JP2017037328A - オーディオデコーダ及び復号方法 - Google Patents

オーディオデコーダ及び復号方法 Download PDF

Info

Publication number
JP2017037328A
JP2017037328A JP2016197150A JP2016197150A JP2017037328A JP 2017037328 A JP2017037328 A JP 2017037328A JP 2016197150 A JP2016197150 A JP 2016197150A JP 2016197150 A JP2016197150 A JP 2016197150A JP 2017037328 A JP2017037328 A JP 2017037328A
Authority
JP
Japan
Prior art keywords
parameter
audio
filter
signal
pitch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016197150A
Other languages
English (en)
Other versions
JP6279686B2 (ja
Inventor
レスク,バルバラ
Resch Barbara
クヨエルリン,クリストフェル
Kjoerling Kristofer
ヴィレモーズ,ラーシュ
Villemoes Lars
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dolby International AB
Original Assignee
Dolby International AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=44504387&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2017037328(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Dolby International AB filed Critical Dolby International AB
Publication of JP2017037328A publication Critical patent/JP2017037328A/ja
Application granted granted Critical
Publication of JP6279686B2 publication Critical patent/JP6279686B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/04Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using predictive techniques
    • G10L19/26Pre-filtering or post-filtering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L19/00Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/02Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using spectral analysis, e.g. transform vocoders or subband vocoders
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/02Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using spectral analysis, e.g. transform vocoders or subband vocoders
    • G10L19/028Noise substitution, i.e. substituting non-tonal spectral components by noisy source
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/02Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using spectral analysis, e.g. transform vocoders or subband vocoders
    • G10L19/03Spectral prediction for preventing pre-echo; Temporary noise shaping [TNS], e.g. in MPEG2 or MPEG4
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/02Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using spectral analysis, e.g. transform vocoders or subband vocoders
    • G10L19/032Quantisation or dequantisation of spectral components
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/04Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using predictive techniques
    • G10L19/08Determination or coding of the excitation function; Determination or coding of the long-term prediction parameters
    • G10L19/083Determination or coding of the excitation function; Determination or coding of the long-term prediction parameters the excitation function being an excitation gain
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/04Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using predictive techniques
    • G10L19/08Determination or coding of the excitation function; Determination or coding of the long-term prediction parameters
    • G10L19/09Long term prediction, i.e. removing periodical redundancies, e.g. by using adaptive codebook or pitch predictor
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/04Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using predictive techniques
    • G10L19/08Determination or coding of the excitation function; Determination or coding of the long-term prediction parameters
    • G10L19/12Determination or coding of the excitation function; Determination or coding of the long-term prediction parameters the excitation function being a code excitation, e.g. in code excited linear prediction [CELP] vocoders
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/04Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using predictive techniques
    • G10L19/08Determination or coding of the excitation function; Determination or coding of the long-term prediction parameters
    • G10L19/12Determination or coding of the excitation function; Determination or coding of the long-term prediction parameters the excitation function being a code excitation, e.g. in code excited linear prediction [CELP] vocoders
    • G10L19/125Pitch excitation, e.g. pitch synchronous innovation CELP [PSI-CELP]
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/04Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using predictive techniques
    • G10L19/16Vocoder architecture
    • G10L19/18Vocoders using multiple modes
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/04Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using predictive techniques
    • G10L19/16Vocoder architecture
    • G10L19/18Vocoders using multiple modes
    • G10L19/22Mode decision, i.e. based on audio signal content versus external parameters
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/04Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using predictive techniques
    • G10L19/26Pre-filtering or post-filtering
    • G10L19/265Pre-filtering, e.g. high frequency emphasis prior to encoding
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L21/00Speech or voice signal processing techniques to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
    • G10L21/003Changing voice quality, e.g. pitch or formants
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L21/00Speech or voice signal processing techniques to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
    • G10L21/003Changing voice quality, e.g. pitch or formants
    • G10L21/007Changing voice quality, e.g. pitch or formants characterised by the process used
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L21/00Speech or voice signal processing techniques to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
    • G10L21/003Changing voice quality, e.g. pitch or formants
    • G10L21/007Changing voice quality, e.g. pitch or formants characterised by the process used
    • G10L21/013Adapting to target pitch
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/02Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using spectral analysis, e.g. transform vocoders or subband vocoders
    • G10L19/0212Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using spectral analysis, e.g. transform vocoders or subband vocoders using orthogonal transformation
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/04Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using predictive techniques
    • G10L19/08Determination or coding of the excitation function; Determination or coding of the long-term prediction parameters
    • G10L19/10Determination or coding of the excitation function; Determination or coding of the long-term prediction parameters the excitation function being a multipulse excitation
    • G10L19/107Sparse pulse excitation, e.g. by using algebraic codebook
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/04Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using predictive techniques
    • G10L19/16Vocoder architecture
    • G10L19/18Vocoders using multiple modes
    • G10L19/20Vocoders using multiple modes using sound class specific coding, hybrid encoders or object based coding

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Computational Linguistics (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Human Computer Interaction (AREA)
  • Acoustics & Sound (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Quality & Reliability (AREA)
  • General Physics & Mathematics (AREA)
  • Pure & Applied Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Physics (AREA)
  • Algebra (AREA)
  • Theoretical Computer Science (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)
  • Fats And Perfumes (AREA)
  • Lubrication Details And Ventilation Of Internal Combustion Engines (AREA)
  • Filters For Electric Vacuum Cleaners (AREA)
  • Stereo-Broadcasting Methods (AREA)

Abstract

【課題】異なる音源の成分を混合した信号のオーディオ符号化及び復号化の方法と装置を提供する。
【解決手段】オーディオデコーダは、第1の符号化モードで動作するように適応されたACELPモジュールと、第2の符号化モードで動作するように適応された、ACELPモジュールとは異なるTCXモジュールと、第1の符号化モードまたは第2の符号化モードのうちどちらかに含まれる、ACELPモジュールまたはTCXモジュールにより生成された予備オーディオ信号をフィルタするように適応されたピッチフィルタ740とを有する。ピッチフィルタはオーディオビットストリームにエンコードされた第1のパラメータの値に基づいて選択的にイネーブルまたはディスエーブルされ、第1のパラメータはオーディオビットストリームにエンコードされた第2のパラメータと異なり、第2のパラメータはオーディオデコーダの現在の符号化モードを指定する。
【選択図】図7

Description

本発明は、概してデジタルオーディオコーディングに関し、より詳しくは異なるキャラクタの成分を含むオーディオ信号のコーディング手法に関する。
広く普及した、スピーチや歌唱を含むオーディオ信号のコーディング方法のクラスには、特に音楽に適合した周波数ドメインコーディング方法や一般的性質の方法を含む複数の異なるコーディング方法を時間的に切り換えて用いて、オーディオ信号の連続した期間の間のキャラクタの変化に対応するCELP(code excited linear prediction)がある。例えば、単純化されたMPEG(Moving Pictures Experts Group)USAC(Unified Speech and Audio Coding;ISO/IEC23003−3標準を参照)デコーダは、図2の上部に示したように、少なくとも3つの符号化モードで、すなわちAAC(Advanced Audio Coding;ISO/IEC13818−7標準を参照)、ACELP(algebraic CELP)、及びTCX(transform-coded excitation)で動作する。
CELPの様々な実施形態が、人間の発話器官の特性に、及び場合によっては人間の聴覚に適合されている。本出願では、CELPは、可能性のあるすべての実施形態や変形例を指し、ACELP、wide- and narrow-band CELP、SB-CELP (sub-band CELP)、low- and high-rate CELP、RCELP (relaxed CELP)、LD- CELP (low-delay CELP)、CS-CELP (conjugate-structure CELP)、CS-ACELP (conjugate-structure ACELP)、PSI-CELP (pitch-synchronous innovation CELP)及びVSELP (vector sum excited linear prediction)を含むが、これらに限定されない。CELPの原理は、非特許文献1で説明されており、そのいくつかの応用は非特許文献2で引用された参考文献25−29に説明されている。前者の論文に詳しく説明されているように、CELPデコーダ(又は、同様にCELPスピーチシンセサイザ)は、ピッチ予測器とパルスコードブックとを含む。ピッチ予測器は、符号化されたスピーチ信号の周期的成分を回復する。パルスコードブックからは、イノベーションシーケンスが付加される。ピッチ予測器は、ピッチを回復する長遅延予測器と、スペクトルエンベロープ形成によりフォルマントを回復する短遅延予測器とを含む。ここでは、ピッチは概して、声帯により生じ、さらに声道の共鳴部分により色づけされる調性音の基本周波数として理解される。この周波数はその高調波とともにスピーチや歌唱を特色付ける。一般的に言って、CELP法は、ソロ又は1つのパートの歌唱であって、ピッチ周波数が明確に定義され、決定が比較的容易なものの処理に最も適している。
CELP符号化したスピーチの知覚品質を改善するため、CELP法をポストフィルタリング(あるいは、言い換えるとピッチエンハンスメント)と組み合わせることがよく行われる。特許文献1と非特許文献2のセクション2には、かかるポストフィルタの望ましい特性が、すなわち検出されたボイスピッチ(長期部分;セクション4を参照)の高調波間にあるノイズ成分を抑制する機能が開示されている。このノイズの重要部分はスペクトルエンベロープ形成に由来すると信じられている。図1と図2に示すように、単純なポストフィルタの長期部分は、伝達関数
Figure 2017037328
を有するように設計される。ここで、Tはサンプル数に対する推定ピッチ期間であり、αはポストフィルタのゲインである。かかるフィルタは、コムフィルタと同様に、周波数1/(2T)、3/(2T)、5/(2T)(これらはピッチ周波数の高調波間の間にある)と隣接周波数とを減衰する。減衰はゲインαの値に依存する。もう少し高度なポストフィルタは、この減衰を、ノイズが最も知覚される低周波数だけに適用する−そのため、一般的にはバスポストフィルタと言う。これは、上記の伝達関数HとローパスフィルタHLPをカスケードすることにより表せる。よって、ポストフィルタにより出力される後処理した符号化Sは、変換領域では
Figure 2017037328
により与えられる。ここで、
Figure 2017037328
であり、Sはポストフィルタへの入力として供給される符号化信号である。図3は、これらの特徴を有するポストフィルタの一実施形態である。このポストフィルタは、非特許文献3のセクション6.1.3でさらに説明されている。この図が示唆するように、ピッチ情報はビットストリーム信号中のパラメータとして符号化され、PLTにより表される演算を実行する長期予測フィルタに通信可能に接続されたピッチトラッキングモジュールにより読み出される。
前出のパラグラフで説明した長期部分のみを用いてもよい。あるいは、フォルマントに対応する周波数区間の成分を保存し、他のスペクトル領域(短期部分;セクション3を参照)の、すなわちフォルマントエンベロープの「スペクトルの谷」のノイズを減衰するノイズ成形フィルタと直列に構成される。可能性のある他の変形例として、このフィルタ集合は、短期部分のスペクトル傾斜による知覚される劣化を低減する漸進的ハイパスタイプフィルタによりさらに補完される。
調性、非調性、ボーカル、楽器、非音楽など音源が異なる成分がミックスされたオーディオ信号は、必ずしも今あるデジタルコーディング技術で満足がいく再生をできるとは限らない。より詳しく言うと、今ある技術では、このような不均質なオーディオ素材を処理するには不足であり、ある成分には適していても、他の成分には適していないことがある。具体的には、歌と1つ又は複数の楽器又はコーラスパートとがある音楽であって、上記の性質の方法で符号化されたものを復号すると、知覚でき、リスニング体験の一部を損ねるアーティファクトが生じることが多い。
米国特許第4969192号
R. Schroeder and S. Atal in Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), vol. 10, pp. 937-940, 1985 Chen and Gersho, IEEE Transactions on Speech and Audio Processing, vol. 3, no. 1 , 1995 Technical Specification ETSI TS 126 290, version 6.3.0, release 6
前のセクションで説明した欠点の少なくとも一部を緩和するために、本発明の目的は、異なる音源の成分を混合した信号のオーディオ符号化及び復号をするように構成された方法と装置を提供することである。具体的な目的として、本発明は、コーディング効率又は(知覚される)再生フィデリティ又はその両方の観点から適した方法と装置を提供しようとするものである。
本発明は、独立請求項に規定したように、エンコーダシステム、デコーダシステム、符号化方法、復号方法、及びこれらの各方法を実行するコンピュータプログラム製品を提供することにより、これらの目的のうち少なくとも一を達成する。従属項は本発明の実施形態を規定している。
発明者は、不均一音源(non-homogeneous origin)の符号化オーディオ信号において知覚される一部のアーティファクトは、複数の符号化モードであってそのうちの少なくとも一がデコーダにポストフィルタリングを含み、少なくとも一は含まない複数のコーディングモードの不適切なスイッチングにより生じることに気づいた。より正確には、利用可能なポストフィルタが高調波ノイズ(及び、場合によっては、スペクトルの谷のノイズ)だけでなく、「所望の」性質を有する楽器やボーカル伴奏その他の素材を表す信号成分も除去する。(Ghitza and Goldstein, IEEE Trans. Acoust, Speech, Signal Processing, vol. ASSP-4, pp. 697-708, 1986に記載されているように)スペクトルの谷の丁度可知差異は10dBであることが、多くの設計者によりこれらの周波数帯域を強くフィルタリングする正当化として考えられている。しかし、高調波間(及びスペクトルの谷の)減衰自体による音質低下は、スイッチングの場合の音質低下より重要度は低い。ポストフィルタをオンにスイッチングすると、歌っている声のバックグラウンドが急に小さくなり、フィルタを非アクティブにすると、バックグラウンドがすぐに大きくなる。スイッチングが頻繁に行われると、オーディオ信号の性質により、又はコーディング装置の構成により、スイッチングアーティファクトが生じる。一例として、USACデコーダは、ポストフィルタリングと組み合わせたACELPモードで、又はポストフィルタリング無しのTCXモードで動作できる。ACELPモードは、支配的なボーカル成分がある場合に使われる。よって、ACELPモードへのスイッチングは、新しい音楽フレーズの始めなど歌の始めで、新しいバースの始めで、又はボーカル成分が目立たないという意味で伴奏が歌声をかき消した後などにトリガーされる。実験により確認したところ、TCXコーディングを通しで使う代替的ソリューションでは、又はむしろ問題の迂回では、反響状のアーティファクトが現れるので、問題の解決にならない。
したがって、第1と第2の態様では、本発明は、符号化方法により出力されるビットストリームを復号する装置が高調波間ノイズの減衰を含むポストフィルタリングを適用すべきか決定することを特徴とするオーディオ符号化方法(及び対応する機能を有するオーディオ符号化システム)を提供する。決定の結果はビットストリームにエンコードされ、復号装置にとってアクセス可能である。
本発明により、ポストフィルタを使うかの決定は、最も適したコーディングモードに関する決定とは別に行われる。これにより、スイッチングがリスナをわずらわさないだけの時間にポストフィルタリング状態を維持可能になる。よって、本符号化方法により、従来はフィルタがアクティブであったコーディングモードにスイッチングされても、ポストフィルタを非アクティブに保つように指示する。
留意点として、ポストフィルタリングを適用するかの決定は、通常、フレームごとに行われる。よって、第1に、ポストフィルタリングは一度に一フレーム未満には適用されない。第2に、ポストフィルタリングをディスエーブルするかの決定は、現在のフレーム中においてのみ有効であり、後続のフレームにおいてはそのまま維持されても、再評価されてもよい。主フレームフォーマットと、通常のフォーマットの一部(例えば、1/8の長さ)である短いフォーマットとを許容するコーディングフォーマットでは、個々の短いフレームに対してポストフィルタリングの決定をする必要はない。代わりに、まとめると通常フレームになる複数の短いフレームを考え、その平均又はメジアンを計算して、フィルタリング決定に関するパラメータを求めてもよい。
本発明の第3と第4の態様では、高調波間ノイズ減衰を含み、ビットストリーム信号にエンコードされたポストフィルタリング情報によりポストフィルタをディスエーブルするステップを有する、ポストフィルタリング段階が続く復号ステップを有するオーディオ復号方法(及び対応する機能を有するオーディオ復号システム)が提供される。
これらの特徴を有する復号方法は、ポストフィルタリング情報のみにより、そのため現在のコーディングモードなどのファクタとは独立して、ポストフィルタを非アクティブ化する機能があるので、混合音源オーディオ信号のコーディングに適している。従来のようにポストフィルタ機能が特定のコーディングモードに付随していたコーディング方法に適用する場合、ポストフィルタリングをディスエーブルする機能により、新しい動作モード、すなわち従来のフィルタリングされた復号モードをフィルタリングをせずに適用するモードが可能となる。
さらに別の態様では、本発明は、上記の方法の一を実行するコンピュータプログラム製品も提供される。さらにまた、本発明により、ポストフィルタに供給されるポストフィルタリング信号により示される、アクティブモード又はパススルーモードで動作可能な、高調波間ノイズを減衰するポストフィルタが提供される。このポストフィルタは、ポストフィルタリング動作を自律的に制御する決定部を有していてもよい。
当業者には言うまでもないが、デコーダと協働するように構成されたエンコーダには、機能的に等価なモジュールが備えられており、符号化された信号の忠実な再生が可能になっている。かかる等価なモジュールは、同じ又は類似したモジュールか、同じ又は類似した伝達特性を有するモジュールである。特に、エンコーダとデコーダのモジュールは、それぞれ、等価な数学的演算を実行するコンピュータプログラムを実行する類似した、または非類似のユニットであってもよい。
一実施形態では、本方法の符号化は、(フォルマントエンベロープ(上記参照)の)スペクトルの谷の減衰をさらに含むポストフィルタに関する意思決定を含む。これはポストフィルタの短期部分に対応する。決定が基づく基準をポストフィルタの性質に適合させると都合がよい。
一実施形態は、特にスピーチ符号化に適合したエンコーダに関する。本発明の動機付けとなる問題は、ボーカルとその他の成分の混合を符号化する時に見られるので、本発明によるスピーチコーディングとポストフィルタリングに関する独立した意思決定との組合せは、特に都合がよい。具体的に、かかるデコーダは、CELP符号化モジュールを含み得る。
一実施形態では、エンコーダによる決定は、支配的基本周波数(ピッチ)を有する信号成分と、基本周波数より下にある他の信号成分が同時に存在することの検出に基づく。また、検出は、支配的基本周波数を有する成分と、この基本周波数の高調波間にエネルギーを有する他の成分との共起(co-occurrence)の発見を目的としてもよい。これは、問題のタイプのアーティファクトが頻繁に生じる場合である。よって、このように同時に存在することが分かったら、エンコーダは、ポストフィルタリングが適していないと決定する。これはビットストリーム中に含まれるポストフィルタリング情報により示される。
一実施形態では、その検出基準として、ピッチ周波数より下のオーディオ時間信号中の全信号パワーコンテンツを用いる。ピッチ周波数は、場合によっては、エンコーダの長期予測により推定されたピッチ周波数である。これが所定閾値より大きいとき、ピッチ成分(高調波を含む)以外の成分があると考えられる。そのため、ポストフィルタはディスエーブルされる。
CELPモジュールを有するエンコーダでは、かかるモジュールはオーディオ時間信号のピッチ周波数を推定することを用いることができる。そして、詳細は上記したように、さらに別の検出基準は、この周波数の高調波間の、又はそれより下のエネルギーコンテンツをチェックすることである。
CELPモジュールを含む前述の実施形態のさらなる発展として、決定は、CELPコード化(すなわち、符号化及び復号)された時のオーディオ信号の推定パワー間と、CELPコード化及びポストフィルタされた時のオーディオ信号の推定パワーとの比較を含み得る。パワー差が閾値より大きく場合、これは信号の非ノイズ成分が失われることを示し、エンコーダはポストフィルタをディスエーブルする決定をする。
有利な実施形態では、エンコーダはCELPモジュールとTCXモジュールとを有する。本技術分野では知られているように、TCXコーディングはある種の信号、特に非ボーカル信号には有利である。TCXコーディングした信号にポストフィルタリングをかけるのは実務上一般的ではない。よって、エンコーダは、TCXコーディング、ポストフィルタリングを伴うCELPコーディング、又はポストフィルタリングを伴わないCELPコーディングのいずれかを選択して、広い範囲の信号タイプをカバーできる。
前述の実施形態のさらなる発展として、3つのコーディングモード間の決定は、レート・歪み基準に基づき、すなわち本技術分野でそれ自体知られた最適化手順を適用して行う。
前述の実施形態の他のさらなる発展では、エンコーダはさらに、AAC(Advanced Audio Coding)コーダを有する。AACコーダもある種の信号に対して特に適していることが知られている。好ましくは、AAC(周波数領域)コーディングを適用するかの決定は、他のどの(線形予測)モードを用いるかに関する決定とは別に行われる。このように、エンコーダは、2つのスーパーモード、すなわちAAC又はTCX CELPで動作するととらえることができ、後者では、エンコーダはTCX、ポストフィルタリングを伴うCELP、又はフィルタリングを伴わないCELPを選択する。この実施形態により、さらに広い範囲のオーディオ信号タイプの処理が可能となる。
一実施形態では、エンコーダは、復号におけるポストフィルタリングを徐々に適用することを、すなわちゲインを徐々に上げることを決定できる。同様に、ポストフィルタリングを徐々に除去することを決定できる。このように徐々に適用したり除去したりすることによって、ポストフィルタリングの有無の切替が知覚しずらくなる。一例として、ポストフィルタリングを伴うCELPコーディングが好適である歌唱部分には、その前に、TCXコーディングが最適なインストルメンタル部分があるとする。本発明によるデコーダは、歌唱部分の始め又はその近くでポストフィルタリングを徐々にかけて、煩わしいスイッチングアーティファクトを回避しつつ、ポストフィルタリングの利益を保つようにできる。
一実施形態では、ポストフィルタリングを適用するかの決定は、近似差分信号に基づき行われる。この信号は、ポストフィルタにより復号される信号から除かれる信号成分を近似するものである。一オプションとして、近似差分信号を、オーディオ時間信号と、(シミュレーションされた)ポストフィルタリングをかけたオーディオ時間信号との間の差分として、計算する。他の一オプションとして、符号化部は、中間復号信号を取り出す。これにより、オーディオ時間信号と、ポストフィルタリングをかけた中間復号信号との間の差分として、近似差分信号を計算できる。中間復号信号はエンコーダの長期予測バッファに格納できる。これは信号の励起を表し、さらなる合成フィルタリング(ボーカルトラクト、共鳴)を適用して、最終的な復号信号を得る必要があることを示唆する。中間復号信号を用いるポイントは、中間復号信号がコーディング方法の特殊性、特に弱点の一部を捉え、それによりポストフィルタの効果の推定がより現実的になることにある。第3のオプションとして、復号部は、中間復号信号を取り出す。これにより、中間復号信号と、ポストフィルタリングをかけた中間復号信号との間の差分として、近似差分信号を計算できる。この手順による推定は、おそらく、最初の2つのオプションによる推定より信頼性は高くないが、他方で、デコーダによりスタンドアロンで実行できる。
このように求めた近似差分信号は、次の基準:
a)近似差分信号のパワーが所定の閾値を越え、信号の大部分がポストフィルタにより除去されるか、
b)前記近似差分信号の特徴がノイズ状でなく音調的であるか;
c)近似差分信号の強度周波数スペクトルとオーディオ時間信号の強度周波数スペクトルとの間の差分が、周波数について不均一に分散しており、ノイズではなく、人間のリスナにとって意味を成す信号であるか、
d)近似差分信号の強度周波数スペクトルは、処理されるタイプの信号から期待できる、所定の関連エンベロープ内の周波数区間にあるか、
e)前記近似差分信号の強度周波数スペクトルが、所定のスケールファクタによりダウンスケールされた最大信号成分の強度により前記オーディオ時間信号の強度周波数スペクトルに閾値を設けることにより得られた関連エンベロープ内の周波数区間にあるか;
の一について評価される。肯定的に評価されると、ポストフィルタをディスエーブルする決定がなされる。
基準e)を評価する時、強度スペクトルにピークトラッキングを適用すると有利である。すなわち、ノイズではなく通常は音調的成分に関連するピーク状形状を有する部分を区別すると有利である。本技術分野でそれ自体知られている何らかのアルゴリズムにより行われるピークトラッキングにより特定される成分は、さらに、ピークの高さに閾値を適用することによりソートされる。残りの成分はある強度を有する音調素材である。かかる成分は、通常は、ノイズではなく関連信号コンテンツを表し、これはポストフィルタをディスエーブルする決定の動機付けとなる。
デコーダとしての本発明の一実施形態では、ポストフィルタをディスエーブルする決定は、制御部により制御可能であり、回路においてポストフィルタをバイパスできるスイッチにより実行される。他の一実施形態では、ポストフィルタは制御部により又はその中のゲインコントローラにより制御可能な可変ゲインを有し、ディスエーブルする決定は、ポストフィルタゲイン(前のセクションを参照)をゼロに設定することにより、又はその絶対値を所定閾値より下に設定することにより、行われる。
一実施形態では、本発明による復号は、復号されるビットストリーム信号からのポストフィルタリング情報の取り出しを含む。より正確には、ポストフィルタリング情報は、伝送に適したフォーマットの、少なくとも1ビットを含むデータフィールドにエンコードされている。有利にも、データフィールドは、適用可能な標準により画定されたが使われていない既存のフィールドであり、ポストフィルタリング情報は伝送されるペイロードを増加させない。
留意点として、このセクションで開示した方法と装置は、通常の実験を含む当業者の能力の範囲内で適当な修正をして、ステレオチャンネルなどの異なる複数のチャンネルに対応する、複数の成分を有する信号のコーディングに適用できる。本願を通して、ピッチエンハンスメントとポストフィルタリングは同意語として用いられている。さらに留意点として、AACは、周波数領域のコーディング方法の代表例として説明されている。実際、本発明を、AAC以外の周波数領域コーディングモードで動作可能なデコーダやエンコーダに適用するには、必要であれ、当業者の能力範囲内の小さな修正を加えるだけでよい。同様に、TCXは、重み付け線形予測変換コーディング及び変換コーディング一般の例として説明したものである。
さらに別の実施形態では、上記の2つ以上の実施形態の特徴を、明らかに補完的でない限り、組み合わせられる。2つの特徴が異なるクレームに記載されていても、それらを組み合わせられないと言うわけではない。同様に、さらに別の実施形態では、所望の目的に対して必要でない、または本質的でない特徴を省略してもよい。
ここで添付した図面を参照して、本発明の実施形態を詳細に説明する。
ポストフィルタを伴う従来のデコーダを示すブロック図である。 AAC、ACELP、及びTCXモードで動作可能であり、ACELPモジュールの下流に接続されたポストフィルタを含む従来のデコーダを示すブロック図である。 ポストフィルタの構成を示すブロック図である。 本発明によるデコーダを示すブロック図である。 本発明による他のデコーダを示すブロック図である。 従来のデコーダを示すブロック図である。 本発明によるデコーダを示すブロック図である。図6と図7により、従来のデコーダと本発明によるデコーダとの相違点を示す。 本発明によるエンコーダを示すブロック図である。 従来のデコーダを示すブロック図である。 本発明によるデコーダを示すブロック図である。図9と図10により、従来のデコーダと本発明によるデコーダとの相違点を示す。 選択的にアクティブにしたり非アクティブにできる自律的ポストフィルタを示すブロック図である。
図4は、ビットストリーム信号が入力され、オーディオ信号が出力される本発明の一実施形態によるデコーダシステム400を示す図である。図1に示した従来のデコーダのように、ポストフィルタ440は、復号モジュール410の後段に配置され、スイッチ442の動作により復号経路に加えられたりはずされたりできる。ポストフィルタは、図に示したスイッチ位置でイネーブルされる。ポストフィルタがディスエーブルされるのは、スイッチが反対位置に設定され、それにより復号モジュール410からの信号がバイパスライン444に流れたときである。発明的貢献として、スイッチ442はビットストリーム信号に含まれるポストフィルタリング情報により制御可能であり、復号モジュール410の現在の状態にかかわらずポストフィルタリングを適用したり除いたりできるようになっている。ポストフィルタ440は多少遅れて動作するので(例えば、図3に示したポストフィルタは少なくともピッチ期間Tの遅延を生じる)、補償遅延モジュール443をバイパスライン444に配置し、スイッチング時にモジュールを同期状態に維持する。遅延モジュール443は、ポストフィルタ440と同じ時間だけ信号を遅延させるが、信号の処理はしない。切替時間を最小にするため、補償遅延モジュール443は、常にポストフィルタ440と同じ信号を受け取る。ポストフィルタ440をゼロ遅延ポストフィルタ(例えば、2つのタップを有し、将来の信号値には依存しない因果性フィルタ(causal filter)など)と置き換えた実施形態では、補償遅延モジュール443は省略できる。
図5は、図2のトリプルモードデコーダシステム500の発明の教示をさらに発展させたものである。ACELP復号モジュール511は、TCX復号モジュール512及びAAC復号モジュール513と並列に配置されている。ACELP復号モジュール511と直列に、ノイズを減衰するポストフィルタ540が配置されている。ポストフィルタ540は、具体的には、デコーダシステム500が合わせられたビットストリーム信号から直接的又は間接的に求まるピッチ周波数の高調波間にあるノイズを減衰するものである。また、ビットストリーム信号は、図4に示したように、上側スイッチ541の設定(positions)を制御するポストフィルタリング情報をエンコードしている。この上側スイッチ541は、ポストフィルタ540を処理経路からはずすスイッチをし、補正遅延543と置き換えるように動作する。下側スイッチ542は、異なる復号モード間のスイッチをするのに用いられる。このように構成されているので、TCXモジュール512又はAACモジュール513の一方を用いる場合、上側スイッチ541の設定(position)は重要ではない。よって、ポストフィルタリング情報は、ACELPモードを除き、必ずしもこの設定(position)を示さない。現在どんな復号モードが使われていても、信号は、下側スイッチ542のダウンストリーム接続点からスペクトル帯域複製(SBR)モジュール550に供給され、SBRモジュール550はオーディオ信号を出力する。当業者には言うまでもないが、図面は概念的なものであり、図に示したスイッチは可動接触手段を有する物理的には別々の実体として示した。デコーダシステムの実際の実施形態では、スイッチやその他のモジュールはコンピュータ読み取り可能命令により実施される。
図6と図7も、ACELP、TCX又は周波数領域復号モードで動作可能なトリプルモードデコーダシステムを示すブロック図である。図7を参照して、本発明の一実施形態を示すが、ビームストリーム信号は、入力点701に供給される。入力点701は、それぞれの分岐を介して復号モジュール711、712、713に永続的に接続されている。また、入力点701は、ピッチエンハンスメントモジュール740への接続分岐702(これは、図6の従来の復号システムには無い)を有する。このピッチエンハンスメントモジュール740は、上記の一般的なタイプのポストフィルタとして機能する。本技術分野における一般的な実務として、第1の移行窓モジュール703がACELPモジュール711とTCXモジュール712の下流に配置されていて、復号モジュール間の移行を行う。第2の移行モジュール704は、周波数領域復号モジュール713と第1の移行窓モジュール703の下流に配置され、2つのスーパーモード間の移行を行う。さらに、SBRモジュール750は、出力点705のすぐ上流に設けられている。明らかに、ビットストリーム信号は、すべての復号モジュール711、712、713及びピッチエンハンスメントモジュール740に直接的に(又は、場合によっては逆多重後に)供給される。ビットストリームに含まれる情報が、どの復号モジュールをアクティブ化するか制御する。しかし、本発明により、ピッチエンハンスメントモジュール740は類似の自己起動を行う。これは、ビットストリーム中のポストフィルタリング情報に応じて、ポストフィルタ又は単なるパススルーとして機能する。これは、例えば、ピッチエンハンスメントモジュール740に制御部(図示せず)を設け、その制御部によりポストフィルタリング機能をオン・オフすることにより実現できる。デコーダシステムが周波数領域復号モード又はTCX復号モードで動作している時、厳密に言えば、ポストフィルタリング情報は不要であり、ピッチエンハンスメントモジュール740は、常にパススルーモードにある。言うまでもなく、本発明の貢献の部分を構成せず、当業者にはあることが自明なモジュールは、例えばデマルチプレクサは、明りょうかのために図7その他の同様の図面では省略した。
バリエーションとして、図7のデコーダシステムには、合成による分析アプローチを用いてポストフィルタリングを適用するか決定する制御モジュール(図示せず)を設けてもよい。かかる制御モジュールは、ピッチエンハンスメントモジュール740とACELPモジュール711に通信可能に接続され、復号プロセスの中間段階を表し、好ましくは信号の励起に対応したものを表す中間復号信号si_DEC(n)を取り出す。検出モジュールは、伝達関数PLT(z)とHLP(z)(背景技術欄及び図3を参照)、又は等価であるであるがこれらのフィルタインパルス応答pLT(z)とhLP(n)で画定されるピッチエンハンスメントモジュール740の機能をシミュレーションするのに必要な情報を有する。背景技術欄で説明したように、ポストフィルタリングで減算される成分は、
[外1]
Figure 2017037328
に比例する近似差分信号sAD(n)により推定できる。ここで、*は離散畳み込みを示す。これは、元のオーディオ信号とポストフィルタリングされた復号信号との間の真の差分の近似である。すなわち、
Figure 2017037328
であり、ここでαはポストフィルタゲインである。発明の概要欄及び特許請求の範囲に開示したように、この信号の全エネルギー、低周波帯域エネルギー、実強度スペクトル、又は過去の強度スペクトルが分かれば、制御部はピッチエンハンスメントモジュール740をアクティブ化又は非アクティブ化するか決定する基本を見つけることができる。
図8は、本発明の一実施形態によるエンコーダシステム800を示す図である。エンコーダシステム800は、デジタルオーディオ信号を処理するように構成され、そのデジタルオーディオ信号は一般的にマイクロホンで音波をキャプチャし、その音波をアナログの電気信号に変換することにより取得される。電気信号は、サンプリングされて、エンコーダシステム800に好適なフォーマットで提供され得るデジタル信号にされる。このシステムは、一般的には、符号化モジュール810、決定モジュール820、及びマルチプレクサ830よりなる。(象徴的に表された)スイッチ814、815により、符号化モジュール810は、モジュール811、812、813を選択的にアクティブ化することにより、CELP、TCX、又はAACモードのいずれかにより動作可能である。決定モジュール820は、所定の基準を適用して、符号化システム800により生成されるビットストリーム信号の復号中にポストフィルタリングをディスエーブルしてオーディオ信号をエンコードするか決定する。この目的のため、決定モジュール820は、オーディオ信号を直接調べて、又は接続ライン816を介して符号化モジュール810からデータを受け取る。決定モジュール820によりなされる決定を示す信号は、符号化モジュール810からの符号化オーディオ信号とともに、マルチプレクサ830に供給され、マルチプレクサ830はこれらの信号を連結して、エンコーダシステム800の出力を構成するビットストリームにする。
好ましくは、決定モジュール820は、中間復号信号si_DECから計算した近似差分信号に基づいて決定をする。この中間復号信号si_DECは符号化モジュール810から取得できる。前述の通り、中間復号信号は復号プロセスの中間段階を表すが、符号化プロセスの対応する段階から得ることもできる。しかし、エンコーダシステム800では、有利にも近似差分信号が
Figure 2017037328
となるように、元のオーディオ信号sORIGを得ることができる。近似した点は、最終的復号信号の替わりに中間復号信号を用いている。これにより、復号でポストフィルタが除去する成分の性質を評価でき、発明の概要欄で説明した基準の1つを適用することにより、決定モジュール820はポストフィルタリングをディスエーブルするか決定をすることができる。
これのバリエーションとして、決定モジュール820は、中間復号信号の替わりに元の信号を用いて、近似差分信号が
[外2]
Figure 2017037328
となるようにしても良い。これは忠実さが低い近似となるが、他方では、決定モジュール820と符号化モジュール810との間の接続ライン816の在否が任意的となる。
決定モジュール820がオーディオ信号を直接調べる(study)する本実施形態の他のバリエーションでは、以下の基準の1つ又は複数が適用できる:
・オーディオ信号は基本周波数が支配的な成分と、基本周波数よりも低い成分とを両方とも含むか?(基本周波数は符号化モジュール810の副作用として供給される。)
・オーディオ信号は基本周波数が支配的な成分と、基本周波数の高調波間にある成分とを両方とも含むか?
・オーディオ信号は基本周波数より低い大きな信号エネルギーを含むか?
・ポストフィルタリングした復号は、レート歪み最適性の点でフィルタリングしない復号よりも好ましいか(好ましそうか)?
図8に示したエンコーダ構成について説明したすべてのバリエーションでは、すなわち基礎となる決定基準にはかかわらずに、決定部820は、スムースな移行を実現するように、ポストフィルタリングを徐々にかけること又は除くことを決定できる。ポストフィルタのゲインを調性することにより、ポストフィルタリングを徐々にかけたり除いたりできる。
図9は、デコーダに供給されるビットストリーム信号に応じて周波数復号モードとCELP復号モードで動作できる従来のデコーダを示す。CELP復号モードが選択されているときはいつもポストフィルタリングがかけられる。このデコーダの改良を図10に示す。図10は本発明の一実施形態によるデコーダ1000を示す。このデコーダは、周波数領域復号モジュール1013がアクティブである周波数領域ベースの復号モードと、CELP復号モジュール1011とポストフィルタ1040がアクティブであるフィルタリングされたCELP復号モードとにおいて動作可能であるだけでなく、CELPモジュール1011がその信号をバイパスライン1044を介して補正遅延モジュール1043に供給する、フィルタリングされていないCELPモードでも動作可能である。スイッチ1042は、デコーダ1000に提供されるビットストリーム信号に含まれるポストフィルタリング情報に応じて、今どの復号モードを使うか制御する。このデコーダと図9のデコーダでは、最後の処理ステップはSBRモジュール1050により行われ、SBR1050から最終的なオーディオ信号が出力される。
図11は、デコーダ1199の下流に配置するのに好適なポストフィルタ1100を示す。フィルタ1100はポストフィルタリングモジュール1140を含む。ポストフィルタリングモジュール1140は、ポストフィルタ1100内の決定モジュール1120から受け取るポストフィルタリング信号に応じて制御モジュール(図示せず)により、特にバイナリ又は非バイナリのゲインコントローラにより、イネーブル又はディスエーブルされる。決定モジュールは、デコーダから得られる信号に1つ以上のテストをして、ポストフィルタリングモジュール1140をアクティブにするか否か決定する。決定は、図8の決定モジュール820の機能のある時点で行われる。決定モジュール820は、元の信号及び/又は中間復号信号を用いて、ポストフィルタの動作を予測する。また、決定モジュール1120の決定は、決定モジュールが中間復号信号が構成される上記の実施形態で用いるのと同様の情報に基づく。一例として、決定モジュール1120は、(ビットストリーム信号からピッチ周波数を容易に得られない限り)ピッチ周波数を推定し、そのピッチ周波数より下の信号とその高調波の間の信号のエネルギーコンテンツを計算する。このエネルギーコンテンツが大きければ、ノイズよりも信号成分を表すだろう。これはポストフィルタリングモジュール1140をディスエーブルする決定をするモチベーションとなる。
6人の被験者によるリスニングテストを行い、その間に、本発明により符号化及び復号をした音楽サンプルを、符号化された同じ音楽を含む基準サンプルと比較した。ポストフィルタリングは従来通りかけたが、他のパラメータはすべて変更していない。結果として音質が改善されることが確認された。
本発明のさらなる実施形態は、上記の説明を読めば、当業者には明らかになるだろう。本明細書と図面は実施形態と実施例を開示しているが、本発明はこれらの具体的な例に制約されない。添付した特許請求の範囲で規定した本発明の範囲から逸脱することなく、多数の修正や変形をすることができる。
ここに開示したシステムと方法は、ソフトウェア、ファームウェア、ハードウェアまたはこれらの組み合わせとして実施できる。一部または全部のコンポーネントは、デジタルシグナルプロセッサやマイクロプロセッサにより実行されるソフトウェアとして実施でき、またはハードウェアまたは特定目的集積回路として実施できる。かかるソフトウェアは、コンピュータ読み取り可能媒体で配布可能である。コンピュータ読み取り可能媒体は、コンピュータ記憶媒体(すなわち非一時的媒体)と通信媒体(すなわち一時的媒体)とを含む。当業者には周知だが、コンピュータ記憶媒体には、コンピュータ読み取り可能命令、データ構造、プログラムモジュールその他のデータなどの情報を記憶するための任意の方法や技術で実施された、揮発性および不揮発性、取り外し可能および取り外し不可能媒体を含む。コンピュータ記憶媒体は、RAM、ROM、EEPROM、フラッシュメモリその他のメモリ技術、CD−ROM、デジタルバーサタイルディスク(DVD)その他の光ディスク記憶媒体、磁気カセット、磁気テープ、磁気ディスク記憶その他の磁気記憶デバイス、またはその他の、所望の情報の記憶に使える任意の媒体を含むが、これらに限定されない。さらに、当業者には周知であるように、通信媒体は、一般的に、コンピュータ読み取り可能命令、データ構造、プログラムモジュール、その他の搬送波その他の伝送メカニズムなどの変調データ信号中のデータを化体し、任意の情報配信媒体を含む。
実施形態のリスト
1. オーディオ時間信号としてビットストリーム信号を復号するデコーダシステム(400;500;700;1000)であって:
ビットストリーム信号を予備的オーディオ時間信号として復号する復号部(410;511,512,513;711,712,713;1011,1013)と;
前記予備的オーディオ時間信号をフィルタリングしてオーディオ時間信号を取得する高調波間ノイズ減衰ポストフィルタ(440;540;740;1040)とを有し、
前記ビットストリーム信号にエンコードされたポストフィルタリング情報に応じて前記ポストフィルタをディスエーブルするように構成された制御部を有し、
前記予備的オーディオ時間信号が前記オーディオ時間信号として出力されることを特徴とする、デコーダシステム。
2. 前記ポストフィルタはさらにスペクトルの谷にあるノイズを減衰するように構成されている、実施形態1に記載のデコーダシステム。
3. 前記制御部は、前記デコーダシステムの信号処理経路から前記ポストフィルタを選択的に除外するスイッチ(442;541;1042)を含み、これにより前記ポストフィルタはディスエーブルされる、実施形態1に記載のデコーダシステム。
4. 前記ポストフィルタは前記高調波間減衰を決定する可変ゲインを有し、前記制御部は前記ゲインの絶対値を所定閾値より下に設定するように動作可能なゲインコントローラを含む、実施形態1に記載のデコーダシステム。
5. 前記復号部はスピーチ復号モジュールを含む、実施形態1に記載のデコーダシステム。
6. 前記復号部は、コード励起線形予測、CELP、復号モジュール(511;711;1011)を含む、実施形態1に記載のデコーダシステム。
7. 前記エンコーダの長期予測部により推定されたピッチ周波数が前記ビットストリーム信号にエンコードされる、実施形態5に記載のデコーダシステム。
8. 前記ポストフィルタは、前記ピッチ周波数の高調波間にあるスペクトル成分を減衰するように構成されている、実施形態7に記載のデコーダシステム。
9. 前記ビットストリーム信号はピッチ周波数の表示を含み、前記ポストフィルタは前記ピッチ周波数の高調波間にあるスペクトル成分を減衰するように構成されている、
実施形態1に記載のデコーダシステム。
10. 前記ポストフィルタは、所定のカットオフ周波数より下にあるスペクトル成分のみを減衰するように構成されている、実施形態8または9に記載のデコーダシステム。
11. 前記復号部は、ビットストリーム信号をオーディオ時間信号として復号するTCX(transform-coded excitation)復号モジュール(512;712)をさらに有し、
前記制御部は少なくとも次のモード:
a)前記TCXモジュールがイネーブルされ、前記ポストフィルタがディスエーブルされる;
b)前記CELPモジュールと前記ポストフィルタがイネーブルされている;及び
c)前記CELPモジュールがイネーブルされ、前記ポストフィルタがディスエーブルされており、前記呼びオーディオ時間信号と前記オーディオ時間信号が同時である、
で前記デコーダシステムを動作させるように構成されている、実施形態6に記載のデコーダシステム。
12. 前記復号部は、ビットストリーム信号をオーディオ時間信号として復号するAAC(Advanced Audio Coding)復号モジュール(513;713)をさらに有し、
前記制御部は少なくとも次のモード:
d)前記AACモジュールがイネーブルされ、前記ポストフィルタがディスエーブルされる
で前記デコーダシステムを動作させるように構成されている、実施形態10に記載のデコーダシステム。
13. 前記ビットストリーム信号は時間フレームに分割され、前記制御部は一時間フレーム全体又は一連の時間フレームをディスエーブルするように構成されている、
実施形態1に記載のデコーダシステム。
14. 前記制御部は、さらにMPEG(Moving Pictures Experts Group)ビットストリーム中の各時間フレームに対して、この時間フレームに関連するデータフィールドを受け取るように構成され、前記データフィールドの値に応じて、前記ポストフィルタをディスエーブルするように動作可能である、実施形態13に記載のデコーダシステム。
15. 前記制御部は前記ポストフィルタのゲインを徐々に下げる及び/又は上げるように構成されている、実施形態4に記載のデコーダシステム。
16. デコーダシステム(400;500;700;1000)であって:
ビットストリーム信号を予備的オーディオ時間信号として復号する復号部(410;511,512,513;711,712,713;1011,1013)と;
前記予備的オーディオ時間信号をフィルタリングしてオーディオ時間信号を取得する高調波間ノイズ減衰ポストフィルタ(440;540;740;1040)とを有し、
前記復号部は励起を表す中間復号信号を生成し、それを前記制御部に提供するように構成されており;
前記制御部は、前記中間復号信号と前記ポストフィルタリングをかけ、次の基準:
a)前記近似差分信号のパワーが所定閾値を越えている;
b)前記近似差分信号の特徴が音調的である;
c)前記近似差分信号の強さ・周波数スペクトルと前記オーディオ信号の強さ・周波数スペクトルとの間の差分が、周波数に対して不均一に分布している;
d)前記近似差分信号の強度周波数スペクトルは所定の関連エンベロープ内の周波数区間にあるか、
e)前記近似差分信号の強度周波数スペクトルが、所定のスケールファクタによりダウンスケールされた最大信号成分の強度により前記オーディオ時間信号の強度周波数スペクトルに閾値を設けることにより得られた関連エンベロープ内の周波数区間にあるか;
のうち少なくとも一を評価した前記中間復号信号との間の差分として、前記ポストフィルタにより前記復号信号から除去される信号成分を近似する近似差分信号を計算するよう構成され、及び、
肯定的な決定に応じて、前記ポストフィルタをディスエーブルし、それにより前記予備的オーディオ時間信号が前記オーディオ時間信号として出力される、デコーダシステム。
17. 予備的オーディオ信号を含む入力信号を受け取り、出力オーディオ信号を供給するように構成された高調波間ノイズ減衰ポストフィルタ(440;550;740;1040;1140)であって、
ポストフィルタリング信号の値により、次のモード:
i)前記予備的オーディオ信号をフィルタリングしてフィルタリングされた信号を求め、これを出力オーディオ信号として供給するフィルタリングモードと、
ii)前記予備的オーディオ信号を出力オーディオ信号として供給するパススルーモード、
の一で前記ポストフィルタを選択的に動作させる制御部を有することを特徴とする、ポストフィルタ。
18. 前記ポストフィルタリング信号は前記入力信号に含まれる、
実施形態17に記載のポストフィルタ。
19. 前記予備的オーディオ信号のピッチ周波数を推定し、次の基準:
a)前記ピッチ周波数より下のスペクトル成分のパワーが所定閾値を越えているか;
b)前記ピッチ周波数より下のスペクトル成分は音調的であるか;
c)前記ピッチ周波数の高調波間のスペクトル成分のパワーが所定閾値を越えているか;
d)前記ピッチ周波数の高調波間のスペクトル成分は音調的であるか;
のうち少なくとも一を評価するように構成された決定モジュール(1120)を更に有する、及び、
肯定的な決定に応じて、前記ポストフィルタをディスエーブルする負のポストフィルタリング信号を生成する決定をする、
実施形態17に記載のポストフィルタ。
20. ビットストリーム信号をオーディオ時間信号として復号する方法であって、
ビットストリーム信号を予備的オーディオ時間信号として復号するステップと;
高調波間ノイズを減衰することにより前記予備的オーディオ時間信号をポストフィルタリングして、それによりオーディオ時間信号を求めるステップとを有し、
前記ポストフィルタリングするステップは、前記ビットストリーム信号にエンコードされたポストフィルタリング情報に応じて選択的に省略されることを特徴とする、方法。
21. 前記ポストフィルタリングするステップは、さらにスペクトルの谷にあるノイズを減衰するステップを含む、実施形態20に記載の方法。
22. 前記復号するステップは、スピーチコーディング用のコーディング方法を適用するステップを含む、実施形態20に記載の方法。
23. 前記復号するステップは、CELP(code-excited linear prediction)復号を適用するステップを含む、実施形態20に記載の方法。
24. 前記ポストフィルタリングするステップは、前記ピッチ周波数の高調波間にあるスペクトル成分を減衰するステップを含み、前記ピッチ周波数は前記ビットストリーム信号から取り出されるか、又は前記復号ステップで推定される、
実施形態22又は23に記載の方法。
25. 前記ポストフィルタリングするステップは、所定のカットオフ周波数より下にあるスペクトル成分のみを減衰するステップを含む、
実施形態20に記載の方法。
26. 前記復号するステップとポストフィルタリングするステップは、次の:
a)TCX復号;
b)ポストフィルタリング付きのCELP復号と;及び
c)ポストフィルタリング無しのCELP復号;
のうちの一を選択的に実行する、実施形態23に記載の方法。
27. 前記復号するステップとポストフィルタリングするステップは、モードa)、b)、c)、及び
d)AAC(Advanced Audio Coding)復号
のうちの一を選択的に実行する、実施形態26に記載の方法。
28. 前記ビットストリーム信号は時間フレームに分割され、前記ポストフィルタリングするステップは一時間フレーム全体又は一連の時間フレームの間省略される、
実施形態20に記載の方法。
29. 前記ビットストリーム信号はMPEG(Moving Pictures Experts Group)ビットストリームであり、各時間フレームに対して、関連するデータフィールドを含み、
前記ポストフィルタリングするステップは、前記関連するデータフィールドの値に応じて時間フレームにおいて省略される、実施形態28に記載の方法。
30. 前記ポストフィルタリングの省略は、次の:
減衰の完全省略、
減衰の部分的省略、
減衰を徐々に大きくすること、及び
減衰を徐々に小さくすること、
うちの一を含む、実施形態20に記載の方法。
31. ビットストリーム信号をオーディオ時間信号として復号する方法であって、
ビットストリーム信号を予備的オーディオ時間信号として復号するステップと;
高調波間ノイズを減衰することにより前記予備的オーディオ時間信号をポストフィルタリングして、それによりオーディオ時間信号を求めるステップとを有し、
前記復号するステップは、
励起を表す中間復号信号を取り出すステップと;
前記ポストフィルタにより前記復号信号から除去される信号成分を近似する近似的差分信号を、前記中間復号信号と、ポストフィルタリングをかけられた中間復号信号との差分として計算するステップと;
次の基準:
a)前記近似差分信号のパワーが所定閾値を越えている;
b)前記近似差分信号の特徴が音調的である;
c)前記近似差分信号の強さ・周波数スペクトルと前記オーディオ信号の強さ・周波数スペクトルとの間の差分が、周波数に対して不均一に分布している;
d)前記近似差分信号の強度周波数スペクトルは所定の関連エンベロープ内の周波数区間にあるか、
e)前記近似差分信号の強度周波数スペクトルが、所定のスケールファクタによりダウンスケールされた最大信号成分の強度により前記オーディオ時間信号の強度周波数スペクトルに閾値を設けることにより得られた関連エンベロープ内の周波数区間にあるか;
のうち少なくとも一を評価するステップと;及び、
肯定的な決定に応じて、前記ポストフィルタをディスエーブルし、それにより前記予備的オーディオ時間信号が前記オーディオ時間信号として出力される、エンコーダシステム。
32. オーディオ時間信号をビットストリーム信号として符号化するエンコーダシステム(800)であって、
オーディオ時間信号をビットストリーム信号として符号化する符号化部(810)を含み、
前記ビットストリームの復号において、高調波間ノイズの減衰を含むポストフィルタリングをディスエーブルするか決定し、この決定をポストフィルタリング情報として前記ビットストリーム信号にエンコードするように構成された決定部(820)を有することを特徴とする、エンコーダシステム。
33. 前記決定部は、スペクトルの谷にあるノイズの減衰をさらに含むポストフィルタリングをディスエーブルするか決定するように構成されている、
実施形態32に記載のエンコーダシステム。
34. 前記符号化部はスピーチコーディングモジュールを含む、
実施形態32に記載のエンコーダシステム。
35. 前記符号化部は、CELP(code-excited linear prediction)符号化モジュールを含む、実施形態32に記載のエンコーダシステム。
36. 前記決定部は:
支配的基本周波数を有する信号成分と、前記基本周波数より下にあり、及び任意的にその高調波の間にある信号成分とが共に存在することを検出し、
それに応じて、ディスエーブルする決定を行う、
実施形態32に記載のエンコーダシステム。
37. 前記CELP符号化モジュールは前記オーディオ時間信号中のピッチ周波数を推定するように構成され、
前記決定部は、前記推定されたピッチ周波数より下にあるスペクトル成分を検出し、それに応じて、ディスエーブルする決定をするように構成されている、
実施形態35に記載のエンコーダシステム。
38. 前記決定部は:
CELP符号化された時の前記オーディオ時間信号の予測パワーと、CELP符号化されポストフィルタリングされた時の前記オーディオ時間信号の予測パワーとの間の差分を計算し、
この差分が所定の閾値を越えるのに応じて、ディスエーブルする決定をする、
実施形態35に記載のエンコーダシステム。
39. 前記符号化部はさらにTCX(transform-coded excitation)符号化モジュールを含み、
前記決定部は、次の符号化モード:
a)TCX符号化;
b)ポストフィルタリング付きのCELPコーディングと;及び
c)ポストフィルタリング無しのCELPコーディング;
のうちの一を選択するように構成されている、実施形態35に記載のエンコーダシステム。
40. 次のスーパーモード:
i)前記決定部がディスエーブルされるAAC(Advanced Audio Coding)コーディングと;
ii)前記決定部はコーディングモードa)、b)及びc)のうちの一を選択できるTCX/CELPコーディング;
のうちの一を選択するように構成されたコーディングセレクタ(814)を更に有する、実施形態39に記載のエンコーダシステム。
41. 前記決定部は、レート・歪み最適化に基づきどのモードを用いるか決定するように構成されている、実施形態39に記載のエンコーダシステム。
42. 前記ビットストリーム信号を時間フレームに分割するように構成され、前記決定部は全フレームよりなる時間セグメントにおいて前記ポストフィルタをディスエーブルする決定をするように構成されている、実施形態32に記載のエンコーダシステム。
43. 前記決定部は前記ポストフィルタの減衰を徐々に下げる及び/又は上げることを決定するように構成されている、実施形態32に記載のエンコーダシステム。
44. 前記決定部は:
推定されたピッチ周波数より下のオーディオ時間信号のパワーを計算し、
このパワーが所定の閾値を越えるのに応じて、ディスエーブルする決定をする、
実施形態32に記載のエンコーダシステム。
45. 前記決定部は:
前記オーディオ時間信号から、前記ポストフィルタによりさらなる復号信号から除去される信号成分を近似する近似差分信号を求め、
次の基準:
a)前記近似差分信号のパワーが所定閾値を越えている;
b)前記近似差分信号の特徴が音調的である;
c)前記近似差分信号の強さ・周波数スペクトルと前記オーディオ信号の強さ・周波数スペクトルとの間の差分が、周波数に対して不均一に分布している;
d)前記近似差分信号の強度周波数スペクトルは所定の関連エンベロープ内の周波数区間にあるか、
e)前記近似差分信号の強度周波数スペクトルが、所定のスケールファクタによりダウンスケールされた最大信号成分の強度により前記オーディオ時間信号の強度周波数スペクトルに閾値を設けることにより得られた関連エンベロープ内の周波数区間にあるか;
のうち少なくとも一を評価する;及び、
肯定的な決定に応じて、前記ポストフィルタをディスエーブルする決定をする、
実施形態32に記載のエンコーダシステム。
46. 前記決定部は、前記近似差分信号を、前記オーディオ時間信号と、ポストフィルタリングをかけたオーディオ時間信号との間の差分として、計算するように構成されている、
実施形態45に記載のエンコーダシステム。
47. 前記符号化部は励起を表す中間復号信号を取り出し、それを前記決定部に提供するように構成されており;
前記決定部は、前記近似差分信号を、前記オーディオ時間信号と、ポストフィルタリングをかけた中間復号信号との間の差分として、計算するように構成されている、
実施形態45に記載のエンコーダシステム。
48. オーディオ時間信号をビットストリーム信号として符号化する方法であって、オーディオ時間信号をビットストリーム信号として符号化するステップを含み、
前記ビットストリームの復号において、高調波間ノイズの減衰を含むポストフィルタリングをディスエーブルするか決定し、この決定をポストフィルタリング情報として前記ビットストリーム信号にエンコードするステップをさらに有することを特徴とする、方法。
49. 前記決定するステップは、さらにスペクトルの谷にあるノイズを減衰するステップを含むポストフィルタリングに関する、実施形態48に記載の方法。
50. 前記符号化するステップは、スピーチコーディング用のコーディング方法を適用するステップを含む、実施形態48に記載の方法。
51. 前記符号化するステップは、CELP(code-excited linear prediction)コーディングを適用するステップを含む、実施形態48に記載の方法。
52. 支配的基本周波数を有する信号成分と、前記基本周波数より下にあり、及び任意的にその高調波の間にある信号成分とが共に存在することを検出するステップをさらに有し、
肯定的決定の場合に、ポストフィルタリングをディスエーブルする決定が行われる、
実施形態48に記載の方法。
53. 前記CELPコーディングするステップは、前記オーディオ時間信号中のピッチ周波数を推定するステップを含み、
決定するステップは、前記推定されたピッチ周波数より下にあるスペクトル成分を検出するステップを含み、肯定的な検出結果の場合に、ポストフィルタリングをディスエーブルする決定が行われる、
実施形態51に記載の方法。
54. CELP符号化された時の前記オーディオ時間信号の予測パワーと、CELP符号化されポストフィルタリングされた時の前記オーディオ時間信号の予測パワーとの間の差分を計算するステップをさらに含み、
この差分が所定の閾値を越えた場合、ポストフィルタリングをディスエーブルする決定が行われる、実施形態51に記載の方法。
55. 符号化するステップは、CELPコーディング又はTCXコーディングのいずれかを選択的に適用するステップを含み、
ポストフィルタリングをディスエーブルするか決定するステップは、CELPコーディングが適用されている時にのみ行われる、
実施形態51に記載の方法。
56. 前記決定するステップは、レート・歪み最適化に基づき、次の動作モード:
a)TCXコーディング;
b)ポストフィルタリング付きのCELPコーディングと;及び
c)ポストフィルタリング無しのCELPコーディング;
のうちの一を選択するステップを含む、実施形態55に記載の方法。
57. 前記決定するステップは、レート・歪み最適化に基づき、次の動作モード:
a)TCXコーディング;
b)ポストフィルタリング付きのCELPコーディングと;及び
c)ポストフィルタリング無しのCELPコーディング;及び
d)AAC(Advanced Audio Coding)コーディング
のうちの一を選択するステップを含む、実施形態55に記載の方法。
58. 符号化するステップは、前記オーディオ時間信号を時間フレームに分割し、対応する時間フレームを有するビットストリーム信号を構成するステップを含み、
ポストフィルタリングをディスエーブルすることを決定するステップは、時間フレームごとに一度行われる、
実施形態48に記載の方法。
59.
ポストフィルタリングをディスエーブルすることを決定するステップの結果は、次から:
減衰無し、
全減衰、
部分的減衰、
減衰を徐々に大きくすること、及び
減衰を徐々に小さくすること、
選択される、実施形態48に記載の方法。
60. 決定するステップは、推定されたピッチ周波数より下のオーディオ時間信号のパワーを計算し、そのパワーが所定の閾値を越えるのに応じて、前記ポストフィルタをディスエーブルするステップを含む、
実施形態48に記載の方法。
61. 符号化するステップは、前記オーディオ時間信号から、前記ポストフィルタによりさらなる復号信号から除去される信号成分を近似する近似差分信号を求めるステップを含む、
決定するステップは、次の基準:
a)前記近似差分信号のパワーが所定閾値を越えている;
b)前記近似差分信号の特徴が音調的である;
c)前記近似差分信号の強さ・周波数スペクトルと前記オーディオ信号の強さ・周波数スペクトルとの間の差分が、周波数に対して不均一に分布している;
d)前記近似差分信号の強度周波数スペクトルは所定の関連エンベロープ内の周波数区間にあるか、
e)前記近似差分信号の強度周波数スペクトルが、所定のスケールファクタによりダウンスケールされた最大信号成分の強度により前記オーディオ時間信号の強度周波数スペクトルに閾値を設けることにより得られた関連エンベロープ内の周波数区間にあるか;
のうち少なくとも一を評価するステップを含む、及び、
少なくとも肯定的な決定に応じて、前記ポストフィルタをディスエーブルするステップ
実施形態48に記載の方法。
62. 前記近似差分信号を、前記オーディオ時間信号と、ポストフィルタリングをかけたオーディオ時間信号との間の差分として、計算する、
実施形態61に記載の方法。
63. 符号化するステップは、励起を表す中間復号信号を取り出すステップを含み、
決定するステップは、前記近似差分信号を、前記オーディオ時間信号と、ポストフィルタリングをかけた中間復号信号との間の差分として、計算するステップを含む、
実施形態61に記載の方法。
64. 実施形態20乃至31、及び48乃至63いずれか一項に記載の方法を実行する命令を記憶したデータ担体を含むコンピュータ読み取り可能媒体。




Claims (20)

  1. オーディオエンコーダにより生成されたオーディオビットストリームを復号するオーディオデコーダであって、
    第1の符号化モードで動作するように適応された第1の復号モジュールと、
    第2の符号化モードで動作するように適応された、前記第1の復号モジュールとは異なる第2の復号モジュールと、
    前記第1の符号化モードまたは前記第2の符号化モードのうちどちらかに含まれるピッチフィルタであって、前記第1の復号モジュールまたは前記第2の復号モジュールにより生成された予備オーディオ信号をフィルタするように適応されたピッチフィルタとを有し、
    前記ピッチフィルタは前記オーディオビットストリームにエンコードされた第1のパラメータの値に基づいて選択的にイネーブルまたはディスエーブルされ、前記第1のパラメータは前記オーディオビットストリームにエンコードされた第2のパラメータとは異なり、前記第2のパラメータは前記オーディオデコーダの現在の符号化モードを指定するものである、オーディオデコーダ。
  2. 前記ピッチフィルタに関連するピッチ情報は前記オーディオビットストリーム中の第3のパラメータから決定され、前記ピッチフィルタに関連するゲインは前記オーディオビットストリーム中の第4のパラメータから決定され、前記第1のパラメータ、第2のパラメータ、第3のパラメータ、及び第4のパラメータは異なる、
    請求項1に記載のオーディオデコーダ。
  3. 前記第1のパラメータは長さが1ビットであり、前記第1のパラメータの第1の値は前記ピッチフィルタをイネーブルし、前記第1のパラメータの第2の値は前記ピッチフィルタをディスエーブルする、
    請求項1に記載のオーディオデコーダ。
  4. 前記オーディオビットストリームはオーディオコンテンツのフレームに分割され、前記第1のパラメータはフレームタイプを示し、前記第1のパラメータの一以上の第1の値は前記ピッチフィルタをイネーブルし、前記第1のパラメータの一以上の第2の値は前記ピッチフィルタをディスエーブルする、請求項1に記載のオーディオデコーダ。
  5. 前記フレームタイプは、各フレームが有声コンテンツを含む又は含みそうか、または前記各フレームが無声コンテンツを含む又は含みそうかを示す、
    請求項4に記載のオーディオデコーダ。
  6. 前記ピッチフィルタは、(i)前記ゲインパラメータをゼロに設定すること、(ii)前記ピッチフィルタをパススルーモードで動作させること、(iii)前記ピッチフィルタをオフに切り替えること、または(iv)前記ピッチフィルタを非アクティブ化することによりディスエーブルされる、
    請求項1に記載のオーディオデコーダ。
  7. 前記ピッチフィルタの一以上のフィルタタップは前記オーディオビットストリーム中の第5のパラメータにより決定される、請求項2に記載のオーディオデコーダ。
  8. 前記ピッチフィルタはポストフィルタまたはピッチエンハンスメントフィルタである、
    請求項1に記載のオーディオデコーダ。
  9. 前記ポストフィルタ及びピッチエンハンスメントフィルタは、ハーモニクス間の信号成分を減衰、またはスペクトルの谷を減衰するように適応されている、請求項8に記載のオーディオデコーダ。
  10. 前記ポストフィルタとピッチエンハンスメントフィルタは、前記予備オーディオ信号の周期的成分を回復するように適応されている、請求項8に記載のオーディオデコーダ。
  11. 前記第1の符号化モードは周波数領域符号化または変換符号化を含み、前記第2の符号化モードは線形予測符号化を含む、請求項1に記載のオーディオデコーダ。
  12. 前記ピッチフィルタは低周波数特性を有する、請求項1に記載のオーディオデコーダ。
  13. 符号化されたオーディオ信号のフレームを復号する方法であって、前記符号化されたオーディオ信号はオーディオエンコーダにより生成され、前記方法は、
    前記符号化されたオーディオ信号から、前記フレームの符号化モードを表す第1のパラメータを取り出すステップと、
    前記符号化されたオーディオ信号から第2のパラメータを取り出すステップと、
    前記第1のパラメータの値に基づいて第1の復号モードまたは第2の復号モードのうちどちらかに入るステップと、
    前記第1の復号モードまたは前記第2の復号モードで動作している間に、前記符号化されたオーディオ信号から予備オーディオ信号を生成するステップと、
    前記予備オーディオ信号をピッチフィルタでフィルタするステップと、
    前記フィルタするステップは、前記第2のパラメータを用いて前記ピッチフィルタを選択的にイネーブルまたはディスエーブルし、前記第2のパラメータは前記第1のパラメータとは異なる、方法。
  14. 前記符号化されたオーディオ信号から、前記ピッチフィルタのピッチ情報を表す第3のパラメータを取り出すステップと、
    前記符号化されたオーディオ信号から、前記ピッチフィルタに関連するゲインを表す第4のパラメータを取り出すステップとをさらに含む、
    請求項13に記載の方法。
  15. 前記第1の符号化モードは周波数領域符号化または変換符号化であり、前記第2の符号化モードは線形予測符号化である、
    請求項13に記載の方法。
  16. 前記フィルタするステップは、前記予備オーディオ信号を長期的フィルタでフィルタし、前記長期的フィルタの出力を短期的フィルタでフィルタするステップを含む、
    請求項13に記載の方法。
  17. オーディオ信号とそれに関連するパラメータとを符号化して、オーディオビットストリームを生成するオーディオエンコーダであって、
    第1の符号化モードで動作するように適応された第1の符号化モジュールと、
    前記第1の符号化モードとは異なる第2の符号化モードで動作するように適応された第2の符号化モジュールと、
    前記オーディオ信号が前記第1の符号化モジュールまたは前記第2の符号化モジュールのうちどちらで符号化すべきか決定する決定モジュールと、
    前記第1の符号化モジュールまたは前記第2の符号化モジュールのどちらかから出力される予備オーディオ信号を符号化するように適応され、前記オーディオビットストリームを生成する第3の符号化モジュールとを有し、
    前記第3の符号化モジュールは、さらに、第1のパラメータと第2のパラメータとを符号化するように適応され、前記第1のパラメータはピッチフィルタを選択的にイネーブルまたはディスエーブルするのに用いられ、前記第2のパラメータは前記エンコーダの現在の符号化モードを示し、前記第1のパラメータは前記第2のパラメータとは異なる、
    オーディオエンコーダ。
  18. 前記第3の符号化モジュールは、さらに、第3のパラメータと第4のパラメータとをオーディオビットストリームに符号化するように適応され、前記第3のパラメータは前記ピッチフィルタに関連するピッチを表し、前記第4のパラメータは前記ピッチフィルタに関連するゲインパラメータを表す、
    請求項17に記載のオーディオエンコーダ。
  19. 前記第1のパラメータは長さが1ビットであり、前記第1のパラメータの第1の値は前記ピッチフィルタをイネーブルし、前記第1のパラメータの第2の値は前記ピッチフィルタをディスエーブルする、
    請求項17に記載のオーディオエンコーダ。
  20. 前記オーディオビットストリームはオーディオコンテンツのフレームに分割され、前記第1のパラメータはフレームタイプを示し、前記第1のパラメータの一以上の第1の値は前記ピッチフィルタがイネーブルされること、前記第1のパラメータの一以上の第2の値は前記ピッチフィルタがディスエーブルされることを示す、
    請求項17に記載のオーディオエンコーダ。
JP2016197150A 2010-07-02 2016-10-05 オーディオデコーダ及び復号方法 Active JP6279686B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US36123710P 2010-07-02 2010-07-02
US61/361,237 2010-07-02

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2015094729A Division JP6258257B2 (ja) 2010-07-02 2015-05-07 選択的バスポストフィルタ

Publications (2)

Publication Number Publication Date
JP2017037328A true JP2017037328A (ja) 2017-02-16
JP6279686B2 JP6279686B2 (ja) 2018-02-14

Family

ID=44504387

Family Applications (13)

Application Number Title Priority Date Filing Date
JP2013517203A Active JP6178236B2 (ja) 2010-07-02 2011-06-23 選択的バスポストフィルタ
JP2015094729A Active JP6258257B2 (ja) 2010-07-02 2015-05-07 選択的バスポストフィルタ
JP2016127884A Pending JP2016194711A (ja) 2010-07-02 2016-06-28 ピッチフィルタ及び関連する方法
JP2016127885A Active JP6679433B2 (ja) 2010-07-02 2016-06-28 ポストフィルタ、デコーダシステム、エンコーダシステム及び関連する方法
JP2016197150A Active JP6279686B2 (ja) 2010-07-02 2016-10-05 オーディオデコーダ及び復号方法
JP2017234202A Active JP6556815B2 (ja) 2010-07-02 2017-12-06 オーディオデコーダ及び復号方法
JP2019128330A Active JP6682683B2 (ja) 2010-07-02 2019-07-10 復号方法、コンピュータプログラム及び復号システム
JP2020054398A Active JP6812585B2 (ja) 2010-07-02 2020-03-25 復号方法、コンピュータプログラム及び復号システム
JP2020208421A Active JP6944038B2 (ja) 2010-07-02 2020-12-16 復号方法、コンピュータプログラム及び復号システム
JP2021146950A Active JP7073565B2 (ja) 2010-07-02 2021-09-09 復号システム、方法及び記憶媒体
JP2022078082A Active JP7147090B2 (ja) 2010-07-02 2022-05-11 復号器システム及び方法
JP2022150720A Active JP7319441B2 (ja) 2010-07-02 2022-09-21 デコーダシステム、方法及び記憶媒体
JP2023118701A Pending JP2023134779A (ja) 2010-07-02 2023-07-20 インターハーモニックノイズ減衰ポストフィルタ

Family Applications Before (4)

Application Number Title Priority Date Filing Date
JP2013517203A Active JP6178236B2 (ja) 2010-07-02 2011-06-23 選択的バスポストフィルタ
JP2015094729A Active JP6258257B2 (ja) 2010-07-02 2015-05-07 選択的バスポストフィルタ
JP2016127884A Pending JP2016194711A (ja) 2010-07-02 2016-06-28 ピッチフィルタ及び関連する方法
JP2016127885A Active JP6679433B2 (ja) 2010-07-02 2016-06-28 ポストフィルタ、デコーダシステム、エンコーダシステム及び関連する方法

Family Applications After (8)

Application Number Title Priority Date Filing Date
JP2017234202A Active JP6556815B2 (ja) 2010-07-02 2017-12-06 オーディオデコーダ及び復号方法
JP2019128330A Active JP6682683B2 (ja) 2010-07-02 2019-07-10 復号方法、コンピュータプログラム及び復号システム
JP2020054398A Active JP6812585B2 (ja) 2010-07-02 2020-03-25 復号方法、コンピュータプログラム及び復号システム
JP2020208421A Active JP6944038B2 (ja) 2010-07-02 2020-12-16 復号方法、コンピュータプログラム及び復号システム
JP2021146950A Active JP7073565B2 (ja) 2010-07-02 2021-09-09 復号システム、方法及び記憶媒体
JP2022078082A Active JP7147090B2 (ja) 2010-07-02 2022-05-11 復号器システム及び方法
JP2022150720A Active JP7319441B2 (ja) 2010-07-02 2022-09-21 デコーダシステム、方法及び記憶媒体
JP2023118701A Pending JP2023134779A (ja) 2010-07-02 2023-07-20 インターハーモニックノイズ減衰ポストフィルタ

Country Status (18)

Country Link
US (15) US9224403B2 (ja)
EP (9) EP3605534B1 (ja)
JP (13) JP6178236B2 (ja)
KR (12) KR20230018539A (ja)
CN (7) CN105261370B (ja)
AU (1) AU2011273680B2 (ja)
CA (14) CA2801805C (ja)
DK (2) DK3079153T3 (ja)
ES (7) ES2683648T3 (ja)
HK (8) HK1183965A1 (ja)
HU (2) HUE039862T2 (ja)
IL (10) IL295473B2 (ja)
MX (1) MX2012014525A (ja)
MY (4) MY176192A (ja)
PL (2) PL3079152T3 (ja)
RU (6) RU2562422C2 (ja)
SG (7) SG10201604880YA (ja)
WO (1) WO2012000882A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021502609A (ja) * 2017-11-10 2021-01-28 フラウンホーファー−ゲゼルシャフト・ツール・フェルデルング・デル・アンゲヴァンテン・フォルシュング・アインゲトラーゲネル・フェライン 信号フィルタリング

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL3079152T3 (pl) 2010-07-02 2018-10-31 Dolby International Ab Dekodowanie audio z selektywnym późniejszym filtrowaniem
AU2014211525B2 (en) * 2013-01-29 2016-09-01 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Apparatus and method for processing an encoded signal and encoder and method for generating an encoded signal
EP2981959B1 (en) 2013-04-05 2018-07-25 Dolby International AB Audio encoder and decoder for interleaved waveform coding
WO2014204911A1 (en) 2013-06-18 2014-12-24 Dolby Laboratories Licensing Corporation Bass management for audio rendering
US9418671B2 (en) * 2013-08-15 2016-08-16 Huawei Technologies Co., Ltd. Adaptive high-pass post-filter
US10141004B2 (en) * 2013-08-28 2018-11-27 Dolby Laboratories Licensing Corporation Hybrid waveform-coded and parametric-coded speech enhancement
US9666202B2 (en) * 2013-09-10 2017-05-30 Huawei Technologies Co., Ltd. Adaptive bandwidth extension and apparatus for the same
US9685166B2 (en) 2014-07-26 2017-06-20 Huawei Technologies Co., Ltd. Classification between time-domain coding and frequency domain coding
EP2980799A1 (en) * 2014-07-28 2016-02-03 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Apparatus and method for processing an audio signal using a harmonic post-filter
EP2980798A1 (en) * 2014-07-28 2016-02-03 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Harmonicity-dependent controlling of a harmonic filter tool
CN105957534B (zh) * 2016-06-28 2019-05-03 百度在线网络技术(北京)有限公司 自适应滤波方法和自适应滤波器
TWI752166B (zh) 2017-03-23 2022-01-11 瑞典商都比國際公司 用於音訊信號之高頻重建的諧波轉置器的回溯相容整合
EP3483879A1 (en) 2017-11-10 2019-05-15 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Analysis/synthesis windowing function for modulated lapped transformation
EP3483882A1 (en) 2017-11-10 2019-05-15 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Controlling bandwidth in encoders and/or decoders
WO2019091573A1 (en) 2017-11-10 2019-05-16 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Apparatus and method for encoding and decoding an audio signal using downsampling or interpolation of scale parameters
EP3483883A1 (en) * 2017-11-10 2019-05-15 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Audio coding and decoding with selective postfiltering
EP3483880A1 (en) 2017-11-10 2019-05-15 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Temporal noise shaping
WO2019091576A1 (en) 2017-11-10 2019-05-16 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Audio encoders, audio decoders, methods and computer programs adapting an encoding and decoding of least significant bits
EP3483878A1 (en) 2017-11-10 2019-05-15 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Audio decoder supporting a set of different loss concealment tools
EP3483886A1 (en) 2017-11-10 2019-05-15 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Selecting pitch lag
US10475456B1 (en) * 2018-06-04 2019-11-12 Qualcomm Incorporated Smart coding mode switching in audio rate adaptation
EP4139919B1 (en) 2020-04-24 2024-10-30 Telefonaktiebolaget LM ERICSSON (PUBL) Low cost adaptation of bass post-filter

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09261184A (ja) * 1996-03-27 1997-10-03 Nec Corp 音声復号化装置
JP2001147700A (ja) * 1999-11-22 2001-05-29 Nippon Telegr & Teleph Corp <Ntt> 音声信号の後処理方法および装置並びにプログラムを記録した記録媒体
WO2007126015A1 (ja) * 2006-04-27 2007-11-08 Panasonic Corporation 音声符号化装置、音声復号化装置、およびこれらの方法
WO2010040522A2 (en) * 2008-10-08 2010-04-15 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e. V. Multi-resolution switched audio encoding/decoding scheme
JP2013533983A (ja) * 2010-07-02 2013-08-29 ドルビー・インターナショナル・アーベー 選択的バスポストフィルタ

Family Cites Families (151)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4052568A (en) * 1976-04-23 1977-10-04 Communications Satellite Corporation Digital voice switch
US4696040A (en) * 1983-10-13 1987-09-22 Texas Instruments Incorporated Speech analysis/synthesis system with energy normalization and silence suppression
US4617676A (en) * 1984-09-04 1986-10-14 At&T Bell Laboratories Predictive communication system filtering arrangement
US4969192A (en) 1987-04-06 1990-11-06 Voicecraft, Inc. Vector adaptive predictive coder for speech and audio
US4896361A (en) * 1988-01-07 1990-01-23 Motorola, Inc. Digital speech coder having improved vector excitation source
FI95085C (fi) * 1992-05-11 1995-12-11 Nokia Mobile Phones Ltd Menetelmä puhesignaalin digitaaliseksi koodaamiseksi sekä puhekooderi menetelmän suorittamiseksi
US5434947A (en) * 1993-02-23 1995-07-18 Motorola Method for generating a spectral noise weighting filter for use in a speech coder
JPH06250697A (ja) * 1993-02-26 1994-09-09 Fujitsu Ltd 音声符号化方法及び音声符号化装置並びに音声復号化方法及び音声復号化装置
CA2094780A1 (en) 1993-04-23 1994-10-24 Claude Laflamme Transform coded excitation for speech and audio coding
FI96248C (fi) * 1993-05-06 1996-05-27 Nokia Mobile Phones Ltd Menetelmä pitkän aikavälin synteesisuodattimen toteuttamiseksi sekä synteesisuodatin puhekoodereihin
CA2121667A1 (en) 1994-04-19 1995-10-20 Jean-Pierre Adoul Differential-transform-coded excitation for speech and audio coding
US6263307B1 (en) * 1995-04-19 2001-07-17 Texas Instruments Incorporated Adaptive weiner filtering using line spectral frequencies
US5664055A (en) 1995-06-07 1997-09-02 Lucent Technologies Inc. CS-ACELP speech compression system with adaptive pitch prediction filter gain based on a measure of periodicity
JPH0946268A (ja) 1995-07-26 1997-02-14 Toshiba Corp ディジタル音声通信装置
JPH0950298A (ja) * 1995-08-07 1997-02-18 Mitsubishi Electric Corp 音声符号化装置及び音声復号化装置
JP3483998B2 (ja) * 1995-09-14 2004-01-06 株式会社東芝 ピッチ強調方法および装置
US5864798A (en) 1995-09-18 1999-01-26 Kabushiki Kaisha Toshiba Method and apparatus for adjusting a spectrum shape of a speech signal
TW321810B (ja) 1995-10-26 1997-12-01 Sony Co Ltd
JP3707116B2 (ja) * 1995-10-26 2005-10-19 ソニー株式会社 音声復号化方法及び装置
WO1997031367A1 (en) 1996-02-26 1997-08-28 At & T Corp. Multi-stage speech coder with transform coding of prediction residual signals with quantization by auditory models
US5802109A (en) 1996-03-28 1998-09-01 Nec Corporation Speech encoding communication system
JPH09319397A (ja) * 1996-05-28 1997-12-12 Sony Corp ディジタル信号処理装置
JP3183826B2 (ja) 1996-06-06 2001-07-09 三菱電機株式会社 音声符号化装置及び音声復号化装置
EP0814458B1 (en) * 1996-06-19 2004-09-22 Texas Instruments Incorporated Improvements in or relating to speech coding
JP2974059B2 (ja) * 1996-07-18 1999-11-08 日本電気株式会社 ピッチポストフィルタ装置
JPH10143195A (ja) * 1996-11-14 1998-05-29 Olympus Optical Co Ltd ポストフィルタ
SE9700772D0 (sv) * 1997-03-03 1997-03-03 Ericsson Telefon Ab L M A high resolution post processing method for a speech decoder
JPH113099A (ja) * 1997-04-16 1999-01-06 Mitsubishi Electric Corp 音声符号化復号化システム、音声符号化装置及び音声復号化装置
US6073092A (en) * 1997-06-26 2000-06-06 Telogy Networks, Inc. Method for speech coding based on a code excited linear prediction (CELP) model
US6114859A (en) 1997-07-14 2000-09-05 Nissin Electric Co., Ltd. Harmonic characteristic measuring method and harmonic characteristic measuring apparatus
US6385195B2 (en) 1997-07-21 2002-05-07 Telefonaktiebolaget L M Ericsson (Publ) Enhanced interworking function for interfacing digital cellular voice and fax protocols and internet protocols
FI980132A (fi) * 1998-01-21 1999-07-22 Nokia Mobile Phones Ltd Adaptoituva jälkisuodatin
JP3986150B2 (ja) 1998-01-27 2007-10-03 興和株式会社 一次元データへの電子透かし
TW376611B (en) * 1998-05-26 1999-12-11 Koninkl Philips Electronics Nv Transmission system with improved speech encoder
US6714908B1 (en) 1998-05-27 2004-03-30 Ntt Mobile Communications Network, Inc. Modified concealing device and method for a speech decoder
US6098036A (en) * 1998-07-13 2000-08-01 Lockheed Martin Corp. Speech coding system and method including spectral formant enhancer
JP4308345B2 (ja) * 1998-08-21 2009-08-05 パナソニック株式会社 マルチモード音声符号化装置及び復号化装置
US6240386B1 (en) * 1998-08-24 2001-05-29 Conexant Systems, Inc. Speech codec employing noise classification for noise compensation
KR100281181B1 (ko) * 1998-10-16 2001-02-01 윤종용 약전계에서 코드 분할 다중 접속 시스템의 코덱 잡음 제거 방법
JP2000206999A (ja) * 1999-01-19 2000-07-28 Nec Corp 音声符号伝送装置
EP1052622B1 (en) * 1999-05-11 2007-07-11 Nippon Telegraph and Telephone Corporation Selection of a synthesis filter for CELP type wideband audio coding
US6782360B1 (en) 1999-09-22 2004-08-24 Mindspeed Technologies, Inc. Gain quantization for a CELP speech coder
US6604070B1 (en) * 1999-09-22 2003-08-05 Conexant Systems, Inc. System of encoding and decoding speech signals
US6959274B1 (en) * 1999-09-22 2005-10-25 Mindspeed Technologies, Inc. Fixed rate speech compression system and method
US7222070B1 (en) 1999-09-22 2007-05-22 Texas Instruments Incorporated Hybrid speech coding and system
US20020016161A1 (en) * 2000-02-10 2002-02-07 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for compression of speech encoded parameters
JP2001249700A (ja) * 2000-03-06 2001-09-14 Oki Electric Ind Co Ltd 音声符号化装置及び音声復号装置
ATE420432T1 (de) * 2000-04-24 2009-01-15 Qualcomm Inc Verfahren und vorrichtung zur prädiktiven quantisierung von stimmhaften sprachsignalen
US6862567B1 (en) * 2000-08-30 2005-03-01 Mindspeed Technologies, Inc. Noise suppression in the frequency domain by adjusting gain according to voicing parameters
JP2002149200A (ja) 2000-08-31 2002-05-24 Matsushita Electric Ind Co Ltd 音声処理装置及び音声処理方法
US7020605B2 (en) * 2000-09-15 2006-03-28 Mindspeed Technologies, Inc. Speech coding system with time-domain noise attenuation
US6615169B1 (en) * 2000-10-18 2003-09-02 Nokia Corporation High frequency enhancement layer coding in wideband speech codec
US6658383B2 (en) 2001-06-26 2003-12-02 Microsoft Corporation Method for coding speech and music signals
US7110942B2 (en) * 2001-08-14 2006-09-19 Broadcom Corporation Efficient excitation quantization in a noise feedback coding system using correlation techniques
US7353168B2 (en) * 2001-10-03 2008-04-01 Broadcom Corporation Method and apparatus to eliminate discontinuities in adaptively filtered signals
US6785645B2 (en) 2001-11-29 2004-08-31 Microsoft Corporation Real-time speech and music classifier
JP2005510925A (ja) 2001-11-30 2005-04-21 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 信号コード化
JP3733588B2 (ja) * 2001-12-13 2006-01-11 日本電気株式会社 音声復号化装置、及び、音声復号化方法
US20040002856A1 (en) * 2002-03-08 2004-01-01 Udaya Bhaskar Multi-rate frequency domain interpolative speech CODEC system
CA2388352A1 (en) 2002-05-31 2003-11-30 Voiceage Corporation A method and device for frequency-selective pitch enhancement of synthesized speed
US7330812B2 (en) 2002-10-04 2008-02-12 National Research Council Of Canada Method and apparatus for transmitting an audio stream having additional payload in a hidden sub-channel
DE10328777A1 (de) 2003-06-25 2005-01-27 Coding Technologies Ab Vorrichtung und Verfahren zum Codieren eines Audiosignals und Vorrichtung und Verfahren zum Decodieren eines codierten Audiosignals
CN1288557C (zh) * 2003-06-25 2006-12-06 英业达股份有限公司 多执行线程同时停止的方法
US20050004793A1 (en) 2003-07-03 2005-01-06 Pasi Ojala Signal adaptation for higher band coding in a codec utilizing band split coding
CN1212608C (zh) * 2003-09-12 2005-07-27 中国科学院声学研究所 一种采用后置滤波器的多通道语音增强方法
US7478040B2 (en) 2003-10-24 2009-01-13 Broadcom Corporation Method for adaptive filtering
AU2003274864A1 (en) * 2003-10-24 2005-05-11 Nokia Corpration Noise-dependent postfiltering
CA2457988A1 (en) 2004-02-18 2005-08-18 Voiceage Corporation Methods and devices for audio compression based on acelp/tcx coding and multi-rate lattice vector quantization
FI118834B (fi) 2004-02-23 2008-03-31 Nokia Corp Audiosignaalien luokittelu
FI118835B (fi) 2004-02-23 2008-03-31 Nokia Corp Koodausmallin valinta
FI119533B (fi) * 2004-04-15 2008-12-15 Nokia Corp Audiosignaalien koodaus
GB0408856D0 (en) 2004-04-21 2004-05-26 Nokia Corp Signal encoding
US7739120B2 (en) 2004-05-17 2010-06-15 Nokia Corporation Selection of coding models for encoding an audio signal
AU2004319555A1 (en) 2004-05-17 2005-11-24 Nokia Corporation Audio encoding with different coding models
DE602004025517D1 (de) 2004-05-17 2010-03-25 Nokia Corp Audiocodierung mit verschiedenen codierungsrahmenlängen
US7596486B2 (en) 2004-05-19 2009-09-29 Nokia Corporation Encoding an audio signal using different audio coder modes
US20060047522A1 (en) 2004-08-26 2006-03-02 Nokia Corporation Method, apparatus and computer program to provide predictor adaptation for advanced audio coding (AAC) system
US7720230B2 (en) * 2004-10-20 2010-05-18 Agere Systems, Inc. Individual channel shaping for BCC schemes and the like
KR100640468B1 (ko) * 2005-01-25 2006-10-31 삼성전자주식회사 디지털 통신 시스템에서 음성 패킷의 전송과 처리 장치 및방법
US20070147518A1 (en) * 2005-02-18 2007-06-28 Bruno Bessette Methods and devices for low-frequency emphasis during audio compression based on ACELP/TCX
US7573912B2 (en) 2005-02-22 2009-08-11 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschunng E.V. Near-transparent or transparent multi-channel encoder/decoder scheme
JP4809370B2 (ja) * 2005-02-23 2011-11-09 テレフオンアクチーボラゲット エル エム エリクソン(パブル) マルチチャネル音声符号化における適応ビット割り当て
PL1864101T3 (pl) 2005-04-01 2012-11-30 Qualcomm Inc Systemy, sposoby i urządzenia do generowania górnopasmowego pobudzenia
EP1881488B1 (en) * 2005-05-11 2010-11-10 Panasonic Corporation Encoder, decoder, and their methods
US7930176B2 (en) * 2005-05-20 2011-04-19 Broadcom Corporation Packet loss concealment for block-independent speech codecs
US8214220B2 (en) 2005-05-26 2012-07-03 Lg Electronics Inc. Method and apparatus for embedding spatial information and reproducing embedded signal for an audio signal
US7707034B2 (en) * 2005-05-31 2010-04-27 Microsoft Corporation Audio codec post-filter
KR100718132B1 (ko) 2005-06-24 2007-05-14 삼성전자주식회사 오디오 신호의 비트스트림 생성 방법 및 장치, 그를 이용한부호화/복호화 방법 및 장치
RU2376656C1 (ru) 2005-08-30 2009-12-20 ЭлДжи ЭЛЕКТРОНИКС ИНК. Способ кодирования и декодирования аудиосигнала и устройство для его осуществления
KR100647336B1 (ko) 2005-11-08 2006-11-23 삼성전자주식회사 적응적 시간/주파수 기반 오디오 부호화/복호화 장치 및방법
WO2007083934A1 (en) * 2006-01-18 2007-07-26 Lg Electronics Inc. Apparatus and method for encoding and decoding signal
EP1974346B1 (en) 2006-01-19 2013-10-02 LG Electronics, Inc. Method and apparatus for processing a media signal
KR20070077652A (ko) * 2006-01-24 2007-07-27 삼성전자주식회사 적응적 시간/주파수 기반 부호화 모드 결정 장치 및 이를위한 부호화 모드 결정 방법
FR2897733A1 (fr) 2006-02-20 2007-08-24 France Telecom Procede de discrimination et d'attenuation fiabilisees des echos d'un signal numerique dans un decodeur et dispositif correspondant
US7991494B2 (en) 2006-02-23 2011-08-02 Lg Electronics Inc. Method and apparatus for processing an audio signal
US7454335B2 (en) 2006-03-20 2008-11-18 Mindspeed Technologies, Inc. Method and system for reducing effects of noise producing artifacts in a voice codec
KR20070115637A (ko) 2006-06-03 2007-12-06 삼성전자주식회사 대역폭 확장 부호화 및 복호화 방법 및 장치
US8682652B2 (en) * 2006-06-30 2014-03-25 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Audio encoder, audio decoder and audio processor having a dynamically variable warping characteristic
US7873511B2 (en) * 2006-06-30 2011-01-18 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Audio encoder, audio decoder and audio processor having a dynamically variable warping characteristic
ATE408217T1 (de) 2006-06-30 2008-09-15 Fraunhofer Ges Forschung Audiokodierer, audiodekodierer und audioprozessor mit einer dynamisch variablen warp-charakteristik
JP5190363B2 (ja) 2006-07-12 2013-04-24 パナソニック株式会社 音声復号装置、音声符号化装置、および消失フレーム補償方法
CN101145343B (zh) 2006-09-15 2011-07-20 展讯通信(上海)有限公司 一种用于音频处理框架中的编码和解码方法
CN100483509C (zh) 2006-12-05 2009-04-29 华为技术有限公司 声音信号分类方法和装置
CN101197577A (zh) * 2006-12-07 2008-06-11 展讯通信(上海)有限公司 一种用于音频处理框架中的编码和解码方法
KR101016224B1 (ko) 2006-12-12 2011-02-25 프라운호퍼-게젤샤프트 추르 푀르데룽 데어 안제반텐 포르슝 에 파우 인코더, 디코더 및 시간 영역 데이터 스트림을 나타내는 데이터 세그먼트를 인코딩하고 디코딩하는 방법
JPWO2008072701A1 (ja) 2006-12-13 2010-04-02 パナソニック株式会社 ポストフィルタおよびフィルタリング方法
KR100964402B1 (ko) 2006-12-14 2010-06-17 삼성전자주식회사 오디오 신호의 부호화 모드 결정 방법 및 장치와 이를 이용한 오디오 신호의 부호화/복호화 방법 및 장치
KR100883656B1 (ko) 2006-12-28 2009-02-18 삼성전자주식회사 오디오 신호의 분류 방법 및 장치와 이를 이용한 오디오신호의 부호화/복호화 방법 및 장치
EP1944761A1 (en) 2007-01-15 2008-07-16 Siemens Networks GmbH & Co. KG Disturbance reduction in digital signal processing
CN101231850B (zh) 2007-01-23 2012-02-29 华为技术有限公司 编解码方法及装置
FR2912249A1 (fr) 2007-02-02 2008-08-08 France Telecom Codage/decodage perfectionnes de signaux audionumeriques.
US8620645B2 (en) * 2007-03-02 2013-12-31 Telefonaktiebolaget L M Ericsson (Publ) Non-causal postfilter
CN101622667B (zh) * 2007-03-02 2012-08-15 艾利森电话股份有限公司 用于分层编解码器的后置滤波器
CN101256771A (zh) 2007-03-02 2008-09-03 北京工业大学 嵌入式编码、解码方法、编码器、解码器及系统
JP4708446B2 (ja) * 2007-03-02 2011-06-22 パナソニック株式会社 符号化装置、復号装置およびそれらの方法
BRPI0808198A8 (pt) 2007-03-02 2017-09-12 Panasonic Corp Dispositivo de codificação e método de codificação
EP2116998B1 (en) * 2007-03-02 2018-08-15 III Holdings 12, LLC Post-filter, decoding device, and post-filter processing method
WO2008107027A1 (en) * 2007-03-02 2008-09-12 Telefonaktiebolaget Lm Ericsson (Publ) Methods and arrangements in a telecommunications network
CN101617362B (zh) * 2007-03-02 2012-07-18 松下电器产业株式会社 语音解码装置和语音解码方法
DE102007025401B4 (de) 2007-05-31 2015-10-01 Siemens Aktiengesellschaft Verfahren zur Auswertung eines Tomographie-Datensatzes und Tomographie-Arbeitsstation
CN101321033B (zh) 2007-06-10 2011-08-10 华为技术有限公司 帧补偿方法及系统
PT2165328T (pt) 2007-06-11 2018-04-24 Fraunhofer Ges Forschung Codificação e descodificação de um sinal de áudio tendo uma parte do tipo impulso e uma parte estacionária
EP2015293A1 (en) 2007-06-14 2009-01-14 Deutsche Thomson OHG Method and apparatus for encoding and decoding an audio signal using adaptively switched temporal resolution in the spectral domain
KR101513028B1 (ko) * 2007-07-02 2015-04-17 엘지전자 주식회사 방송 수신기 및 방송신호 처리방법
KR101531910B1 (ko) 2007-07-02 2015-06-29 엘지전자 주식회사 방송 수신기 및 방송신호 처리방법
WO2009010672A2 (fr) * 2007-07-06 2009-01-22 France Telecom Limitation de distorsion introduite par un post-traitement au decodage d'un signal numerique
ATE448649T1 (de) 2007-08-13 2009-11-15 Harman Becker Automotive Sys Rauschverringerung mittels kombination aus strahlformung und nachfilterung
WO2009022193A2 (en) 2007-08-15 2009-02-19 Nokia Corporation Devices, methods and computer program products for audio signal coding and decoding
CN101383151B (zh) * 2007-09-06 2011-07-13 中兴通讯股份有限公司 一种数字音频质量增强系统和方法
KR101505831B1 (ko) 2007-10-30 2015-03-26 삼성전자주식회사 멀티 채널 신호의 부호화/복호화 방법 및 장치
KR101170137B1 (ko) 2008-02-15 2012-07-31 노키아 코포레이션 복잡성이 축소된 벡터 인덱싱 및 탈-인덱싱
KR101452722B1 (ko) 2008-02-19 2014-10-23 삼성전자주식회사 신호 부호화 및 복호화 방법 및 장치
EP2269188B1 (en) 2008-03-14 2014-06-11 Dolby Laboratories Licensing Corporation Multimode coding of speech-like and non-speech-like signals
US8296135B2 (en) 2008-04-22 2012-10-23 Electronics And Telecommunications Research Institute Noise cancellation system and method
KR20090122143A (ko) 2008-05-23 2009-11-26 엘지전자 주식회사 오디오 신호 처리 방법 및 장치
CN101609684B (zh) * 2008-06-19 2012-06-06 展讯通信(上海)有限公司 解码语音信号的后处理滤波器
PT2313887T (pt) * 2008-07-10 2017-11-14 Voiceage Corp Dispositivo e método de quantificação de filtro de lpc de taxa de bits variável e quantificação inversa
ES2401487T3 (es) 2008-07-11 2013-04-22 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Aparato y procedimiento para la codificación/decodificación de una señal de audio utilizando un esquema de conmutación de generación de señal ajena
MX2011000375A (es) * 2008-07-11 2011-05-19 Fraunhofer Ges Forschung Codificador y decodificador de audio para codificar y decodificar tramas de una señal de audio muestreada.
US8577673B2 (en) * 2008-09-15 2013-11-05 Huawei Technologies Co., Ltd. CELP post-processing for music signals
RU2400832C2 (ru) 2008-11-24 2010-09-27 Государственное образовательное учреждение высшего профессионального образования Академия Федеральной службы охраны Российской Федерации (Академия ФCО России) Способ формирования сигнала возбуждения в низкоскоростных вокодерах с линейным предсказанием
US8457975B2 (en) * 2009-01-28 2013-06-04 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Audio decoder, audio encoder, methods for decoding and encoding an audio signal and computer program
KR101622950B1 (ko) 2009-01-28 2016-05-23 삼성전자주식회사 오디오 신호의 부호화 및 복호화 방법 및 그 장치
KR20100115215A (ko) * 2009-04-17 2010-10-27 삼성전자주식회사 가변 비트율 오디오 부호화 및 복호화 장치 및 방법
US9031834B2 (en) 2009-09-04 2015-05-12 Nuance Communications, Inc. Speech enhancement techniques on the power spectrum
US8260220B2 (en) * 2009-09-28 2012-09-04 Broadcom Corporation Communication device with reduced noise speech coding
EP2491556B1 (en) * 2009-10-20 2024-04-10 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Audio signal decoder, corresponding method and computer program
CN108718413B (zh) * 2010-04-26 2021-12-07 太阳专利托管公司 用于从周围块的统计推断出针对帧内预测的滤波模式
ES2501840T3 (es) 2010-05-11 2014-10-02 Telefonaktiebolaget Lm Ericsson (Publ) Procedimiento y disposición para el procesamiento de señales de audio
US8738385B2 (en) 2010-10-20 2014-05-27 Broadcom Corporation Pitch-based pre-filtering and post-filtering for compression of audio signals
US11429505B2 (en) * 2018-08-03 2022-08-30 Dell Products L.P. System and method to provide optimal polling of devices for real time data

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09261184A (ja) * 1996-03-27 1997-10-03 Nec Corp 音声復号化装置
JP2001147700A (ja) * 1999-11-22 2001-05-29 Nippon Telegr & Teleph Corp <Ntt> 音声信号の後処理方法および装置並びにプログラムを記録した記録媒体
WO2007126015A1 (ja) * 2006-04-27 2007-11-08 Panasonic Corporation 音声符号化装置、音声復号化装置、およびこれらの方法
WO2010040522A2 (en) * 2008-10-08 2010-04-15 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e. V. Multi-resolution switched audio encoding/decoding scheme
JP2013533983A (ja) * 2010-07-02 2013-08-29 ドルビー・インターナショナル・アーベー 選択的バスポストフィルタ

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021502609A (ja) * 2017-11-10 2021-01-28 フラウンホーファー−ゲゼルシャフト・ツール・フェルデルング・デル・アンゲヴァンテン・フォルシュング・アインゲトラーゲネル・フェライン 信号フィルタリング
US11545167B2 (en) 2017-11-10 2023-01-03 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Signal filtering

Also Published As

Publication number Publication date
KR102296955B1 (ko) 2021-09-01
WO2012000882A1 (en) 2012-01-05
JP6556815B2 (ja) 2019-08-07
EP3422346A1 (en) 2019-01-02
EP3422346B1 (en) 2020-04-22
KR102388001B1 (ko) 2022-04-19
CA2801805C (en) 2018-01-02
EP2589046B1 (en) 2014-05-28
RU2616774C1 (ru) 2017-04-18
CA2958350C (en) 2017-11-14
SG186209A1 (en) 2013-01-30
CA3093517A1 (en) 2012-01-05
KR20130019004A (ko) 2013-02-25
JP2022106963A (ja) 2022-07-20
SG10201604880YA (en) 2016-08-30
EP3079154A1 (en) 2016-10-12
KR101696634B1 (ko) 2017-01-16
SG10201503004WA (en) 2015-06-29
US9858940B2 (en) 2018-01-02
IL243958A (en) 2016-11-30
EP2757560A1 (en) 2014-07-23
KR102079000B1 (ko) 2020-02-19
CN105244035A (zh) 2016-01-13
US20160118057A1 (en) 2016-04-28
MY183707A (en) 2021-03-09
ES2902392T3 (es) 2022-03-28
US20230282222A1 (en) 2023-09-07
RU2013102794A (ru) 2014-08-10
US9396736B2 (en) 2016-07-19
US9830923B2 (en) 2017-11-28
ES2984913T3 (es) 2024-10-31
CA2976490C (en) 2019-01-08
JP2020109529A (ja) 2020-07-16
JP6682683B2 (ja) 2020-04-15
CN103098129B (zh) 2015-11-25
JP7147090B2 (ja) 2022-10-04
JP2023134779A (ja) 2023-09-27
CN105355209A (zh) 2016-02-24
IL311020A (en) 2024-04-01
ES2683648T3 (es) 2018-09-27
US9552824B2 (en) 2017-01-24
RU2016117277A (ru) 2017-11-13
IL265661A (en) 2019-05-30
SG10202005270YA (en) 2020-07-29
RU2562422C2 (ru) 2015-09-10
US20160210980A1 (en) 2016-07-21
KR20200018720A (ko) 2020-02-19
ES2484794T3 (es) 2014-08-12
KR20160081986A (ko) 2016-07-08
CA2958360C (en) 2017-11-14
JP6812585B2 (ja) 2021-01-13
CA2937672C (en) 2017-05-02
CA2958360A1 (en) 2012-01-05
HK1219168A1 (zh) 2017-03-24
EP3971893B1 (en) 2024-06-19
EP3605534B1 (en) 2021-10-20
RU2692416C2 (ru) 2019-06-24
KR20220053032A (ko) 2022-04-28
KR101449979B1 (ko) 2014-10-14
CN105261371B (zh) 2019-12-03
CA2928180C (en) 2017-03-28
CA3207181A1 (en) 2012-01-05
US9343077B2 (en) 2016-05-17
US20160086616A1 (en) 2016-03-24
CA2958350A1 (en) 2012-01-05
CA3124114A1 (en) 2012-01-05
EP2757560B1 (en) 2018-02-21
US11610595B2 (en) 2023-03-21
CN105390140A (zh) 2016-03-09
CA3124114C (en) 2022-07-05
JP6258257B2 (ja) 2018-01-10
CA2801805A1 (en) 2012-01-05
KR102492622B1 (ko) 2023-01-30
MY176187A (en) 2020-07-24
JP2016186652A (ja) 2016-10-27
CA2976490A1 (en) 2012-01-05
CA3239015A1 (en) 2012-01-05
PL3079153T3 (pl) 2018-12-31
IL245591A0 (en) 2016-06-30
CA3025108A1 (en) 2012-01-05
HK1220036A1 (zh) 2017-04-21
EP3079153A1 (en) 2016-10-12
JP6178236B2 (ja) 2017-08-09
DK3079152T3 (en) 2018-08-13
MX2012014525A (es) 2013-08-27
EP4407615A2 (en) 2024-07-31
CA3093517C (en) 2021-08-24
CN105261370A (zh) 2016-01-20
JP7073565B2 (ja) 2022-05-23
JP6679433B2 (ja) 2020-04-15
CA3160488A1 (en) 2012-01-05
RU2019135620A (ru) 2021-05-06
ES2691934T3 (es) 2018-11-29
JP2018045252A (ja) 2018-03-22
KR102030335B1 (ko) 2019-10-10
HK1199135A1 (en) 2015-06-19
IL246684A0 (en) 2016-08-31
US20160240209A1 (en) 2016-08-18
KR20160075869A (ko) 2016-06-29
JP2019204102A (ja) 2019-11-28
HK1218803A1 (zh) 2017-03-10
JP2021060601A (ja) 2021-04-15
CN105261372A (zh) 2016-01-20
EP3605534A1 (en) 2020-02-05
CN105390140B (zh) 2019-05-17
US9224403B2 (en) 2015-12-29
US9595270B2 (en) 2017-03-14
EP3079152A1 (en) 2016-10-12
US9558754B2 (en) 2017-01-31
CA3160488C (en) 2023-09-05
IL295473B1 (en) 2023-06-01
JP2015158689A (ja) 2015-09-03
CN105261371A (zh) 2016-01-20
HUE039862T2 (hu) 2019-02-28
CA2937672A1 (en) 2012-01-05
US10236010B2 (en) 2019-03-19
US20240274145A1 (en) 2024-08-15
CN105261372B (zh) 2021-07-16
EP3079154B1 (en) 2018-06-06
KR20230018539A (ko) 2023-02-07
HK1183965A1 (en) 2014-01-10
JP6279686B2 (ja) 2018-02-14
IL286405A (en) 2021-10-31
CN103098129A (zh) 2013-05-08
KR101972762B1 (ko) 2019-04-29
MY176192A (en) 2020-07-24
IL302557A (en) 2023-07-01
JP2016194711A (ja) 2016-11-17
KR20190044692A (ko) 2019-04-30
AU2011273680A1 (en) 2012-12-20
JP6944038B2 (ja) 2021-10-06
KR102238082B1 (ko) 2021-04-09
KR101730356B1 (ko) 2017-04-27
KR20210107923A (ko) 2021-09-01
CA2929090A1 (en) 2012-01-05
US20130096912A1 (en) 2013-04-18
IL286405B (en) 2022-10-01
CA2929090C (en) 2017-03-14
HK1218987A1 (zh) 2017-03-17
JP2021192121A (ja) 2021-12-16
KR20190116541A (ko) 2019-10-14
IL223319A0 (en) 2013-02-03
HK1218462A1 (zh) 2017-02-17
US20160225384A1 (en) 2016-08-04
DK3079153T3 (en) 2018-11-05
US20190214035A1 (en) 2019-07-11
ES2683647T3 (es) 2018-09-27
RU2015117332A (ru) 2016-11-27
RU2015117332A3 (ja) 2018-12-10
RU2642553C2 (ru) 2018-01-25
EP3971893C0 (en) 2024-06-19
KR20210040184A (ko) 2021-04-12
US10811024B2 (en) 2020-10-20
HK1221326A1 (zh) 2017-05-26
KR20160086426A (ko) 2016-07-19
IL278805A (en) 2021-01-31
IL295473A (en) 2022-10-01
IL295473B2 (en) 2023-10-01
ES2666150T3 (es) 2018-05-03
US11996111B2 (en) 2024-05-28
EP3079152B1 (en) 2018-06-06
AU2011273680B2 (en) 2014-10-16
CA2976485C (en) 2018-07-24
JP7319441B2 (ja) 2023-08-01
JP2013533983A (ja) 2013-08-29
US9558753B2 (en) 2017-01-31
EP3971893A1 (en) 2022-03-23
EP2589046A1 (en) 2013-05-08
IL278805B (en) 2021-10-31
IL223319A (en) 2016-04-21
EP4407615A3 (en) 2024-08-07
IL286405B2 (en) 2023-02-01
RU2707716C1 (ru) 2019-11-28
CN105261370B (zh) 2018-12-04
US20180047405A1 (en) 2018-02-15
CN105244035B (zh) 2019-03-12
US20160093312A1 (en) 2016-03-31
CA3025108C (en) 2020-10-27
CN105355209B (zh) 2020-02-14
US11183200B2 (en) 2021-11-23
IL243958A0 (en) 2016-04-21
KR20140056394A (ko) 2014-05-09
CA2928180A1 (en) 2012-01-05
US20160163326A1 (en) 2016-06-09
SG10201901308TA (en) 2019-03-28
EP3079153B1 (en) 2018-08-01
US20210035592A1 (en) 2021-02-04
US20220157327A1 (en) 2022-05-19
SG10201605650WA (en) 2016-08-30
HUE038985T2 (hu) 2018-12-28
IL245591A (en) 2016-12-29
JP2022177215A (ja) 2022-11-30
MY176188A (en) 2020-07-24
IL302557B2 (en) 2024-08-01
RU2599338C1 (ru) 2016-10-10
IL302557B1 (en) 2024-04-01
KR101696632B1 (ko) 2017-01-16
PL3079152T3 (pl) 2018-10-31
SG10201604866VA (en) 2016-08-30
CA2976485A1 (en) 2012-01-05
US20160225381A1 (en) 2016-08-04

Similar Documents

Publication Publication Date Title
JP7073565B2 (ja) 復号システム、方法及び記憶媒体
AU2016204672B2 (en) Audio encoder and decoder with multiple coding modes

Legal Events

Date Code Title Description
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20170112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170424

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170718

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171117

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20171128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180117

R150 Certificate of patent or registration of utility model

Ref document number: 6279686

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250