JP2017202992A - Method for producing (trifluoromethyl)malonic acid ester - Google Patents

Method for producing (trifluoromethyl)malonic acid ester Download PDF

Info

Publication number
JP2017202992A
JP2017202992A JP2016095077A JP2016095077A JP2017202992A JP 2017202992 A JP2017202992 A JP 2017202992A JP 2016095077 A JP2016095077 A JP 2016095077A JP 2016095077 A JP2016095077 A JP 2016095077A JP 2017202992 A JP2017202992 A JP 2017202992A
Authority
JP
Japan
Prior art keywords
iron
trifluoromethyl
acid
acid ester
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016095077A
Other languages
Japanese (ja)
Other versions
JP6723817B2 (en
Inventor
哲 山川
Satoru Yamakawa
哲 山川
雄紀 大塚
Takenori Otsuka
雄紀 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sagami Chemical Research Institute
Tosoh F Tech Inc
Original Assignee
Sagami Chemical Research Institute
Tosoh F Tech Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sagami Chemical Research Institute, Tosoh F Tech Inc filed Critical Sagami Chemical Research Institute
Priority to JP2016095077A priority Critical patent/JP6723817B2/en
Publication of JP2017202992A publication Critical patent/JP2017202992A/en
Application granted granted Critical
Publication of JP6723817B2 publication Critical patent/JP6723817B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for efficiently producing (trifluoromethyl)malonic acid ester that is an important compound as a fluorine-containing building block of pharmaceuticals.SOLUTION: The (trifluoromethyl)malonic acid ester represented by formula (4) is produced by trifluoro-methylating 3-amino-3-alkoxy-2-propenoic acid ester or 3-amino-3-alkoxy-2-propen-imine acid ester with trifluoromethyl iodide in the presence of an iron compound, hydrogen peroxide water and sulfoxide, and then hydrolyzing in the presence of an acid. (Rand Rare each independently an alkyl group having C1 to C4 carbon atoms).SELECTED DRAWING: None

Description

本発明は、(トリフルオロメチル)マロン酸エステルの製造方法に関するものである。   The present invention relates to a method for producing (trifluoromethyl) malonic acid ester.

(トリフルオロメチル)マロン酸エステルは、医農薬の中間体として有用な化合物である(例えば特許文献1)。   (Trifluoromethyl) malonic acid ester is a compound useful as an intermediate for medical and agricultural chemicals (for example, Patent Document 1).

これまでに開示されている製造方法として、3,6−ジヒドロ−3−メチル−4,6,6−トリフルオロ−5−(トリフルオロメチル)−2H−1,3−オキサジン−2−オンをメタノール中でナトリウムメトキシドと反応させてジメチルエステルを得る方法(特許文献2)、メチル[1,1,3,3,3−ペンタフルオロ−2−(トリフルオロメチル)プロピル]エーテルとメタノールを反応させ、次いで酸で加水分解する方法(特許文献3、非特許文献1およびその引用文献)が開示されている。   As a production method disclosed so far, 3,6-dihydro-3-methyl-4,6,6-trifluoro-5- (trifluoromethyl) -2H-1,3-oxazin-2-one is used. A method of obtaining dimethyl ester by reacting with sodium methoxide in methanol (Patent Document 2), reacting methyl [1,1,3,3,3-pentafluoro-2- (trifluoromethyl) propyl] ether with methanol And then hydrolyzing with an acid (Patent Document 3, Non-Patent Document 1, and references cited therein).

一方、3−アミノ−3−アルコキシ−2−プロペン酸エステルや3−アミノ−3−アルコキシ−2−プロペンイミン酸エステルを原料とする製造方法はこれまでにない。   On the other hand, there has never been a production method using 3-amino-3-alkoxy-2-propenoic acid ester or 3-amino-3-alkoxy-2-propenoic acid ester as a raw material.

特開2004−115377.JP2004-115377. US3,538,081,1970年.US 3,538,081, 1970. 特開昭58−126837.JP-A-58-126837.

Bulletin of Chemical Society of Japan,56巻,724ページ、1983年.Bulletin of Chemical Society of Japan, 56, 724, 1983.

開示されている方法は、いずれも原料の合成プロセスが煩雑であり、また毒性の高い化合物を用いる必要がある。   In any of the disclosed methods, the raw material synthesis process is complicated, and it is necessary to use a highly toxic compound.

本発明の目的は、より入手容易かつ安全な原料を用いて、(トリフルオロメチル)マロン酸エステルを製造する方法を提供することにある。   An object of the present invention is to provide a method for producing a (trifluoromethyl) malonic acid ester using a more readily available and safe raw material.

本発明者らは、上記課題を鑑み、鋭意検討を重ねた結果、3−アミノ−3−アルコキシ−2−プロペン酸エステルおよび3−アミノ−3−アルコキシ−2−プロペンイミド酸エステルを、鉄化合物、過酸化水素水およびスルホキシドの存在下、ヨウ化トリフルオロメチルを用いて2位をトリフルオロメチル化し、次いで酸で加水分解することにより、(トリフルオロメチル)マロン酸エステルが得られることを見出した。すなわち本発明は、
(i)鉄化合物、過酸化水素水および一般式(1)R−S(=O)−R(1)(式中、Rは炭素数1〜4のアルキル基またはフェニル基を示す。)で表されるスルホキシドの存在下、ヨウ化トリフルオロメチルで一般式(2)
In view of the above problems, the present inventors have made extensive studies, and as a result, 3-amino-3-alkoxy-2-propenoic acid ester and 3-amino-3-alkoxy-2-propenimidic acid ester were converted to iron compounds. It has been found that (trifluoromethyl) malonic acid ester can be obtained by trifluoromethylation of 2-position with trifluoromethyl iodide in the presence of aqueous hydrogen peroxide and sulfoxide, followed by hydrolysis with acid. It was. That is, the present invention
(I) Iron compound, hydrogen peroxide solution and general formula (1) R 1 —S (═O) —R 1 (1) (wherein R 1 represents an alkyl group having 1 to 4 carbon atoms or a phenyl group. ) In the presence of sulfoxide represented by general formula (2)

Figure 2017202992
Figure 2017202992

(式中、RおよびRは、各々独立に炭素数1〜4のアルキル基を示す。Xは、酸素原子またはイミノ基を示す。)で表されるエナミンをトリフルオロメチル化して一般式(3) (Wherein R 2 and R 3 each independently represents an alkyl group having 1 to 4 carbon atoms. X represents an oxygen atom or an imino group.) (3)

Figure 2017202992
Figure 2017202992

(式中、R、RおよびXは、前記と同じ内容を示す。)で表される(トリフルオロメチル)エナミンを得、次いで加水分解することを特徴とする一般式(4) (Wherein R 2 , R 3 and X have the same contents as described above) (trifluoromethyl) enamine represented by formula (4) is obtained, followed by hydrolysis

Figure 2017202992
Figure 2017202992

(式中、RおよびRは、前記と同じ内容を示す。)で表される(トリフルオロメチル)マロン酸エステルの製造方法;
(ii)加水分解を、酸の存在下で行う(ii)に記載の製造方法;
(iii)酸が、プロトン酸である(ii)に記載の製造方法;
(iv)鉄化合物が、硫酸鉄(II)、硫酸鉄(II)アンモニウム、テトラフルオロホウ酸鉄(II)、塩化鉄(II)、臭化鉄(II)、ヨウ化鉄(II)、酢酸鉄(II)、シュウ酸鉄(II)、ビスアセチルアセトナト鉄(II)、フェロセン、ビス(η−ペンタメチルシクロペンタジエニル)鉄または鉄粉である(i)から(iii)のいずれかに記載の製造方法;
(v)鉄化合物が、硫酸鉄(II)である(i)から(iii)のいずれかに記載の製造方法;
(vi)Rが、メチル基である(i)から(v)のいずれかに記載の製造方法;
に関するものである。
(Wherein R 2 and R 3 have the same contents as described above); a method for producing a (trifluoromethyl) malonic ester represented by:
(Ii) The production method according to (ii), wherein the hydrolysis is performed in the presence of an acid;
(Iii) The production method according to (ii), wherein the acid is a protonic acid;
(Iv) the iron compound is iron (II) sulfate, iron (II) ammonium sulfate, iron (II) tetrafluoroborate, iron (II) chloride, iron (II) bromide, iron (II) iodide, acetic acid Any of (i) to (iii) which is iron (II), iron (II) oxalate, iron (II) bisacetylacetonate, ferrocene, bis (η 5 -pentamethylcyclopentadienyl) iron or iron powder The production method of crab;
(V) The production method according to any one of (i) to (iii), wherein the iron compound is iron (II) sulfate;
(Vi) The production method according to any one of (i) to (v), wherein R 1 is a methyl group;
It is about.

以下に本発明を詳細に説明する。   The present invention is described in detail below.

スルホキシド(1)のRで表される炭素数1〜4のアルキル基としては具体的には、メチル基、エチル基、ブチル基等が例示できる。Rは、これらのアルキル基またはフェニル基のいずれでもよいが、入手容易であり、かつ収率が良い点でメチル基が好ましい。
エナミン(2)のRおよびRで表される炭素数1〜4のアルキル基は、直鎖、分岐のいずれでもよく、具体的には、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec−ブチル基等が例示できる。入手容易な点で、メチル基またはエチル基が好ましい。
Specific examples of the alkyl group having 1 to 4 carbon atoms represented by R 1 of the sulfoxide (1) include a methyl group, an ethyl group, and a butyl group. R 1 may be any of these alkyl groups or phenyl groups, but is preferably a methyl group in terms of availability and good yield.
The alkyl group having 1 to 4 carbon atoms represented by R 2 and R 3 of enamine (2) may be linear or branched, and specifically includes a methyl group, an ethyl group, a propyl group, an isopropyl group, A butyl group, an isobutyl group, a sec-butyl group, etc. can be illustrated. From the viewpoint of availability, a methyl group or an ethyl group is preferable.

次に、本発明の製造方法について、詳細に述べる。   Next, the production method of the present invention will be described in detail.

原料のエナミン(2)は、Helvetica Chimica Acta,74巻,1ページ,1991年またはTetrahedron Letters,48巻,3273ページ,2007年に記載の、シアノ酢酸エステルやマロニトリルとアルコールの反応で得ることができる。また、RおよびRがいずれもエチル基のエナミン(2)は、市販品である塩酸塩を、中和して得ることもできる。 The raw material enamine (2) can be obtained by the reaction of cyanoacetate or malonitrile with alcohol described in Helvetica Chimica Acta, 74, 1 page, 1991 or Tetrahedron Letters, 48, 3273, 2007. . In addition, enamine (2) in which R 2 and R 3 are both ethyl groups can be obtained by neutralizing a commercially available hydrochloride.

本発明の製造方法は、2つの工程から成る。はじめに工程1ついて、説明する。
[工程1]
The production method of the present invention comprises two steps. First, step 1 will be described.
[Step 1]

Figure 2017202992
Figure 2017202992

(式中、R、RおよびXは、前記と同じ内容を示す。)
工程1は、鉄化合物、過酸化水素水および一般式(1)R−S(=O)−R(1)(式中、Rは、前記と同じ内容を示す。)で表されるスルホキシドの存在下、ヨウ化トリフルオロメチルで一般式(2)のエナミンをトリフルオロメチル化して一般式(3)の(トリフルオロメチル)エナミンを得る工程である。
(In the formula, R 2 , R 3 and X have the same contents as described above.)
Step 1 is represented by an iron compound, hydrogen peroxide solution, and general formula (1) R 1 —S (═O) —R 1 (1) (wherein R 1 has the same contents as described above). In the presence of sulfoxide, the enamine of the general formula (2) is trifluoromethylated with trifluoromethyl iodide to obtain the (trifluoromethyl) enamine of the general formula (3).

工程1の反応では、反応に害を及ぼさない溶媒を用いることができる。具体的には、N,N−ジメチルホルムアミド、ヘキサメチルリン酸トリアミド、N−メチル−2−ピロリドン等のアミド、1,4−ジオキサン、テトラヒドロフラン、ジエチルエーテル等のエーテル、酢酸メチル、酢酸エチル等のエステル、アセトン、メチル(イソブチル)ケトン等のケトン、水等を挙げることができ、適宜これらを組み合わせて用いても良い。また、ジメチルスルホキシドのように、常温で液体のスルホキシド(1)を、そのまま溶媒として用いても良い。収率および利便性が良い点で、水、ジメチルスルホキシド、または水とジメチルスルホキシドの混合溶媒を用いることが好ましい。   In the reaction of Step 1, a solvent that does not harm the reaction can be used. Specifically, amides such as N, N-dimethylformamide, hexamethylphosphoric acid triamide, N-methyl-2-pyrrolidone, ethers such as 1,4-dioxane, tetrahydrofuran and diethyl ether, methyl acetate, ethyl acetate and the like Examples include esters, acetone, ketones such as methyl (isobutyl) ketone, water, and the like, and these may be used in combination as appropriate. Further, sulfoxide (1) which is liquid at room temperature, such as dimethyl sulfoxide, may be used as a solvent as it is. From the viewpoint of good yield and convenience, it is preferable to use water, dimethyl sulfoxide, or a mixed solvent of water and dimethyl sulfoxide.

本発明で用いることのできる鉄化合物は、収率が良い点で鉄(II)塩が好ましい。例えば、硫酸鉄(II)、硫酸鉄(II)アンモニウム、テトラフルオロホウ酸鉄(II)、塩化鉄(II)、臭化鉄(II)またはヨウ化鉄(II)等の無機酸塩や、酢酸鉄(II)、シュウ酸鉄(II)、ビスアセチルアセトナト鉄(II)、フェロセンまたはビス(η−ペンタメチルシクロペンタジエニル)鉄等の有機金属化合物を例示することができ、これらを適宜組み合わせて用いても良い。また、鉄粉、鉄(0)塩または鉄(I)塩と過酸化物のような酸化試薬を組み合わせて、系内で鉄(II)塩を発生させて用いることもできる。その際、反応に用いる過酸化水素をそのまま酸化試薬として用いることもできる。収率が良い点で硫酸鉄(II)またはフェロセンを用いることが好ましい。 The iron compound that can be used in the present invention is preferably an iron (II) salt in terms of a good yield. For example, inorganic acid salts such as iron (II) sulfate, iron (II) sulfate, iron (II) tetrafluoroborate, iron (II) chloride, iron (II) bromide or iron (II) iodide, Organic metal compounds such as iron acetate (II), iron oxalate (II), bisacetylacetonatoiron (II), ferrocene or bis (η 5 -pentamethylcyclopentadienyl) iron can be exemplified, and these May be used in appropriate combination. In addition, iron (II) salt can be generated in the system by combining iron powder, iron (0) salt or iron (I) salt and an oxidizing reagent such as peroxide. In this case, hydrogen peroxide used for the reaction can be used as it is as an oxidizing reagent. It is preferable to use iron (II) sulfate or ferrocene in terms of good yield.

これらの鉄化合物は、固体のまま用いても良いが、溶液として用いることもできる。溶液として用いる場合、溶媒としては上記の溶媒のいずれでも良いが、中でも水、ジメチルスルホキシドまたは水とジメチルスルホキシドの混合溶媒が好ましい。その際の鉄化合物溶液の濃度は、収率が良い点で、0.1から10mol/Lが望ましく、0.5から5mol/Lがさらに好ましい。   These iron compounds may be used as solids, but can also be used as solutions. When used as a solution, the solvent may be any of the above-mentioned solvents, but water, dimethyl sulfoxide or a mixed solvent of water and dimethyl sulfoxide is particularly preferable. In this case, the concentration of the iron compound solution is preferably from 0.1 to 10 mol / L, and more preferably from 0.5 to 5 mol / L in terms of good yield.

エナミン(2)と鉄化合物のモル比は、1:0.01から1:10が望ましく、収率が良い点で1:0.1から1:1がさらに好ましい。   The molar ratio of enamine (2) to the iron compound is preferably 1: 0.01 to 1:10, and more preferably 1: 0.1 to 1: 1 in terms of good yield.

過酸化水素は、水で希釈して用いることが安全な点で好ましい。その際の濃度は、3から70重量%であれば良いが、市販の35重量%をそのまま用いても良い。収率が良く、かつ取扱いが安全な点で、市販の35重量%をそのまま用いるか、水で下限10重量%まで希釈して用いることが好ましい。   Hydrogen peroxide is preferably used by diluting with water. The concentration at that time may be 3 to 70% by weight, but a commercially available 35% by weight may be used as it is. From the viewpoint of good yield and safe handling, it is preferable to use 35% by weight of a commercially available product as it is or dilute it with water to a lower limit of 10% by weight.

エナミン(2)と過酸化水素のモル比は、1:0.1から1:10が好ましく、収率が良い点で1:1.5から1:3がさらに好ましい。   The molar ratio of enamine (2) to hydrogen peroxide is preferably 1: 0.1 to 1:10, and more preferably 1: 1.5 to 1: 3 in terms of good yield.

エナミン(2)とスルホキシド(1)とのモル比は、1:1から1:200が好ましく、収率が良い点で1:10から1:100がさらに好ましい。   The molar ratio of enamine (2) to sulfoxide (1) is preferably 1: 1 to 1: 200, and more preferably 1:10 to 1: 100 in terms of good yield.

エナミン(2)とヨウ化トリフルオロメチルとのモル比は、1:1から1:100が好ましく、収率が良い点で1:1.5から1:10がさらに好ましい。   The molar ratio of enamine (2) to trifluoromethyl iodide is preferably 1: 1 to 1: 100, and more preferably 1: 1.5 to 1:10 in terms of good yield.

反応温度は0℃から100℃の範囲から適宜選ばれた温度で行うことができる。収率が良い点で20℃から70℃が好ましい。   The reaction temperature can be carried out at a temperature appropriately selected from the range of 0 ° C to 100 ° C. From the point of good yield, 20 ° C to 70 ° C is preferable.

反応を密閉系で行う場合、大気圧(0.1MPa)から1.0MPaの範囲から適宜選ばれた圧力で行うことができるが、大気圧でも反応は充分に進行する。また、反応の際の雰囲気は、アルゴン、窒素等の不活性ガスでも良いが、空気中でも充分に進行する。   When the reaction is performed in a closed system, the reaction can be performed at a pressure appropriately selected from the range of atmospheric pressure (0.1 MPa) to 1.0 MPa, but the reaction proceeds sufficiently even at atmospheric pressure. The atmosphere during the reaction may be an inert gas such as argon or nitrogen, but proceeds sufficiently even in air.

ヨウ化トリフルオロメチルは、気体のまま用いてもよく、その際、アルゴン、窒素、空気、ヘリウム、酸素等の気体で希釈して、ヨウ化トリフルオロメチルのモル分率が1%以上の混合気体として用いることができる。密閉系で反応を実施する場合、ヨウ化トリフルオロメチルまたは混合気体を反応雰囲気として用いることができる。その際の圧力は、大気圧(0.1MPa)から1.0MPaの範囲から適宜選ばれた圧力で行うことができるが、大気圧でも反応は充分に進行する。また、開放系でヨウ化トリフルオロメチルまたは混合気体をバブリングして反応溶液中に導入しても良い。その際のヨウ化トリフルオロメチルまたは混合気体の導入速度は、反応のスケール、触媒量、反応温度、混合気体のヨウ化トリフルオロメチルのモル分率にもよるが、毎分1mLから200mLの範囲から選ばれた速度で良い。   Trifluoromethyl iodide may be used as it is, and in that case, it is diluted with a gas such as argon, nitrogen, air, helium, oxygen, etc., and mixed with a molar fraction of trifluoromethyl iodide of 1% or more. It can be used as a gas. When the reaction is carried out in a closed system, trifluoromethyl iodide or a mixed gas can be used as the reaction atmosphere. The pressure at that time can be carried out at a pressure appropriately selected from the range of atmospheric pressure (0.1 MPa) to 1.0 MPa, but the reaction proceeds sufficiently even at atmospheric pressure. Further, trifluoromethyl iodide or a mixed gas may be bubbled and introduced into the reaction solution in an open system. In this case, the introduction rate of trifluoromethyl iodide or mixed gas is in the range of 1 mL to 200 mL per minute, depending on the scale of the reaction, the amount of catalyst, the reaction temperature, and the molar fraction of trifluoromethyl iodide in the mixed gas. The speed selected from

また、ヨウ化トリフルオロメチルを上記の反応溶媒に溶解させて溶液として用いても良い。ヨウ化トリフルオロメチルの溶解度が高い点、および利便性の点で、ジメチルスルホキシドが好ましい。その際の濃度は、0.05〜5mol/Lが好ましく、0.1〜2mol/Lがさらに好ましい。   Alternatively, trifluoromethyl iodide may be dissolved in the above reaction solvent and used as a solution. Dimethyl sulfoxide is preferable from the viewpoint of high solubility of trifluoromethyl iodide and convenience. The concentration at that time is preferably 0.05 to 5 mol / L, and more preferably 0.1 to 2 mol / L.

反応時間に特に制限はないが、0.5時間以上行うことで、目的物を収率良く得ることができる。   Although there is no restriction | limiting in particular in reaction time, A target object can be obtained with a sufficient yield by performing for 0.5 hour or more.

反応後の溶液から目的物を単離する方法に特に限定はないが、溶媒抽出、カラムクロマトグラフィー、分取薄層クロマトグラフィー、分取液体クロマトグラフィー、再結晶または昇華等の汎用的な方法で目的物を得ることができる。   The method for isolating the target product from the solution after the reaction is not particularly limited. The object can be obtained.

工程1で得た(トリフルオロメチル)エナミン(3)は、単離しても良いが、単離することなく次の工程2に供することもできる。   The (trifluoromethyl) enamine (3) obtained in step 1 may be isolated, but can be subjected to the next step 2 without isolation.

次に工程2ついて、説明する。
[工程2]
Next, step 2 will be described.
[Step 2]

Figure 2017202992
Figure 2017202992

(式中、R、RおよびXは、前記と同じ内容を示す。)
工程2は、一般式(3)の(トリフルオロメチル)エナミンを加水分解し、(トリフルオロメチル)マロン酸エステルを得る工程である。
(In the formula, R 2 , R 3 and X have the same contents as described above.)
Step 2 is a step of hydrolyzing the (trifluoromethyl) enamine of the general formula (3) to obtain (trifluoromethyl) malonic acid ester.

水と(トリフルオロメチル)エナミン(3)のモル比は、1:1から1000:1が好ましく、5:1から100:1がさらに好ましい。また、(トリフルオロメチル)エナミン(3)を単離せずに工程2を行う場合、水とエナミン(2)のモル比は、1:1から1000:1が好ましく、5:1から100:1がさらに好ましい。   The molar ratio of water to (trifluoromethyl) enamine (3) is preferably 1: 1 to 1000: 1, more preferably 5: 1 to 100: 1. When performing Step 2 without isolating (trifluoromethyl) enamine (3), the molar ratio of water to enamine (2) is preferably 1: 1 to 1000: 1, and 5: 1 to 100: 1. Is more preferable.

工程2の反応では、反応に害を及ぼさない溶媒を用いることができる。具体的には、N,N−ジメチルホルムアミド、ヘキサメチルリン酸トリアミド、N−メチル−2−ピロリドン等のアミド、1,4−ジオキサン、テトラヒドロフラン、ジエチルエーテル等のエーテル、酢酸メチル、酢酸エチル等のエステル、アセトン、メチル(イソブチル)ケトン等のケトン、水を挙げることができ、適宜これらを組み合わせて用いても良い。また、ジメチルスルホキシドのように、常温で液体のスルホキシド(1)を、そのまま溶媒として用いても良い。収率および利便性が良い点で、水が好ましい。   In the reaction of Step 2, a solvent that does not harm the reaction can be used. Specifically, amides such as N, N-dimethylformamide, hexamethylphosphoric acid triamide, N-methyl-2-pyrrolidone, ethers such as 1,4-dioxane, tetrahydrofuran and diethyl ether, methyl acetate, ethyl acetate and the like Examples include esters, acetone, ketones such as methyl (isobutyl) ketone, and water, and these may be used in combination as appropriate. Further, sulfoxide (1) which is liquid at room temperature, such as dimethyl sulfoxide, may be used as a solvent as it is. Water is preferable in terms of yield and convenience.

工程2は、収率が良い点でプロトン酸の存在下に実施することが好ましい。用いることのできるプロトン酸としては、硫酸、塩酸、臭化水素酸、ヨウ化水素酸、硝酸、リン酸、ヘキサフルオロリン酸またはテトラフルオロホウ酸等の無機酸、ギ酸、酢酸、プロピオン酸、シュウ酸、p−トルエンスルホン酸、トリフルオロメタンスルホン酸またはトリフルオロ酢酸等の有機酸を例示することができる。収率が良く、かつ入手容易な点で無機酸が好ましく、塩酸がさらに好ましい。   Step 2 is preferably carried out in the presence of a protonic acid in terms of a good yield. Protic acids that can be used include sulfuric acid, hydrochloric acid, hydrobromic acid, hydroiodic acid, nitric acid, phosphoric acid, hexafluorophosphoric acid, tetrafluoroboric acid and other inorganic acids, formic acid, acetic acid, propionic acid, oxalic acid. Examples thereof include organic acids such as acid, p-toluenesulfonic acid, trifluoromethanesulfonic acid, or trifluoroacetic acid. Inorganic acids are preferred and hydrochloric acid is more preferred in terms of good yield and availability.

プロトン酸と(トリフルオロメチル)エナミン(3)のモル比は、1:1から1000:1が好ましく、5:1から100:1がさらに好ましい。また、(トリフルオロメチル)エナミン(3)を単離せずに工程2を行う場合、プロトン酸とエナミン(2)のモル比は、1:1から1000:1が好ましく、5:1から100:1がさらに好ましい。   The molar ratio of protic acid to (trifluoromethyl) enamine (3) is preferably 1: 1 to 1000: 1, more preferably 5: 1 to 100: 1. When performing Step 2 without isolating (trifluoromethyl) enamine (3), the molar ratio of protonic acid to enamine (2) is preferably 1: 1 to 1000: 1, and 5: 1 to 100: 1 is more preferable.

反応温度は0℃から80℃の範囲から適宜選ばれた温度で行うことができるが、室温でも十分良好な収率を得ることができる。   The reaction temperature can be appropriately selected from the range of 0 ° C. to 80 ° C., but a sufficiently good yield can be obtained even at room temperature.

反応時間に特に制限はないが、10分以上行うことで、目的物を収率良く得ることができる。   Although there is no restriction | limiting in particular in reaction time, A target object can be obtained with a sufficient yield by performing for 10 minutes or more.

本発明は、医薬品の含フッ素ビルディングブロックとして重要な化合物である(トリフルオロメチル)マロン酸エステルを、効率よく製造する方法として有効である。   The present invention is effective as a method for efficiently producing (trifluoromethyl) malonic acid ester, which is an important compound as a fluorine-containing building block for pharmaceuticals.

次に本発明を実施例および参考例によって詳細に説明するが、本発明はこれらに限定されるものではない。
実施例−1
EXAMPLES Next, although an Example and a reference example demonstrate this invention in detail, this invention is not limited to these.
Example-1

Figure 2017202992
Figure 2017202992

反応容器に3−アミノ−3−エトキシ−2−プロペン酸エチル0.159g(1.0mmol)を量りとり容器内をアルゴン置換した。さらに、ヨウ化トリフルオロメチルの0.6mol/Lのジメチルスルホキシド溶液5mL(ヨウ化トリフルオロメチル3.0mmol)、硫酸鉄の1.0mol/L水溶液0.3mL(0.30mmol)およびジメチルスルホキシド5.0mLを加えた。得られた混合物に30%過酸化水素水0.2mL(過酸化水素2.0mmol)を毎分0.04mLの速度で滴下し、その後室温で30分攪拌した。反応溶液をHおよび19F−NMRで分析し、3−アミノ−3−エトキシ−2−トリフルオロメチル−2−プロペン酸エチルが生成していることを確認した。
H−NMR(重ジメチルスルホキシド、500MHz):δ1.16(3H,t,J=7.1Hz),1.25(3H,t,J=7.0Hz),4.06(2H,q,J=7.1Hz),4.19(2H,q,J=7.1Hz),8.23(1H,brs),9.31(1H,brs).
19F−NMR(重ジメチルスルホキシド、470MHz):δ−49.0(3F,s).
In a reaction vessel, 0.159 g (1.0 mmol) of ethyl 3-amino-3-ethoxy-2-propenoate was weighed, and the inside of the vessel was replaced with argon. Furthermore, 5 mL of a dimethyl sulfoxide solution of trifluoromethyl iodide in 0.6 mol / L (trifluoromethyl iodide 3.0 mmol), 0.3 mL (0.30 mmol) of a 1.0 mol / L aqueous solution of iron sulfate and dimethyl sulfoxide 5 0.0 mL was added. To the obtained mixture, 0.2 mL of 30% aqueous hydrogen peroxide (hydrogen peroxide 2.0 mmol) was added dropwise at a rate of 0.04 mL per minute, and then stirred at room temperature for 30 minutes. The reaction solution was analyzed by 1 H and 19 F-NMR, and it was confirmed that ethyl 3-amino-3-ethoxy-2-trifluoromethyl-2-propenoate was produced.
1 H-NMR (deuterated dimethyl sulfoxide, 500 MHz): δ 1.16 (3H, t, J = 7.1 Hz), 1.25 (3H, t, J = 7.0 Hz), 4.06 (2H, q, J = 7.1 Hz), 4.19 (2H, q, J = 7.1 Hz), 8.23 (1H, brs), 9.31 (1H, brs).
19 F-NMR (deuterated dimethyl sulfoxide, 470 MHz): δ-49.0 (3F, s).

Figure 2017202992
Figure 2017202992

得られた反応溶液に、濃塩酸1.0mLを加え、さらに室温で1時間攪拌した。反応後、水を加え、ジエチルエーテルで3回抽出した。有機層を食塩水で洗浄後、無水硫酸マグネシウムで脱水した。その後、ろ過、濃縮し、シリカゲルカラムクロマトグラフィーにより精製し、(トリフルオロメチル)マロン酸ジエチルを淡黄色油状液体として得た(0.114g,50%)。
H−NMR(重ジメチルスルホキシド、500MHz):δ1.20(6H,t,J=7.1Hz),4.23(4H,q,J=7.1Hz),5.29(1H,q,J=8.7Hz).
19F−NMR(重ジメチルスルホキシド、470MHz):δ−64.7(3F,q,J=8.7Hz).
To the obtained reaction solution, 1.0 mL of concentrated hydrochloric acid was added, and the mixture was further stirred at room temperature for 1 hour. After the reaction, water was added and extracted three times with diethyl ether. The organic layer was washed with brine and then dried over anhydrous magnesium sulfate. Thereafter, the mixture was filtered, concentrated, and purified by silica gel column chromatography to obtain diethyl (trifluoromethyl) malonate as a pale yellow oily liquid (0.114 g, 50%).
1 H-NMR (deuterated dimethyl sulfoxide, 500 MHz): δ 1.20 (6H, t, J = 7.1 Hz), 4.23 (4H, q, J = 7.1 Hz), 5.29 (1H, q, J = 8.7 Hz).
19 F-NMR (deuterated dimethyl sulfoxide, 470 MHz): δ-64.7 (3F, q, J = 8.7 Hz).

実施例−2
反応容器に3−アミノ−3−エトキシ−2−プロペン酸エチル0.318g(2.0mmol)を量りとり容器内をアルゴン置換した。さらに、ヨウ化トリフルオロメチルの0.6mol/Lのジメチルスルホキシド溶液10mL(ヨウ化トリフルオロメチル6.0mmol)、フェロセン0.112g(0.60mmol)およびジメチルスルホキシド10mLを加えた。得られた混合物に30%過酸化水素水0.4mL(過酸化水素4.0mmol)を毎分0.04mLの速度で滴下し、その後室温で15時間攪拌した。
Example-2
0.318 g (2.0 mmol) of ethyl 3-amino-3-ethoxy-2-propenoate was weighed into the reaction vessel, and the inside of the vessel was replaced with argon. Furthermore, 10 mL of trifluoromethyl iodide in a 0.6 mol / L dimethyl sulfoxide solution (6.0 mmol of trifluoromethyl iodide), 0.112 g (0.60 mmol) of ferrocene and 10 mL of dimethyl sulfoxide were added. To the obtained mixture, 0.4 mL of 30% aqueous hydrogen peroxide (4.0 mmol of hydrogen peroxide) was added dropwise at a rate of 0.04 mL per minute, and then stirred at room temperature for 15 hours.

反応後、濃塩酸1.0mLを加え、さらに室温で1時間攪拌した。反応後、19F−NMRにより、(トリフルオロメチル)マロン酸ジエチルが、3−アミノ−3−エトキシ−2−プロペン酸エチル基準で25%生成していることを確認した。 After the reaction, 1.0 mL of concentrated hydrochloric acid was added, and the mixture was further stirred at room temperature for 1 hour. After the reaction, it was confirmed by 19 F-NMR that 25% of diethyl (trifluoromethyl) malonate was produced based on ethyl 3-amino-3-ethoxy-2-propenoate.

実施例−3 Example-3

Figure 2017202992
Figure 2017202992

反応容器に3−アミノ−3−エトキシ−2−プロペンイミド酸エチル0.144g(1.0mmol)を量りとり容器内をアルゴン置換した。さらに、ヨウ化トリフルオロメチルの0.6mol/Lのジメチルスルホキシド溶液5mL(ヨウ化トリフルオロメチル3.0mmol)、硫酸鉄の1.0mol/L水溶液0.3mL(0.30mmol)およびジメチルスルホキシド5.0mLを加えた。得られた混合物に30%過酸化水素水0.2mL(過酸化水素2.0mmol)を毎分0.04mLの速度で滴下し、その後室温で15時間攪拌した。   To the reaction vessel, 0.144 g (1.0 mmol) of ethyl 3-amino-3-ethoxy-2-propenimidate was weighed and the inside of the vessel was purged with argon. Furthermore, 5 mL of a dimethyl sulfoxide solution of trifluoromethyl iodide in 0.6 mol / L (trifluoromethyl iodide 3.0 mmol), 0.3 mL (0.30 mmol) of a 1.0 mol / L aqueous solution of iron sulfate and dimethyl sulfoxide 5 0.0 mL was added. To the obtained mixture, 0.2 mL of 30% hydrogen peroxide water (2.0 mmol of hydrogen peroxide) was added dropwise at a rate of 0.04 mL per minute, and then stirred at room temperature for 15 hours.

反応後、濃塩酸1.0mLを加え、さらに室温で1時間攪拌した。反応後、19F−NMRにより、(トリフルオロメチル)マロン酸ジエチルが、3−アミノ−3−エトキシ−2−プロペンイミド酸エチル基準で26%生成していることを確認した。 After the reaction, 1.0 mL of concentrated hydrochloric acid was added, and the mixture was further stirred at room temperature for 1 hour. After the reaction, it was confirmed by 19 F-NMR that 26% of diethyl (trifluoromethyl) malonate was produced based on ethyl 3-amino-3-ethoxy-2-propenimidate.

参考例−1 Reference Example-1

Figure 2017202992
Figure 2017202992

(トリフルオロメチル)マロン酸ジエチル0.114g(0.5mmol)を反応容器にとり、酢酸1.0mL、濃塩酸1.0mLを加え、100℃で6時間加熱した。反応後、19F−NMRにより、3,3,3−トリフルオロプロピオン酸が、(トリフルオロメチル)マロン酸ジエチル基準で91%生成していることを確認した。 0.114 g (0.5 mmol) of diethyl (trifluoromethyl) malonate was placed in a reaction vessel, 1.0 mL of acetic acid and 1.0 mL of concentrated hydrochloric acid were added, and the mixture was heated at 100 ° C. for 6 hours. After the reaction, it was confirmed by 19 F-NMR that 91,3% of 3,3,3-trifluoropropionic acid was produced based on diethyl (trifluoromethyl) malonate.

Claims (6)

鉄化合物、過酸化水素水および一般式(1)R−S(=O)−R(1)(式中、Rは炭素数1〜4のアルキル基またはフェニル基を示す。)で表されるスルホキシドの存在下、ヨウ化トリフルオロメチルで一般式(2)
Figure 2017202992
(式中、RおよびRは、各々独立に炭素数1〜4のアルキル基を示す。Xは、酸素原子またはイミノ基を示す。)で表されるエナミンをトリフルオロメチル化して一般式(3)
Figure 2017202992
(式中、R、RおよびXは、前記と同じ内容を示す。)で表される(トリフルオロメチル)エナミンを得、次いで加水分解することを特徴とする一般式(4)
Figure 2017202992
(式中、RおよびRは、前記と同じ内容を示す。)で表される(トリフルオロメチル)マロン酸エステルの製造方法。
Iron compound, hydrogen peroxide solution and general formula (1) R 1 —S (═O) —R 1 (1) (wherein R 1 represents an alkyl group having 1 to 4 carbon atoms or a phenyl group). In the presence of the sulfoxide represented by the formula (2)
Figure 2017202992
(Wherein R 2 and R 3 each independently represents an alkyl group having 1 to 4 carbon atoms. X represents an oxygen atom or an imino group.) (3)
Figure 2017202992
(Wherein R 2 , R 3 and X have the same contents as described above) (trifluoromethyl) enamine represented by formula (4) is obtained, followed by hydrolysis
Figure 2017202992
(Wherein R 2 and R 3 have the same contents as described above.) A method for producing a (trifluoromethyl) malonic acid ester represented by:
加水分解を、酸の存在下で行う請求項2に記載の製造方法。   The production method according to claim 2, wherein the hydrolysis is performed in the presence of an acid. 酸が、プロトン酸である請求項2に記載の製造方法。   The production method according to claim 2, wherein the acid is a protonic acid. 鉄化合物が、硫酸鉄(II)、硫酸鉄(II)アンモニウム、テトラフルオロホウ酸鉄(II)、塩化鉄(II)、臭化鉄(II)、ヨウ化鉄(II)、酢酸鉄(II)、シュウ酸鉄(II)、ビスアセチルアセトナト鉄(II)、フェロセン、ビス(η−ペンタメチルシクロペンタジエニル)鉄または鉄粉である請求項1から3のいずれかに記載の製造方法。 The iron compound is iron (II) sulfate, iron (II) sulfate, iron (II) tetrafluoroborate, iron (II) chloride, iron (II) bromide, iron (II) iodide, iron acetate (II) ), Iron (II) oxalate, iron (II) bisacetylacetonate, ferrocene, bis (η 5 -pentamethylcyclopentadienyl) iron or iron powder. Method. 鉄化合物が、硫酸鉄(II)である請求項1から3のいずれかに記載の製造方法。   The method according to any one of claims 1 to 3, wherein the iron compound is iron (II) sulfate. が、メチル基である請求項1から5のいずれかに記載の製造方法。
The production method according to claim 1, wherein R 1 is a methyl group.
JP2016095077A 2016-05-11 2016-05-11 Method for producing (trifluoromethyl)malonic acid ester Active JP6723817B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016095077A JP6723817B2 (en) 2016-05-11 2016-05-11 Method for producing (trifluoromethyl)malonic acid ester

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016095077A JP6723817B2 (en) 2016-05-11 2016-05-11 Method for producing (trifluoromethyl)malonic acid ester

Publications (2)

Publication Number Publication Date
JP2017202992A true JP2017202992A (en) 2017-11-16
JP6723817B2 JP6723817B2 (en) 2020-07-15

Family

ID=60321927

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016095077A Active JP6723817B2 (en) 2016-05-11 2016-05-11 Method for producing (trifluoromethyl)malonic acid ester

Country Status (1)

Country Link
JP (1) JP6723817B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220227696A1 (en) * 2019-06-04 2022-07-21 3M Innovative Properties Company Multifunctional Fluorinated Compound, Fluorinated Polymers Made from the Compound, and Related Methods

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220227696A1 (en) * 2019-06-04 2022-07-21 3M Innovative Properties Company Multifunctional Fluorinated Compound, Fluorinated Polymers Made from the Compound, and Related Methods

Also Published As

Publication number Publication date
JP6723817B2 (en) 2020-07-15

Similar Documents

Publication Publication Date Title
JP2015227339A5 (en)
JP2012504153A5 (en)
WO2009122834A1 (en) Method for producing 4-perfluoroisopropylaniline
JP6723817B2 (en) Method for producing (trifluoromethyl)malonic acid ester
US9409843B2 (en) Method for producing 1,1,1,5,5,5-hexafluoroacetylacetone
WO2017126233A1 (en) METHOD FOR PRODUCING α, α-DIFLUOROACETALDEHYDE
US7141693B2 (en) Process for producing β-oxonitrile compound or alkali metal salt thereof
JP5072679B2 (en) Process for producing benzotrifluorides
WO2017056501A1 (en) Method for producing acid halide solution, mixed solution, and method for producing monoester compound
WO2016132805A1 (en) PRACTICAL PROCESSES FOR PRODUCING FLUORINATED α-KETOCARBOXYLIC ESTERS AND ANALOGUES THEREOF
JP5135889B2 (en) Process for producing bromotetrafluoroalkanols
JP5238172B2 (en) Nitrogen-containing six-membered ring compound having perfluoroalkyl group and process for producing the same
US9090546B1 (en) Fluoronation of alpha-haloalkyl ketones
JP4032861B2 (en) Process for producing β-oxonitrile derivative or alkali metal salt thereof
JP6488638B2 (en) Method for producing α-fluoroaldehyde equivalents
JP6459709B2 (en) Practical production method of 3,3-difluoro-2-hydroxypropionic acid
JP2016508512A (en) Process for producing bis-dihaloalkylpyrazole
JP6368717B2 (en) Trifluoropyruvate derivative mixture and process for producing the same
JP6435207B2 (en) Process for producing (2,2,2-trifluoroethyl) ketone
JP2013180976A (en) METHOD OF MANUFACTURING α,α-DIFLUORO AROMATIC COMPOUND
JP2008174552A (en) Method for producing 4-perfluoroisopropylanilines
JP2013001653A (en) Method for producing fluorosulfuric acid enol ester
JP2018162218A (en) Novel cyclic urea derivative-hydrotribromide
JP5708023B2 (en) Industrial production method of α, β, β-trifluorostyrenes
JP3777407B2 (en) Method for producing carboxylic acid derivative

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160516

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20180111

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190423

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200408

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200623

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200624

R150 Certificate of patent or registration of utility model

Ref document number: 6723817

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250