking unit 18, and performs automatic collimation by comparing the output of the distance measurement signal. Further, the distance of the target 9-n is measured based on the number of times the light wave oscillates from light transmission to light reception, and the angle of the target 9-n is measured from the values of the horizontal angle detector 11 and the vertical angle detector 12. Then, the X coordinate, Y coordinate, and Z coordinate of each target are measured. The storage unit 20 is, for example, a hard disk drive, and stores a program for the above arithmetic control, and stores acquired measurement data.
スキャナ22は、三次元レーザスキャナであり、図1に示すように、測量機2の右側面に設けられている。スキャナ22は、図3に示すように、本体部22aと、本体部22aの上部に設けられた回転照射部22bを有する。 The scanner 22 is a three-dimensional laser scanner, and is provided on the right side surface of the surveying instrument 2 as shown in FIG. As shown in FIG. 3, the scanner 22 includes a main body 22a and a rotation irradiation unit 22b provided on the upper portion of the main body 22a.
ここで、図3に示すように、測量機2の水平軸7は、鉛直角検出器12が設けられた側の端部が、筐体2bのケーシングを貫通して、水平方向に延長されている。水平軸7の延長部の端部には、回転基盤8が設けられている。そして、スキャナ22は、本体部22aおよび回転照射部2b全体のケーシング中心が水平軸7上となるように、回転基盤8に固着されている。このため、スキャナ22自体は、水平軸7を中心に鉛直方向に回動可能となっている。 Here, as shown in FIG. 3, the horizontal shaft 7 of the surveying instrument 2 is extended in the horizontal direction through the casing of the housing 2b at the end on the side where the vertical angle detector 12 is provided. Yes. A rotating base 8 is provided at the end of the extension of the horizontal shaft 7. The scanner 22 is fixed to the rotary base 8 so that the casing center of the entire main body 22a and the rotation irradiation unit 2b is on the horizontal axis 7. For this reason, the scanner 22 itself is rotatable in the vertical direction about the horizontal axis 7.
また、スキャナ22は、図4(b)に示すように、ミラー回転角検出器31、ミラー回転駆動部32、回動ミラー33、演算制御部35、記憶部36、測距部37、撮像部38を有する。 4B, the scanner 22 includes a mirror rotation angle detector 31, a mirror rotation drive unit 32, a rotation mirror 33, a calculation control unit 35, a storage unit 36, a distance measurement unit 37, and an imaging unit. 38.
回動ミラー33は、回転照射部22bに配置され、ミラー回転駆動部32に駆動されて、ミラー回転軸R(図3)周りに、角速度一定で高速回転するように構成されている。また、ミラー面が水平方向A7に向けられ、ミラー回転軸Rが水平方向A7上となるように配置されている(図3)。回動ミラー33は、ミラー回転角検出器31はロータリエンコーダであり、ミラー回転駆動部32が設けられていない側のミラー回転軸Rの端部に設けられ、回動ミラー33の鉛直回転角を検出する。 The rotating mirror 33 is arranged in the rotation irradiation unit 22b and is driven by the mirror rotation driving unit 32 so as to rotate at a high angular velocity around the mirror rotation axis R (FIG. 3). Further, the mirror surface is arranged in the horizontal direction A7 and the mirror rotation axis R is arranged on the horizontal direction A7 (FIG. 3). The rotating mirror 33 is a rotary encoder, and the mirror rotation angle detector 31 is provided at the end of the mirror rotation axis R on the side where the mirror rotation driving unit 32 is not provided. To detect.
測距部37および撮像部38は、本体部22aに配置された鏡筒39(図3)に含まれている。測距部37は、スキャン光として赤外パルスレーザ光を送光し、フォトダイオード等で受光する。撮像部38は、イメージセンサであり、測距部37のスキャン光から光路分割した光軸を原点としてX-Y座標を想定し、測定対象物の画像データを取得する。該画像データは、テクスチャマッピング等の技術により、点群データに合成可能である。なお、撮像部38は必須の構成としなくてもよい。 The distance measuring unit 37 and the imaging unit 38 are included in a lens barrel 39 (FIG. 3) disposed in the main body 22a. The distance measuring unit 37 transmits infrared pulsed laser light as scan light and receives it with a photodiode or the like. The imaging unit 38 is an image sensor, and obtains image data of a measurement object assuming an XY coordinate with an optical axis obtained by dividing an optical path from the scanning light of the distance measuring unit 37 as an origin. The image data can be combined with point cloud data by a technique such as texture mapping. Note that the imaging unit 38 does not have to be an essential configuration.
演算制御部35は、マイクロコントローラであり、本体部22aに配置され、測量機2の演算制御部17と電気的に接続されている。演算制御部35は、ミラー回転駆動部32を制御し、レーザパルスが往復する時間を計測することで,測定点10までの距離を求める。また、ミラー回転角検出器31から測定点10の鉛直角を測定し、測量機2の水平角検出器11から、測定点10の水平角を測定する。このとき、測定点10の水平角は、予め把握されている測量機2の視準方向とスキャナ22のスキャン光軸5の方向との角度差分を補正して、測定する。そして、測定点10の距離,水平角,及び鉛直角から、点群データを得る。記憶部36は、例えばハードディスクドライブであり、上記演算制御のためのプログラムが格納されており、取得した点群データおよび画像データが記憶される。 The calculation control unit 35 is a microcontroller, is disposed in the main body unit 22a, and is electrically connected to the calculation control unit 17 of the surveying instrument 2. The arithmetic control unit 35 controls the mirror rotation driving unit 32 and measures the time for which the laser pulse reciprocates to obtain the distance to the measurement point 10. Further, the vertical angle of the measurement point 10 is measured from the mirror rotation angle detector 31, and the horizontal angle of the measurement point 10 is measured from the horizontal angle detector 11 of the surveying instrument 2. At this time, the horizontal angle of the measurement point 10 is measured by correcting an angle difference between the collimation direction of the surveying instrument 2 and the direction of the scanning optical axis 5 of the scanner 22 which are grasped in advance. Then, point cloud data is obtained from the distance, horizontal angle, and vertical angle of the measurement point 10. The storage unit 36 is, for example, a hard disk drive, and stores a program for the above arithmetic control, and stores the acquired point cloud data and image data.
以上の構成を有する測量装置1を用いれば、スキャナ22を、測量機2の望遠鏡2aの鉛直回転と連動して回転させることができるので、スキャナ22自体を、水平方向A7を中心に回転させることができる。即ち、スキャナ22自体の回転軸(スキャナの極方向)を、水平方向に向けることができる。 If the surveying apparatus 1 having the above configuration is used, the scanner 22 can be rotated in conjunction with the vertical rotation of the telescope 2a of the surveying instrument 2, so that the scanner 22 itself is rotated about the horizontal direction A7. Can do. That is, the rotation axis of the scanner 22 itself (the polar direction of the scanner) can be oriented in the horizontal direction.
なお、スキャナの極方向とは、本明細書では以下のように捉えている。スキャナは、回動ミラーの回転による一軸スキャンを、スキャナ自体の回転によって面に展開し、球状にデータを取得する。そのため、スキャナの測定点は、地球儀で言うところの緯度と経度の交点と同じような分布となる。よって、点群データを一定面積で切り取ると、スキャナ自体の回転軸の方向(地球儀で言うところの北極と南極を結ぶ方向、以下これをスキャナの極方向とする)の点密度は、赤道付近の点密度よりも高くなる。 The polar direction of the scanner is understood as follows in this specification. The scanner develops a uniaxial scan by the rotation of the rotating mirror on the surface by the rotation of the scanner itself, and acquires data in a spherical shape. For this reason, the measurement points of the scanner have a distribution similar to the intersection of the latitude and longitude as the globe says. Therefore, when the point cloud data is cut out in a certain area, the point density in the direction of the rotation axis of the scanner itself (the direction connecting the north and south poles in the world globe, hereinafter referred to as the polar direction of the scanner) is near the equator. It becomes higher than the point density.
本形態では、スキャナ22の極方向が水平方向A7を向いているため、スキャナ22で得られる点群データの点密度は、図1に模式的に示したように、測定対象物のある水平方向で最も高く得られるようになる。 In this embodiment, since the polar direction of the scanner 22 faces the horizontal direction A7, the point density of the point cloud data obtained by the scanner 22 is as shown in FIG. Can get the highest.
一例として、図5および図6は実施の形態に係る測量装置1で得られる点群データの測定点分布を示した図である。図7は比較例であり、従来の測量装置で得られる点群データの測定点分布を示した図である。図5は、本形態の測量装置1で、測量機2を水平方向に90度ずつずらし停止させるとともに、各々の方向で、スキャナ22自体を望遠鏡2aの回転を利用して鉛直回転させた場合の測定点分布をシミュレーションしたものである。図6は、本形態の測量装置1で、スキャナ22自体を、望遠鏡2aを高速に鉛直回転させた場合の測定点分布をシミュレーションしたものである。図7は図10の従来の構成の測量装置1で、スキャナ22自体を、筐体2bを低速で水平回転させた場合の測定点分布をシミュレーションしたものである。 As an example, FIG. 5 and FIG. 6 are diagrams showing the distribution of measurement points of point cloud data obtained by the surveying instrument 1 according to the embodiment. FIG. 7 is a comparative example, and is a diagram showing the distribution of measurement points of point cloud data obtained with a conventional surveying instrument. FIG. 5 shows the surveying instrument 1 according to the present embodiment in which the surveying instrument 2 is shifted by 90 degrees in the horizontal direction and stopped, and the scanner 22 itself is vertically rotated using the rotation of the telescope 2a in each direction. This is a simulation of the distribution of measurement points. FIG. 6 shows a simulation of the distribution of measurement points in the surveying apparatus 1 of the present embodiment when the scanner 22 itself is vertically rotated at high speed. FIG. 7 is a surveying instrument 1 having the conventional configuration shown in FIG. 10, which simulates the distribution of measurement points when the scanner 22 itself is rotated horizontally at a low speed of the housing 2 b.
本形態の測量装置1で得られた測定点分布図5および図6は、図7のものよりも、水平方向に点が多くあることが分かる。特に、図6からは、測定点が全体的に分布し、点密度の偏りが低減されていることが分かる。なお、図5と図6の測定は本形態の測量装置1による実施の一例であり、例えば図5の測定では、45度ピッチや60度ピッチでの測定も可能である。 It can be seen that the measurement point distribution diagrams 5 and 6 obtained by the surveying instrument 1 of this embodiment have more points in the horizontal direction than those in FIG. In particular, it can be seen from FIG. 6 that the measurement points are distributed as a whole and the deviation of the point density is reduced. Note that the measurements in FIGS. 5 and 6 are examples of implementation by the surveying instrument 1 of the present embodiment. For example, in the measurement in FIG. 5, measurements at a 45 degree pitch or a 60 degree pitch are also possible.
また、測量装置1では、スキャナ22自体の回転軸は、測量機2の望遠鏡2aの水平軸7そのものであり、スキャナ22自体の水平方向の回転は測量機2の鉛直軸6を利用して行われるので、スキャナ22の測定において、測量機2に用いられる高精度な角度検出器11,12の値を利用することができる。このため、スキャナ22の測定精度が向上する。また、測量機2の水平軸7がスキャナ22自体の回転軸として兼用されているので、スキャナ22自体のための鉛直回転駆動部や鉛直角検出器を設けるのを省くことができる。このため、スキャナ22の構成をシンプルにすることができる。 In the surveying instrument 1, the rotation axis of the scanner 22 itself is the horizontal axis 7 of the telescope 2 a of the surveying instrument 2, and the horizontal rotation of the scanner 22 itself is performed using the vertical axis 6 of the surveying instrument 2. Therefore, in the measurement of the scanner 22, the values of the highly accurate angle detectors 11 and 12 used in the surveying instrument 2 can be used. For this reason, the measurement accuracy of the scanner 22 is improved. Further, since the horizontal axis 7 of the surveying instrument 2 is also used as the rotation axis of the scanner 22 itself, it is possible to omit providing a vertical rotation drive unit and a vertical angle detector for the scanner 22 itself. For this reason, the configuration of the scanner 22 can be simplified.
上記実施の形態の好適な変形例を挙げる。 A preferred modification of the above embodiment will be described.
図8は変形例1に係る測量装置の模式図である。上記の実施形態では、スキャナ22自体の回転軸は、測量機2の望遠鏡2aの水平軸7そのものである。一方、変形例1では、スキャナ22にスキャナ自体の回転軸22cが設けられ、スキャナ自体の回転軸22cと水平軸7が軸心を合わせて連結されている。スキャナ自体の回転軸22cは、例えば、スキャナ自体の回転軸22cとその回転駆動部を収容する第2の本体部22dを設け、第2の本体部22dのケーシングの中心を水平軸7上に置くことで配置できる。上記の変形例であっても、スキャナ22の点群データの点密度が高いエリアを、水平方向に向けることができる。また、測量機2とスキャナ22を別工程で作成し、最終工程でドッキングさせることができるので、設計思想が容易になる。 FIG. 8 is a schematic diagram of a surveying instrument according to the first modification. In the above embodiment, the rotation axis of the scanner 22 itself is the horizontal axis 7 of the telescope 2 a of the surveying instrument 2. On the other hand, in the first modification, the scanner 22 is provided with a rotation shaft 22c of the scanner itself, and the rotation shaft 22c of the scanner itself and the horizontal shaft 7 are connected with their axes aligned. The rotation shaft 22c of the scanner itself includes, for example, a rotation shaft 22c of the scanner itself and a second main body portion 22d that accommodates the rotation driving portion thereof, and the center of the casing of the second main body portion 22d is placed on the horizontal shaft 7. Can be arranged. Even in the above modification, an area where the point density of the point cloud data of the scanner 22 is high can be directed in the horizontal direction. Further, since the surveying instrument 2 and the scanner 22 can be created in separate processes and docked in the final process, the design concept becomes easy.
図9は変形例2に係る測量装置の模式図である。変形例2では、スキャナ自体の回転軸22cと水平軸7の軸心はずらされており、スキャナ自体の回転軸22cは、第2の本体部22dを介して、水平軸7(水平方向7A)と平行となるように、望遠鏡2aの側面と固定されている。スキャナ22自体は、筐体2bと干渉しない範囲で鉛直回転することができる。上記の変形例であっても、スキャナ22の点群データの点密度が高いエリアを、水平方向に向けることができる。 FIG. 9 is a schematic diagram of a surveying instrument according to the second modification. In the second modification, the rotation axis 22c of the scanner itself and the axis of the horizontal axis 7 are shifted, and the rotation axis 22c of the scanner itself is connected to the horizontal axis 7 (horizontal direction 7A) via the second main body 22d. Is fixed to the side surface of the telescope 2a. The scanner 22 itself can rotate vertically as long as it does not interfere with the housing 2b. Even in the above modification, an area where the point density of the point cloud data of the scanner 22 is high can be directed in the horizontal direction.
以上、本発明の好ましい測量装置について、実施の形態および変形例を述べたが、各形態および各変形を当業者の知識に基づいて組み合わせることが可能であり、そのような形態も本発明の範囲に含まれる。 The preferred embodiments of the surveying instrument of the present invention and the modifications thereof have been described above. However, the embodiments and modifications can be combined based on the knowledge of those skilled in the art, and such forms are also within the scope of the present invention. include.
1 測量装置
2 測量機
2a 望遠鏡
2b 筐体
6 鉛直軸
A6 鉛直方向
7 水平軸
A7 水平方向
22 スキャナ
22c スキャナ自体の回転軸
33 回動ミラー(回動部)
R ミラー回転軸
DESCRIPTION OF SYMBOLS 1 Surveying device 2 Surveying instrument 2a Telescope 2b Case 6 Vertical axis A6 Vertical direction 7 Horizontal axis A7 Horizontal direction 22 Scanner 22c Rotation shaft 33 of scanner itself Rotation mirror (rotation part)
R mirror rotation axis
Claims (3)
少なくとも一軸周りに回動する回動部によってスキャン光を走査し、点群データを取得するスキャナと、を備え、
前記スキャナは、前記測量機の前記水平軸と平行な方向にスキャナ自体の回転軸が配置されることを特徴とする測量装置。
A surveying instrument having a housing that rotates horizontally around a vertical axis, and a telescope that is supported by the housing and rotates vertically around a horizontal axis;
A scanner that scans scanning light by a rotating unit that rotates at least around one axis, and acquires point cloud data; and
The scanner is characterized in that the rotation axis of the scanner itself is arranged in a direction parallel to the horizontal axis of the surveying instrument.
The surveying apparatus according to claim 1, wherein a rotation axis of the scanner itself is configured to coincide with the horizontal axis.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016189365A JP6761715B2 (en) | 2016-09-28 | 2016-09-28 | Surveying device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016189365A JP6761715B2 (en) | 2016-09-28 | 2016-09-28 | Surveying device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2018054408A true JP2018054408A (en) | 2018-04-05 |
JP6761715B2 JP6761715B2 (en) | 2020-09-30 |
Family
ID=61836490
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016189365A Active JP6761715B2 (en) | 2016-09-28 | 2016-09-28 | Surveying device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6761715B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020026477A1 (en) * | 2018-08-02 | 2020-02-06 | クモノスコーポレーション株式会社 | Three-dimensional laser-light-scanning device |
WO2020054094A1 (en) * | 2018-09-14 | 2020-03-19 | クモノスコーポレーション株式会社 | Measurement data correction method for three-dimensional laser-light-scanning device |
EP3764125A1 (en) * | 2019-07-12 | 2021-01-13 | Faro Technologies, Inc. | Real-time scan point homogenization for terrestrial laser scanner |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012141235A1 (en) * | 2011-04-13 | 2012-10-18 | 株式会社トプコン | Three-dimensional point group position data processing device, three-dimensional point group position data processing system, three-dimensional point group position data processing method and program |
WO2015082217A2 (en) * | 2013-12-05 | 2015-06-11 | Trimble Ab | Distance measurement instrument with scanning function |
-
2016
- 2016-09-28 JP JP2016189365A patent/JP6761715B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012141235A1 (en) * | 2011-04-13 | 2012-10-18 | 株式会社トプコン | Three-dimensional point group position data processing device, three-dimensional point group position data processing system, three-dimensional point group position data processing method and program |
WO2015082217A2 (en) * | 2013-12-05 | 2015-06-11 | Trimble Ab | Distance measurement instrument with scanning function |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020026477A1 (en) * | 2018-08-02 | 2020-02-06 | クモノスコーポレーション株式会社 | Three-dimensional laser-light-scanning device |
JP2020020708A (en) * | 2018-08-02 | 2020-02-06 | クモノスコーポレーション株式会社 | Three-dimensional laser light scanner |
CN112567202A (en) * | 2018-08-02 | 2021-03-26 | 蛛巢株式会社 | Three-dimensional laser scanning device |
EP3832259A4 (en) * | 2018-08-02 | 2022-04-20 | Kumonos Corporation | Three-dimensional laser-light-scanning device |
WO2020054094A1 (en) * | 2018-09-14 | 2020-03-19 | クモノスコーポレーション株式会社 | Measurement data correction method for three-dimensional laser-light-scanning device |
JP2020046187A (en) * | 2018-09-14 | 2020-03-26 | クモノスコーポレーション株式会社 | Measurement data calibration method for three-dimensional laser light scanning device |
EP3764125A1 (en) * | 2019-07-12 | 2021-01-13 | Faro Technologies, Inc. | Real-time scan point homogenization for terrestrial laser scanner |
Also Published As
Publication number | Publication date |
---|---|
JP6761715B2 (en) | 2020-09-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6963936B2 (en) | Surveying system | |
JP6916578B2 (en) | Laser scanner | |
JP7139052B2 (en) | surveying system | |
JP6796975B2 (en) | UAV measuring device and UAV measuring system | |
US10088295B2 (en) | Interactive spatial orientation method and system | |
EP3299846B1 (en) | Laser scanner system and registration method of point cloud data | |
US8467071B2 (en) | Automatic measurement of dimensional data with a laser tracker | |
US9400170B2 (en) | Automatic measurement of dimensional data within an acceptance region by a laser tracker | |
JP6541365B2 (en) | Posture detection device and data acquisition device | |
WO2010069160A1 (en) | Apparatus for measuring six-dimension attitude of an object | |
JP2019117127A (en) | Three-dimensional information processing unit, device equipped with three-dimensional information processing unit, unmanned aircraft, notification device, moving object control method using three-dimensional information processing unit, and program for moving body control process | |
JP2018028464A (en) | Measurement method and laser scanner | |
JP7313955B2 (en) | Surveying instrument, surveying method and surveying program | |
JP6786325B2 (en) | Surveying equipment and measuring method | |
JP2019020209A (en) | Surveying system | |
US20190129007A1 (en) | Reflecting prism, measurement target object including reflecting prism, surveying device, coordinate comparing section, surveying method, and surveying processing program | |
CN109313027B (en) | Method for comparing a received beam projected onto a laser receiver with a rotating laser beam | |
KR20190001861A (en) | LiDAR scanning device using propeller driven motor of unmanned aerial vehicle and unmanned aerial vehicle comprising it | |
JP6761715B2 (en) | Surveying device | |
US10809379B2 (en) | Three-dimensional position measuring system, three-dimensional position measuring method, and measuring module | |
JP7314447B2 (en) | Scanner system and scanning method | |
GB2510510A (en) | Automatic measurement of dimensional data with a laser tracker | |
JP2017223608A (en) | Surveying device | |
JP7324097B2 (en) | Three-dimensional surveying device, three-dimensional surveying method and three-dimensional surveying program | |
JP7511049B2 (en) | Surveying equipment, surveying method, and surveying program |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190718 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20200527 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200629 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20200903 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20200907 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6761715 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |