JP2017072709A - 結像光学部材及び測量機の光学系 - Google Patents

結像光学部材及び測量機の光学系 Download PDF

Info

Publication number
JP2017072709A
JP2017072709A JP2015199195A JP2015199195A JP2017072709A JP 2017072709 A JP2017072709 A JP 2017072709A JP 2015199195 A JP2015199195 A JP 2015199195A JP 2015199195 A JP2015199195 A JP 2015199195A JP 2017072709 A JP2017072709 A JP 2017072709A
Authority
JP
Japan
Prior art keywords
lens
concave
light
incident
reflected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015199195A
Other languages
English (en)
Inventor
太一 湯浅
Taichi Yuasa
太一 湯浅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Topcon Corp
Original Assignee
Topcon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Topcon Corp filed Critical Topcon Corp
Priority to JP2015199195A priority Critical patent/JP2017072709A/ja
Priority to CN201610868294.9A priority patent/CN106990504A/zh
Priority to US15/284,900 priority patent/US20170102233A1/en
Priority to EP16192667.0A priority patent/EP3153905A3/en
Publication of JP2017072709A publication Critical patent/JP2017072709A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C3/00Measuring distances in line of sight; Optical rangefinders
    • G01C3/32Measuring distances in line of sight; Optical rangefinders by focusing the object, e.g. on a ground glass screen
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C3/00Measuring distances in line of sight; Optical rangefinders
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C3/00Measuring distances in line of sight; Optical rangefinders
    • G01C3/02Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/42Simultaneous measurement of distance and other co-ordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/66Tracking systems using electromagnetic waves other than radio waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/86Combinations of lidar systems with systems other than lidar, radar or sonar, e.g. with direction finders
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/89Lidar systems specially adapted for specific applications for mapping or imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4811Constructional features, e.g. arrangements of optical elements common to transmitter and receiver
    • G01S7/4812Constructional features, e.g. arrangements of optical elements common to transmitter and receiver transmitted and received beams following a coaxial path
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4814Constructional features, e.g. arrangements of optical elements of transmitters alone
    • G01S7/4815Constructional features, e.g. arrangements of optical elements of transmitters alone using multiple transmitters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B17/00Systems with reflecting surfaces, with or without refracting elements
    • G02B17/02Catoptric systems, e.g. image erecting and reversing system
    • G02B17/06Catoptric systems, e.g. image erecting and reversing system using mirrors only, i.e. having only one curved mirror
    • G02B17/0605Catoptric systems, e.g. image erecting and reversing system using mirrors only, i.e. having only one curved mirror using two curved mirrors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B17/00Systems with reflecting surfaces, with or without refracting elements
    • G02B17/08Catadioptric systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B17/00Systems with reflecting surfaces, with or without refracting elements
    • G02B17/08Catadioptric systems
    • G02B17/0804Catadioptric systems using two curved mirrors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B17/00Systems with reflecting surfaces, with or without refracting elements
    • G02B17/08Catadioptric systems
    • G02B17/0804Catadioptric systems using two curved mirrors
    • G02B17/0808Catadioptric systems using two curved mirrors on-axis systems with at least one of the mirrors having a central aperture
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B17/00Systems with reflecting surfaces, with or without refracting elements
    • G02B17/08Catadioptric systems
    • G02B17/0856Catadioptric systems comprising a refractive element with a reflective surface, the reflection taking place inside the element, e.g. Mangin mirrors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B17/00Systems with reflecting surfaces, with or without refracting elements
    • G02B17/08Catadioptric systems
    • G02B17/0856Catadioptric systems comprising a refractive element with a reflective surface, the reflection taking place inside the element, e.g. Mangin mirrors
    • G02B17/086Catadioptric systems comprising a refractive element with a reflective surface, the reflection taking place inside the element, e.g. Mangin mirrors wherein the system is made of a single block of optical material, e.g. solid catadioptric systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/14Beam splitting or combining systems operating by reflection only
    • G02B27/141Beam splitting or combining systems operating by reflection only using dichroic mirrors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/14Beam splitting or combining systems operating by reflection only
    • G02B27/145Beam splitting or combining systems operating by reflection only having sequential partially reflecting surfaces
    • G02B27/146Beam splitting or combining systems operating by reflection only having sequential partially reflecting surfaces with a tree or branched structure

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Lenses (AREA)
  • Measurement Of Optical Distance (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

【課題】受光光学系の結像光学部材の小型化を図り、更に測量機に於ける光学系の小型化を可能とする。【解決手段】レンズの入射面に対向する面が凹曲面であり、凹曲面の中央部を除き反射膜が形成され、入射光6を反射する凹反射面R2と、凹反射面に対向して配置され、反射膜が形成された凸反射面R3とを有し、凹反射面は入射光を凸反射面に集光させる様反射し、凸反射面は入射光を結像させる様反射する様構成された結像光学部材。【選択図】図3

Description

本発明は、結像光学部材及び測量機の光学系と、特に受光部の光学系に関するものである。
測量機に用いられる光学系は、遠距離での受光光量確保の為、大口径のレンズを使用している。この為、光学系は大きく、又重量も蒿むものとなっていた。
図1(C)は、従来より用いられている受光部の光学系1を示している。
複数のレンズからなるレンズ群2により結像光学部材が構成され、入射光がレンズの屈折作用によって受光面3上に結像されている。
前記レンズ群2は、焦点距離f1を有し、光学系1の全長はl1となっている。この焦点距離は、測量機の光学系が求められる性能によって決定される。
従って、受光部はこのレンズ群2を収納する大きさとなり、更に光軸方向の長さは前記焦点距離f1に依存することになる。
又、近年では、測量機の小型化、軽量化が図られているが、光学系については、レンズ群2の大きさ、焦点距離f1の制約により、小型化が難しいものとなっていた。
特開2004−69611号公報
本発明は受光光学系の結像光学部材の小型化を図り、更に測量機に於ける光学系の小型化を可能とするものである。
本発明は、入射光を反射する凹反射面と、該凹反射面に対向配置された凸反射面とを有し、前記凹反射面は前記入射光を前記凸反射面に集光させる様反射し、該凸反射面は前記入射光を結像させる様反射する様構成された結像光学部材に係るものである。
又本発明は、前記結像光学部材はレンズであり、該レンズの入射面に対向する面が凹曲面であり、該凹曲面の中央部を除き反射膜が形成され、前記入射面の中央部に凹部を形成し、該凹部に反射膜が形成されて凸反射面とされ、該凸反射面で反射された前記入射光が前記凹曲面の中央部を透過し、前記レンズの外側で結像される結像光学部材に係るものである。
又本発明は、前記結像光学部材は複数のレンズが接合されて構成される結像光学部材に係るものである。
又本発明は、前記結像光学部材は主レンズ、小レンズから構成され、前記主レンズの入射面に対向する面が凹曲面であり、該凹曲面の中央部を除き反射膜が形成され、前記主レンズの入射面の中央部に前記小レンズが接合され、該小レンズの反接合面には凹部が形成され、該凹部で形成される凹曲面に反射膜が形成されて前記凹曲面に向って突出する凸反射面が形成され、該凸反射面で反射された前記入射光が前記凹曲面の中央部を透過し、前記主レンズの外側で結像される結像光学部材に係るものである。
又本発明は、レンズ及び反射鏡で構成され、前記レンズの入射面に対向する面が凹曲面であり、該凹曲面に反射膜が形成され、前記入射面の中央部に凹部が形成され、前記反射鏡は前記凹部に対峙する様設けられ、前記凹曲面で前記凹部に集光される様反射された入射光が前記凹部を透過し、前記反射鏡で反射され前記レンズの外側で結像される結像光学部材に係るものである。
又本発明は、凹反射面と、該凹反射面と離間して反射屈折レンズが配設され、該反射屈折レンズの前記凹反射面とは反対の面は副反射面とされ、前記凹反射面は入射光を前記反射屈折レンズに入射させる様に反射し、該反射屈折レンズの前記凹反射面に対向する面は、前記副反射面で反射された前記入射光が、前記凹反射面と前記反射屈折レンズの間で結像する様に構成された結像光学部材に係るものである。
又本発明は、測距光を投光する投光光学系と、測定対象から反射された反射測距光が入射光として受光される測距用受光光学系とを具備し、該測距用受光光学系が前記入射光を受光面に結像させる結像光学部材を有し、該結像光学部材は上記した結像光学部材のいずれかである測量機の光学系に係るものである。
又本発明は、トラッキング用照明光源を更に有し、該トラッキング用照明光源は前記入射面の凹部に対向して設けられ、前記トラッキング用照明光源から発せられた照明光は、前記凹部で反射された後射出される測量機の光学系に係るものである。
更に又本発明は、前記結像光学部材を有し、前記凹曲面の中央部を通過する光軸を、ダイクロイックミラーによって分岐し、分岐した一方の光軸上にトラッキング用照明光源を配設し、他方の光軸上に受光面を配置し、前記ダイクロイックミラーは、照明光と測距光とを分離する様構成された測量機の光学系に係るものである。
本発明によれば、入射光を反射する凹反射面と、該凹反射面に対向配置された凸反射面とを有し、前記凹反射面は前記入射光を前記凸反射面に集光させる様反射し、該凸反射面は前記入射光を結像させる様反射する様構成されたので、光軸長が短くなり、光学系の小型化が実現する。
又本発明によれば、前記結像光学部材はレンズであり、該レンズの入射面に対向する面が凹曲面であり、該凹曲面の中央部を除き反射膜が形成され、前記入射面の中央部に凹部を形成し、該凹部に反射膜が形成されて凸反射面とされ、該凸反射面で反射された前記入射光が前記凹曲面の中央部を透過し、前記レンズの外側で結像されるので、光軸長が短くなり、光学系の小型化が実現する。
又本発明によれば、凹反射面と、該凹反射面と離間して反射屈折レンズが配設され、該反射屈折レンズの前記凹反射面とは反対の面は副反射面とされ、前記凹反射面は入射光を前記反射屈折レンズに入射させる様に反射し、該反射屈折レンズの前記凹反射面に対向する面は、前記副反射面で反射された前記入射光が、前記凹反射面と前記反射屈折レンズの間で結像する様に構成されたので、光軸長が短くなり、光学系の小型化が実現する。
更に又本発明によれば、測距光を投光する投光光学系と、測定対象から反射された反射測距光が入射光として受光される測距用受光光学系とを具備し、該測距用受光光学系が前記入射光を受光面に結像させる結像光学部材を有し、該結像光学部材は上記した結像光学部材の1つであるので、測距用受光光学系が小型化し、更に測量機の光学系が小型化するという優れた効果を発揮する。
(A)(B)は本実施例に係る結像光学部材を示す図、(C)は従来の結像光学部材を示す図である。 (A)〜(C)は、それぞれ本実施例に係る結像光学部材を示す図である。 本実施例に係る他の結像光学部材を示す図である。 本実施例に係る他の結像光学部材を示す図である。 本実施例に係る他の結像光学部材を示す図である。 本実施例に係る他の結像光学部材を示す図である。 本実施例に係る他の結像光学部材を示す図である。 本実施例に係る他の結像光学部材を示す図である。 本発明の第1の実施例を示す光学配置図である。 第2の実施例を示す光学配置図である。 第3の実施例を示す光学配置図である。 (A)は第4の実施例を示す光学配置図、(B)は、図12(A)のA矢視図である。 (A)は第5の実施例を示す光学配置図、(B)は、図13(A)のA矢視図である。 (A)は第6の実施例を示す光学配置図、(B)は照明光源を示す部分図である。 (A)は第7の実施例を示す光学配置図、(B)は照明光源、トラッキング受光用兼撮像用受光光学系を示す部分図である。 第8の実施例を示す光学配置図である。 トラッキング受光用兼撮像用受光光学系に設けられる光学フィルタの透過特性図である。
以下、図面を参照しつつ本発明の実施例を説明する。
図1(A)は、本実施例の受光部に用いられる結像光学部材の一例を示している。
該結像光学部材は1枚のレンズ5aによって構成され、該レンズ5aは、屈折作用と反射作用を具備する。
該レンズ5aは、入射面である物側の面R1、反射面である結像側の面R2、前記面R1の中央部に、且つ面R1と同心に形成された面R3、前記面R2の中央部に、且つ面R2と同心に形成された面R4を有している。
前記面R1は平面であり、前記面R2は前記面R1に向って凹面となっており、前記面R3は所定の直径を有し、前記面R2に向って凸面となっている。前記面R4は、前記面R2の延長であってもよく、或は平面であってもよい。又或は、独立する曲面であってもよい。
前記面R1は入射光6を全透過させるものであり、反射防止膜(以下、AR膜)が形成されている。又、前記面R2、前記面R3には前記入射光6を全反射させる為の反射膜が形成されている。前記面R4は円形であり、該面R4の直径は、前記面R3の直径以下となっている。前記面R4には、前記入射光6を全透過させる為のAR膜が形成されている。
前記面R2は、前記面R1を通って入射した前記入射光6を、前記面R3の範囲に集光する様に反射する。前記面R2は、前記入射光6を前記面R3の範囲に集光させる為に、球面、非球面等適宜な曲面で形成されている。
前記面R3は前記入射光6を反射し、反射した該入射光6を前記面R4を透過した位置、即ち前記レンズ5aの外側で集光させる。従って、前記面R3は、前記入射光6を前記面R4を透過した位置で結像させる為に、球面、非球面等適宜な曲面で形成されている。尚、受光素子が前記面R2に接して設けられる等、受光面が前記面R4と一致する場合は、前記レンズ5aの結像位置は前記面R2上であってもよい。
尚、受光面3は、受光素子の受光面であってもよく、或は光ファイバの受光端面であってもよい。
本実施例の前記レンズ5aの光学系全長l2と図1(C)で示した従来のレンズ群2の光学系全長l1とを比較すると、l2はl1の1/3程度となっており、大幅な小型化となっている。
次に、図1(B)で示すレンズ5bは、図1(A)で示した前記レンズ5aの変形を示している。
前記レンズ5bは、前記レンズ5aと同様、面R1の中央に面R3が形成され、面R2の中央に面R4が形成されている。
前記レンズ5bでは、前記面R2、前記面R3の曲率を大きくし、光学系全長l3を更に短くしている。従って、前記レンズ5bでは、l3はl1の1/5以下となっており、更なる小型化となっている。
尚、曲率を大きくすることで、面間偏心感度が大きくなり、製造難易度は高くなるので、光学系が要求される特性を考慮して、曲率が選択される。
図2(A)〜図2(C)に於いて、前記レンズ5aの更に変形例を説明する。
尚、図2(A)に示すレンズ5aは、図1(A)で示したレンズ5aと同一である。
又、図2(A)〜図2(C)に示されるレンズは、単一のレンズで構成される場合を示している。
図2(B)に示されるレンズ5cは、面R1を凹曲面とし、該面R1から入射する入射光6に対してレンズ効果を作用させる様にしたものであり、前記面R1から入射した前記入射光6は拡散して、面R2に入射する。
又、図2(C)に示されるレンズ5dは面R1を凸曲面とし、該面R1から入射する前記入射光6に対して、前記レンズ5cとは逆のレンズ効果を作用させる様にしたものであり、該面R1から入射した前記入射光6は集光して、前記面R2に入射する。
前記面R1を平面にするか、凹曲面にするか、或は凸曲面にするかは、光学系に要求される性能に対応して適宜選択する。
図3は、結像光学部材としてのレンズ7を示しており、該レンズ7は図2(A)で示されるレンズ5aを2つのレンズ7′,7′′に分割し、更に2つの該レンズ7′,7′′を接合させて構成したものである。図3では、前記レンズ5aを分割した場合を示しているが、前記レンズ5c、前記レンズ5dに対しても同様に実施可能である。尚、2分割に限らず3分割以上としてもよい。
結像光学部材を複数枚のレンズで構成することで、設計の自由度が増し、色収差の補正が可能になる。
色収差補正の利点として、製造時に調整で使う波長を可視光に設定し、調整を容易に行える利点がある。
図4に示される結像光学部材としてのレンズ8は、図1(A)で示されるレンズ5aの面R3を別の小レンズ8′′によって形成したものである。
面R1、面R2、面R4を有するレンズ8′の面R1の中央部に前記小レンズ8′′を接合する。該小レンズ8′′には凹曲面(前記面R2に向って凸面)が形成され、該凹曲面に全反射膜が形成されている。
前記レンズ8に於いて、前記面R1から入射した入射光6は、前記面R2によって反射され、前記面R1を透過し、前記面R3によって反射され、受光面3で結像される。前記レンズ8に於いて、前記入射光6が前記小レンズ8′′に入射し、該小レンズ8′′から前記レンズ8′に入射する過程でレンズ効果が作用する。前記レンズ8を2つの前記レンズ8′、前記レンズ8′′によって構成することで、設計の自由度が増し、色収差の補正が可能になる。
図5に示す結像光学部材9は、反射屈折レンズ9′と反射鏡9′′とから構成されている。
前記反射屈折レンズ9′は入射面(面R1)が凸曲面となっており、該面R1の中央部には凹曲面(面R3)が形成されている。前記反射鏡9′′は前記面R3に対向して配設されている。前記面R1、前記面R3は透過面であり、面R2は反射面となっている。
前記結像光学部材9に入射した入射光6は、前記面R1でレンズ作用を受け、光軸側に屈折され、前記面R2で光軸側に向くよう反射され、更に前記面R3を通過する過程でレンズ作用を受け、光軸から離反する方向に屈折される。
而して、前記入射光6は、前記面R1を透過し、前記面R2で反射され、前記面R3を透過し、前記反射鏡9′′で反射され、前記入射光6の入射光路外で結像される。
図6に示す結像光学部材11は、上記したレンズと同等の機能を有するものであり、凹面反射鏡12と反射屈折レンズ13とから構成されている。
前記凹面反射鏡12の光軸上に、反射面と対向させ前記反射屈折レンズ13が配設される。
該反射屈折レンズ13の前記凹面反射鏡12側の面R5は非球面のレンズ面となっており、前記反射屈折レンズ13の物側は面R6となっている。該面R6は前記凹面反射鏡12と対向し、入射光6を全反射する副反射面となっている。
前記凹面反射鏡12で反射された前記入射光6は、前記反射屈折レンズ13に入射し、前記面R5を通過する過程でレンズ作用を受け、光軸から離反する方向に屈折され、更に前記面R6で反射される。前記面R5のレンズ作用と前記面R6の反射作用によって、前記入射光6は受光面3上に結像される。
前記面R6は、平面であってもよく、或は球面、或は非球面の曲面であってもよい。
尚、前記凹面反射鏡12と前記反射屈折レンズ13との間には空間が形成されるので、結像位置は、前記凹面反射鏡12と前記反射屈折レンズ13との間であってもよい。
結像位置を、前記凹面反射鏡12と前記反射屈折レンズ13との間とすることで、前記結像光学部材11の光軸方向の長さを更に短くできる。
該結像光学部材11では、前記凹面反射鏡12の反射面を球面とすることができ、大口径の非球面レンズが不要となるので、製作コストが低減する。
図7で示される結像光学部材14は、反射屈折レンズ15と反射鏡16によって構成される。
前記反射屈折レンズ15はメニスカスレンズとなっており、該反射屈折レンズ15の物側は面R1であり、該面R1は入射光6の透過面となっており、前記面R1にはAR膜が形成されている。又、前記反射屈折レンズ15の反対面は反射膜が形成された面R2となっている。
前記反射屈折レンズ15の光軸上に位置し、前記面R1と対向して前記反射鏡16が設けられる。
前記入射光6が前記面R1を透過して前記面R2によって反射され、面R3に集光される。該面R3で反射された前記入射光6は、光軸上に結像される。
前記結像光学部材14では、結像位置が前記面R3と前記面R1との間となっている。
前記反射屈折レンズ15の中央部に、孔17が形成され、該孔17を通過して光ファイバ18が配置され、該光ファイバ18の受光端面が前記結像位置と合致する様になっている。
図8で示される、結像光学部材20は凹面反射鏡21と凸面反射鏡22によって構成される。
前記凹面反射鏡21は、入射光6を前記凸面反射鏡22に向けて集光する面R2を有し、前記凸面反射鏡22は、前記入射光6を光軸上で且つ前記凹面反射鏡21と前記凸面反射鏡22との間に結像する様に反射する。
尚、結像位置に受光素子を配設してもよいし、前記結像光学部材14と同様、前記凹面反射鏡21に前記孔17を設け、該孔17を通過させた光ファイバ18を配置してもよい。
尚、上記した様に、本実施例に係る結像光学部材は、少なくとも大径の反射面R2と該反射面R2と対向する小径の反射面R3を有し、大径の反射面は入射光を小径の反射面に入射させ、更に小径の反射面は入射光を反射し、光軸上に結像させる。
而して、斯かる光学作用を有する光学的構成は、種々考えられ得ることは言う迄もない。
次に、上記した結像光学部材を有する、測量機の光学系について説明する。
図9は、本発明に係る結像光学部材を有する第1の実施例として、レーザスキャナの光学系25を示しており、該光学系25には上記した結像光学部材の内、図1(B)で示したレンズ5bが用いられている。
図9中、26は測距用受光光学系、27は投光光学系、28は撮像用受光光学系、29は測距光を回転照射する為の回転ミラーを示している。
前記レンズ5bの光軸31の前記回転ミラー29の中心に向い、前記光軸31上に、前記レンズ5b側からミラー32、第1ダイクロイックミラー33が配設される。前記ミラー32は、測距光、レーザポインタ光、照明光を反射し、前記第1ダイクロイックミラー33は測距光を透過し、可視光を反射する様になっている。
又、前記光軸31は、前記回転ミラー29によって偏向され、測定方向に向けられる。
前記投光光学系27は、測距光光源34からの測距光、レーザポインタ用光源35からのレーザポインタ光、照明光源36からの照明光を前記光軸31を経てそれぞれ射出する様になっている。ここで、前記測距光、前記レーザポインタ光、前記照明光は、ダイクロイックミラーにより分離できる様に、それぞれ異なる波長となっている。
又、前記投光光学系27は、第2ダイクロイックミラー37、第3ダイクロイックミラー38を有する。前記第2ダイクロイックミラー37は測距光を透過し、レーザポインタ光、照明光を反射する様になっている。又、前記第3ダイクロイックミラー38は、照明光は透過するが、レーザポインタ光を反射する特性を有している。尚、前記第3ダイクロイックミラー38はハーフミラーとしてもよい。
前記測距光光源34から発せられた測距光は、前記第2ダイクロイックミラー37を透過し、前記ミラー32で反射され、前記第1ダイクロイックミラー33を透過し、前記回転ミラー29で偏向され、測定方向に照射される。
前記レーザポインタ用光源35から発せられたレーザポインタ光は、前記第3ダイクロイックミラー38、前記第2ダイクロイックミラー37によって反射され、前記ミラー32で前記光軸31上に反射され、前記第1ダイクロイックミラー33を透過し、更に前記回転ミラー29で偏向されて測定方向に照射される。レーザポインタ光は、測距光の光軸(即ち前記光軸31)と同一上に照射され、測定点を示す。
又、前記照明光源36から発せられた照明光は、前記第3ダイクロイックミラー38を透過し、前記第2ダイクロイックミラー37、前記ミラー32で前記光軸31上に反射され、前記第1ダイクロイックミラー33を透過し、更に前記回転ミラー29で偏向されて測定方向に照射される。
測定対象から反射された反射測距光は、前記光軸31を経て前記回転ミラー29に入射し、該回転ミラー29で反射され、前記第1ダイクロイックミラー33、前記ミラー32を透過し、前記レンズ5bにより受光面3に結像される。
結像された測距光は、受光素子(図示せず)によって受光され、該受光素子から出力される受光信号に基づき測距が行われる。
測定対象から反射された照明光は、前記回転ミラー29、前記第1ダイクロイックミラー33で反射され、前記撮像用受光光学系28を経て撮像素子39によって受光される。該撮像素子39としては、CMOSセンサ、CCD等が用いられ、受光面内での受光位置が分る様になっている。
レーザスキャナで、所要の測定範囲を測定する場合、測定範囲内で基準点を必要とする場合がある。この時は、コーナキューブ等、再帰反射性を有する測定対象を基準点に設置し、前記照明光で測定対象を照射し、測定対象からの反射光を受光し、測定対象の位置を測定し、基準位置を設定する。
上記の通り、前記測距用受光光学系26に前記レンズ5bが用いられることで、前記測距用受光光学系26の光軸長が、大幅に短くなり、測定装置の小型化が図れる。
図10は、図9で示した実施例の変形例である第2の実施例を示している。尚、第2の実施例には、結像光学部材として前記レンズ5bが用いられている。又、図10中、図9中で示したものと同等のものには同符号を付し、その説明を省略する。
図9で示した実施例では、前記撮像用受光光学系28が、測距光の受光光路中に配設されているので、受光光量の一部が、前記撮像用受光光学系28によって遮断されることになるが、図10で示す第2の実施例では、前記撮像用受光光学系28を受光光路の外に配設している。
従って、第2の実施例では受光光量を有効に利用できる。
図11により、第3の実施例を説明する。
第3の実施例では、測距光光源34からの測距光、レーザポインタ用光源35からのレーザポインタ光、照明光源36からの照明光を光軸31上に導く為の第1ダイクロイックミラー33が撮像用受光光学系28の光軸上に設けられている。
前記測距光光源34から発せられた測距光は、第2ダイクロイックミラー37、前記第1ダイクロイックミラー33、ミラー32によって順次反射され、前記光軸31に射出される。
又、前記レーザポインタ用光源35から発せられたレーザポインタ光は、第3ダイクロイックミラー38で反射され、前記第2ダイクロイックミラー37を透過し、前記第1ダイクロイックミラー33、前記ミラー32で反射され、前記光軸31に射出される。
又、前記照明光源36から発せられた照明光は、前記第3ダイクロイックミラー38、前記第2ダイクロイックミラー37を透過し、前記第1ダイクロイックミラー33、前記ミラー32で反射され、前記光軸31に射出される。
この場合、前記第3ダイクロイックミラー38は照明光を透過し、レーザポインタ光を反射し、前記第2ダイクロイックミラー37は測距光を反射し、照明光、レーザポインタ光を透過する。前記第1ダイクロイックミラー33は、測距光、レーザポインタ光を反射し、照明光の一部を反射し、照明光の一部を透過する様になっている。
前記第1ダイクロイックミラー33が、前記光軸31から外れた位置に設けられたので、その分、該光軸31の長さが短縮される。従って、更に、前記測距用受光光学系26が小型化できる。
図12(A)、図12(B)は、第4の実施例を示している。図12(A)、図12(B)中、図11中で示したものと同等のものには同符号を付し、その説明を省略する。
第3の実施例では、第2ダイクロイックミラー37による光軸の分岐方向が紙面に対して平行(光軸31と平行)な方向であったが、第4の実施例では、前記第2ダイクロイックミラー37により紙面に対して垂直な方向に分岐している。
第4の実施例では、投光光学系27が撮像用受光光学系28の側方に設けられるので、光軸31方向の長さが更に短くなり、光学系の更なる小型化が図れる。
図13(A)、図13(B)は、第5の実施例を示している。第5の実施例では、図5に示される結像光学部材9が用いられている。尚、図13(A)、図13(B)中、図12(A)、図12(B)中で示したものと同等のものには同符号を付し、その説明を省略する。尚、図13(A)、図13(B)中、回転ミラー29は図示を省略している。
反射鏡9′′は、反射屈折レンズ9′と対峙する面と物側の両面が反射面となっている。
投光光学系27の光軸、及び撮像用受光光学系28の光軸は、前記反射鏡9′′の物側の反射面で、光軸31と合致する様に偏向される。又、前記反射屈折レンズ9′から射出される入射光6は、前記反射鏡9′′の前記反射屈折レンズ9′側の反射面で反射され、結像される。
従って、前記反射鏡9′′を挾み一方の側に、前記投光光学系27、前記撮像用受光光学系28が配設され、他方の側に受光面3等、測距光検出部(図示せず)が配設される。
第5の実施例では、前記反射屈折レンズ9′の反物側に配設されるものが無く、又前記反射鏡9′′の両側の空間が有効に利用されるので、受光系を小型化することができる。
図14(A)は、第6の実施例を示している。第6の実施例では、図1(B)に示されるレンズ5bが結像光学部材として用いられている。
第6の実施例は、図11で示す第3の実施例の変形である。図14(A)、図14(B)中、図11中で示すものと同等のものには同符号を付し、その説明を省略する。
前記レンズ5bを用いた場合、面R3とミラー32との間にデッドスペース41が生じる。第6の実施例では、該デッドスペース41を有効利用し、光学系の小型化を図っている。
前記ミラー32を通過した光軸31(前記レンズ5bの光軸)上に、且つ前記面R3に対向させて照明光源36を設ける。該照明光源36から発せられた照明光は前記面R3を透過し、面R2で反射された後射出される。この場合、前記面R3、前記面R2は照明光を平行光とする作用を有する。尚、図14(B)に示される様に、前記照明光源36と前記面R3との間に集光レンズ40を設けてもよい。
尚、照明光が前記ミラー32に向けて直接射出される様に、前記照明光源36を配置してもよい。
斯かる配置とすることで、投光光学系27に於いて(図11参照)、第2ダイクロイックミラー37等が省略できる。
図15(A)は、第7の実施例を示している。第7の実施例には、図1(B)に示されるレンズ5bが結像光学部材として用いられている。
尚、図15(A)、図15(B)中、図9中で示したものと同等のものには同符号を付し、その説明を省略する。
光軸31上にダイクロイックミラー43を設け、前記光軸31を反射光軸31aと透過光軸31bに分岐する。
前記反射光軸31a上に、ミラー32、前記レンズ5bが設けられ、前記ミラー32で反射された光軸上に投光光学系27が設けられる。又、前記透過光軸31b上に撮像用受光光学系28が設けられる。
前記ダイクロイックミラー43は、測距光を反射し、照明光の一部、レーザポインタ光を反射し、可視光と照明光の一部を透過する。
前記撮像用受光光学系28は、前記ダイクロイックミラー43を透過した照明光を受光し、画像を取得し、或は測定対象としてのコーナキューブからの反射光を受光した結果に基づきトラッキングを実行する。
図15(B)は、照明光投光部44と前記撮像用受光光学系28との関係を示している。前記照明光投光部44は、前記撮像用受光光学系28を挾んで対称に2組設けられている。
照明光源が対称な位置に2つあることで、コーナキューブ等からの反射光を受光した場合、2つの受光点の中心が、コーナキューブに向う前記光軸31の位置となり、トラッキングを正確に行える。従って、トラッキング用の照明光を、測距光軸上に射出できない場合、有効な配置となる。
図16は、第8の実施例を示している。第8の実施例には、図1(A)に示されるレンズ5aが結像光学部材として用いられている。尚、図16中、図9中で示したものと同等のものには同符号を付し、その説明を省略する。又、結像光学部材は、レンズ5b〜レンズ5d、レンズ7、レンズ8のいずれかであってもよい。
第8の実施例では、レンズ5aの面R4を透過した光軸45上に照明用光源投光部27′が設けられている。前記光軸45上には、ダイクロイックミラー46が設けられている。
該ダイクロイックミラー46は、可視光を透過し、不可視光を反射する光学特性を有しており、照明光源36から発せられる照明光は透過され、前記レンズ5aにより平行光束とされ、射出される様になっている。
又、前記ダイクロイックミラー46は前記光軸45を分岐し、分岐した光軸を受光面3へと偏向する。分岐した光軸上にはリレーレンズ47が設けられている。前記レンズ5aに入射した入射光6は、前記面R4を透過した位置で結像され、更に前記ダイクロイックミラー46で反射された後、前記リレーレンズ47により受光面3上に結像される。
尚、透過した光軸に前記受光面3を配置し、分岐した光軸に前記照明用光源投光部27′を設けてもよい。
撮像用受光光学系28には、以下の光学フィルタが設けられてもよい。
一般に使用されるカメラに設けられる受光センサのRGB感度は図17に示される通りである。
可視光の波長は400nm〜700nmであるが、受光センサは赤外の領域にも感度を持っており、特に波長が810nm〜840nmでは、感度は低くなるもののRGB共に同等の感度となっている。
この特性を利用し、トラッキング用の照明光として例えば、810nm〜840nmの波長の赤外光を用いた場合、図17中、曲線49で示す透過特性、即ち可視領域の波長を透過すると共に810nm〜840nmの範囲の波長を透過するフィルタを作成し、該フィルタを前記撮像用受光光学系28の所要の位置に設ける。
このフィルタを設けることで、撮像素子39より自然な色味の画像が取得できると共に、トラッキングの反射光(赤外光)も受光できる様になる。従って、前記撮像素子39からの信号に基づきトラッキングが行える。
ダイクロイックミラーは、ビームスプリッタでもよく、或は波長域の一部をダイクロイックミラーとし、一部はビームスプリッタの特性を持った光学素子でもよい。
更に上記した面R1〜面R4は、近距離の受光光量を確保する為、レンズの一部の形状を近距離に焦点が合う様な非球面形状にしてもよい。
1 光学系
2 レンズ群
3 受光面
5a〜5d レンズ
6 入射光
7 レンズ
8 レンズ
9 結像光学部材
11 結像光学部材
12 凹面反射鏡
13 反射屈折レンズ
14 結像光学部材
15 反射屈折レンズ
16 反射鏡
17 孔
20 結像光学部材
21 凹面反射鏡
22 凸面反射鏡
26 測距用受光光学系
27 投光光学系
28 撮像用受光光学系
34 測距光光源
35 レーザポインタ用光源
36 照明光源

Claims (9)

  1. 入射光を反射する凹反射面と、該凹反射面に対向配置された凸反射面とを有し、前記凹反射面は前記入射光を前記凸反射面に集光させる様反射し、該凸反射面は前記入射光を結像させる様反射する様構成された結像光学部材。
  2. 前記結像光学部材はレンズであり、該レンズの入射面に対向する面が凹曲面であり、該凹曲面の中央部を除き反射膜が形成され、前記入射面の中央部に凹部を形成し、該凹部に反射膜が形成されて凸反射面とされ、該凸反射面で反射された前記入射光が前記凹曲面の中央部を透過し、前記レンズの外側で結像される請求項1に記載の結像光学部材。
  3. 前記結像光学部材は複数のレンズが接合されて構成される請求項2に記載の結像光学部材。
  4. 前記結像光学部材は主レンズ、小レンズから構成され、前記主レンズの入射面に対向する面が凹曲面であり、該凹曲面の中央部を除き反射膜が形成され、前記主レンズの入射面の中央部に前記小レンズが接合され、該小レンズの反接合面には凹部が形成され、該凹部で形成される凹曲面に反射膜が形成されて前記凹曲面に向って突出する凸反射面が形成され、該凸反射面で反射された前記入射光が前記凹曲面の中央部を透過し、前記主レンズの外側で結像される請求項1に記載の結像光学部材。
  5. レンズ及び反射鏡で構成され、前記レンズの入射面に対向する面が凹曲面であり、該凹曲面に反射膜が形成され、前記入射面の中央部に凹部が形成され、前記反射鏡は前記凹部に対峙する様設けられ、前記凹曲面で前記凹部に集光される様反射された入射光が前記凹部を透過し、前記反射鏡で反射され前記レンズの外側で結像される結像光学部材。
  6. 凹反射面と、該凹反射面と離間して反射屈折レンズが配設され、該反射屈折レンズの前記凹反射面とは反対の面は副反射面とされ、前記凹反射面は入射光を前記反射屈折レンズに入射させる様に反射し、該反射屈折レンズの前記凹反射面に対向する面は、前記副反射面で反射された前記入射光が、前記凹反射面と前記反射屈折レンズの間で結像する様に構成された結像光学部材。
  7. 測距光を投光する投光光学系と、測定対象から反射された反射測距光が入射光として受光される測距用受光光学系とを具備し、該測距用受光光学系が前記入射光を受光面に結像させる結像光学部材を有し、該結像光学部材は請求項1〜請求項6のうちいずれか1つに記載の測量機の光学系。
  8. トラッキング用照明光源を更に有し、該トラッキング用照明光源は前記入射面の凹部に対向して設けられ、前記トラッキング用照明光源から発せられた照明光は、前記凹部で反射された後射出される請求項7に記載の測量機の光学系。
  9. 請求項2の結像光学部材を有し、前記凹曲面の中央部を通過する光軸を、ダイクロイックミラーによって分岐し、分岐した一方の光軸上にトラッキング用照明光源を配設し、他方の光軸上に受光面を配置し、前記ダイクロイックミラーは、照明光と測距光とを分離する様構成された請求項7に記載の測量機の光学系。
JP2015199195A 2015-10-07 2015-10-07 結像光学部材及び測量機の光学系 Pending JP2017072709A (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2015199195A JP2017072709A (ja) 2015-10-07 2015-10-07 結像光学部材及び測量機の光学系
CN201610868294.9A CN106990504A (zh) 2015-10-07 2016-09-30 成像光学构件和测量机的光学系统
US15/284,900 US20170102233A1 (en) 2015-10-07 2016-10-04 Image-Forming Optical Component And Optical System Of Surveying Instrument
EP16192667.0A EP3153905A3 (en) 2015-10-07 2016-10-06 Image-forming optical component and optical system of surveying instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015199195A JP2017072709A (ja) 2015-10-07 2015-10-07 結像光学部材及び測量機の光学系

Publications (1)

Publication Number Publication Date
JP2017072709A true JP2017072709A (ja) 2017-04-13

Family

ID=57103934

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015199195A Pending JP2017072709A (ja) 2015-10-07 2015-10-07 結像光学部材及び測量機の光学系

Country Status (4)

Country Link
US (1) US20170102233A1 (ja)
EP (1) EP3153905A3 (ja)
JP (1) JP2017072709A (ja)
CN (1) CN106990504A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019028129A (ja) * 2017-07-26 2019-02-21 キヤノン株式会社 光学系、それを備える撮像装置及び投影装置
CN110471173A (zh) * 2019-08-05 2019-11-19 同济大学 一种带衍射面的四反中波红外取景器光学系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4878954A (ja) * 1971-12-31 1973-10-23
US3858046A (en) * 1973-06-25 1974-12-31 Hughes Aircraft Co Catadioptric beamsplitter system
JPH11316343A (ja) * 1998-05-01 1999-11-16 Nikon Corp カタディオプトリックレンズ
JP2005233842A (ja) * 2004-02-20 2005-09-02 Fuji Xerox Co Ltd 位置計測システム
JP2009145207A (ja) * 2007-12-14 2009-07-02 Topcon Corp 測量装置
CN101738715A (zh) * 2009-12-25 2010-06-16 中国科学院武汉物理与数学研究所 高焦比集光器

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2071283A (en) * 1929-11-21 1937-02-16 Kidde & Co Walter Supervisory circuit
US2234753A (en) * 1932-10-24 1941-03-11 York Ice Machinery Corp Heat exchange apparatus
GB1476504A (en) * 1973-06-25 1977-06-16 Hughes Aircraft Co Optical target tracking arrangement
US5114238A (en) * 1990-06-28 1992-05-19 Lockheed Missiles & Space Company, Inc. Infrared catadioptric zoom relay telescope
JPH0815413A (ja) * 1994-06-24 1996-01-19 Mitsubishi Electric Corp 距離測定装置
US20020097505A1 (en) * 2000-11-30 2002-07-25 Delong James A. Single-element catadioptric condenser lens
JP2002277741A (ja) * 2001-03-16 2002-09-25 Matsushita Electric Ind Co Ltd 反射屈折型マクロ投影光学系
JP2010091289A (ja) * 2008-10-03 2010-04-22 Topcon Corp 光波距離測定装置
DE102009024464B4 (de) * 2009-06-10 2017-09-21 Carl Zeiss Ag Auswerteeinrichtung, Messanordnung und Verfahren zur Weglängenmessung
DE102009055988B3 (de) * 2009-11-20 2011-03-17 Faro Technologies, Inc., Lake Mary Vorrichtung zum optischen Abtasten und Vermessen einer Umgebung
DE102010032725B4 (de) * 2010-07-26 2012-04-26 Faro Technologies, Inc. Vorrichtung zum optischen Abtasten und Vermessen einer Umgebung

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4878954A (ja) * 1971-12-31 1973-10-23
US3858046A (en) * 1973-06-25 1974-12-31 Hughes Aircraft Co Catadioptric beamsplitter system
JPH11316343A (ja) * 1998-05-01 1999-11-16 Nikon Corp カタディオプトリックレンズ
JP2005233842A (ja) * 2004-02-20 2005-09-02 Fuji Xerox Co Ltd 位置計測システム
JP2009145207A (ja) * 2007-12-14 2009-07-02 Topcon Corp 測量装置
CN101738715A (zh) * 2009-12-25 2010-06-16 中国科学院武汉物理与数学研究所 高焦比集光器

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019028129A (ja) * 2017-07-26 2019-02-21 キヤノン株式会社 光学系、それを備える撮像装置及び投影装置
JP7005207B2 (ja) 2017-07-26 2022-01-21 キヤノン株式会社 光学系、それを備える撮像装置及び投影装置
CN110471173A (zh) * 2019-08-05 2019-11-19 同济大学 一种带衍射面的四反中波红外取景器光学系统
CN110471173B (zh) * 2019-08-05 2021-05-11 同济大学 一种带衍射面的四反中波红外取景器光学系统

Also Published As

Publication number Publication date
CN106990504A (zh) 2017-07-28
EP3153905A2 (en) 2017-04-12
EP3153905A3 (en) 2017-06-07
US20170102233A1 (en) 2017-04-13

Similar Documents

Publication Publication Date Title
JP4927182B2 (ja) レーザー距離計
US7672049B2 (en) Telescope and panfocal telescope comprising planoconvex of planoconcave lens and deflecting means connected thereto
US7113349B2 (en) Decentering optical system and optical system using the same
JP6567542B2 (ja) テレセントリックレンズ
JP2017110964A (ja) 光波距離測定装置
JPH03148044A (ja) 顕微分光測定装置
JP2017072709A (ja) 結像光学部材及び測量機の光学系
JP2002277741A (ja) 反射屈折型マクロ投影光学系
JP2013029654A5 (ja)
WO2012042945A1 (ja) 受光レンズの配置方法、および光学式変位センサ
JP3634719B2 (ja) Af機能を有する光波測距儀
US10690892B2 (en) Telecentric lens
JP5409580B2 (ja) レーザー距離計
JP2017072464A (ja) 測量機の光学系
JPH11249019A (ja) 光学素子及びそれを用いた光学系
JP6732442B2 (ja) 光波距離測定装置
JP2007109923A (ja) 光検出装置およびそれを用いた光通信システム
JP6756826B2 (ja) 光学ビーム整形ユニット、距離測定装置およびレーザ照明器
WO2019038997A1 (ja) プリズム及び光モジュール
JP2005249859A (ja) 偏心光学系、送光装置、受光装置および光学システム
JP2019023650A (ja) 光波距離測定装置
WO2022186113A1 (ja) 光伝送装置及び光伝送装置の調整方法
JP2017072465A (ja) 測量機の光学系
RU2664380C1 (ru) Оптическая система однозрачкового тепловизионного прицела с встроенным лазерным дальномером
JPH11109022A (ja) 光波測距装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180813

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190521

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190522

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20191119