JP2017160916A - Control device of internal combustion engine - Google Patents

Control device of internal combustion engine Download PDF

Info

Publication number
JP2017160916A
JP2017160916A JP2017123839A JP2017123839A JP2017160916A JP 2017160916 A JP2017160916 A JP 2017160916A JP 2017123839 A JP2017123839 A JP 2017123839A JP 2017123839 A JP2017123839 A JP 2017123839A JP 2017160916 A JP2017160916 A JP 2017160916A
Authority
JP
Japan
Prior art keywords
fuel
injection
injection amount
variation correction
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017123839A
Other languages
Japanese (ja)
Other versions
JP6451789B2 (en
Inventor
寛之 福田
Hiroyuki Fukuda
寛之 福田
岡本 明浩
Akihiro Okamoto
明浩 岡本
諒平 高橋
Ryohei Takahashi
諒平 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2017123839A priority Critical patent/JP6451789B2/en
Publication of JP2017160916A publication Critical patent/JP2017160916A/en
Application granted granted Critical
Publication of JP6451789B2 publication Critical patent/JP6451789B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent erroneous correction of an injection quantities of respective cylinders, in a system for correcting variations in injection quantities of fuel injection valves in the respective cylinders of an engine.SOLUTION: Whether execution conditions for correction control of variations in injection quantities are established or not are determined depending on whether all of various conditions such that an engine is in a normal operation, injection quantities of fuel injection valves 31 are within a prescribed range, and fuel pressure is within a prescribed range, are satisfied. When determining that the execution conditions for the correction control of the variations in the injection quantities are established, fuel pressure drop amounts due to fuel injection of the fuel injection valves 31 for each of respective cylinders are calculated on the basis of output of a fuel pressure sensor 32, and the correction control of the variations in the injection quantities for correcting the variations in the injection quantities of the fuel injection valves 31 of the respective cylinders are executed on the basis of fuel pressure drop amounts due to the fuel injection of the respective cylinders. Thus, the fuel pressure drop amounts due to the fuel injection of the respective cylinders are accurately calculated and the variations in the injection quantities of the respective cylinders are exactly corrected.SELECTED DRAWING: Figure 1

Description

本発明は、各気筒の燃料噴射弁の噴射量ばらつきを補正する内燃機関の制御装置に関する発明である。   The present invention relates to a control device for an internal combustion engine that corrects variation in the injection amount of the fuel injection valve of each cylinder.

高圧ポンプから吐出される燃料を内燃機関の各気筒の燃料噴射弁に供給するシステムにおいて、内燃機関の気筒間の噴射量ばらつき(気筒間の空燃比ばらつき)を補正する技術として、例えば、特許文献1(特開2010−43614号公報)に記載されたものがある。このものは、燃圧(燃料圧力)を検出する燃圧センサの出力に基づいて各気筒毎に燃料噴射弁の燃料噴射に伴う燃圧降下量を噴射量ばらつきの情報として算出し、各気筒の燃料噴射に伴う燃圧降下量に基づいて各気筒の燃料噴射弁の噴射パルス幅を補正することで、各気筒の燃料噴射弁の噴射量ばらつきを補正する(小さくする)ようにしている。   In a system for supplying fuel discharged from a high-pressure pump to a fuel injection valve of each cylinder of an internal combustion engine, as a technique for correcting injection amount variation between cylinders of the internal combustion engine (air-fuel ratio variation between cylinders), for example, Patent Literature 1 (Japanese Unexamined Patent Application Publication No. 2010-43614). This calculates the amount of fuel pressure drop accompanying fuel injection of the fuel injection valve for each cylinder based on the output of the fuel pressure sensor that detects the fuel pressure (fuel pressure) as information on the variation in the injection amount. By correcting the injection pulse width of the fuel injection valve of each cylinder based on the accompanying fuel pressure drop amount, the variation in the injection amount of the fuel injection valve of each cylinder is corrected (reduced).

特開2010−43614号公報JP 2010-43614 A

ところで、内燃機関の加速時や減速時等の過渡運転時に、内燃機関の運転状態の変化に応じて要求噴射量が変化すると、各気筒の燃料噴射弁の噴射量が噴射順に順番に変化していくため、それに伴って各気筒の燃料噴射による燃圧降下量も噴射順に順番に変化していく。このような場合、内燃機関の運転状態の変化による噴射量の変化の影響を受けて、燃料噴射による燃圧降下量が変化(増加又は減少)するため、各気筒の燃料噴射による燃圧降下量は、各気筒の噴射量ばらつきを精度良く反映した情報にならない。このため、内燃機関の加速時や減速時等の過渡運転時に、各気筒の燃料噴射による燃圧降下量に基づいて各気筒の燃料噴射弁の噴射量ばらつきを補正する噴射量ばらつき補正制御を実行すると、各気筒の噴射量ばらつきを正しく補正することができず、各気筒の噴射量を誤補正してしまう可能性がある。   By the way, when the required injection amount changes according to the change in the operating state of the internal combustion engine during transient operation such as acceleration or deceleration of the internal combustion engine, the injection amount of the fuel injection valve of each cylinder changes in order of injection. Accordingly, the fuel pressure drop amount due to the fuel injection of each cylinder also changes in order in accordance with the injection. In such a case, the amount of fuel pressure drop due to fuel injection changes (increases or decreases) under the influence of the change in injection amount due to changes in the operating state of the internal combustion engine. The information does not accurately reflect the variation in the injection amount of each cylinder. For this reason, when performing the injection amount variation correction control for correcting the variation in the injection amount of the fuel injection valve of each cylinder based on the amount of fuel pressure drop due to the fuel injection of each cylinder during transient operation such as acceleration or deceleration of the internal combustion engine The variation in the injection amount of each cylinder cannot be corrected correctly, and the injection amount of each cylinder may be erroneously corrected.

しかし、上記特許文献1の技術では、このような事情が全く考慮されていないため、内燃機関の過渡運転時に、内燃機関の運転状態の変化による噴射量の変化の影響を受けて、各気筒の燃料噴射による燃圧降下量が各気筒の噴射量ばらつきを精度良く反映した情報になっていないにも拘らず、各気筒の燃料噴射による燃圧降下量に基づいて各気筒の燃料噴射弁の噴射量ばらつきを補正する噴射量ばらつき補正制御を実行して、各気筒の噴射量を誤補正してしまう可能性がある。   However, in the technique of Patent Document 1 described above, such a situation is not taken into consideration at all. Therefore, during the transient operation of the internal combustion engine, each cylinder is affected by the change in the injection amount due to the change in the operation state of the internal combustion engine. Despite the fact that the fuel pressure drop due to fuel injection does not accurately reflect the injection amount variation of each cylinder, the fuel injection valve variation of each cylinder based on the fuel pressure drop due to fuel injection of each cylinder There is a possibility that the injection amount variation correction control for correcting the injection amount is executed and the injection amount of each cylinder is erroneously corrected.

そこで、本発明が解決しようとする課題は、各気筒の燃料噴射弁の噴射量ばらつきを補正するシステムにおいて、各気筒の噴射量の誤補正を防止することができる内燃機関の制御装置を提供することにある。   Accordingly, the problem to be solved by the present invention is to provide a control device for an internal combustion engine that can prevent erroneous correction of the injection amount of each cylinder in a system that corrects variation in the injection amount of the fuel injection valve of each cylinder. There is.

上記課題を解決するために、請求項1に係る発明は、高圧ポンプ(14)から吐出される燃料を高圧燃料通路(29,30)を通して内燃機関の各気筒の燃料噴射弁(31)に供給するシステムに適用され、高圧燃料通路(29,30)内の燃料圧力(以下「燃圧」という)を検出する燃圧センサ(32)と、この燃圧センサ(32)の出力に基づいて各気筒毎に燃料噴射弁(31)の燃料噴射による燃圧降下量を算出し、該燃料噴射による燃圧降下量に基づいて各気筒の燃料噴射弁(31)の噴射量ばらつきを補正する噴射量ばらつき補正制御を実行する噴射量ばらつき補正手段(38)とを備えた内燃機関の制御装置において、噴射量ばらつき補正手段(38)は、内燃機関の運転状態が定常状態のときに噴射量ばらつき補正制御を実行するものであり、噴射量ばらつき補正手段(38)は、燃料噴射弁(31)の噴射期間と高圧ポンプ(14)の吐出期間とが重複しないことを条件として噴射量ばらつき補正制御を実行するようにしたものである。   In order to solve the above-mentioned problem, the invention according to claim 1 supplies the fuel discharged from the high-pressure pump (14) to the fuel injection valve (31) of each cylinder of the internal combustion engine through the high-pressure fuel passage (29, 30). And a fuel pressure sensor (32) for detecting a fuel pressure (hereinafter referred to as “fuel pressure”) in the high-pressure fuel passage (29, 30), and for each cylinder based on the output of the fuel pressure sensor (32). An injection amount variation correction control for calculating a fuel pressure decrease amount by fuel injection of the fuel injection valve (31) and correcting an injection amount variation of the fuel injection valve (31) of each cylinder based on the fuel pressure decrease amount by the fuel injection is executed. In the control apparatus for an internal combustion engine provided with the injection amount variation correcting means (38) for performing the injection amount variation correcting means (38), the injection amount variation correcting control is executed when the operating state of the internal combustion engine is in a steady state. Therefore, the injection amount variation correction means (38) performs the injection amount variation correction control on condition that the injection period of the fuel injection valve (31) and the discharge period of the high-pressure pump (14) do not overlap. It is a thing.

内燃機関の定常運転時(内燃機関の運転状態が定常状態のとき)には、内燃機関の運転状態の変化による噴射量の変化の影響を受けず、各気筒の燃料噴射による燃圧降下量は、各気筒の噴射量ばらつきを精度良く反映した情報になる。従って、内燃機関の定常運転時に、各気筒の燃料噴射による燃圧降下量に基づいて各気筒の燃料噴射弁の噴射量ばらつきを補正する噴射量ばらつき補正制御を実行するようにすれば、各気筒の噴射量ばらつきを正しく補正することができ、各気筒の噴射量の誤補正を防止することができる。   During steady operation of the internal combustion engine (when the internal combustion engine is in a steady state), the fuel pressure drop due to fuel injection in each cylinder is not affected by the change in the injection amount due to the change in the operation state of the internal combustion engine. The information accurately reflects the variation in the injection amount of each cylinder. Therefore, during the steady operation of the internal combustion engine, if the injection amount variation correction control for correcting the variation in the injection amount of the fuel injection valve of each cylinder is executed based on the amount of fuel pressure drop due to the fuel injection of each cylinder, The variation in the injection amount can be corrected correctly, and erroneous correction of the injection amount of each cylinder can be prevented.

図1は本発明の一実施例における筒内噴射式エンジンの燃料供給システムの概略構成を示す図である。FIG. 1 is a diagram showing a schematic configuration of a fuel supply system for a direct injection engine according to an embodiment of the present invention. 図2は燃料噴射による燃圧降下量の算出方法を説明するタイムチャートである。FIG. 2 is a time chart for explaining a method of calculating the amount of fuel pressure drop due to fuel injection. 図3は噴射量ばらつき補正メインルーチンの処理の流れを示すフローチャートである。FIG. 3 is a flowchart showing the flow of processing of the injection amount variation correction main routine. 図4は噴射量ばらつき補正ルーチンの処理の流れを示すフローチャートである。FIG. 4 is a flowchart showing the flow of processing of the injection amount variation correction routine.

以下、本発明を実施するための形態を具体化した一実施例を説明する。
まず、図1に基づいて筒内噴射式のエンジン(内燃機関)の燃料供給システムの概略構成を説明する。
Hereinafter, an embodiment embodying a mode for carrying out the present invention will be described.
First, a schematic configuration of a fuel supply system of a cylinder injection engine (internal combustion engine) will be described with reference to FIG.

燃料を貯溜する燃料タンク11内には、燃料を汲み上げる低圧ポンプ12が設置されている。この低圧ポンプ12は、バッテリ(図示せず)を電源とする電動モータ(図示せず)によって駆動される。この低圧ポンプ12から吐出される燃料は、燃料配管13を通して高圧ポンプ14に供給される。燃料配管13には、プレッシャレギュレータ15が接続され、このプレッシャレギュレータ15によって低圧ポンプ12の吐出圧力(高圧ポンプ14への燃料供給圧力)が所定圧力に調圧され、その圧力を越える燃料の余剰分が燃料戻し管16により燃料タンク11内に戻されるようになっている。   A low pressure pump 12 that pumps up the fuel is installed in the fuel tank 11 that stores the fuel. The low-pressure pump 12 is driven by an electric motor (not shown) that uses a battery (not shown) as a power source. The fuel discharged from the low pressure pump 12 is supplied to the high pressure pump 14 through the fuel pipe 13. A pressure regulator 15 is connected to the fuel pipe 13, and the pressure regulator 15 regulates the discharge pressure of the low-pressure pump 12 (fuel supply pressure to the high-pressure pump 14) to a predetermined pressure. Is returned to the fuel tank 11 by the fuel return pipe 16.

高圧ポンプ14は、円筒状のポンプ室18内でピストン19(プランジャ)を往復運動させて燃料を吸入/吐出するピストンポンプであり、ピストン19は、エンジン(例えば4気筒エンジン)のカム軸20に嵌着されたカム21(例えば4つのカム山を有する4山カム)の回転運動によって駆動される。   The high-pressure pump 14 is a piston pump that sucks / discharges fuel by reciprocating a piston 19 (plunger) in a cylindrical pump chamber 18. The piston 19 is connected to a camshaft 20 of an engine (for example, a four-cylinder engine). It is driven by the rotational movement of the fitted cam 21 (for example, a four mountain cam having four cam mountains).

この高圧ポンプ14の吸入口22側には、燃圧制御弁23が設けられている。この燃圧制御弁23は、常開型の電磁弁であり、吸入口22を開閉する弁体24と、この弁体24を開弁方向に付勢するスプリング25と、弁体24を閉弁方向に電磁駆動するソレノイド26とから構成されている。   A fuel pressure control valve 23 is provided on the suction port 22 side of the high-pressure pump 14. The fuel pressure control valve 23 is a normally open type electromagnetic valve, and includes a valve body 24 that opens and closes the suction port 22, a spring 25 that urges the valve body 24 in the valve opening direction, and a valve body 24 in the valve closing direction. And a solenoid 26 that is electromagnetically driven.

高圧ポンプ14の吸入行程(ピストン19の下降時)において燃圧制御弁23の弁体24が開弁してポンプ室18内に燃料が吸入され、高圧ポンプ14の吐出行程(ピストン19の上昇時)において燃圧制御弁23の弁体24が閉弁してポンプ室18内の燃料が吐出されるように燃圧制御弁23のソレノイド26の通電を制御する。その際、燃圧制御弁23(ソレノイド26)の通電開始時期を制御して燃圧制御弁23の閉弁期間(閉弁開始時期からピストン19の上死点までの閉弁状態のクランク角区間)を制御することで、高圧ポンプ14の吐出量を制御して燃圧(燃料圧力)を制御する。尚、燃圧制御弁23の通電開始時期は、所定の基準クランク角位置(例えばピストン19の上死点に相当するクランク角位置)からのクランク角で設定される。   During the intake stroke of the high-pressure pump 14 (when the piston 19 is lowered), the valve body 24 of the fuel pressure control valve 23 is opened and fuel is sucked into the pump chamber 18, and the discharge stroke of the high-pressure pump 14 (when the piston 19 is raised). , The energization of the solenoid 26 of the fuel pressure control valve 23 is controlled so that the valve body 24 of the fuel pressure control valve 23 is closed and the fuel in the pump chamber 18 is discharged. At that time, the energization start timing of the fuel pressure control valve 23 (solenoid 26) is controlled to set the closing period of the fuel pressure control valve 23 (the crank angle section in the closed state from the valve closing start timing to the top dead center of the piston 19). By controlling, the discharge amount of the high-pressure pump 14 is controlled to control the fuel pressure (fuel pressure). The energization start timing of the fuel pressure control valve 23 is set by a crank angle from a predetermined reference crank angle position (for example, a crank angle position corresponding to the top dead center of the piston 19).

例えば、燃圧を上昇させるときには、燃圧制御弁23の通電開始時期を進角させて燃圧制御弁23の閉弁開始時期を進角させることで、燃圧制御弁23の閉弁期間を長くして高圧ポンプ14の吐出量を増加させる。逆に、燃圧を低下させるときには、燃圧制御弁23の通電開始時期を遅角させて燃圧制御弁23の閉弁開始時期を遅角させることで、燃圧制御弁23の閉弁期間を短くして高圧ポンプ14の吐出量を減少させる。   For example, when the fuel pressure is increased, the energization start timing of the fuel pressure control valve 23 is advanced to advance the valve closing start timing of the fuel pressure control valve 23, thereby extending the valve closing period of the fuel pressure control valve 23 and increasing the pressure. The discharge amount of the pump 14 is increased. Conversely, when the fuel pressure is decreased, the closing period of the fuel pressure control valve 23 is shortened by delaying the energization start timing of the fuel pressure control valve 23 and delaying the closing start timing of the fuel pressure control valve 23. The discharge amount of the high-pressure pump 14 is reduced.

一方、高圧ポンプ14の吐出口27側には、吐出した燃料の逆流を防止する逆止弁28が設けられている。高圧ポンプ14から吐出される燃料は、高圧燃料配管29を通してデリバリパイプ30に送られ、このデリバリパイプ30からエンジンの各気筒に取り付けられた燃料噴射弁31に高圧の燃料が分配される。デリバリパイプ30(又は高圧燃料配管29)には、高圧燃料配管29やデリバリパイプ30等の高圧燃料通路内の燃圧(燃料圧力)を検出する燃圧センサ32が設けられている。また、デリバリパイプ30には、リリーフ弁33が設けられ、このリリーフ弁33の排出ポートがリリーフ配管34を介して燃料タンク11(又は低圧側の燃料配管13)に接続されている。   On the other hand, a check valve 28 for preventing the backflow of discharged fuel is provided on the discharge port 27 side of the high-pressure pump 14. The fuel discharged from the high-pressure pump 14 is sent to the delivery pipe 30 through the high-pressure fuel pipe 29, and the high-pressure fuel is distributed from the delivery pipe 30 to the fuel injection valve 31 attached to each cylinder of the engine. The delivery pipe 30 (or the high-pressure fuel pipe 29) is provided with a fuel pressure sensor 32 that detects a fuel pressure (fuel pressure) in a high-pressure fuel passage such as the high-pressure fuel pipe 29 or the delivery pipe 30. The delivery pipe 30 is provided with a relief valve 33, and a discharge port of the relief valve 33 is connected to the fuel tank 11 (or the low-pressure side fuel pipe 13) via a relief pipe 34.

本実施例では、4気筒エンジンの各気筒に燃料噴射弁31が設けられ、高圧ポンプ14を駆動するカム21として、4つのカム山を有する4山カムが用いられている。これにより、エンジンのカム軸20が1回転(つまりクランク軸が2回転)する毎に燃料噴射弁31の燃料噴射が4回行われると共に高圧ポンプ14の燃料吐出が4回行われる。   In this embodiment, a fuel injection valve 31 is provided in each cylinder of a four-cylinder engine, and a four-crest cam having four cam crests is used as the cam 21 for driving the high-pressure pump 14. As a result, every time the camshaft 20 of the engine rotates once (that is, the crankshaft rotates twice), fuel injection of the fuel injection valve 31 is performed four times and fuel discharge of the high-pressure pump 14 is performed four times.

また、エンジンには、吸入空気量を検出するエアフローメータ36や、クランク軸(図示せず)の回転に同期して所定クランク角毎にパルス信号を出力するクランク角センサ37が設けられている。このクランク角センサ37の出力信号に基づいてクランク角やエンジン回転速度が検出される。   Further, the engine is provided with an air flow meter 36 for detecting the amount of intake air and a crank angle sensor 37 for outputting a pulse signal at every predetermined crank angle in synchronization with rotation of a crankshaft (not shown). Based on the output signal of the crank angle sensor 37, the crank angle and the engine speed are detected.

上述した各種センサの出力は、電子制御ユニット(以下「ECU」と表記する)38に入力される。このECU38は、マイクロコンピュータを主体として構成され、内蔵されたROM(記憶媒体)に記憶された各種のエンジン制御用のプログラムを実行することで、エンジン運転状態に応じて、燃料噴射量、点火時期、スロットル開度(吸入空気量)等を制御する。   Outputs of the various sensors described above are input to an electronic control unit (hereinafter referred to as “ECU”) 38. The ECU 38 is mainly composed of a microcomputer, and executes various engine control programs stored in a built-in ROM (storage medium), so that the fuel injection amount and the ignition timing are determined according to the engine operating state. The throttle opening (intake air amount) and the like are controlled.

その際、ECU38は、エンジン運転状態(例えばエンジン回転速度やエンジン負荷等)に応じて目標燃圧をマップ等により算出し、燃圧センサ32で検出した高圧燃料通路内の実燃圧を目標燃圧に一致させるように高圧ポンプ14の吐出量(燃圧制御弁23の通電時期)をF/B制御する燃圧F/B制御を実行する。ここで、「F/B」は「フィードバック」を意味する(以下、同様)。   At that time, the ECU 38 calculates a target fuel pressure from a map or the like according to the engine operating state (for example, engine speed, engine load, etc.), and matches the actual fuel pressure in the high-pressure fuel passage detected by the fuel pressure sensor 32 with the target fuel pressure. In this way, the fuel pressure F / B control is executed to F / B control the discharge amount of the high-pressure pump 14 (energization timing of the fuel pressure control valve 23). Here, “F / B” means “feedback” (hereinafter the same).

また、ECU38は、エンジン運転状態(例えばエンジン回転速度やエンジン負荷等)に応じて要求噴射量を算出して、この要求噴射量と燃圧センサ32で検出した実燃圧(又は目標燃圧)とに応じて燃料噴射弁31の噴射時間(噴射パルス幅)を算出し、この噴射時間で燃料噴射弁31を開弁駆動して要求噴射量分の燃料を噴射する。   Further, the ECU 38 calculates a required injection amount according to the engine operating state (for example, engine speed, engine load, etc.), and according to the required injection amount and the actual fuel pressure (or target fuel pressure) detected by the fuel pressure sensor 32. Then, the injection time (injection pulse width) of the fuel injection valve 31 is calculated, and the fuel injection valve 31 is driven to open during this injection time to inject fuel for the required injection amount.

更に、ECU38は、所定の空燃比F/B制御実行条件が成立したときに、エンジンの排出ガスの空燃比又はリッチ/リーン等を検出する排出ガスセンサ(例えば空燃比センサや酸素センサ等)の出力に基づいて排出ガスの空燃比を目標空燃比に一致させるようにメインF/B補正量を算出し、このメインF/B補正量を用いて要求噴射量を補正する空燃比F/B制御を実行する。   Further, the ECU 38 outputs an exhaust gas sensor (for example, an air-fuel ratio sensor or an oxygen sensor) that detects the air-fuel ratio or rich / lean of the exhaust gas of the engine when a predetermined air-fuel ratio F / B control execution condition is satisfied. The main F / B correction amount is calculated so that the air-fuel ratio of the exhaust gas matches the target air-fuel ratio, and the air-fuel ratio F / B control for correcting the required injection amount using this main F / B correction amount is performed. Run.

ところで、各気筒の燃料噴射弁31の噴射時間(噴射パルス幅)が同一であっても、各気筒の燃料噴射弁31の個体差(製造ばらつき)や経時変化等によって各気筒の燃料噴射弁31の噴射量にばらつきが生じることがある。   By the way, even if the injection time (injection pulse width) of the fuel injection valve 31 of each cylinder is the same, the fuel injection valve 31 of each cylinder depends on individual differences (manufacturing variation) of the fuel injection valves 31 of each cylinder, changes over time, and the like. There may be variations in the injection amount.

そこで、本実施例では、ECU38により後述する図3及び図4の噴射量ばらつき補正用の各ルーチンを実行することで、燃圧センサ32の出力に基づいて各気筒毎に燃料噴射弁31の燃料噴射による燃圧降下量を噴射量ばらつきの情報として算出し、各気筒の燃料噴射による燃圧降下量に基づいて各気筒の燃料噴射弁31の噴射量ばらつきを補正する噴射量ばらつき補正制御を実行するようにしている。   Therefore, in this embodiment, the ECU 38 executes the routines for correcting the injection amount variation shown in FIGS. 3 and 4 to be described later, so that the fuel injection of the fuel injection valve 31 is performed for each cylinder based on the output of the fuel pressure sensor 32. The fuel pressure drop amount is calculated as the injection amount variation information, and the injection amount variation correction control for correcting the injection amount variation of the fuel injection valve 31 of each cylinder based on the fuel pressure drop amount due to the fuel injection of each cylinder is executed. ing.

具体的には、図2に示すように、噴射量ばらつき補正制御の際には、まず、高圧ポンプ14で燃圧を通常の目標燃圧(エンジン運転状態に応じた目標燃圧)から昇圧用の目標燃圧まで昇圧した後、高圧ポンプ14の吐出を所定期間(例えば燃圧が通常の目標燃圧に低下するまでの期間)だけ停止する。このポンプ吐出停止期間中に、燃料噴射弁31の燃料噴射が実行される毎に燃圧降下量ΔPを算出する処理を繰り返して各気筒の燃料噴射による燃圧降下量ΔP(#i)を算出する。ここで、#iは気筒番号であり、4気筒エンジンの場合はi=1〜4である。   Specifically, as shown in FIG. 2, in the injection amount variation correction control, first, the fuel pressure is increased from the normal target fuel pressure (target fuel pressure according to the engine operating state) by the high-pressure pump 14 to the target fuel pressure for boosting. After the pressure has been increased to, the discharge of the high-pressure pump 14 is stopped for a predetermined period (for example, the period until the fuel pressure drops to the normal target fuel pressure). During this pump discharge stop period, every time fuel injection of the fuel injection valve 31 is executed, the process of calculating the fuel pressure drop ΔP is repeated to calculate the fuel pressure drop ΔP (#i) due to fuel injection of each cylinder. Here, #i is a cylinder number, and i = 1 to 4 in the case of a 4-cylinder engine.

この後、全気筒の燃料噴射による燃圧降下量の平均値を算出し、各気筒毎に、それぞれ燃料噴射による燃圧降下量と平均値との偏差を噴射量ばらつきとして算出することで、各気筒の燃料噴射弁31の噴射量ばらつきを算出する。   After that, the average value of the fuel pressure drop due to fuel injection in all cylinders is calculated, and the deviation between the fuel pressure drop due to fuel injection and the average value is calculated as the injection amount variation for each cylinder. The injection amount variation of the fuel injection valve 31 is calculated.

この後、各気筒毎に、それぞれ燃料噴射弁31の噴射量ばらつきが小さくなるように噴射量ばらつき補正量を算出し、各気筒毎に、それぞれ噴射量ばらつき補正量を用いて要求噴射量を補正することで、各気筒の燃料噴射弁31の噴射パルス幅(噴射時間)を気筒毎に補正して、各気筒の燃料噴射弁31の噴射量ばらつきを小さくする(気筒間の噴射量ばらつきを小さくする)。   Thereafter, the injection amount variation correction amount is calculated for each cylinder so that the injection amount variation of the fuel injection valve 31 is reduced, and the required injection amount is corrected for each cylinder using the injection amount variation correction amount. Thus, the injection pulse width (injection time) of the fuel injection valve 31 of each cylinder is corrected for each cylinder, and the injection amount variation of the fuel injection valve 31 of each cylinder is reduced (the injection amount variation between cylinders is reduced). To do).

ところで、エンジンの加速時や減速時等の過渡運転時に、エンジン運転状態の変化に応じて要求噴射量が変化すると、各気筒の燃料噴射弁31の噴射量が噴射順に順番に変化していくため、それに伴って各気筒の燃料噴射による燃圧降下量も噴射順に順番に変化していく。このような場合、エンジン運転状態の変化による噴射量の変化の影響を受けて、燃料噴射による燃圧降下量が変化(増加又は減少)するため、各気筒の燃料噴射による燃圧降下量は、各気筒の噴射量ばらつきを精度良く反映した情報にならない。このため、エンジンの加速時や減速時等の過渡運転時に、各気筒の燃料噴射による燃圧降下量に基づいて各気筒の燃料噴射弁31の噴射量ばらつきを補正する噴射量ばらつき補正制御を実行すると、各気筒の噴射量ばらつきを正しく補正することができず、各気筒の噴射量を誤補正してしまう可能性がある。   By the way, during the transient operation such as when the engine is accelerated or decelerated, if the required injection amount changes according to the change in the engine operating state, the injection amount of the fuel injection valve 31 of each cylinder changes in order of injection. Accordingly, the amount of fuel pressure drop due to fuel injection in each cylinder also changes in order of injection. In such a case, the fuel pressure drop amount due to fuel injection changes (increases or decreases) under the influence of the change in the injection amount due to changes in the engine operating state. This information does not accurately reflect the variation in the injection amount. For this reason, when performing an injection amount variation correction control for correcting variation in the injection amount of the fuel injection valve 31 of each cylinder based on the amount of fuel pressure drop due to fuel injection of each cylinder during transient operation such as acceleration or deceleration of the engine. The variation in the injection amount of each cylinder cannot be corrected correctly, and the injection amount of each cylinder may be erroneously corrected.

そこで、本実施例では、ECU38により後述する図3及び図4の噴射量ばらつき補正用の各ルーチンを実行することで、エンジンの定常運転時(エンジンの運転状態が定常状態のとき)に、各気筒の燃料噴射による燃圧降下量に基づいて各気筒の燃料噴射弁31の噴射量ばらつきを補正する噴射量ばらつき補正制御を実行するようにしている。   Therefore, in this embodiment, each routine for correcting the injection amount variation in FIGS. 3 and 4 to be described later is executed by the ECU 38, so that each time the engine is in steady operation (when the engine is in a steady state), Injection amount variation correction control for correcting variation in the injection amount of the fuel injection valve 31 of each cylinder based on the amount of fuel pressure drop due to fuel injection of the cylinder is executed.

エンジンの定常運転時には、エンジン運転状態の変化による噴射量の変化の影響を受けず、各気筒の燃料噴射による燃圧降下量は、各気筒の噴射量ばらつきを精度良く反映した情報になる。従って、エンジンの定常運転時に、各気筒の燃料噴射による燃圧降下量に基づいて各気筒の燃料噴射弁31の噴射量ばらつきを補正する噴射量ばらつき補正制御を実行するようにすれば、各気筒の噴射量ばらつきを正しく補正することができ、各気筒の噴射量の誤補正を防止することができる。   During steady operation of the engine, the amount of fuel pressure drop due to fuel injection in each cylinder is information that accurately reflects variations in the injection amount of each cylinder without being affected by changes in the injection amount due to changes in engine operating conditions. Accordingly, if the injection amount variation correction control for correcting the variation in the injection amount of the fuel injection valve 31 of each cylinder is executed based on the amount of fuel pressure drop due to the fuel injection of each cylinder during steady operation of the engine, The variation in the injection amount can be corrected correctly, and erroneous correction of the injection amount of each cylinder can be prevented.

ところで、噴射量ばらつき補正制御の際に、燃料噴射弁31の噴射量が少ないと、燃料噴射による燃圧降下量が小さくなるため、燃圧降下量の演算値に含まれる演算の誤差や分解能(LSB)等に起因するばらつき分が相対的に大きくなって、噴射量ばらつきによる変動分が相対的に小さくなる。このため、燃料噴射弁31の噴射量が少な過ぎると、各気筒の燃料噴射による燃圧降下量を比較しても、噴射量ばらつきによる変動分が演算の誤差や分解能等に起因するばらつき分に埋もれてしまい、各気筒の噴射量ばらつきを正しく判定できない可能性がある。   By the way, when the injection amount variation correction control is performed, if the injection amount of the fuel injection valve 31 is small, the fuel pressure drop amount due to fuel injection becomes small. Therefore, the calculation error and resolution (LSB) included in the calculated value of the fuel pressure drop amount are reduced. The variation due to the above becomes relatively large, and the variation due to the injection amount variation becomes relatively small. For this reason, if the injection amount of the fuel injection valve 31 is too small, even if the fuel pressure drop amount due to the fuel injection of each cylinder is compared, the variation due to the variation in the injection amount is buried in the variation due to the calculation error or resolution. Therefore, there is a possibility that variation in the injection amount of each cylinder cannot be correctly determined.

一方、噴射量ばらつき補正制御の際に、燃料噴射弁31の噴射量が多いと、燃料噴射による燃圧降下量が大きくなる。このため、燃料噴射弁31の噴射量が多過ぎると、燃圧を昇圧した後のポンプ吐出停止期間中に、燃料噴射の回数が必要噴射回数(各気筒の燃料噴射による燃圧降下量を算出するのに必要な噴射回数)に達する前に、燃圧が通常の目標燃圧(昇圧前の燃圧)まで低下してしまい、各気筒の燃料噴射による燃圧降下量を算出できない可能性がある。   On the other hand, when the injection amount variation correction control is performed, if the injection amount of the fuel injection valve 31 is large, the amount of fuel pressure drop due to fuel injection increases. For this reason, if the injection amount of the fuel injection valve 31 is too large, the number of times of fuel injection is calculated during the pump discharge stop period after increasing the fuel pressure (the amount of fuel pressure drop due to fuel injection in each cylinder is calculated). Before the fuel injection pressure reaches the normal target fuel pressure (fuel pressure before pressure increase), the fuel pressure drop due to fuel injection in each cylinder may not be calculated.

そこで、本実施例では、燃料噴射弁31の噴射量が所定範囲内であることを条件として噴射量ばらつき補正制御を実行するようにしている。
ここで、所定範囲の下限値は、例えば、燃料噴射弁31の最小噴射量(正常に噴射可能な噴射量の最小値)以上で、且つ、燃圧降下量の演算値に含まれる演算の誤差や分解能等に起因するばらつき分に対して噴射量ばらつきによる変動分が小さくなり過ぎず、各気筒の燃料噴射による燃圧降下量に基づいて各気筒の噴射量ばらつきを正しく判定できる噴射量の最小値又はそれよりも少し大きい値に設定する。
Therefore, in this embodiment, the injection amount variation correction control is executed on condition that the injection amount of the fuel injection valve 31 is within a predetermined range.
Here, the lower limit value of the predetermined range is, for example, not less than the minimum injection amount of the fuel injection valve 31 (minimum value of the injection amount that can be normally injected) and the calculation error included in the calculation value of the fuel pressure drop amount, The minimum value of the injection amount that can correctly determine the variation in the injection amount of each cylinder based on the amount of fuel pressure drop due to the fuel injection of each cylinder without the variation due to the injection amount variation being too small relative to the variation caused by the resolution or the like Set it to a slightly larger value.

一方、所定範囲の上限値は、例えば、燃圧を昇圧した後のポンプ吐出停止期間中に、燃圧が通常の目標燃圧(昇圧前の燃圧)まで低下するまでの間に、必要噴射回数の燃料噴射を実行できる噴射量の最大値又はそれよりも少し小さい値に設定する。   On the other hand, the upper limit value of the predetermined range is, for example, the required number of fuel injections until the fuel pressure decreases to the normal target fuel pressure (the fuel pressure before the pressure increase) during the pump discharge stop period after increasing the fuel pressure. Is set to a maximum value of the injection amount that can be executed or a value slightly smaller than that.

このようにすれば、燃圧を昇圧した後のポンプ吐出停止期間中に各気筒の燃料噴射による燃圧降下量を確実に算出することができると共に、各気筒の燃料噴射による燃圧降下量に基づいて各気筒の噴射量ばらつきを正しく判定することができる。   In this way, it is possible to reliably calculate the amount of fuel pressure drop due to fuel injection in each cylinder during the pump discharge stop period after increasing the fuel pressure, and to calculate each fuel pressure drop amount based on the fuel pressure drop due to fuel injection in each cylinder. It is possible to correctly determine the cylinder injection amount variation.

また、本実施例では、燃圧が所定範囲内であることを条件として噴射量ばらつき補正制御を実行するようにしている。ここで、所定範囲は、例えば、システム燃圧の上限値以下で、且つ、ドライバビリティ及び燃費に悪影響を及ぼさない燃圧の範囲に設定する。このようにすれば、ドライバビリティや燃費に悪影響を及ぼすことなく噴射量ばらつき補正制御を実行することができる。   In this embodiment, the injection amount variation correction control is executed on condition that the fuel pressure is within a predetermined range. Here, the predetermined range is set, for example, to a range of fuel pressure that is not more than the upper limit value of the system fuel pressure and does not adversely affect drivability and fuel consumption. In this way, injection amount variation correction control can be executed without adversely affecting drivability and fuel consumption.

更に、本実施例では、燃料噴射弁31の噴射パターンが所定噴射パターンであることを条件として噴射量ばらつき補正制御を実行するようにしている。ここで、所定噴射パターンは、例えば、燃料噴射による燃圧降下量を算出する際の燃圧検出タイミング間に一つの気筒のみで燃料噴射弁31の燃料噴射を行う噴射パターン(例えば、各気筒の吸気行程で1回ずつ燃料噴射を行う吸気行程1回噴射パターン)である。   Further, in this embodiment, the injection amount variation correction control is executed on the condition that the injection pattern of the fuel injection valve 31 is a predetermined injection pattern. Here, the predetermined injection pattern is, for example, an injection pattern (for example, an intake stroke of each cylinder) in which fuel injection of the fuel injection valve 31 is performed with only one cylinder during a fuel pressure detection timing when calculating a fuel pressure drop amount due to fuel injection. The intake stroke is a one-time injection pattern in which fuel is injected once at a time.

このようにすれば、他の気筒の燃料噴射による燃圧降下の影響を受けずに、該当する気筒の燃料噴射による燃圧降下量を精度良く算出することができ、各気筒の燃料噴射による燃圧降下量を精度良く算出することができる。   In this way, the amount of fuel pressure drop due to fuel injection in the corresponding cylinder can be accurately calculated without being affected by the fuel pressure drop due to fuel injection in other cylinders, and the amount of fuel pressure drop due to fuel injection in each cylinder. Can be calculated with high accuracy.

本実施例では、噴射量ばらつき補正制御の際に、燃圧を昇圧した後のポンプ吐出停止期間中に各気筒の燃料噴射による燃圧降下量を算出するが、高圧ポンプ14が最大吐出量で燃料を吐出するフル吐出状態の場合には、それ以上燃圧を昇圧することができないため、噴射量ばらつき補正制御を実行することができない。   In this embodiment, during the injection amount variation correction control, the fuel pressure drop amount due to the fuel injection of each cylinder is calculated during the pump discharge stop period after increasing the fuel pressure, but the high pressure pump 14 supplies the fuel at the maximum discharge amount. In the case of the full discharge state in which discharge is performed, the fuel pressure cannot be increased any further, so that the injection amount variation correction control cannot be executed.

そこで、本実施例では、高圧ポンプ14が最大吐出量で燃料を吐出するフル吐出状態ではない(非フル吐出状態である)ことを条件として噴射量ばらつき補正制御を実行するようにしている。このようにすれば、高圧ポンプ14がフル吐出状態ではないときに噴射量ばらつき補正制御を実行するようにでき、噴射量ばらつき補正制御を確実に実行することができる。   Therefore, in this embodiment, the injection amount variation correction control is executed on the condition that the high pressure pump 14 is not in the full discharge state in which the fuel is discharged at the maximum discharge amount (is in the non-full discharge state). In this way, the injection amount variation correction control can be executed when the high-pressure pump 14 is not in the full discharge state, and the injection amount variation correction control can be reliably executed.

また、燃料噴射弁31の燃料噴射を停止する燃料カット中は、燃料噴射による燃圧降下量を算出できないため、噴射量ばらつき補正制御を実行することができない。
そこで、本実施例では、燃料噴射弁31の燃料噴射を停止する燃料カット中ではない(非燃料カット中である)ことを条件として噴射量ばらつき補正制御を実行するようにしている。このようにすれば、燃料カット中ではないときに噴射量ばらつき補正制御を実行するようにでき、噴射量ばらつき補正制御を確実に実行することができる。
Further, during the fuel cut in which the fuel injection of the fuel injection valve 31 is stopped, the fuel pressure drop amount due to the fuel injection cannot be calculated, so the injection amount variation correction control cannot be executed.
Therefore, in this embodiment, the injection amount variation correction control is executed on the condition that the fuel cut for stopping the fuel injection of the fuel injection valve 31 is not being performed (the fuel is not being cut). In this way, the injection amount variation correction control can be executed when the fuel cut is not being performed, and the injection amount variation correction control can be reliably executed.

また、ガス欠(燃料残量が不足した状態)等で正常に燃料噴射できない場合には、その影響を受けて燃料噴射による燃圧降下量が変化するため、各気筒の燃料噴射による燃圧降下量は、各気筒の噴射量ばらつきを精度良く反映した情報にならない。このため、噴射量ばらつき補正制御を実行すると、各気筒の噴射量ばらつきを正しく補正することができず、各気筒の噴射量を誤補正してしまう可能性がある。   In addition, when normal fuel injection is not possible due to a lack of gas (insufficient fuel), the amount of fuel pressure drop due to fuel injection changes due to the influence, so the amount of fuel pressure drop due to fuel injection in each cylinder is The information does not accurately reflect the variation in the injection amount of each cylinder. For this reason, when the injection amount variation correction control is executed, the injection amount variation of each cylinder cannot be corrected correctly, and the injection amount of each cylinder may be erroneously corrected.

そこで、本実施例では、メインF/B補正量が所定値以下であることを条件として噴射量ばらつき補正制御を実行するようにしている。ここで、所定値は、例えば、メインF/B補正量の正常範囲の上限値に設定されている。   Therefore, in this embodiment, the injection amount variation correction control is executed on condition that the main F / B correction amount is not more than a predetermined value. Here, the predetermined value is set to, for example, the upper limit value of the normal range of the main F / B correction amount.

つまり、メインF/B補正量が所定値よりも大きいときには、ガス欠等で正常に燃料噴射できていないと判断して、噴射量ばらつき補正制御を禁止する。一方、メインF/B補正量が所定値以下のときには、正常に燃料噴射できていると判断して、噴射量ばらつき補正制御を許可する。このようにすれば、ガス欠等で正常に燃料噴射できていないときに、噴射量ばらつき補正制御を実行してしまうことを防止して、各気筒の噴射量の誤補正を防止することができる。   That is, when the main F / B correction amount is larger than the predetermined value, it is determined that the fuel cannot be normally injected due to lack of gas or the like, and the injection amount variation correction control is prohibited. On the other hand, when the main F / B correction amount is equal to or less than the predetermined value, it is determined that fuel injection is normally performed, and the injection amount variation correction control is permitted. In this way, it is possible to prevent the injection amount variation correction control from being executed when the fuel cannot be normally injected due to lack of gas or the like, and to prevent erroneous correction of the injection amount of each cylinder. .

また、高圧ポンプ14の通常制御中に噴射量ばらつき補正制御を実行する場合、エンジンの運転領域によっては、燃料噴射弁31の噴射期間と高圧ポンプ14の吐出期間とが重複することがある。燃料噴射弁31の噴射期間と高圧ポンプ14の吐出期間とが重複する運転領域では、高圧ポンプ14の燃料吐出による燃圧上昇の影響を受けて、燃料噴射弁31の燃料噴射による燃圧降下量を精度良く算出することが困難になる。   Further, when the injection amount variation correction control is executed during the normal control of the high-pressure pump 14, the injection period of the fuel injection valve 31 and the discharge period of the high-pressure pump 14 may overlap depending on the engine operating region. In the operation region where the injection period of the fuel injection valve 31 and the discharge period of the high-pressure pump 14 overlap, the amount of fuel pressure drop due to fuel injection of the fuel injection valve 31 is accurately affected by the influence of the fuel pressure increase due to fuel discharge of the high-pressure pump 14. It becomes difficult to calculate well.

そこで、本実施例では、燃料噴射弁31の噴射期間と高圧ポンプ14の吐出期間とが重複しない運転領域(非重複運転領域)であることを条件として噴射量ばらつき補正制御を実行するようにしている。このようにすれば、高圧ポンプ14の通常制御中に噴射量ばらつき補正制御を実行する場合でも、高圧ポンプ14の燃料吐出による燃圧上昇の影響を受けずに、燃料噴射弁31の燃料噴射による燃圧降下量を精度良く算出することができ、各気筒の燃料噴射による燃圧降下量を精度良く算出することができる。
以下、本実施例でECU38が実行する図3及び図4の噴射量ばらつき補正用の各ルーチンの処理内容を説明する。
Therefore, in this embodiment, the injection amount variation correction control is executed on the condition that the injection period of the fuel injection valve 31 and the discharge period of the high-pressure pump 14 are non-overlapping operation regions (non-overlapping operation regions). Yes. In this way, even when the injection amount variation correction control is executed during the normal control of the high-pressure pump 14, the fuel pressure by the fuel injection of the fuel injection valve 31 is not affected by the increase in the fuel pressure due to the fuel discharge of the high-pressure pump 14. The amount of drop can be calculated with high accuracy, and the amount of fuel pressure drop due to fuel injection in each cylinder can be calculated with high accuracy.
Hereinafter, the processing contents of each routine for correcting the injection amount variation in FIGS. 3 and 4 executed by the ECU 38 in the present embodiment will be described.

[噴射量ばらつき補正メインルーチン]
図3に示す噴射量ばらつき補正メインルーチンは、ECU38の電源オン期間中(イグニッションスイッチのオン期間中)に所定周期で繰り返し実行され、特許請求の範囲でいう噴射量ばらつき補正手段としての役割を果たす。
[Injection amount variation correction main routine]
The injection amount variation correction main routine shown in FIG. 3 is repeatedly executed at a predetermined period during the power-on period of the ECU 38 (while the ignition switch is on), and plays a role as an injection amount variation correction means in the claims. .

本ルーチンが起動されると、まず、ステップ101〜108で、噴射量ばらつき補正制御の実行条件が成立しているか否かを判定する。ここで、噴射量ばらつき補正制御の実行条件としては、例えば、次の(1) 〜(8) の条件が判定される。   When this routine is started, first, in steps 101 to 108, it is determined whether or not an execution condition for injection amount variation correction control is satisfied. Here, as the execution conditions of the injection amount variation correction control, for example, the following conditions (1) to (8) are determined.

(1) エンジンの定常運転時であること(ステップ101)
(2) 燃料噴射弁31の噴射量が所定範囲内であること(ステップ102)
(3) 燃圧が所定範囲内であること(ステップ103)
(4) 燃料噴射弁31の噴射パターンが所定噴射パターンであること(ステップ104)
(5) 高圧ポンプ14が非フル吐出状態である(フル吐出状態ではない)こと(ステップ105)
(6) 非燃料カット中である(燃料カット中ではない)こと(ステップ106)
(7) メインF/B補正量が所定値以下であること(ステップ107)
(8) 非重複運転領域(燃料噴射弁31の噴射期間と高圧ポンプ14の吐出期間とが重複しない運転領域)であること(ステップ108)
(1) The engine is in steady operation (step 101)
(2) The injection amount of the fuel injection valve 31 is within a predetermined range (step 102).
(3) The fuel pressure is within the predetermined range (step 103)
(4) The injection pattern of the fuel injection valve 31 is a predetermined injection pattern (step 104).
(5) The high-pressure pump 14 is in a non-full discharge state (not a full discharge state) (step 105)
(6) Non-fuel cut in progress (not in fuel cut) (step 106)
(7) The main F / B correction amount is not more than a predetermined value (step 107).
(8) Non-overlapping operation region (operation region where the injection period of the fuel injection valve 31 and the discharge period of the high-pressure pump 14 do not overlap) (step 108).

上記(1) 〜(8) の条件を全て満たせば、噴射量ばらつき補正制御の実行条件が成立するが、上記(1) 〜(8) の条件のうちいずれか一つでも満たさない条件があれば、噴射量ばらつき補正制御の実行条件が不成立となる。
このステップ101〜108で、噴射量ばらつき補正制御の実行条件が不成立であると判定された場合には、噴射量ばらつき補正制御を禁止して、本ルーチンを終了する。
If all of the above conditions (1) to (8) are satisfied, the execution condition of the injection amount variation correction control is established, but there is a condition that does not satisfy any one of the above conditions (1) to (8). In this case, the execution condition of the injection amount variation correction control is not satisfied.
If it is determined in steps 101 to 108 that the execution condition of the injection amount variation correction control is not satisfied, the injection amount variation correction control is prohibited and this routine is terminated.

一方、上記ステップ101〜108で、噴射量ばらつき補正制御の実行条件が成立していると判定された場合には、噴射量ばらつき補正制御を許可して、ステップ109に進み、図4の噴射量ばらつき補正ルーチンを実行する。   On the other hand, if it is determined in steps 101 to 108 that the execution condition of the injection amount variation correction control is satisfied, the injection amount variation correction control is permitted, and the process proceeds to step 109, where the injection amount shown in FIG. A variation correction routine is executed.

[噴射量ばらつき補正ルーチン]
図4に示す噴射量ばらつき補正ルーチンは、前記図3の噴射量ばらつき補正メインルーチンのステップ109で実行されるサブルーチンである。本ルーチンが起動されると、まず、ステップ201で、高圧ポンプ14で燃圧を通常の目標燃圧(エンジン運転状態に応じた目標燃圧)から昇圧用の目標燃圧まで昇圧した後、ステップ202に進み、高圧ポンプ14の吐出を停止する。
[Injection amount variation correction routine]
The injection amount variation correction routine shown in FIG. 4 is a subroutine executed in step 109 of the injection amount variation correction main routine of FIG. When this routine is started, first, in step 201, the high pressure pump 14 increases the fuel pressure from the normal target fuel pressure (target fuel pressure corresponding to the engine operating state) to the target fuel pressure for boosting, and then proceeds to step 202. Discharge of the high-pressure pump 14 is stopped.

この後、ステップ203に進み、燃圧センサ32の出力に基づいて各気筒毎に燃料噴射弁31の燃料噴射による燃圧降下量を算出する。本実施例では、燃圧検出タイミングをポンプカムトップ(高圧ポンプ14のピストン19が上死点となるタイミング)に設定して、各気筒の燃料噴射開始前と燃料噴射終了後に燃圧を検出する。そして、各気筒毎に、それぞれ燃料噴射開始前の燃圧と燃料噴射終了後の燃圧との差を燃料噴射による燃圧降下量として算出する。   Thereafter, the routine proceeds to step 203, where the fuel pressure drop due to the fuel injection of the fuel injection valve 31 is calculated for each cylinder based on the output of the fuel pressure sensor 32. In this embodiment, the fuel pressure detection timing is set to the pump cam top (the timing at which the piston 19 of the high-pressure pump 14 becomes top dead center), and the fuel pressure is detected before the start of fuel injection and after the end of fuel injection in each cylinder. For each cylinder, the difference between the fuel pressure before the start of fuel injection and the fuel pressure after the end of fuel injection is calculated as the amount of fuel pressure drop due to fuel injection.

この後、ステップ204に進み、例えば、燃圧が通常の目標燃圧に低下したときに、高圧ポンプ14の吐出を再開する。この後、ステップ205に進み、全気筒の燃料噴射による燃圧降下量の平均値を算出し、各気筒毎に、それぞれ燃料噴射による燃圧降下量と平均値との偏差を噴射量ばらつきとして算出することで、各気筒の燃料噴射弁31の噴射量ばらつきを算出する。   Thereafter, the process proceeds to step 204, and, for example, when the fuel pressure is reduced to the normal target fuel pressure, the discharge of the high-pressure pump 14 is resumed. Thereafter, the routine proceeds to step 205, where the average value of the fuel pressure drop due to fuel injection in all cylinders is calculated, and the deviation between the fuel pressure drop due to fuel injection and the average value is calculated as the injection amount variation for each cylinder. Thus, the injection amount variation of the fuel injection valve 31 of each cylinder is calculated.

この後、ステップ206に進み、各気筒毎に、それぞれ燃料噴射弁31の噴射量ばらつきが小さくなるように噴射量ばらつき補正量を算出する。ECU38は、各気筒毎に、それぞれ噴射量ばらつき補正量を用いて要求噴射量を補正することで、各気筒の燃料噴射弁31の噴射パルス幅(噴射時間)を気筒毎に補正して、各気筒の燃料噴射弁31の噴射量ばらつきを小さくする(気筒間の噴射量ばらつきを小さくする)。   Thereafter, the process proceeds to step 206, and the injection amount variation correction amount is calculated for each cylinder so that the variation in the injection amount of the fuel injection valve 31 is reduced. The ECU 38 corrects the injection pulse width (injection time) of the fuel injection valve 31 of each cylinder for each cylinder by correcting the required injection amount using the injection amount variation correction amount for each cylinder. The variation in the injection amount of the fuel injection valve 31 of the cylinder is reduced (the variation in the injection amount between the cylinders is reduced).

以上説明した本実施例では、噴射量ばらつき補正制御の実行条件が成立しているか否かを、エンジンの定常運転時であること、燃料噴射弁31の噴射量が所定範囲内であること、燃圧が所定範囲内であること等の各種の条件を全て満たしている否かによって判定する。そして、噴射量ばらつき補正制御の実行条件が成立していると判定されたときに、燃圧センサ32の出力に基づいて各気筒毎に燃料噴射弁31の燃料噴射による燃圧降下量を算出し、各気筒の燃料噴射による燃圧降下量に基づいて各気筒の燃料噴射弁31の噴射量ばらつきを補正する噴射量ばらつき補正制御を実行する。これにより、各気筒の燃料噴射による燃圧降下量を精度良く算出して、各気筒の噴射量ばらつきを正しく補正することができ、各気筒の噴射量の誤補正を防止することができる。   In the present embodiment described above, whether or not the execution condition of the injection amount variation correction control is satisfied is that the engine is in steady operation, the injection amount of the fuel injection valve 31 is within a predetermined range, the fuel pressure Is determined based on whether or not all the various conditions such as is within a predetermined range are satisfied. When it is determined that the execution condition of the injection amount variation correction control is satisfied, the fuel pressure drop amount due to the fuel injection of the fuel injection valve 31 is calculated for each cylinder based on the output of the fuel pressure sensor 32, and Injection amount variation correction control for correcting variation in the injection amount of the fuel injection valve 31 of each cylinder based on the amount of fuel pressure drop due to fuel injection of the cylinder is executed. As a result, the amount of fuel pressure drop due to fuel injection in each cylinder can be accurately calculated, and variations in the injection amount of each cylinder can be corrected correctly, and erroneous correction of the injection amount of each cylinder can be prevented.

尚、各気筒の燃料噴射による燃圧降下量に基づいて各気筒の燃料噴射弁31の噴射量ばらつきを補正する方法は、上記実施例で説明した方法に限定されず、適宜変更しても良い。   Note that the method of correcting the variation in the injection amount of the fuel injection valve 31 of each cylinder based on the amount of fuel pressure drop due to the fuel injection of each cylinder is not limited to the method described in the above embodiment, and may be changed as appropriate.

また、本発明の適用範囲は、4気筒エンジンに限定されず、3気筒以下のエンジンや5気筒以上のエンジンに本発明を適用しても良い。更に、高圧ポンプ14のピストン19を駆動するカム21として、4つのカム山を有する4山カムを用いた構成に限定されず、例えば、3つのカム山を有する3山カムを用いた構成や2つのカム山を有する2山カムを用いた構成としても良い。   Further, the application range of the present invention is not limited to a four-cylinder engine, and the present invention may be applied to an engine having three or less cylinders or an engine having five or more cylinders. Further, the cam 21 for driving the piston 19 of the high-pressure pump 14 is not limited to the configuration using the four cams having four cam peaks, and for example, the configuration using the three cams having three cam peaks or 2 It is good also as a structure using the two mountain cam which has one cam mountain.

その他、本発明は、高圧ポンプの構成や燃料供給システムの構成を適宜変更しても良い等、要旨を逸脱しない範囲内で種々変更して実施できる。   In addition, the present invention can be implemented with various modifications without departing from the gist, such as appropriately changing the configuration of the high-pressure pump and the configuration of the fuel supply system.

14…高圧ポンプ、29…高圧燃料配管(高圧燃料通路)、30…デリバリパイプ(高圧燃料通路)、31…燃料噴射弁、32…燃圧センサ、38…ECU(噴射量ばらつき補正手段)   DESCRIPTION OF SYMBOLS 14 ... High pressure pump, 29 ... High pressure fuel piping (high pressure fuel passage), 30 ... Delivery pipe (high pressure fuel passage), 31 ... Fuel injection valve, 32 ... Fuel pressure sensor, 38 ... ECU (injection amount variation correction means)

Claims (7)

高圧ポンプ(14)から吐出される燃料を高圧燃料通路(29,30)を通して内燃機関の各気筒の燃料噴射弁(31)に供給するシステムに適用され、前記高圧燃料通路(29,30)内の燃料圧力(以下「燃圧」という)を検出する燃圧センサ(32)と、前記燃圧センサ(32)の出力に基づいて前記各気筒毎に前記燃料噴射弁(31)の燃料噴射による燃圧降下量を算出し、該燃料噴射による燃圧降下量に基づいて前記各気筒の燃料噴射弁(31)の噴射量ばらつきを補正する噴射量ばらつき補正制御を実行する噴射量ばらつき補正手段(38)とを備えた内燃機関の制御装置において、
前記噴射量ばらつき補正手段(38)は、前記内燃機関の運転状態が定常状態のときに前記噴射量ばらつき補正制御を実行するものであり、
前記噴射量ばらつき補正手段(38)は、前記燃料噴射弁(31)の噴射期間と前記高圧ポンプ(14)の吐出期間とが重複しないことを条件として前記噴射量ばらつき補正制御を実行することを特徴とする内燃機関の制御装置。
The present invention is applied to a system for supplying fuel discharged from a high-pressure pump (14) to a fuel injection valve (31) of each cylinder of an internal combustion engine through a high-pressure fuel passage (29, 30), and in the high-pressure fuel passage (29, 30). A fuel pressure sensor (32) for detecting the fuel pressure (hereinafter referred to as "fuel pressure"), and a fuel pressure drop amount due to fuel injection of the fuel injection valve (31) for each cylinder based on the output of the fuel pressure sensor (32) And injection amount variation correction means (38) for performing injection amount variation correction control for correcting the variation in the injection amount of the fuel injection valve (31) of each cylinder based on the amount of fuel pressure drop due to the fuel injection. In a control device for an internal combustion engine,
The injection amount variation correction means (38) executes the injection amount variation correction control when the operating state of the internal combustion engine is in a steady state.
The injection amount variation correction means (38) executes the injection amount variation correction control on condition that the injection period of the fuel injection valve (31) and the discharge period of the high-pressure pump (14) do not overlap. A control device for an internal combustion engine characterized by the above.
前記噴射量ばらつき補正手段(38)は、前記燃料噴射弁(31)の噴射量が所定範囲内であることを条件として前記噴射量ばらつき補正制御を実行することを特徴とする請求項1に記載の内燃機関の制御装置。   The injection amount variation correction means (38) executes the injection amount variation correction control on condition that the injection amount of the fuel injection valve (31) is within a predetermined range. Control device for internal combustion engine. 前記噴射量ばらつき補正手段(38)は、前記燃圧が所定範囲内であることを条件として前記噴射量ばらつき補正制御を実行することを特徴とする請求項1又は2に記載の内燃機関の制御装置。   The control apparatus for an internal combustion engine according to claim 1 or 2, wherein the injection amount variation correcting means (38) executes the injection amount variation correction control on condition that the fuel pressure is within a predetermined range. . 前記噴射量ばらつき補正手段(38)は、前記燃料噴射弁(31)の噴射パターンが所定噴射パターンであることを条件として前記噴射量ばらつき補正制御を実行することを特徴とする請求項1乃至3のいずれかに記載の内燃機関の制御装置。   The injection amount variation correction means (38) executes the injection amount variation correction control on condition that the injection pattern of the fuel injection valve (31) is a predetermined injection pattern. The control apparatus for an internal combustion engine according to any one of the above. 前記噴射量ばらつき補正手段(38)は、前記高圧ポンプ(14)が最大吐出量で燃料を吐出するフル吐出状態ではないことを条件として前記噴射量ばらつき補正制御を実行することを特徴とする請求項1乃至4のいずれかに記載の内燃機関の制御装置。   The injection amount variation correction means (38) executes the injection amount variation correction control on condition that the high pressure pump (14) is not in a full discharge state in which fuel is discharged at a maximum discharge amount. Item 5. The control device for an internal combustion engine according to any one of Items 1 to 4. 前記噴射量ばらつき補正手段(38)は、前記燃料噴射弁(31)の燃料噴射を停止する燃料カット中ではないことを条件として前記噴射量ばらつき補正制御を実行することを特徴とする請求項1乃至5のいずれかに記載の内燃機関の制御装置。   The injection quantity variation correction means (38) executes the injection quantity variation correction control on the condition that the fuel injection of the fuel injection valve (31) is not under fuel cut. The control apparatus for an internal combustion engine according to any one of claims 1 to 5. 前記噴射量ばらつき補正手段(38)は、前記内燃機関の排出ガスの空燃比を目標空燃比に一致させるように前記燃料噴射弁(31)の噴射量を補正する空燃比フィードバック制御の補正量が所定値以下であることを条件として前記噴射量ばらつき補正制御を実行することを特徴とする請求項1乃至6のいずれかに記載の内燃機関の制御装置。   The injection amount variation correction means (38) has a correction amount of air-fuel ratio feedback control for correcting the injection amount of the fuel injection valve (31) so that the air-fuel ratio of the exhaust gas of the internal combustion engine matches the target air-fuel ratio. The control apparatus for an internal combustion engine according to any one of claims 1 to 6, wherein the injection amount variation correction control is executed on condition that the value is equal to or less than a predetermined value.
JP2017123839A 2017-06-26 2017-06-26 Control device for internal combustion engine Active JP6451789B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017123839A JP6451789B2 (en) 2017-06-26 2017-06-26 Control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017123839A JP6451789B2 (en) 2017-06-26 2017-06-26 Control device for internal combustion engine

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2013211456A Division JP6167830B2 (en) 2013-10-08 2013-10-08 Control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2017160916A true JP2017160916A (en) 2017-09-14
JP6451789B2 JP6451789B2 (en) 2019-01-16

Family

ID=59857698

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017123839A Active JP6451789B2 (en) 2017-06-26 2017-06-26 Control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP6451789B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019190367A (en) * 2018-04-25 2019-10-31 三菱電機株式会社 Injector control device
CN113738524A (en) * 2021-08-06 2021-12-03 义乌吉利动力总成有限公司 Cylinder-separating air-fuel ratio self-adaptive cylinder compensation control method
US11384705B2 (en) 2019-03-28 2022-07-12 Vitesco Technologies GmbH Determining a drift in the fuel static flow rate of a piezoelectric injector of a motor vehicle heat engine

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11821428B2 (en) * 2016-07-15 2023-11-21 Hitachi Industrial Equipment Systems Co., Ltd. Motor-integrated fluid machine

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04203451A (en) * 1990-11-30 1992-07-24 Toyota Motor Corp Fuel injection quantity control device of internal combustion engine
JPH084577A (en) * 1994-06-20 1996-01-09 Toyota Motor Corp Fuel injection device for internal combustion engine
JP2001082223A (en) * 1999-09-20 2001-03-27 Isuzu Motors Ltd Common rail type fuel injection device
JP2004108354A (en) * 2002-07-25 2004-04-08 Denso Corp Fuel injection control device for internal combustion engine
JP2004346852A (en) * 2003-05-23 2004-12-09 Mitsubishi Automob Eng Co Ltd Fuel injection controller in internal combustion engine
JP2006063824A (en) * 2004-08-25 2006-03-09 Denso Corp Fuel injection control device for internal combustion engine
JP2007192216A (en) * 2005-12-22 2007-08-02 Denso Corp Fuel injection device
JP2010031816A (en) * 2008-07-31 2010-02-12 Denso Corp Control device for pressure accumulation type fuel supply system
JP2010043614A (en) * 2008-08-14 2010-02-25 Hitachi Ltd Engine control device
JP2010168905A (en) * 2009-01-20 2010-08-05 Denso Corp Air-fuel ratio learning control device for internal combustion engine

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04203451A (en) * 1990-11-30 1992-07-24 Toyota Motor Corp Fuel injection quantity control device of internal combustion engine
JPH084577A (en) * 1994-06-20 1996-01-09 Toyota Motor Corp Fuel injection device for internal combustion engine
JP2001082223A (en) * 1999-09-20 2001-03-27 Isuzu Motors Ltd Common rail type fuel injection device
JP2004108354A (en) * 2002-07-25 2004-04-08 Denso Corp Fuel injection control device for internal combustion engine
JP2004346852A (en) * 2003-05-23 2004-12-09 Mitsubishi Automob Eng Co Ltd Fuel injection controller in internal combustion engine
JP2006063824A (en) * 2004-08-25 2006-03-09 Denso Corp Fuel injection control device for internal combustion engine
JP2007192216A (en) * 2005-12-22 2007-08-02 Denso Corp Fuel injection device
JP2010031816A (en) * 2008-07-31 2010-02-12 Denso Corp Control device for pressure accumulation type fuel supply system
JP2010043614A (en) * 2008-08-14 2010-02-25 Hitachi Ltd Engine control device
JP2010168905A (en) * 2009-01-20 2010-08-05 Denso Corp Air-fuel ratio learning control device for internal combustion engine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019190367A (en) * 2018-04-25 2019-10-31 三菱電機株式会社 Injector control device
US11384705B2 (en) 2019-03-28 2022-07-12 Vitesco Technologies GmbH Determining a drift in the fuel static flow rate of a piezoelectric injector of a motor vehicle heat engine
CN113738524A (en) * 2021-08-06 2021-12-03 义乌吉利动力总成有限公司 Cylinder-separating air-fuel ratio self-adaptive cylinder compensation control method
CN113738524B (en) * 2021-08-06 2023-09-26 义乌吉利动力总成有限公司 Compensation control method for air-fuel ratio self-adaptive cylinder of separate cylinders

Also Published As

Publication number Publication date
JP6451789B2 (en) 2019-01-16

Similar Documents

Publication Publication Date Title
US7025050B2 (en) Fuel pressure control device for internal combination engine
JP6451789B2 (en) Control device for internal combustion engine
US20050098158A1 (en) Injection control system of diesel engine
US10697384B2 (en) Control device and control method for engine
JP6167830B2 (en) Control device for internal combustion engine
US10113499B2 (en) Fuel injection control device for internal combustion engine
US10054098B2 (en) Ignition timing control device for internal combustion engine
JP6090112B2 (en) Control device for internal combustion engine
US10450991B2 (en) Fuel injection control apparatus of internal combustion engine
JP2005307747A (en) Fuel supply device for internal combustion engine
JP6146274B2 (en) Control device for internal combustion engine
JP2009052409A (en) Fuel injection control device and fuel injection system using the same
EP2975249B1 (en) Fuel injection control apparatus of internal combustion engine
JP2012229623A (en) High-pressure fuel feeding device of internal combustion engine
JPH1130150A (en) Accumulator fuel injection device
JP2011202597A (en) High-pressure pump control device for internal combustion engine
JP2009103059A (en) Control device for cylinder injection internal combustion engine
JP2008274843A (en) Pump control device and fuel injection system using same
JP4407427B2 (en) Fuel injection control device for internal combustion engine
JP2013253508A (en) Fuel supply device of direct injection type internal combustion engine
JP5353670B2 (en) Fuel injection control device
JP6489298B2 (en) Fuel injection control device for internal combustion engine
US20100043754A1 (en) Controller for internal combustion engine
JP6011264B2 (en) Discharge amount learning control device
EP2975247B1 (en) Fuel injection control apparatus of internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170626

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180405

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180508

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180625

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181126

R151 Written notification of patent or utility model registration

Ref document number: 6451789

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250