JP2016224309A - Toner, developer, and image forming apparatus - Google Patents
Toner, developer, and image forming apparatus Download PDFInfo
- Publication number
- JP2016224309A JP2016224309A JP2015111471A JP2015111471A JP2016224309A JP 2016224309 A JP2016224309 A JP 2016224309A JP 2015111471 A JP2015111471 A JP 2015111471A JP 2015111471 A JP2015111471 A JP 2015111471A JP 2016224309 A JP2016224309 A JP 2016224309A
- Authority
- JP
- Japan
- Prior art keywords
- polyester resin
- toner
- polyester
- acid
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Developing Agents For Electrophotography (AREA)
Abstract
Description
本発明は、トナー、現像剤、及び画像形成装置に関する。 The present invention relates to a toner, a developer, and an image forming apparatus.
近年、トナーには、出力画像の高品質化のための小粒径化、及び耐高温オフセット性、省エネルギー化のための低温定着性、並びに製造後の保管時や運搬時における高温高湿に耐えうる耐熱保存性が要求されている。特に、定着時における消費電力は画像形成工程における消費電力の多くを占めるため、低温定着性の向上は非常に重要である。 In recent years, toners have been able to withstand high temperature and high humidity during storage and transportation after production, as well as reduction in particle size for high quality output images, high temperature offset resistance, low temperature fixability for energy saving. High heat-resistant storage stability is required. In particular, since power consumption during fixing accounts for much of the power consumption in the image forming process, it is very important to improve low-temperature fixability.
従来、混練粉砕法で作製されたトナーが使用されてきた。混練粉砕法で作製されたトナーは、小粒径化が困難であると共に、その形状が不定形かつ粒径分布がブロードであることから出力画像の品質が十分ではないこと、定着エネルギーが高いことなどの問題点があった。また、定着性向上のためにワックス(離型剤)を添加している場合、混練粉砕法で作製されたトナーは、粉砕の際にワックスの界面で割れるために、ワックスがトナー表面に多く存在してしまう。そのため、離型効果が出る一方で、キャリア、感光体及びブレードへのトナーの付着(フィルミング)が起こりやすくなり、全体的な性能としては、満足のいくものではないとう問題点があった。 Conventionally, toner prepared by a kneading and pulverizing method has been used. The toner produced by the kneading and pulverization method is difficult to reduce the particle size, the shape is irregular and the particle size distribution is broad, so the quality of the output image is not sufficient, and the fixing energy is high. There were problems such as. In addition, when a wax (release agent) is added to improve the fixability, the toner produced by the kneading and pulverization method cracks at the interface of the wax during pulverization, so that a large amount of wax exists on the toner surface. Resulting in. For this reason, there is a problem in that, while the releasing effect is produced, the toner (filming) easily adheres to the carrier, the photoreceptor and the blade, and the overall performance is not satisfactory.
そこで、混練粉砕法による上述の問題点を克服するために、重合法によるトナーの製造方法が提案されている。重合法で製造されたトナーは、小粒径化が容易であり、粒度分布も粉砕法で製造されたトナーの粒度分布に比べてシャープであり、更に、離型剤の内包化も可能である。重合法によるトナーの製造方法としては、低温定着性の改良及び耐高温オフセット性の改良を目的として、トナーバインダーとして、ウレタン変性されたポリエステルの伸長反応物からトナーを製造する方法が開示されている(例えば、特許文献1参照)。
また、小粒径トナーとした場合の粉体流動性及び転写性に優れると共に、耐熱保存性、低温定着性及び耐高温オフセット性のいずれにも優れたトナーの製造方法が開示されている(例えば、特許文献2、3参照)。
また、安定した分子量分布のトナーバインダーを製造し、低温定着性及び耐高温オフセット性を両立させるための、熟成工程を有するトナーの製造方法が開示されている(例えば、特許文献4、5参照)。
しかし、これら提案の技術は、近年要求される高いレベルの低温定着性を満足するものでない。
Therefore, in order to overcome the above-mentioned problems caused by the kneading and pulverizing method, a toner manufacturing method by a polymerization method has been proposed. The toner produced by the polymerization method can be easily reduced in particle size, the particle size distribution is sharper than that of the toner produced by the pulverization method, and the release agent can be included. . As a method for producing a toner by a polymerization method, for the purpose of improving low-temperature fixability and improving high-temperature offset resistance, a method of producing a toner from an extension reaction product of urethane-modified polyester as a toner binder is disclosed. (For example, refer to Patent Document 1).
Also disclosed is a method for producing a toner that is excellent in powder flowability and transferability in the case of a small particle size toner, and also excellent in all of heat-resistant storage stability, low-temperature fixability, and high-temperature offset resistance (for example, Patent Documents 2 and 3).
Further, a method for producing a toner having an aging step for producing a toner binder having a stable molecular weight distribution and achieving both low-temperature fixability and high-temperature offset resistance is disclosed (for example, see Patent Documents 4 and 5). .
However, these proposed techniques do not satisfy the high level of low-temperature fixability required in recent years.
そこで、高いレベルの低温定着性を得る目的で、結晶性ポリエステル樹脂を含む樹脂、及び離型剤を含有し、樹脂とワックスが互いに非相溶で海島状の相分離構造を有するトナーが提案されている(例えば、特許文献6参照)。
また、結晶性ポリエステル樹脂、離型剤及びグラフト重合体を含有するトナーが提案されている(例えば、特許文献7参照)。
更により高いレベルの低温定着性を得る目的で、ガラス転移温度が非常に低い分岐構造を有する反応性前駆体と硬化剤との反応によって得られる非晶質ポリエステルを含んでなるトナーが提案されている(例えば、特許文献8参照)。
Therefore, for the purpose of obtaining a high level of low temperature fixability, a toner containing a crystalline polyester resin and a release agent, and a resin and a wax that are incompatible with each other and having a sea-island phase separation structure has been proposed. (For example, refer to Patent Document 6).
Further, a toner containing a crystalline polyester resin, a release agent, and a graft polymer has been proposed (see, for example, Patent Document 7).
For the purpose of obtaining a higher level of low-temperature fixability, a toner comprising an amorphous polyester obtained by reacting a reactive precursor having a branched structure with a very low glass transition temperature and a curing agent has been proposed. (See, for example, Patent Document 8).
上記特許文献6や7に記載の提案の技術は、結晶性ポリエステル樹脂が非晶質ポリエステル樹脂に比べて急速に溶融するため低温定着化を成し得る。しかし、海島状の相分離構造における島にあたる結晶性ポリエステル樹脂が融解しても、大部分の海にあたる非晶質ポリエステル樹脂は未だ融解しない。そうすると、結晶性ポリエステル樹脂、及び非晶質ポリエステル樹脂の双方がある程度融解しないと定着しないため、これらの提案の技術は、近年更に高まっている高いレベルの低温定着性を満足するものでない。
また、特許文献8に記載の提案の技術は、ガラス転移温度が非常に低いポリエステル樹脂が低温で変形する性質を利用し、定着時の加熱、及び加圧に対して変形し、より低温で紙などの記録媒体に接着しやすくなる性質を利用する。 また、反応性前駆体が非線状であることから、分子骨格中に分岐構造を有し、分子鎖が三次元的な網目構造となるため、低温で変形するが、流動しないというゴム的な性質を有する。 そのため、トナーの耐熱保存性、耐高温オフセット性の保持が可能となる。
しかし、この技術によると三次元的な網目構造は、ジオール、ジカルボン酸、多価アルコール、又は酸のエステル反応により得られるものであり、分岐構造となる多価アルコール又は酸が不均一に存在するため、網目構造が緩い部分と、緻密な部分が存在し、緩い部分は耐熱保存性の悪化を招き、緻密な部分は低温定着性、画像光沢、画像濃度、色再現性の低下を招く。
また、分岐を形成している部分はエステル構造であり、樹脂の架橋点としては凝集力が弱く、従って緻密な網目構造を持たせないと耐熱保存性の保持は困難であり、それに伴って十分な低温定着性、画像光沢は得られない。近年更に高まっている高いレベルの低温定着性、画質を満足するものでない。
従って、フィルミングがなく、優れた低温定着性、耐高温オフセット性、高光沢、高色再現性、優れた帯電特性及び耐熱保存性を有するトナーが求められているのが現状である。
The proposed techniques described in Patent Documents 6 and 7 can achieve low-temperature fixing because the crystalline polyester resin melts more rapidly than the amorphous polyester resin. However, even if the crystalline polyester resin corresponding to the island in the sea-island-like phase separation structure is melted, the amorphous polyester resin corresponding to most of the sea is not yet melted. Then, since both the crystalline polyester resin and the amorphous polyester resin are not fixed unless they are melted to some extent, these proposed techniques do not satisfy the high level of low-temperature fixability that has been increasing in recent years.
The proposed technique described in Patent Document 8 utilizes the property that a polyester resin having a very low glass transition temperature is deformed at a low temperature, and is deformed by heating and pressurization at the time of fixing. Such a property that it is easy to adhere to a recording medium. In addition, since the reactive precursor is non-linear, it has a branched structure in the molecular skeleton, and the molecular chain has a three-dimensional network structure, so it deforms at low temperatures but does not flow. Has properties. Therefore, it is possible to maintain the heat resistant storage stability and high temperature offset resistance of the toner.
However, according to this technique, a three-dimensional network structure is obtained by an ester reaction of diol, dicarboxylic acid, polyhydric alcohol, or acid, and there is a heterogeneous polyhydric alcohol or acid that becomes a branched structure. Therefore, there are a portion having a loose network structure and a dense portion. The loose portion causes deterioration in heat-resistant storage stability, and the dense portion causes a decrease in low-temperature fixability, image gloss, image density, and color reproducibility.
In addition, the portion forming the branch is an ester structure, and the cohesive force is weak as a cross-linking point of the resin. Therefore, it is difficult to maintain the heat-resistant storage unless it has a dense network structure. Low temperature fixability and image gloss cannot be obtained. It does not satisfy the high level of low-temperature fixability and image quality that have been increasing in recent years.
Accordingly, the present situation is that a toner having no filming and having excellent low-temperature fixability, high-temperature offset resistance, high gloss, high color reproducibility, excellent charging characteristics and heat-resistant storage stability is required.
そこで、本発明は、フィルミングがなく、優れた低温定着性、耐高温オフセット性、高光沢、高色再現性、優れた帯電特性及び耐熱保存性を有するトナーを提供することを目的とする。 Accordingly, an object of the present invention is to provide a toner having no filming and having excellent low-temperature fixability, high-temperature offset resistance, high gloss, high color reproducibility, excellent charging characteristics and heat-resistant storage stability.
前記課題を解決するための手段としては、以下の通りである。即ち、
本発明のトナーは、少なくともポリエステル樹脂を含有するトナーであって、前記ポリエステル樹脂が、以下構造式1)〜3)のいずれかで表される構造を有することを特徴とする。
1) R1−(NHCONH−R2−X−R3)n−
2) R1−(NHCOO−R2−X−R3)n−
3) R1−(OCONH−R2−X−R3)n−
(上記式中、n=3
R1:芳香族、又は脂肪族系の有機基、
R2:ポリカルボン酸、及びポリオールの少なくともいずれかからなるポリエステル、並びにポリエステルがイソシアネート変性された変性ポリエステルのいずれかの樹脂に由来する基、
X:ウレア結合、又はウレタン結合、
R3:下記一般式(I)で表される化合物に由来する基を表す。
The toner of the present invention is a toner containing at least a polyester resin, wherein the polyester resin has a structure represented by any one of the following structural formulas 1) to 3).
1) R1- (NHCONH-R2-X-R3) n-
2) R1- (NHCOO-R2-X-R3) n-
3) R1- (OCONH-R2-X-R3) n-
(Where n = 3
R1: aromatic or aliphatic organic group,
R2: a group derived from a resin comprising at least one of a polycarboxylic acid and a polyol, and a modified polyester obtained by modifying the polyester with an isocyanate;
X: Urea bond or urethane bond,
R3: represents a group derived from a compound represented by the following general formula (I).
本発明によると、優れた低温定着性、耐高温オフセット性、高光沢、高色再現性、優れた帯電特性及び耐熱保存性を有するトナーを提供することができる。 According to the present invention, it is possible to provide a toner having excellent low-temperature fixability, high-temperature offset resistance, high gloss, high color reproducibility, excellent charging characteristics and heat-resistant storage stability.
(トナー)
本発明のトナーは、ポリエステル樹脂を少なくとも含有し、好ましくは更に結晶性ポリエステル樹脂を含有し、更に必要に応じて、着色剤などのその他の成分を含有する。
前記ポリエステル樹脂は、以下構造式1)〜3)のいずれかで表される構造を有する。
1) R1−(NHCONH−R2−X−R3)n−
2) R1−(NHCOO−R2−X−R3)n−
3) R1−(OCONH−R2−X−R3)n−
(上記式中、n=3
R1:芳香族、又は脂肪族系の有機基、
R2:ポリカルボン酸、及びポリオールの少なくともいずれかからなるポリエステル、並びにポリエステルがイソシアネート変性された変性ポリエステルのいずれかの樹脂に由来する基、
X:ウレア結合、又はウレタン結合、
R3:下記一般式(I)で表される化合物に由来する基を表す。
つまり、前記ポリエステル樹脂は、ポリエステル又は変性ポリエステル部分であるR2と、分岐構造に相当するR1とを、ウレタン又はウレア基により結合させた構造を持ち、さらにR2とR3とが結合した構造を持つ。
(toner)
The toner of the present invention contains at least a polyester resin, preferably further contains a crystalline polyester resin, and further contains other components such as a colorant, if necessary.
The polyester resin has a structure represented by any one of structural formulas 1) to 3) below.
1) R1- (NHCONH-R2-X-R3) n-
2) R1- (NHCOO-R2-X-R3) n-
3) R1- (OCONH-R2-X-R3) n-
(Where n = 3
R1: aromatic or aliphatic organic group,
R2: a group derived from a resin comprising at least one of a polycarboxylic acid and a polyol, and a modified polyester obtained by modifying the polyester with an isocyanate;
X: Urea bond or urethane bond,
R3: represents a group derived from a compound represented by the following general formula (I).
That is, the polyester resin has a structure in which R2 which is a polyester or modified polyester portion and R1 corresponding to a branched structure are bonded by a urethane or urea group, and further has a structure in which R2 and R3 are bonded.
低温定着性を向上させるためは、ポリエステル樹脂(例えば、非晶質ポリエステル樹脂)を結晶性ポリエステル樹脂と共に溶融するように、ガラス転移温度を低くする方法又は分子量を小さくする方法が考えられる。しかし、単純にポリエステル樹脂のガラス転移温度を低くする又は分子量を小さくすることにより溶融粘性を低下させた場合、トナーの耐熱保存性、及び定着時の高温オフセット性が悪化することは容易に想像される。
それに対して、本発明の前記トナーにおいて、前記ポリエステル樹脂は、ウレタン、又はウレア結合により分子骨格中に分岐構造を有し、分子鎖が三次元的な網目構造となるため、低温で変形するが、流動しないというゴム的な性質を有する。そのため、前記ポリエステル樹脂のガラス転移温度を非常に低くした場合にも、トナーの耐熱保存性、耐高温オフセット性の保持が可能となる。
また、網目構造が不均一であると、網目が粗な部分は樹脂の流動抑制が不十分であるため耐熱保存性の悪化を生じ、網目が密な部分は樹脂の変形性が不十分であるため低温定着性、画像光沢の低下を招く。
例えば、上記背景技術で記載した特許第5408210号公報(上記特許文献8に対応)に記載のポリエステル樹脂において、分岐を形成している部分が、エステル構造である場合(つまり、本願で規定する上記1)〜3)のいずれかで表される構造式中、R2の部分が分岐構造を有する場合)、図3のイメージ図で示すように分岐構造が不均一に存在するため、低温定着性や画像光沢性が十分に満足のいくものとはならない。図3は、従来の合成方法で得られるポリエステル樹脂の分岐構造の概略図である。
このように、従来のポリエステル樹脂では、低温定着性や画像光沢性も良く、一方、耐熱保存性や耐高温オフセット性も良いという、これらの全ての項目が満足のいくバランスのとれた結果を得ることは容易ではない。
In order to improve the low-temperature fixability, a method of lowering the glass transition temperature or a method of reducing the molecular weight is conceivable so that a polyester resin (for example, an amorphous polyester resin) is melted together with the crystalline polyester resin. However, when the melt viscosity is lowered by simply lowering the glass transition temperature or decreasing the molecular weight of the polyester resin, it is easily imagined that the heat-resistant storage stability of the toner and the high-temperature offset property during fixing deteriorate. The
On the other hand, in the toner of the present invention, the polyester resin has a branched structure in the molecular skeleton due to urethane or urea bond, and the molecular chain has a three-dimensional network structure, and thus deforms at low temperature. It has a rubbery property of not flowing. Therefore, even when the glass transition temperature of the polyester resin is very low, it is possible to maintain the heat resistant storage stability and high temperature offset resistance of the toner.
In addition, if the network structure is not uniform, the heat-resistant storage stability is deteriorated because the flow control of the resin is insufficient in the part where the network is rough, and the resin deformability is insufficient in the part where the network is dense. Therefore, low temperature fixability and image gloss are reduced.
For example, in the polyester resin described in Japanese Patent No. 5408210 (corresponding to Patent Document 8) described in the above background art, the portion forming a branch has an ester structure (that is, the above-mentioned in the present application) In the structural formula represented by any one of 1) to 3), when R2 has a branched structure), the branched structure is non-uniformly present as shown in the image diagram of FIG. The glossiness is not fully satisfactory. FIG. 3 is a schematic view of a branched structure of a polyester resin obtained by a conventional synthesis method.
As described above, the conventional polyester resin has good low-temperature fixability and image glossiness, and on the other hand, the heat resistant storage stability and the high-temperature offset resistance are good. It is not easy.
しかし、本発明の前記ポリエステル樹脂は、例えば、製造方法の一例として、ポリエステル又は変性ポリエステル部分であるR2を合成した後に、R1とウレタンまたはウレア基により結合させ網目構造を形成させることが出来るため、R2部分の分子量分布を狭分布化させることで、網目構造を均一化することが可能となる。
本発明で規定する上記1)〜3)のいずれかで表される構造式を有する前記ポリエステル樹脂の状態は、図4のイメージ図のように示される。図4は、以下で記載する合成方法により得られる前記ポリエステル樹脂の分岐構造の概略図である。R2部分の直鎖のポリエステル樹脂部分の長さが揃っているため、図4で示されるように、前記ポリエステル樹脂の分岐構造は均一化されている。
このように、前記ポリエステル樹脂の網目構造が均一化されることで、トナーの耐熱保存性、低温定着性、画像光沢、耐高温オフセット性の両立が可能となる。
更に、前記ポリエステル樹脂は、分岐構造部分が凝集エネルギーの高いウレタン結合又はウレア結合を有するため、 強い架橋点のような挙動を示すことから、より粗い網目構造であった場合でも、樹脂の流動抑制の効果が強いため、トナーの耐熱保存性、低温定着性、画像光沢、耐高温オフセット性の両立が可能となる。
However, the polyester resin of the present invention, for example, as an example of the production method, after synthesizing R2 which is a polyester or modified polyester part, can be bonded to R1 with a urethane or urea group to form a network structure. By narrowing the molecular weight distribution of the R2 portion, the network structure can be made uniform.
The state of the polyester resin having the structural formula represented by any one of 1) to 3) defined in the present invention is shown as an image diagram in FIG. FIG. 4 is a schematic view of the branched structure of the polyester resin obtained by the synthesis method described below. Since the length of the linear polyester resin portion of the R2 portion is uniform, the branched structure of the polyester resin is made uniform as shown in FIG.
Thus, by making the network structure of the polyester resin uniform, it becomes possible to achieve both heat-resistant storage stability, low-temperature fixability, image gloss, and high-temperature offset resistance of the toner.
Furthermore, the polyester resin has a urethane bond or urea bond with a high cohesive energy in the branched structure portion, and therefore exhibits a behavior like a strong cross-linking point, so even if it has a coarser network structure, the flow of the resin is suppressed. Therefore, the toner can be compatible with heat-resistant storage stability, low-temperature fixability, image gloss, and high-temperature offset resistance.
また、前記ポリエステル樹脂中には、上記R3で示される上記一般式(I)で表される化合物に由来する基がR2とXを介して結合しており、R3部分が含まれていることで、適正且つ高い帯電量水準を有しながら、現像器内における帯電量の変動が少なく、高寿命であり、且つ、低温定着性と耐熱保存性を高いレベルで実現できるトナーを提供することができる。 Moreover, in the said polyester resin, the group derived from the compound represented by the said general formula (I) shown by said R3 has couple | bonded through R2 and X, and R3 part is contained. Thus, it is possible to provide a toner that has an appropriate and high charge level, has a small amount of change in the charge amount in the developing device, has a long life, and can realize low-temperature fixability and heat-resistant storage stability at a high level. .
<ポリエステル樹脂>
前記ポリエステル樹脂は、上記構造式1)〜3)のいずれかで表される構造を有し、ポリエステル又は変性ポリエステル部分であるR2と、分岐構造に相当するR1とをウレタン又はウレア基により結合させた構造を持ち、さらに、R2部分はXを介してR3部分とも結合している。
前記ポリエステル樹脂は、分岐構造部分にウレタン結合及びウレア結合の少なくともいずれかを有しているため、ウレタン結合又はウレア結合が擬似架橋点のような挙動を示し、前記ポリエステル樹脂のゴム的性質が強くなり、耐熱保存性、耐高温オフセット性に優れたトナーを作製することができる。
前記ポリエステル樹脂は、構成成分として、ジオール成分を含み、更に好ましくは構成成分としてジカルボン酸成分を含む。
前記ポリエステル樹脂は、非晶質ポリエステル樹脂であることが好ましい。
前記ポリエステル樹脂は、ポリエステル樹脂又は変性ポリエステル樹脂部に相当するR2と分岐構造部分に相当するR1とをウレタンまたはウレア基により結合させたものであり、且つ前記R2と前記一般式(I)で表される化合物に由来する基であるR3とをウレタンまたはウレア基により結合させたものであれば特に制限はなく、目的に応じて適宜選択することができる。
<Polyester resin>
The polyester resin has a structure represented by any one of the above structural formulas 1) to 3), and R2 which is a polyester or modified polyester portion and R1 corresponding to a branched structure are bonded by a urethane or urea group. Furthermore, the R2 portion is also bonded to the R3 portion via X.
Since the polyester resin has at least one of a urethane bond and a urea bond in the branched structure portion, the urethane bond or the urea bond behaves like a pseudo-crosslinking point, and the rubber property of the polyester resin is strong. Thus, a toner excellent in heat-resistant storage stability and high-temperature offset resistance can be produced.
The polyester resin contains a diol component as a constituent component, and more preferably contains a dicarboxylic acid component as a constituent component.
The polyester resin is preferably an amorphous polyester resin.
The polyester resin is obtained by bonding R2 corresponding to a polyester resin or a modified polyester resin portion and R1 corresponding to a branched structure portion with a urethane or urea group, and represented by R2 and the general formula (I). As long as R3, which is a group derived from the compound to be bonded, is bonded with a urethane or urea group, there is no particular limitation, and it can be appropriately selected according to the purpose.
<<R1部分、R2部分>>
前記R1と前記R2との結合方法としては、以下に制限されるものではないが、例えば以下三点のような方法がある。
<< R1 part, R2 part >>
The bonding method of R1 and R2 is not limited to the following, but there are, for example, the following three methods.
a)ジオール成分とジカルボン酸成分とをエステル反応させ、末端が水酸基になるポリエステルポリオール(R2)を作製し、得られたポリエステルポリオールを3価以上のポリイソシアネート(R1)で反応させる方法。
b)ジオール成分とジカルボン酸成分とをエステル反応させ、末端が水酸基になるポリエステルポリオール(R2)を作製し、得られたポリエステルポリオールを2価のポリイソシアネートと反応させ、イソシアネート変性ポリエステル(R2)を作製し、得られたイソシアネート変性ポリエステルを3価以上のアルコール(R1)と反応させる方法。
c)ジオール成分とジカルボン酸成分とをエステル反応させ、末端が水酸基になるポリエステルポリオール(R2)を作製し、得られたポリエステルポリオールを2価のポリイソシアネートと反応させ、イソシアネート変性ポリエステル(R2)を作製し、純水の存在下、得られたイソシアネート変性ポリエステルに3価以上のポリイソシアネート(R1)を反応させる方法。
上記a)〜c)のいずれかにより得られたポリオールに残留した水酸基を更に2価以上のポリイソシアネートと反応させポリエステルプレポリマーとし、トナー作製プロセスにおいて硬化剤と反応させ使用することも可能である。
a) A method in which a diol component and a dicarboxylic acid component are ester-reacted to produce a polyester polyol (R2) having a hydroxyl group at the terminal, and the obtained polyester polyol is reacted with a trivalent or higher polyisocyanate (R1).
b) Ester reaction of a diol component and a dicarboxylic acid component to produce a polyester polyol (R2) having a terminal hydroxyl group, and reacting the resulting polyester polyol with a divalent polyisocyanate to produce an isocyanate-modified polyester (R2) The method of making and reacting the isocyanate-modified polyester obtained and trivalent or more alcohol (R1).
c) Ester reaction of a diol component and a dicarboxylic acid component to produce a polyester polyol (R2) having a hydroxyl group at the terminal, and reacting the obtained polyester polyol with a divalent polyisocyanate to produce an isocyanate-modified polyester (R2). A method of producing and reacting a polyisocyanate (R1) having a valence of 3 or more with the obtained isocyanate-modified polyester in the presence of pure water.
The hydroxyl group remaining in the polyol obtained by any one of the above a) to c) can be further reacted with a diisocyanate or higher polyisocyanate to obtain a polyester prepolymer, which can be used by reacting with a curing agent in the toner preparation process. .
前記ポリエステル樹脂のTgを低くし、低温で変形する性質を付与しやすくするために、前記ポリエステル樹脂は、構成成分にジオール成分を含み、前記ジオール成分は、炭素数3以上12以下の脂肪族ジオールを含有することが好ましく、炭素数4以上12以下の脂肪族ジオールを含有することがより好ましい。
前記ポリエステル樹脂において、前記炭素数3〜12の脂肪族ジオールを50mol%以上含有することが好ましく、80mol%以上含有することがより好ましく、90mol%以上含有することがさらに好ましい。
In order to lower the Tg of the polyester resin and easily impart the property of deforming at low temperatures, the polyester resin contains a diol component as a constituent component, and the diol component is an aliphatic diol having 3 to 12 carbon atoms. Is preferable, and it is more preferable to contain an aliphatic diol having 4 to 12 carbon atoms.
In the polyester resin, the aliphatic diol having 3 to 12 carbon atoms is preferably contained in an amount of 50 mol% or more, more preferably 80 mol% or more, and further preferably 90 mol% or more.
前記炭素数3〜12の脂肪族ジオールとしては、例えば、1,3−プロパンジオール、1,4−ブタンジオール、2−メチル−1,3−プロパンジオール、1,5−ペンタンジオール、3−メチル−1,5−ペンタンジオール、1,6−ヘキサンジオール、1,8−オクタンジオール、1,10−デカンジオール、1,12−ドデカンジオールなどが挙げられる。
特に、前記ポリエステル樹脂において、前記ジオール成分が、炭素数4以上12以下の脂肪族ジオールであって、ジオール成分の主鎖となる部分の炭素数が、奇数であり、前記ジオール成分が、アルキル基を側鎖に有するものであることがさらに好ましい。
主鎖となる部分の炭素数が奇数であり、アルキル基を側鎖に有する炭素数4〜12の脂肪族ジオールとして、例えば、下記一般式(1)で表される脂肪族ジオールが挙げられる。
HO−(CR1R2)n−OH ・・・一般式(1)
ただし、前記一般式(1)中、R1、及びR2は、それぞれ独立に、水素原子、炭素数1〜3のアルキル基を表す。nは、3〜9の奇数を表す。n個の繰り返し単位において、R1は、それぞれ同一であってもよいし、異なっていてもよい。また、n個の繰り返し単位において、R2は、それぞれ同一であってもよいし、異なっていてもよい。
また、前記ポリエステル樹脂のTgを低くし、低温で変形する性質を付与しやすくするために、前記ポリエステル樹脂は、全アルコール成分中に炭素数3以上12以下の脂肪族ジオールを50mol%以上含有することが好ましい。
Examples of the aliphatic diol having 3 to 12 carbon atoms include 1,3-propanediol, 1,4-butanediol, 2-methyl-1,3-propanediol, 1,5-pentanediol, and 3-methyl. Examples include -1,5-pentanediol, 1,6-hexanediol, 1,8-octanediol, 1,10-decanediol, 1,12-dodecanediol, and the like.
In particular, in the polyester resin, the diol component is an aliphatic diol having 4 to 12 carbon atoms, the number of carbon atoms in the main chain of the diol component is an odd number, and the diol component is an alkyl group. It is more preferable that the side chain has.
Examples of the aliphatic diol having 4 to 12 carbon atoms having an odd number of carbon atoms in the main chain and an alkyl group in the side chain include aliphatic diols represented by the following general formula (1).
HO- (CR 1 R 2) n -OH ··· formula (1)
However, in said general formula (1), R < 1 > and R < 2 > represent a hydrogen atom and a C1-C3 alkyl group each independently. n represents an odd number of 3 to 9. In n repeating units, R 1 may be the same or different. In the n repeating units, R 2 may be the same or different.
Moreover, in order to make Tg of the said polyester resin low and to give the property which deform | transforms at low temperature easily, the said polyester resin contains C3 or more and 12 or less aliphatic diol 50 mol% or more in all the alcohol components. It is preferable.
前記ポリエステル樹脂のTgを低くし、低温で変形する性質を付与しやすくするために、前記ポリエステル樹脂は、構成成分にジカルボン酸成分を含み、前記ジカルボン酸成分は、炭素数4以上12以下の脂肪族ジカルボン酸を含有することが好ましい。
前記ポリエステル樹脂において、前記炭素数4〜12の脂肪族ジカルボン酸を、30mol%以上含有することが好ましい。
前記炭素数4〜12の脂肪族ジカルボン酸としては、例えば、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ドデカン二酸などが挙げられる。
In order to lower the Tg of the polyester resin and to easily impart the property of deforming at low temperatures, the polyester resin contains a dicarboxylic acid component as a constituent component, and the dicarboxylic acid component is a fat having 4 to 12 carbon atoms. It is preferable to contain a group dicarboxylic acid.
The polyester resin preferably contains 30 mol% or more of the aliphatic dicarboxylic acid having 4 to 12 carbon atoms.
Examples of the aliphatic dicarboxylic acid having 4 to 12 carbon atoms include succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, and dodecanedioic acid.
−ジオール成分−
前記ジオール成分としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、エチレングリコール、1,2−プロピレングリコール、1,3−プロピレングリコール、1,4−ブタンジオール、2−メチル−1,3−プロパンジオール、1,5−ペンタンジオール、3−メチル−1,5−ペンタンジオール、1,6−ヘキサンジオール、1,8−オクタンジオール、1,10−デカンジオール、1,12−ドデカンジオール等の脂肪族ジオール;ジエチレングリコール、トリエチレングリコール、ジプロピレングリコール、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール等のオキシアルキレン基を有するジオール;1,4−シクロヘキサンジメタノール、水素添加ビスフェノールA等の脂環式ジオール;脂環式ジオールに、エチレンオキシド、プロピレンオキシド、ブチレンオキシド等のアルキレンオキシドを付加したもの;ビスフェノールA、ビスフェノールF、ビスフェノールS等のビスフェノール類;ビスフェノール類に、エチレンオキシド、プロピレンオキシド、ブチレンオキシド等のアルキレンオキシドを付加したもの等のビスフェノール類のアルキレンオキシド付加物などが挙げられる。これらの中でも、炭素数4〜12の脂肪族ジオールが好ましい。
これらのジオールは、1種単独で使用してもよいし、2種以上を併用してもよい。
-Diol component-
There is no restriction | limiting in particular as said diol component, According to the objective, it can select suitably, For example, ethylene glycol, 1, 2- propylene glycol, 1, 3- propylene glycol, 1, 4- butanediol, 2- Methyl-1,3-propanediol, 1,5-pentanediol, 3-methyl-1,5-pentanediol, 1,6-hexanediol, 1,8-octanediol, 1,10-decanediol, 1, Aliphatic diols such as 12-dodecanediol; Diols having an oxyalkylene group such as diethylene glycol, triethylene glycol, dipropylene glycol, polyethylene glycol, polypropylene glycol, polytetramethylene glycol; 1,4-cyclohexanedimethanol, hydrogenated bisphenol A etc. Alicyclic diols; alicyclic diols with addition of alkylene oxides such as ethylene oxide, propylene oxide, butylene oxide; bisphenols such as bisphenol A, bisphenol F, bisphenol S; bisphenols, ethylene oxide, propylene oxide, butylene Examples thereof include alkylene oxide adducts of bisphenols such as those obtained by adding alkylene oxides such as oxides. Among these, an aliphatic diol having 4 to 12 carbon atoms is preferable.
These diols may be used alone or in combination of two or more.
−ジカルボン酸成分−
前記ジカルボン酸成分としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、脂肪族ジカルボン酸、芳香族ジカルボン酸などが挙げられる。また、これらの無水物を用いてもよいし、低級(炭素数1〜3)アルキルエステル化物を用いてもよいし、ハロゲン化物を用いてもよい。
前記脂肪族ジカルボン酸としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、コハク酸、アジピン酸、セバシン酸、ドデカン二酸、マレイン酸、フマル酸などが挙げられる。
前記芳香族ジカルボン酸としては、特に制限はなく、目的に応じて適宜選択することができるが、炭素数8〜20の芳香族ジカルボン酸が好ましい。
前記炭素数8〜20の芳香族ジカルボン酸としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、フタル酸、イソフタル酸、テレフタル酸、ナフタレンジカルボン酸などが挙げられる。
これらの中でも、炭素数4〜12の脂肪族ジカルボン酸が好ましい。
これらのジカルボン酸は、1種単独で使用してもよいし、2種以上を併用してもよい。
-Dicarboxylic acid component-
There is no restriction | limiting in particular as said dicarboxylic acid component, According to the objective, it can select suitably, For example, aliphatic dicarboxylic acid, aromatic dicarboxylic acid, etc. are mentioned. Moreover, these anhydrides may be used, a lower (C1-C3) alkyl esterified material may be used, and a halide may be used.
The aliphatic dicarboxylic acid is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include succinic acid, adipic acid, sebacic acid, dodecanedioic acid, maleic acid, and fumaric acid.
There is no restriction | limiting in particular as said aromatic dicarboxylic acid, Although it can select suitably according to the objective, C8-C20 aromatic dicarboxylic acid is preferable.
There is no restriction | limiting in particular as said C8-C20 aromatic dicarboxylic acid, According to the objective, it can select suitably, For example, a phthalic acid, isophthalic acid, a terephthalic acid, naphthalene dicarboxylic acid etc. are mentioned.
Among these, C4-C12 aliphatic dicarboxylic acids are preferable.
These dicarboxylic acids may be used alone or in combination of two or more.
−3価以上のアルコール−
前記3価以上のアルコールとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、3価以上の脂肪族アルコール、3価以上のポリフェノール類、3価以上のポリフェノール類のアルキレンオキシド付加物などが挙げられる。
前記3価以上の脂肪族アルコールとしては、例えば、グリセリン、トリメチロールエタン、トリメチロールプロパン、ペンタエリスリトール、ソルビトールなどが挙げられる。
前記3価以上のポリフェノール類としては、例えば、トリスフェノールPA、フェノールノボラック、クレゾールノボラックなどが挙げられる。
前記3価以上のポリフェノール類のアルキレンオキシド付加物としては、例えば、3価以上のポリフェノール類に、エチレンオキシド、プロピレンオキシド、ブチレンオキシド等のアルキレンオキシドを付加したものなどが挙げられる。
-3 or more alcohols
The trihydric or higher alcohol is not particularly limited and may be appropriately selected depending on the intended purpose. For example, a trihydric or higher aliphatic alcohol, a trihydric or higher polyphenol, an alkylene of a trihydric or higher polyphenol. Examples include oxide adducts.
Examples of the trihydric or higher aliphatic alcohol include glycerin, trimethylolethane, trimethylolpropane, pentaerythritol, sorbitol and the like.
Examples of the trihydric or higher polyphenols include trisphenol PA, phenol novolak, cresol novolak, and the like.
Examples of the alkylene oxide adducts of trihydric or higher polyphenols include those obtained by adding alkylene oxides such as ethylene oxide, propylene oxide, butylene oxide to trihydric or higher polyphenols.
−ポリイソシアネート−
前記ポリイソシアネートとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ジイソシアネート、3価以上のイソシアネートなどが挙げられる。
前記ジイソシアネートとしては、例えば、脂肪族ジイソシアネート、脂環式ジイソシアネート、芳香族ジイソシアネート、芳香脂肪族ジイソシアネート、イソシアヌレート類、これらをフェノール誘導体、オキシム、カプロラクタム等でブロックしたものなどが挙げられる。
前記3価以上のイソシアネートとしては、例えばリジントリイソシアネート、又は3価以上のアルコールをジイソシアネートで反応させたものなどが挙げられる。
前記脂肪族ジイソシアネートとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、テトラメチレンジイソシアネート、ヘキサメチレンジイソシアネート、2,6−ジイソシアナトカプロン酸メチル、オクタメチレンジイソシアネート、デカメチレンジイソシアネート、ドデカメチレンジイソシアネート、テトラデカメチレンジイソシアネート、トリメチルヘキサンジイソシアネート、テトラメチルヘキサンジイソシアネートなどが挙げられる。
前記脂環式ジイソシアネートとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、イソホロンジイソシアネート、シクロヘキシルメタンジイソシアネートなどが挙げられる。
前記芳香族ジイソシアネートとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、トリレンジイソシアネート、1,5−ナフチレンジイソシアネート、4,4’−ジイソシアナトジフェニル、4,4’−ジイソシアナト−3,3’−ジメチルジフェニル、4,4’−ジイソシアナト−3−メチルジフェニルメタン、4,4’−ジイソシアナト−ジフェニルエーテルなどが挙げられる。
前記芳香脂肪族ジイソシアネートとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、α,α,α’,α’−テトラメチルキシリレンジイソシアネートなどが挙げられる。
前記イソシアヌレート類としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、トリス(イソシアナトアルキル)イソシアヌレート、トリス(イソシアナトシクロアルキル)イソシアヌレートなどが挙げられる。
これらのポリイソシアネートは、1種単独で使用してもよいし、2種以上を併用してもよい。
-Polyisocyanate-
There is no restriction | limiting in particular as said polyisocyanate, According to the objective, it can select suitably, For example, diisocyanate, trivalent or more isocyanate etc. are mentioned.
Examples of the diisocyanate include aliphatic diisocyanates, alicyclic diisocyanates, aromatic diisocyanates, araliphatic diisocyanates, isocyanurates, and those blocked with phenol derivatives, oximes, caprolactams, and the like.
Examples of the tri- or higher valent isocyanate include lysine triisocyanate, or those obtained by reacting a tri- or higher alcohol with diisocyanate.
The aliphatic diisocyanate is not particularly limited and may be appropriately selected depending on the intended purpose. For example, tetramethylene diisocyanate, hexamethylene diisocyanate, methyl 2,6-diisocyanatocaproate, octamethylene diisocyanate, decamethylene Examples thereof include diisocyanate, dodecamethylene diisocyanate, tetradecamethylene diisocyanate, trimethylhexane diisocyanate, and tetramethylhexane diisocyanate.
The alicyclic diisocyanate is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include isophorone diisocyanate and cyclohexylmethane diisocyanate.
The aromatic diisocyanate is not particularly limited and may be appropriately selected depending on the intended purpose. For example, tolylene diisocyanate, 1,5-naphthylene diisocyanate, 4,4′-diisocyanatodiphenyl, 4,4 Examples include '-diisocyanato-3,3'-dimethyldiphenyl, 4,4'-diisocyanato-3-methyldiphenylmethane, and 4,4'-diisocyanato-diphenyl ether.
The araliphatic diisocyanate is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include α, α, α ′, α′-tetramethylxylylene diisocyanate.
There is no restriction | limiting in particular as said isocyanurates, According to the objective, it can select suitably, For example, a tris (isocyanatoalkyl) isocyanurate, a tris (isocyanatocycloalkyl) isocyanurate, etc. are mentioned.
These polyisocyanates may be used alone or in combination of two or more.
−硬化剤−
前記硬化剤としては、ポリエステルプレポリマー(前記R2のポリエステル樹脂部と前記ポリイソシアネートとの反応生成物、つまり硬化剤と反応させる反応前駆体をいう)と反応し、前記ポリエステル樹脂を生成できる硬化剤であれば、特に制限はなく、目的に応じて適宜選択することができ、例えば、活性水素基含有化合物などが挙げられる。
−−活性水素基含有化合物−−
前記活性水素基含有化合物における活性水素基としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、水酸基(アルコール性水酸基及びフェノール性水酸基)、アミノ基、カルボキシル基、メルカプト基などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
前記活性水素基含有化合物としては、特に制限はなく、目的に応じて適宜選択することができるが、ウレア結合を形成可能な点で、アミン類が好ましい。
前記アミン類としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ジアミン、3価以上のアミン、アミノアルコール、アミノメルカプタン、アミノ酸、これらのアミノ基をブロックしたものなどが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
これらの中でも、ジアミン、ジアミンと少量の3価以上のアミンとの混合物が好ましい。
前記ジアミンとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、芳香族ジアミン、脂環式ジアミン、脂肪族ジアミンなどが挙げられる。前記芳香族ジアミンとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、フェニレンジアミン、ジエチルトルエンジアミン、4,4’−ジアミノジフェニルメタンなどが挙げられる。前記脂環式ジアミンとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、4,4’−ジアミノ−3,3’−ジメチルジシクロヘキシルメタン、ジアミノシクロヘキサン、イソホロンジアミンなどが挙げられる。前記脂肪族ジアミンとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、エチレンジアミン、テトラメチレンジアミン、ヘキサメチレンジアミンなどが挙げられる。
前記3価以上のアミンとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ジエチレントリアミン、トリエチレンテトラミンなどが挙げられる。
前記アミノアルコールとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、エタノールアミン、ヒドロキシエチルアニリンなどが挙げられる。
前記アミノメルカプタンとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、アミノエチルメルカプタン、アミノプロピルメルカプタンなどが挙げられる。
前記アミノ酸としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、アミノプロピオン酸、アミノカプロン酸などが挙げられる。
前記アミノ基をブロックしたものとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、アミノ基を、アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン類でブロックすることにより得られるケチミン化合物、オキサゾリン化合物などが挙げられる。
-Curing agent-
As the curing agent, a curing agent capable of generating the polyester resin by reacting with a polyester prepolymer (reaction product of the polyester resin portion of R2 and the polyisocyanate, that is, a reaction precursor that reacts with the curing agent). If it is, there will be no restriction | limiting in particular, According to the objective, it can select suitably, For example, an active hydrogen group containing compound etc. are mentioned.
-Active hydrogen group-containing compound-
There is no restriction | limiting in particular as an active hydrogen group in the said active hydrogen group containing compound, According to the objective, it can select suitably, For example, a hydroxyl group (alcoholic hydroxyl group and phenolic hydroxyl group), an amino group, a carboxyl group, a mercapto group Etc. These may be used individually by 1 type and may use 2 or more types together.
There is no restriction | limiting in particular as said active hydrogen group containing compound, Although it can select suitably according to the objective, Amines are preferable at the point which can form a urea bond.
The amines are not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include diamines, trivalent or higher valent amines, amino alcohols, amino mercaptans, amino acids, and those obtained by blocking these amino groups. Can be mentioned. These may be used individually by 1 type and may use 2 or more types together.
Among these, diamine and a mixture of a diamine and a small amount of a trivalent or higher amine are preferable.
There is no restriction | limiting in particular as said diamine, According to the objective, it can select suitably, For example, aromatic diamine, alicyclic diamine, aliphatic diamine etc. are mentioned. There is no restriction | limiting in particular as said aromatic diamine, According to the objective, it can select suitably, For example, phenylenediamine, diethyltoluenediamine, 4,4'- diaminodiphenylmethane etc. are mentioned. The alicyclic diamine is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include 4,4′-diamino-3,3′-dimethyldicyclohexylmethane, diaminocyclohexane and isophorone diamine. It is done. There is no restriction | limiting in particular as said aliphatic diamine, According to the objective, it can select suitably, For example, ethylenediamine, tetramethylenediamine, hexamethylenediamine etc. are mentioned.
The trivalent or higher amine is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include diethylenetriamine and triethylenetetramine.
The amino alcohol is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include ethanolamine and hydroxyethylaniline.
The amino mercaptan is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include aminoethyl mercaptan and aminopropyl mercaptan.
The amino acid is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include aminopropionic acid and aminocaproic acid.
There is no restriction | limiting in particular as what blocked the said amino group, According to the objective, it can select suitably, For example, it is obtained by blocking an amino group with ketones, such as acetone, methyl ethyl ketone, and methyl isobutyl ketone. Examples include ketimine compounds and oxazoline compounds.
<<R3部分>>
前記R2と前記R3との結合方法としては、例えば、ジオール成分とジカルボン酸成分とをエステル反応させ、末端が水酸基になるポリエステルポリオール(R2)を作製し、得られたポリエステルポリオールを前記一般式(I)で表されるイソシアネート化合物と反応させる方法が挙げられる。尚、ここでいうジオール成分やジカルボン酸成分は、上記<<R1部分、R2部分>>の項目で記載したとおりである。
前記一般式(I)で表されるイソシアネート化合物としてはジフェニルメタンジイソシアネート(MDI)が好ましく、例えば、2,2’−または2,4’−または4,4’−ジフェニルメタンジイソシアネートおよびこれらの異性体混合物等が挙げられる。以下に、前記一般式(I)で表されるイソシアネート化合物の具体例の一例を(I−1)〜(I−3)に示すが、これらに限定されるものではない。
これらの化合物は、1種単独で使用してもよいし、2種以上を併用してもよい。
前記R2と前記R3とを結合させるのに、上記<<R1部分、R2部分>>の項目で記載したR1とR2の結合方法において、2価のポリイソシアネートとして前記一般式(I)で示されるイソシアネート化合物を用いてもよい。これにより、上記<<R1部分、R2部分>>の項目で記載したR1とR2の結合方法で示した方法により、R1とR2とR3とが結合した前記構造式1)〜3)で表される構造を有するポリエステル樹脂を得ることができる。
また、結合の方法によっては、前記構造式1)〜3)において、
「−R2−X−R3」で表される部分は、より具体的には、
「−R3−Y−R2’−X−R3」(但し、R2’はポリエステルであり、Yはウレア結合、又はウレタン結合を示す)で表される態様を含んでいる。つまり、結合方法によっては、上記「−R3−Y−R2’」で表されるように、R2の変性ポリエステルにはR3部分が含まれる場合がある。その場合には、前記構造式1)〜3)で表されている構造式には、R3で示される一般式(I)で表される化合物に由来する基が、R1とR2とが結合する側とは反対のR2側に結合されているのに加え、さらにR1とR2との間にもR3が結合されている。
<< R3 part >>
As a method of bonding R2 and R3, for example, a diol component and a dicarboxylic acid component are ester-reacted to produce a polyester polyol (R2) having a terminal hydroxyl group, and the resulting polyester polyol is represented by the general formula ( The method of making it react with the isocyanate compound represented by I) is mentioned. In addition, the diol component and dicarboxylic acid component here are as having described by the item of said << R1 part, R2 part >>.
As the isocyanate compound represented by the general formula (I), diphenylmethane diisocyanate (MDI) is preferable. Is mentioned. Examples of specific examples of the isocyanate compound represented by the general formula (I) are shown in (I-1) to (I-3) below, but are not limited thereto.
These compounds may be used individually by 1 type, and may use 2 or more types together.
In the bonding method of R1 and R2 described in the above item << R1 part, R2 part >> for bonding R2 and R3, the divalent polyisocyanate is represented by the general formula (I). An isocyanate compound may be used. Accordingly, the structural formulas 1) to 3) in which R1, R2, and R3 are bonded to each other by the method described in the method for bonding R1 and R2 described in the above item << R1 portion, R2 portion >>. A polyester resin having a structure can be obtained.
Depending on the bonding method, in the structural formulas 1) to 3),
More specifically, the moiety represented by "-R2-X-R3"
It includes an embodiment represented by "-R3-Y-R2'-X-R3" (wherein R2 'is a polyester and Y represents a urea bond or a urethane bond). That is, depending on the bonding method, as represented by the above “-R3-Y-R2 ′”, the modified polyester of R2 may contain an R3 moiety. In that case, in the structural formulas represented by the structural formulas 1) to 3), a group derived from the compound represented by the general formula (I) represented by R3 is bonded to R1 and R2. In addition to being bonded to the opposite R2 side, R3 is also bonded between R1 and R2.
前記ポリエステル樹脂のガラス転移温度は、−60℃以上0℃以下であることが好ましく、−40℃以上−20℃以下がより好ましい。
前記ガラス転移温度が、−60℃以上であると、低温でのトナーの流動が抑制できずに、耐熱保存性が悪化し、また、耐フィルミング性が悪化するという問題を防ぐことができる。
前記ガラス転移温度が、0℃以下であると、定着時の加熱及び加圧によるトナーが十分に変形できず、低温定着性が不十分であるという問題を防ぐことができる。
The glass transition temperature of the polyester resin is preferably -60 ° C or higher and 0 ° C or lower, and more preferably -40 ° C or higher and -20 ° C or lower.
When the glass transition temperature is −60 ° C. or higher, it is possible to prevent problems such as deterioration of heat-resistant storage stability and deterioration of filming resistance without suppressing the flow of toner at a low temperature.
When the glass transition temperature is 0 ° C. or lower, it is possible to prevent the problem that the toner due to heating and pressurization at the time of fixing cannot be sufficiently deformed and the low-temperature fixability is insufficient.
また、前記ポリエステル樹脂において、上記構造式1)〜3)中、R1の有機基としては、炭素数が短い有機基で構成されることが、網目構造が均一化しやすい点で好ましく、炭素数20以下の脂肪族、芳香族有機基が好ましい。
またR1の有機基は、エステル結合を含んでもよい。
中でも、架橋点の凝集力を適切な範囲に調整でき、高光沢と耐熱保存性を両立しやすい点から、R1の有機基としては、脂肪族系、又はエステル結合を含んでなる脂肪族系化合物が好ましい。
In the polyester resin, in the structural formulas 1) to 3), it is preferable that the organic group represented by R1 is composed of an organic group having a short carbon number from the viewpoint that the network structure is easily uniformized, and has 20 carbon atoms. The following aliphatic and aromatic organic groups are preferred.
Moreover, the organic group of R1 may contain an ester bond.
Among them, the organic group of R1 is an aliphatic compound or an aliphatic compound containing an ester bond because the cohesive strength of the crosslinking points can be adjusted to an appropriate range and both high gloss and heat resistant storage stability can be easily achieved. Is preferred.
前記ポリエステル樹脂の重量平均分子量(Mw)としては、特に制限はなく、目的に応じて適宜選択することができるが、GPC(ゲル浸透クロマトグラフィー)測定において、30,000以上60,000以下が好ましい。
前記ポリエステル樹脂の重量平均分子量は、前記反応性前駆体と前記硬化剤とを反応させた反応生成物の分子量をいう。
前記重量平均分子量が、30,000以上であると、トナーが低温で流動しやすくなり、耐熱保存性に劣るという問題を防ぐことができる。
また溶融時の粘性が低くなり、高温オフセット性が低下するという問題も防ぐことができる。
重量平均分子量/数平均分子量(Mw/Mn)は6〜12であると好ましい。
前記ポリエステル樹脂は、テトラヒドロフラン(THF)に不溶であるほどの高分子量体を有していることが好ましい。
There is no restriction | limiting in particular as a weight average molecular weight (Mw) of the said polyester resin, Although it can select suitably according to the objective, In GPC (gel permeation chromatography) measurement, 30,000 or more and 60,000 or less are preferable. .
The weight average molecular weight of the polyester resin refers to the molecular weight of a reaction product obtained by reacting the reactive precursor and the curing agent.
When the weight average molecular weight is 30,000 or more, it is possible to prevent the toner from easily flowing at a low temperature and inferior in heat resistant storage stability.
Moreover, the viscosity at the time of a melt | dissolution becomes low and the problem that high temperature offset property falls can also be prevented.
The weight average molecular weight / number average molecular weight (Mw / Mn) is preferably 6-12.
The polyester resin preferably has a high molecular weight substance that is insoluble in tetrahydrofuran (THF).
本発明でいう前記ポリエステル樹脂としては、上記構造式1)〜3)のいずれかで表される構造を有するポリエステル樹脂が含有されていればよく、上記構造式1)〜3)のいずれかで表される構造を有するポリエステル樹脂を単独で使用してもよいし、あるいは上記構造式1)〜3)のいずれかで表される構造を有するポリエステル樹脂(第一のポリエステル樹脂ともいう)の他に、他のポリエステル樹脂(第二のポリエステル樹脂ともいう)を併用してもよい。 As said polyester resin as used in the field of this invention, what is necessary is just to contain the polyester resin which has the structure represented by either of said structural formula 1) -3), and in any of said structural formula 1) -3) The polyester resin having the structure represented may be used alone, or other than the polyester resin having the structure represented by any one of the structural formulas 1) to 3) (also referred to as the first polyester resin). In addition, other polyester resins (also referred to as second polyester resins) may be used in combination.
<<他のポリエステル樹脂>>
前記他のポリエステル樹脂(第二のポリエステル樹脂)は、例えば、構成成分として、ジオール成分及びジカルボン酸成分を含む。
前記他のポリエステル樹脂は、上記1)〜3)のいずれかの構造式を有する前記ポリエステル樹脂とは異なる種類のポリエステル樹脂をいう。
前記他のポリエステル樹脂は、非晶質ポリエステル樹脂であることが好ましい。
また、前記他のポリエステル樹脂は、線状のポリエステル樹脂であることが好ましい。
さらにまた、前記他のポリエステル樹脂としては、未変性ポリエステル樹脂であることが好ましい。
ここで、未変性ポリエステル樹脂とは、多価アルコールと、多価カルボン酸、多価カルボン酸無水物、多価カルボン酸エステルなどの多価カルボン酸又はその誘導体とを用いて得られるポリエステル樹脂であって、イソシアネート化合物などにより変性されていないポリエステル樹脂をいう。
<< Other polyester resins >>
The other polyester resin (second polyester resin) includes, for example, a diol component and a dicarboxylic acid component as constituent components.
The other polyester resin refers to a type of polyester resin different from the polyester resin having the structural formula of any one of 1) to 3).
The other polyester resin is preferably an amorphous polyester resin.
The other polyester resin is preferably a linear polyester resin.
Furthermore, the other polyester resin is preferably an unmodified polyester resin.
Here, the unmodified polyester resin is a polyester resin obtained by using a polyhydric alcohol and a polyvalent carboxylic acid such as a polyvalent carboxylic acid, a polyvalent carboxylic acid anhydride, or a polyvalent carboxylic acid ester or a derivative thereof. A polyester resin that is not modified with an isocyanate compound or the like.
前記多価アルコールとしては、例えば、ジオールなどが挙げられる。
前記ジオールとしては、例えば、ポリオキシプロピレン(2.2)−2,2−ビス(4−ヒドロキシフェニル)プロパン、ポリオキシエチレン(2.2)−2,2−ビス(4−ヒドロキシフェニル)プロパン等のビスフェノールAのアルキレン(炭素数2〜3)オキサイド(平均付加モル数1〜10)付加物;エチレングリコール、プロピレングリコール;水添ビスフェノールA、水添ビスフェノールAのアルキレン(炭素数2〜3)オキサイド(平均付加モル数1〜10)付加物などが挙げられる。
これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
前記多価カルボン酸としては、例えば、ジカルボン酸などが挙げられる。
前記ジカルボン酸としては、例えば、アジピン酸、フタル酸、イソフタル酸、テレフタル酸、フマル酸、マレイン酸;ドデセニルコハク酸、オクチルコハク酸等の炭素数1〜20のアルキル基又は炭素数2〜20のアルケニル基で置換されたコハク酸などが挙げられる。
これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
また、酸価、水酸基価を調整する目的で、前記他のポリエステル樹脂は、その樹脂鎖の末端に3価以上のカルボン酸及び3価以上のアルコールの少なくともいずれかを含んでいてもよい。
前記3価以上のカルボン酸としては、例えば、トリメリット酸、ピロメリット酸、又はそれらの酸無水物などが挙げられる。
前記3価以上のアルコールとしては、例えば、グリセリン、ペンタエリスリトール、トリメチロールプロパンなどが挙げられる。
Examples of the polyhydric alcohol include diols.
Examples of the diol include polyoxypropylene (2.2) -2,2-bis (4-hydroxyphenyl) propane and polyoxyethylene (2.2) -2,2-bis (4-hydroxyphenyl) propane. Bisphenol A alkylene (2 to 3 carbon atoms) oxide (average addition mole number 1 to 10) adduct; ethylene glycol, propylene glycol; hydrogenated bisphenol A, hydrogenated bisphenol A alkylene (2 to 3 carbon atoms) Examples include oxide (average added mole number 1 to 10) adducts.
These may be used individually by 1 type and may use 2 or more types together.
Examples of the polyvalent carboxylic acid include dicarboxylic acid.
Examples of the dicarboxylic acid include adipic acid, phthalic acid, isophthalic acid, terephthalic acid, fumaric acid, maleic acid; alkyl groups having 1 to 20 carbon atoms such as dodecenyl succinic acid and octyl succinic acid; And succinic acid substituted with a group.
These may be used individually by 1 type and may use 2 or more types together.
For the purpose of adjusting the acid value and the hydroxyl value, the other polyester resin may contain at least one of a trivalent or higher carboxylic acid and a trivalent or higher alcohol at the end of the resin chain.
Examples of the trivalent or higher carboxylic acid include trimellitic acid, pyromellitic acid, or acid anhydrides thereof.
Examples of the trivalent or higher alcohol include glycerin, pentaerythritol, and trimethylolpropane.
前記他のポリエステル樹脂の分子量としては、特に制限はなく、目的に応じて適宜選択することができるが、分子量が低すぎる場合、トナーの耐熱保存性、現像機内での攪拌等のストレスに対する耐久性に劣る場合があり、分子量が高すぎる場合、トナーの溶融時の粘弾性が高くなり低温定着性に劣る場合があることから、GPC(ゲル浸透クロマトグラフィー)測定において、重量平均分子量(Mw)3,000〜10,000であることが好ましい。
また、数平均分子量(Mn)は、1,000〜4,000であることが好ましい。
また、Mw/Mnは、1.0〜4.0であることが好ましい。
前記重量平均分子量(Mw)は、4,000〜7,000がより好ましい。
前記数平均分子量(Mn)は、1,500〜3,000がより好ましい。
前記Mw/Mnは、1.0〜3.5がより好ましい。
前記他のポリエステル樹脂の酸価としては、特に制限はなく、目的に応じて適宜選択することができるが、1mgKOH/g〜50mgKOH/gが好ましく、5mgKOH/g〜30mgKOH/gがより好ましい。
前記酸価が、1mgKOH/g以上であることにより、トナーが負帯電性となりやすく、更には、紙への定着時に、紙とトナーの親和性が良くなり、低温定着性を向上させることができる。
前記酸価が、50mgKOH/g以下であると、帯電安定性、特に環境変動に対する帯電安定性の低下を防ぐことができる。
前記他のポリエステル樹脂の水酸基価としては、特に制限はなく、目的に応じて適宜選択することができるが、5mgKOH/g以上であることが好ましい。
前記他のポリエステル樹脂のガラス転移温度(Tg)は、40℃以上70℃以下が好ましく、50℃以上60℃以下がより好ましい。
前記ガラス転移温度が、40℃以上であると、トナーの耐熱保存性、及び現像機内での攪拌等のストレスに対する耐久性が劣り、また、耐フィルミング性が悪化するという問題を防ぐことができる。
前記ガラス転移温度が、70℃以下であると、トナーの定着時における加熱及び加圧による変形が十分ではなく、低温定着性が不十分となるという問題を防ぐことができる。
The molecular weight of the other polyester resin is not particularly limited and may be appropriately selected according to the purpose. However, when the molecular weight is too low, the heat resistant storage stability of the toner and the durability against stress such as stirring in the developing machine. In the case of GPC (gel permeation chromatography) measurement, the weight average molecular weight (Mw) 3 may be inferior. , Preferably 10,000 to 10,000.
The number average molecular weight (Mn) is preferably 1,000 to 4,000.
Moreover, it is preferable that Mw / Mn is 1.0-4.0.
The weight average molecular weight (Mw) is more preferably 4,000 to 7,000.
The number average molecular weight (Mn) is more preferably 1,500 to 3,000.
The Mw / Mn is more preferably 1.0 to 3.5.
There is no restriction | limiting in particular as an acid value of said other polyester resin, Although it can select suitably according to the objective, 1 mgKOH / g-50 mgKOH / g are preferable, and 5 mgKOH / g-30 mgKOH / g are more preferable.
When the acid value is 1 mgKOH / g or more, the toner is likely to be negatively charged, and further, the affinity between the paper and the toner is improved at the time of fixing to paper, and the low-temperature fixability can be improved. .
When the acid value is 50 mgKOH / g or less, it is possible to prevent deterioration of charging stability, particularly charging stability against environmental fluctuation.
There is no restriction | limiting in particular as a hydroxyl value of the said other polyester resin, Although it can select suitably according to the objective, It is preferable that it is 5 mgKOH / g or more.
The glass transition temperature (Tg) of the other polyester resin is preferably 40 ° C. or higher and 70 ° C. or lower, and more preferably 50 ° C. or higher and 60 ° C. or lower.
When the glass transition temperature is 40 ° C. or higher, the heat-resistant storage stability of the toner and the durability against stress such as stirring in the developing machine are inferior, and the problems that the filming resistance deteriorates can be prevented. .
When the glass transition temperature is 70 ° C. or lower, it is possible to prevent a problem that the deformation due to heating and pressurization at the time of fixing the toner is not sufficient and the low-temperature fixability becomes insufficient.
前記ポリエステル樹脂(上記構造式1)〜3)のいずれかで表される構造を有するポリエステル樹脂の単独使用、及び他のポリエステル樹脂との併用のいずれの場合も含む)の分子構造は、溶液又は固体によるNMR測定の他、X線回折、GC/MS、LC/MS、IR測定などにより確認することができる。簡便には赤外線吸収スペクトルにおいて、965±10cm−1及び990±10cm−1にオレフィンのδCH(面外変角振動)に基づく吸収を有しないものを前記ポリエステル樹脂として検出する方法が挙げられる。 The molecular structure of the polyester resin (including any case where the polyester resin having the structure represented by any one of the above structural formulas 1) to 3) is used alone or in combination with other polyester resins is In addition to NMR measurement by solid, it can be confirmed by X-ray diffraction, GC / MS, LC / MS, IR measurement and the like. For example, in the infrared absorption spectrum, there may be mentioned a method in which 965 ± 10 cm −1 and 990 ± 10 cm −1 have no absorption based on δCH (out-of-plane variable angular vibration) of the olefin as the polyester resin.
前記ポリエステル樹脂(上記構造式1)〜3)のいずれかで表される構造を有するポリエステル樹脂の単独使用、及び他のポリエステル樹脂との併用のいずれの場合も含む)の含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、前記ポリエステル樹脂が、上記構造式1)〜3))のいずれかで表される構造を有するポリエステル樹脂と他のポリエステル樹脂との2種類を含有する場合には、前記トナー100質量部に対して、上記構造式1)〜3))のいずれかで表される構造を有するポリエステル樹脂は、5質量部〜25質量部含有させることが好ましく、10質量部〜20質量部がより好ましい。前記含有量が、5質量部以上であると、低温定着性、及び耐高温オフセット性が悪化するという問題を防ぐことができ、25質量部以下であると、耐熱保存性の悪化、及び定着後に得られる画像の光沢度が低下するという問題を防ぐことができる。前記含有量が、前記より好ましい範囲内であると、低温定着性、耐高温オフセット性、及び耐熱保存性の全てに優れる点で有利である。
一方、前記トナー100質量部に対して、他のポリエステル樹脂は、50質量部〜90質量部含有させることが好ましく、60質量部〜80質量部がより好ましい。前記含有量が、50質量部以上であると、トナー中の顔料、離型剤の分散性が悪化し、画像のかぶり、乱れを生じやすくなるという問題を防ぐことができ、90質量部以下であると、後述する結晶性ポリエステル樹脂や上記構造式1)〜3))のいずれかで表される構造を有するポリエステル樹脂の含有量が少なくなることによる低温定着性の低下を防ぐことができる。前記含有量が、前記より好ましい範囲であると、高画質、及び低温定着性の全てに優れる点で有利である。
As the content of the polyester resin (including any case where the polyester resin having a structure represented by any one of the above structural formulas 1 to 3) is used alone and in combination with other polyester resins) Although there is no restriction | limiting, Although it can select suitably according to the objective, For example, the said polyester resin is the polyester resin which has a structure represented by either of the said structural formulas 1) -3), and other polyester resins. 2 to 5 parts by mass of the polyester resin having the structure represented by any one of the above structural formulas 1) to 3)) with respect to 100 parts by mass of the toner. Preferably, 10 parts by mass to 20 parts by mass is more preferable. When the content is 5 parts by mass or more, the problem that the low temperature fixability and the high temperature offset resistance are deteriorated can be prevented, and when the content is 25 parts by mass or less, the heat resistant storage stability is deteriorated, and after fixing. It is possible to prevent the problem that the glossiness of the obtained image is lowered. When the content is within the more preferable range, it is advantageous in that it is excellent in all of low-temperature fixability, high-temperature offset resistance, and heat-resistant storage stability.
On the other hand, the other polyester resin is preferably contained in an amount of 50 to 90 parts by mass, more preferably 60 to 80 parts by mass with respect to 100 parts by mass of the toner. When the content is 50 parts by mass or more, the dispersibility of the pigment and the release agent in the toner is deteriorated, and it is possible to prevent the problem that the image is likely to be fogged or disturbed. If it exists, the fall of the low temperature fixability by the content of the polyester resin which has the structure represented by either the crystalline polyester resin mentioned later or the said Structural formula 1) -3)) can be prevented. When the content is in the more preferable range, it is advantageous in that it is excellent in all of high image quality and low temperature fixability.
<結晶性ポリエステル樹脂>
前記結晶性ポリエステル樹脂は、高い結晶性をもつために、定着開始温度付近において急激な粘度低下を示す熱溶融特性を示す。このような特性を有する前記結晶性ポリエステル樹脂を前記ポリエステル樹脂と共に用いることで、溶融開始温度直前までは結晶性による耐熱保存性がよく、溶融開始温度では結晶性ポリエステル樹脂の融解による急激な粘度低下(シャープメルト)を起こし、それに伴い前記ポリエステル樹脂と相溶し、共に急激に粘度低下することで定着することから、良好な耐熱保存性と低温定着性とを兼ね備えたトナーが得られる。また、離型幅(定着下限温度と耐高温オフセット発生温度との差)についても、良好な結果を示す。
前記結晶性ポリエステル樹脂は、多価アルコールと、多価カルボン酸、多価カルボン酸無水物、多価カルボン酸エステルなどの多価カルボン酸又はその誘導体とを用いて得られる。
なお、本発明において結晶性ポリエステル樹脂とは、上記のごとく、多価アルコールと、多価カルボン酸、多価カルボン酸無水物、多価カルボン酸エステル等の多価カルボン酸又はその誘導体とを用いて得られるものを指し、ポリエステル樹脂を変性したもの、例えば、前記プレポリマー、及びそのプレポリマーを架橋及び/又は伸長反応させて得られる樹脂は、前記結晶性ポリエステル樹脂には属さない。
本発明での結晶性ポリエステル樹脂の結晶性の有無は、結晶解析X線回折装置(例えばX’Pert Pro MRD フィリッップス社)により確認することができる。以下測定方法を記す。
まず、対象試料を乳鉢によりすり潰し試料粉体を作成し、得られた試料粉体を試料ホルダーに均一に塗布する。その後、回折装置内に試料ホルダーをセットし、測定を行い、回折スペクトルを得る。
得られた回折ピークに20°<2θ<25°の範囲に得られたピークのうち最もピーク強度が大きいピークのピーク半値幅が2.0以下である場合結晶性を有すると判断する。
結晶性ポリエステル樹脂に対し、上記状態を示さないポリエステル樹脂を、本発明では、非晶質ポリエステル樹脂という。
以下にX線回折の測定条件を記す。
〔測定条件〕
Tension kV: 45kV
Current: 40mA
MPSS
Upper
Gonio
Scanmode: continuos
Start angle : 3°
End angle : 35°
Angle Step:0.02°
Lucident beam optics
Divergence slit : Div slit 1/2
Difflection beam optics
Anti scatter slit: As Fixed 1/2
Receiving slit : Prog rec slit
<Crystalline polyester resin>
Since the crystalline polyester resin has high crystallinity, it exhibits a heat-melting characteristic that exhibits a sudden viscosity drop near the fixing start temperature. By using the crystalline polyester resin having such characteristics together with the polyester resin, the heat-resistant storage stability due to the crystallinity is good until just before the melting start temperature, and the viscosity rapidly decreases due to melting of the crystalline polyester resin at the melting start temperature. (Sharp melt) is caused, and it is compatible with the polyester resin, and the viscosity is rapidly lowered to fix the toner. Thus, a toner having both good heat-resistant storage stability and low-temperature fixability can be obtained. Also, good results are shown for the release width (difference between the fixing lower limit temperature and the high temperature resistant offset occurrence temperature).
The crystalline polyester resin is obtained using a polyhydric alcohol and a polyvalent carboxylic acid such as a polyvalent carboxylic acid, a polyvalent carboxylic acid anhydride, or a polyvalent carboxylic acid ester, or a derivative thereof.
In the present invention, as described above, the crystalline polyester resin uses a polyhydric alcohol and a polyvalent carboxylic acid such as a polyvalent carboxylic acid, a polyvalent carboxylic acid anhydride, a polyvalent carboxylic acid ester, or a derivative thereof. A polyester resin modified, for example, the prepolymer and a resin obtained by crosslinking and / or elongation reaction of the prepolymer do not belong to the crystalline polyester resin.
The presence or absence of crystallinity of the crystalline polyester resin in the present invention can be confirmed by a crystal analysis X-ray diffractometer (for example, X'Pert Pro MRD Phillips). The measurement method is described below.
First, a target sample is ground with a mortar to prepare a sample powder, and the obtained sample powder is uniformly applied to a sample holder. Thereafter, a sample holder is set in the diffractometer and measurement is performed to obtain a diffraction spectrum.
Among the peaks obtained in the range of 20 ° <2θ <25 ° in the obtained diffraction peak, it is judged that the peak having the highest peak intensity has a crystallinity when the peak half width is 2.0 or less.
In the present invention, a polyester resin that does not exhibit the above state relative to a crystalline polyester resin is referred to as an amorphous polyester resin.
The measurement conditions for X-ray diffraction are described below.
〔Measurement condition〕
Tention kV: 45kV
Current: 40mA
MPSS
Upper
Gonio
Scannode: continuuos
Start angle: 3 °
End angle: 35 °
Angle Step: 0.02 °
Lucent beam optics
Divergence slit: Div slit 1/2
Difference beam optics
Anti scatter slit: As Fixed 1/2
Receiving slit: Prog rec slit
−多価アルコール−
前記多価アルコールとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ジオール、3価以上のアルコールが挙げられる。
前記ジオールとしては、例えば、飽和脂肪族ジオールなどが挙げられる。前記飽和脂肪族ジオールとしては、直鎖飽和脂肪族ジオール、分岐飽和脂肪族ジオールが挙げられるが、これらの中でも、直鎖飽和脂肪族ジオールが好ましく、炭素数が2以上12以下の直鎖飽和脂肪族ジオールがより好ましい。前記飽和脂肪族ジオールが分岐型であると、結晶性ポリエステル樹脂の結晶性が低下し、融点が低下してしまうことがあるため、直鎖飽和脂肪族ジオールが好ましい。また、前記飽和脂肪族ジオールの炭素数が12以下であると、実用上、材料の入手が容易である。炭素数としては12以下であることがより好ましい。
前記飽和脂肪族ジオールとしては、例えば、エチレングリコール、1,3−プロパンジオール、1,4−ブタンジオール、1,5−ペンタンジオール、1,6−ヘキサンジオール、1,7−ヘプタンジオール、1,8−オクタンジオール、1,9−ノナンジオール、1,10−デカンジオール、1,11−ウンデカンジオール、1,12−ドデカンジオール、1,13−トリデカンジオール、1,14−テトラデカンジオール、1,18−オクタデカンジオール、1,14−エイコサンデカンジオールなどが挙げられる。これらの中でも、前記結晶性ポリエステル樹脂の結晶性が高く、シャープメルト性に優れる点で、エチレングリコール、1,4−ブタンジオール、1,6−ヘキサンジオール、1,8−オクタンジオール、1,10−デカンジオール、1,12−ドデカンジオールが好ましい。
前記3価以上のアルコールとしては、例えば、グリセリン、トリメチロールエタン、トリメチロールプロパン、ペンタエリスリトールなどが挙げられる。これらは1種単独で使用してもよいし、2種以上を併用してもよい。
-Polyhydric alcohol-
There is no restriction | limiting in particular as said polyhydric alcohol, According to the objective, it can select suitably, For example, diol and trihydric or more alcohol are mentioned.
Examples of the diol include saturated aliphatic diol. Examples of the saturated aliphatic diol include linear saturated aliphatic diols and branched saturated aliphatic diols. Among these, linear saturated aliphatic diols are preferable, and linear saturated fats having 2 to 12 carbon atoms are preferred. Group diols are more preferred. When the saturated aliphatic diol is branched, the crystallinity of the crystalline polyester resin is lowered and the melting point may be lowered. Therefore, a linear saturated aliphatic diol is preferable. Further, when the saturated aliphatic diol has 12 or less carbon atoms, it is practically easy to obtain the material. The number of carbon atoms is more preferably 12 or less.
Examples of the saturated aliphatic diol include ethylene glycol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 1,7-heptanediol, 1, 8-octanediol, 1,9-nonanediol, 1,10-decanediol, 1,11-undecanediol, 1,12-dodecanediol, 1,13-tridecanediol, 1,14-tetradecanediol, 1, Examples thereof include 18-octadecanediol and 1,14-eicosandecanediol. Among these, ethylene glycol, 1,4-butanediol, 1,6-hexanediol, 1,8-octanediol, 1,10 are preferred because the crystalline polyester resin has high crystallinity and excellent sharp melt properties. -Decanediol and 1,12-dodecanediol are preferred.
Examples of the trihydric or higher alcohol include glycerin, trimethylolethane, trimethylolpropane, and pentaerythritol. These may be used individually by 1 type and may use 2 or more types together.
−多価カルボン酸−
前記多価カルボン酸としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、2価のカルボン酸、3価以上のカルボン酸が挙げられる。
前記2価のカルボン酸としては、例えば、シュウ酸、コハク酸、グルタル酸、アジピン酸、スペリン酸、アゼライン酸、セバシン酸、1,9−ノナンジカルボン酸、1,10−デカンジカルボン酸、1,12−ドデカンジカルボン酸、1,14−テトラデカンジカルボン酸、1,18−オクタデカンジカルボン酸等の飽和脂肪族ジカルボン酸;フタル酸、イソフタル酸、テレフタル酸、ナフタレン−2,6−ジカルボン酸、マロン酸、メサコニン酸等の二塩基酸等の芳香族ジカルボン酸;などが挙げられ、更に、これらの無水物やこれらの低級(炭素数1〜3)アルキルエステルも挙げられる。
前記3価以上のカルボン酸としては、例えば、1,2,4−ベンゼントリカルボン酸、1,2,5−ベンゼントリカルボン酸、1,2,4−ナフタレントリカルボン酸等、及びこれらの無水物やこれらの低級(炭素数1〜3)アルキルエステルなどが挙げられる。
また、前記多価カルボン酸としては、前記飽和脂肪族ジカルボン酸や芳香族ジカルボン酸の他に、スルホン酸基を持つジカルボン酸が含まれていてもよい。更に、前記飽和脂肪族ジカルボン酸や芳香族ジカルボン酸の他に、2重結合を持つジカルボン酸を含有してもよい。これらは1種単独で使用してもよいし、2種以上を併用してもよい。
-Multivalent carboxylic acid-
There is no restriction | limiting in particular as said polyvalent carboxylic acid, According to the objective, it can select suitably, For example, bivalent carboxylic acid and trivalent or more carboxylic acid are mentioned.
Examples of the divalent carboxylic acid include oxalic acid, succinic acid, glutaric acid, adipic acid, peric acid, azelaic acid, sebacic acid, 1,9-nonanedicarboxylic acid, 1,10-decanedicarboxylic acid, 1, Saturated aliphatic dicarboxylic acids such as 12-dodecanedicarboxylic acid, 1,14-tetradecanedicarboxylic acid, 1,18-octadecanedicarboxylic acid; phthalic acid, isophthalic acid, terephthalic acid, naphthalene-2,6-dicarboxylic acid, malonic acid, Aromatic dicarboxylic acids such as dibasic acids such as mesaconic acid; and the like, and anhydrides and lower (C1 to C3) alkyl esters thereof.
Examples of the trivalent or higher carboxylic acid include 1,2,4-benzenetricarboxylic acid, 1,2,5-benzenetricarboxylic acid, 1,2,4-naphthalenetricarboxylic acid, and the like, and anhydrides thereof. Lower (carbon number 1 to 3) alkyl ester and the like.
In addition to the saturated aliphatic dicarboxylic acid and aromatic dicarboxylic acid, the polyvalent carboxylic acid may include a dicarboxylic acid having a sulfonic acid group. Furthermore, in addition to the saturated aliphatic dicarboxylic acid and aromatic dicarboxylic acid, a dicarboxylic acid having a double bond may be contained. These may be used individually by 1 type and may use 2 or more types together.
前記結晶性ポリエステル樹脂は、炭素数4以上12以下の直鎖飽和脂肪族ジカルボン酸と、炭素数2以上12以下の直鎖飽和脂肪族ジオールとから構成されることが好ましい。即ち、前記結晶性ポリエステル樹脂は、炭素数4以上12以下の飽和脂肪族ジカルボン酸に由来する構成単位と、炭素数2以上12以下の飽和脂肪族ジオールに由来する構成単位とを有することが好ましい。そうすることにより、結晶性が高く、シャープメルト性に優れることから、優れた低温定着性を発揮できる点で好ましい。
前記結晶性ポリエステル樹脂の融点としては、特に制限はなく、目的に応じて適宜選択することができるが、60℃以上80℃以下であることが好ましい。前記融点が、60℃以上であると、結晶性ポリエステル樹脂が低温で溶融しやすく、トナーの耐熱保存性が低下するという問題を防ぐことができ、80℃以下であると、定着時の加熱による結晶性ポリエステル樹脂の溶融が不十分で、低温定着性が低下するという問題を防ぐことができる。
前記結晶性ポリエステル樹脂の分子量としては、特に制限はなく、目的に応じて適宜選択することができるが、分子量分布がシャープで低分子量のものが低温定着性に優れ、かつ分子量が低い成分が多いと耐熱保存性が低下するという観点から、前記結晶性ポリエステル樹脂のオルトジクロロベンゼンの可溶分が、GPC測定において、重量平均分子量(Mw)3,000〜30,000、数平均分子量(Mn)1,000〜10,000、Mw/Mn1.0〜10であることが好ましい。さらには、重量平均分子量(Mw)5,000〜15,000、数平均分子量(Mn)2,000〜10,000、Mw/Mn1.0〜5.0であることが好ましい。
前記結晶性ポリエステル樹脂の酸価としては、特に制限はなく、目的に応じて適宜選択することができるが、紙と樹脂との親和性の観点から、所望の低温定着性を達成するためには、5mgKOH/g以上が好ましく、10mgKOH/g以上がより好ましい。一方、耐高温オフセット性を向上させるには、45mgKOH/g以下が好ましい。
前記結晶性ポリエステル樹脂の水酸基価としては、特に制限はなく、目的に応じて適宜選択することができるが、所望の温定着性を達成し、かつ良好な帯電特性を達成するためには、0mgKOH/g〜50mgKOH/gが好ましく、5mgKOH/g〜50mgKOH/gがより好ましい。
The crystalline polyester resin is preferably composed of a linear saturated aliphatic dicarboxylic acid having 4 to 12 carbon atoms and a linear saturated aliphatic diol having 2 to 12 carbon atoms. That is, the crystalline polyester resin preferably has a structural unit derived from a saturated aliphatic dicarboxylic acid having 4 to 12 carbon atoms and a structural unit derived from a saturated aliphatic diol having 2 to 12 carbon atoms. . By doing so, since crystallinity is high and it is excellent in sharp melt property, it is preferable at the point which can exhibit the outstanding low-temperature fixability.
There is no restriction | limiting in particular as melting | fusing point of the said crystalline polyester resin, Although it can select suitably according to the objective, It is preferable that it is 60 to 80 degreeC. When the melting point is 60 ° C. or higher, the problem that the crystalline polyester resin is easily melted at a low temperature and the heat resistant storage stability of the toner is reduced can be prevented. It is possible to prevent the problem that the crystalline polyester resin is not sufficiently melted and the low-temperature fixability is lowered.
The molecular weight of the crystalline polyester resin is not particularly limited and may be appropriately selected depending on the intended purpose. However, those having a sharp molecular weight distribution and a low molecular weight are excellent in low-temperature fixability, and many components have a low molecular weight. From the viewpoint that heat-resistant storage stability is lowered, the soluble content of orthodichlorobenzene of the crystalline polyester resin is determined by GPC measurement in terms of weight average molecular weight (Mw) 3,000 to 30,000, number average molecular weight (Mn). It is preferably 1,000 to 10,000 and Mw / Mn 1.0 to 10. Furthermore, it is preferable that they are weight average molecular weight (Mw) 5,000-15,000, number average molecular weight (Mn) 2,000-10,000, and Mw / Mn 1.0-5.0.
The acid value of the crystalline polyester resin is not particularly limited and can be appropriately selected according to the purpose. From the viewpoint of the affinity between paper and resin, in order to achieve desired low-temperature fixability, 5 mgKOH / g or more is preferable and 10 mgKOH / g or more is more preferable. On the other hand, in order to improve the high temperature offset resistance, 45 mgKOH / g or less is preferable.
The hydroxyl value of the crystalline polyester resin is not particularly limited and may be appropriately selected according to the purpose. However, in order to achieve a desired temperature fixability and good charging characteristics, 0 mgKOH / G to 50 mgKOH / g are preferable, and 5 mgKOH / g to 50 mgKOH / g are more preferable.
前記結晶性ポリエステル樹脂の分子構造は、溶液又は固体によるNMR測定の他、X線回折、GC/MS、LC/MS、IR測定などにより確認することができる。簡便には赤外線吸収スペクトルにおいて、965±10cm−1又は990±10cm−1にオレフィンのδCH(面外変角振動)に基づく吸収を有するものを結晶性ポリエステル樹脂として検出する方法が挙げられる。
前記結晶性ポリエステル樹脂の含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、前記トナー100質量部に対して、3質量部〜20質量部が好ましく、5質量部〜15質量部がより好ましい。前記含有量が、3質量部以上であると、結晶性ポリエステル樹脂によるシャープメルト化が不十分なため低温定着性に劣るという問題を防ぐことができ、20質量部以下であると、耐熱保存性が低下すること、及び画像のかぶりが生じやすくなるという問題を防ぐことができる。前記含有量が、前記より好ましい範囲内であると、高画質、及び低温定着性の全てに優れる点で有利である。
The molecular structure of the crystalline polyester resin can be confirmed by X-ray diffraction, GC / MS, LC / MS, IR measurement, etc. in addition to NMR measurement by solution or solid. As a simple example, there is a method of detecting, as a crystalline polyester resin, an infrared absorption spectrum having an absorption based on δCH (out-of-plane variable vibration) of olefin at 965 ± 10 cm −1 or 990 ± 10 cm −1 .
There is no restriction | limiting in particular as content of the said crystalline polyester resin, Although it can select suitably according to the objective, 3 mass parts-20 mass parts are preferable with respect to 100 mass parts of the said toner, and 5 mass parts. -15 mass parts is more preferable. When the content is 3 parts by mass or more, it is possible to prevent the problem of poor low-temperature fixability due to insufficient sharp melting with a crystalline polyester resin. Can be prevented, and the problem that image fogging easily occurs. When the content is within the more preferable range, it is advantageous in that it is excellent in all of high image quality and low temperature fixability.
<その他の成分>
前記その他の成分としては、例えば、離型剤、着色剤、帯電制御剤、外添剤、流動性向上剤、クリーニング性向上剤、磁性材料などが挙げられる。
<Other ingredients>
Examples of the other components include a release agent, a colorant, a charge control agent, an external additive, a fluidity improver, a cleaning property improver, and a magnetic material.
−離型剤−
前記離型剤としては、特に制限はなく、公知のものの中から適宜選択することができる。
ロウ類及びワックス類の離型剤としては、例えば、カルナウバワックス、綿ロウ、木ロウライスワックス等の植物系ワックス;ミツロウ、ラノリン等の動物系ワックス;オゾケライト、セルシン等の鉱物系ワックス;パラフィン、マイクロクリスタリン、ペトロラタム等の石油ワックス;などの天然ワックスが挙げられる。
また、これら天然ワックスのほか、フィッシャー・トロプシュワックス、ポリエチレン、ポリプロピレン等の合成炭化水素ワックス;エステル、ケトン、エーテル等の合成ワックス;などが挙げられる。
前記離型剤の含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、前記トナー100質量部に対して、2質量部〜10質量部が好ましく、3質量部〜8質量部がより好ましい。
-Release agent-
There is no restriction | limiting in particular as said mold release agent, It can select suitably from well-known things.
Examples of mold release agents for waxes and waxes include plant waxes such as carnauba wax, cotton wax, and wood wax rice wax; animal waxes such as beeswax and lanolin; mineral waxes such as ozokerite and cercin; paraffin And natural waxes such as petroleum waxes such as microcrystalline and petrolatum.
In addition to these natural waxes, synthetic hydrocarbon waxes such as Fischer-Tropsch wax, polyethylene, and polypropylene; synthetic waxes such as esters, ketones, and ethers;
There is no restriction | limiting in particular as content of the said mold release agent, Although it can select suitably according to the objective, 2 mass parts-10 mass parts are preferable with respect to 100 mass parts of said toner, 3 mass parts- 8 parts by mass is more preferable.
−着色剤−
前記着色剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、黒色顔料、イエロー顔料、マゼンタ顔料、シアン顔料などが挙げられる。
前記着色剤の含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、前記トナー100質量部に対して、1質量部〜15質量部が好ましく、3質量部〜10質量部がより好ましい。
前記着色剤は、樹脂と複合化されたマスターバッチとして用いることもできる。マスターバッチの製造又はマスターバッチとともに混練される樹脂としては、例えば、前記他のポリエステル樹脂の他にポリスチレン、ポリp−クロロスチレン、ポリビニルトルエン等のスチレン又はその置換体の重合体など、目的に応じて適宜選択することができる。
-Colorant-
There is no restriction | limiting in particular as said colorant, According to the objective, it can select suitably, For example, a black pigment, a yellow pigment, a magenta pigment, a cyan pigment etc. are mentioned.
There is no restriction | limiting in particular as content of the said coloring agent, Although it can select suitably according to the objective, 1 mass part-15 mass parts are preferable with respect to 100 mass parts of said toners, and 3 mass parts-10 parts. Part by mass is more preferable.
The colorant can also be used as a master batch combined with a resin. As the resin to be kneaded together with the production of the master batch or the master batch, for example, in addition to the above other polyester resins, styrene such as polystyrene, poly p-chlorostyrene, polyvinyltoluene, etc. Can be selected as appropriate.
前記マスターバッチは、マスターバッチ用の樹脂と着色剤とを高せん断力をかけて混合し、混練して得ることができる。この際、着色剤と樹脂の相互作用を高めるために、有機溶剤を用いることができる。また、いわゆるフラッシング法と呼ばれる着色剤の水を含んだ水性ペーストを樹脂と有機溶剤とともに混合混練を行い、着色剤を樹脂側に移行させ、水分と有機溶剤成分を除去する方法も着色剤のウエットケーキをそのまま用いることができるため乾燥する必要がなく、好ましく用いられる。 The masterbatch can be obtained by mixing and kneading a masterbatch resin and a colorant under high shearing force. At this time, an organic solvent can be used in order to enhance the interaction between the colorant and the resin. In addition, a so-called flushing method, which is a wet method of colorant, is a method of mixing and kneading an aqueous paste containing water of a colorant together with a resin and an organic solvent, transferring the colorant to the resin side, and removing moisture and organic solvent components. Since the cake can be used as it is, it does not need to be dried and is preferably used.
−帯電制御剤−
前記帯電制御剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ニグロシン系染料、トリフェニルメタン系染料、クロム含有金属錯体染料、モリブデン酸キレート顔料、ローダミン系染料、アルコキシ系アミン、4級アンモニウム塩(フッ素変性4級アンモニウム塩を含む)、アルキルアミド、燐の単体又は化合物、タングステンの単体又は化合物、フッ素系活性剤、サリチル酸金属塩及び、サリチル酸誘導体の金属塩などが挙げられる。
前記帯電制御剤の含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、前記トナー100質量部に対して、0.1質量部〜10質量部が好ましく、0.2質量部〜5質量部がより好ましい。
-Charge control agent-
The charge control agent is not particularly limited and may be appropriately selected depending on the intended purpose.For example, nigrosine dyes, triphenylmethane dyes, chromium-containing metal complex dyes, molybdate chelate pigments, rhodamine dyes, Alkoxy amines, quaternary ammonium salts (including fluorine-modified quaternary ammonium salts), alkylamides, phosphorus simple substances or compounds, tungsten simple substances or compounds, fluorine activators, salicylic acid metal salts, metal salts of salicylic acid derivatives, etc. Is mentioned.
The content of the charge control agent is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 0.1 parts by mass to 10 parts by mass with respect to 100 parts by mass of the toner. 2 mass parts-5 mass parts are more preferable.
−外添剤−
前記外添剤としては酸化物微粒子の他に、無機微粒子や疎水化処理無機微粒子を併用することができるが、疎水化処理された一次粒子の平均粒径は1nm〜100nmが好ましく、5nm〜70nmの無機微粒子がより好ましい。
前記外添剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、シリカ微粒子、疎水性シリカ、脂肪酸金属塩(例えばステアリン酸亜鉛、ステアリン酸アルミニウム等)、金属酸化物(例えばチタニア、アルミナ、酸化錫、酸化アンチモン等)、フルオロポリマーなどが挙げられる。
好適な添加剤としては、疎水化されたシリカ、チタニア、酸化チタン、アルミナ微粒子が挙げられる。
前記外添剤の含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、前記トナー100質量部に対して、0.1質量部〜5質量部が好ましく、0.3質量部〜3質量部がより好ましい。
-External additive-
As the external additive, in addition to oxide fine particles, inorganic fine particles and hydrophobized inorganic particles can be used in combination, but the average particle size of the hydrophobized primary particles is preferably 1 nm to 100 nm, and 5 nm to 70 nm. The inorganic fine particles are more preferable.
The external additive is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include silica fine particles, hydrophobic silica, fatty acid metal salts (for example, zinc stearate and aluminum stearate), and metal oxides. (For example, titania, alumina, tin oxide, antimony oxide, etc.), fluoropolymer, and the like.
Suitable additives include hydrophobized silica, titania, titanium oxide, and alumina fine particles.
The content of the external additive is not particularly limited and may be appropriately selected depending on the intended purpose. 3 mass parts-3 mass parts are more preferable.
−流動性向上剤−
前記流動性向上剤は、表面処理を行って、疎水性を上げ、高湿度下においても流動特性や帯電特性の悪化を防止可能なものであれば、特に制限はなく、目的に応じて適宜選択することができ、例えば、シランカップリング剤、シリル化剤、フッ化アルキル基を有するシランカップリング剤、有機チタネート系カップリング剤、アルミニウム系のカップリング剤、シリコーンオイル、変性シリコーンオイルなどが挙げられる。前記シリカ、前記酸化チタンは、このような流動性向上剤により表面処理行い、疎水性シリカ、疎水性酸化チタンとして使用するのが特に好ましい。
-Fluidity improver-
The fluidity improver is not particularly limited as long as it is surface-treated to increase hydrophobicity and prevent deterioration of flow characteristics and charging characteristics even under high humidity, and is appropriately selected according to the purpose. For example, silane coupling agents, silylating agents, silane coupling agents having an alkyl fluoride group, organic titanate coupling agents, aluminum coupling agents, silicone oils, modified silicone oils, etc. It is done. It is particularly preferable that the silica and the titanium oxide are surface-treated with such a fluidity improver and used as hydrophobic silica and hydrophobic titanium oxide.
−クリーニング性向上剤−
前記クリーニング性向上剤は、感光体や一次転写媒体に残存する転写後の現像剤を除去するために前記トナーに添加されるものであれば、特に制限はなく、目的に応じて適宜選択することができ、例えば、ステアリン酸亜鉛、ステアリン酸カルシウム、ステアリン酸等の脂肪酸金属塩、ポリメチルメタクリレート微粒子、ポリスチレン微粒子等のソープフリー乳化重合により製造されたポリマー微粒子などが挙げられる。
-Cleaning improver-
The cleaning property improving agent is not particularly limited as long as it is added to the toner in order to remove the developer after transfer remaining on the photosensitive member or the primary transfer medium, and is appropriately selected according to the purpose. Examples thereof include fatty acid metal salts such as zinc stearate, calcium stearate and stearic acid, polymer fine particles produced by soap-free emulsion polymerization such as polymethyl methacrylate fine particles and polystyrene fine particles.
−磁性材料−
前記磁性材料としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、鉄粉、マグネタイト、フェライトなどが挙げられる。これらの中でも、色調の点で白色のものが好ましい。
-Magnetic material-
There is no restriction | limiting in particular as said magnetic material, According to the objective, it can select suitably, For example, iron powder, magnetite, a ferrite, etc. are mentioned. Among these, white is preferable in terms of color tone.
<ガラス転移温度(Tg1st)>
前記トナーは、示差走査熱量測定(DSC)の昇温1回目におけるガラス転移温度(Tg1st)が、20℃以上50℃以下であることが好ましい。
従来のトナーであると、Tgが50℃以下程度になると、夏場や熱帯地方を想定したトナーの輸送時、及び保管環境での温度変化によりトナーの凝集が発生しやすくなる。その結果、トナーボトル中での固化、及び現像機内でのトナーの固着が発生する。また、トナーボトル内でのトナー詰りによる補給不良、及び現像機内でのトナー固着による画像異常が発生しやすくなる。
本発明の前記トナーは、従来のトナーよりTgが低い。しかし、トナー中の低Tg成分である、上記構造式1)〜3)のいずれかで表される構造を有するポリエステル樹脂が非線状であるため、本発明の前記トナーは、耐熱保存性を保持することができる。特に、上記構造式1)〜3)のいずれかで表される構造を有するポリエステル樹脂が凝集力の高いウレタン結合又はウレア結合を有する場合には、耐熱保存性を保持する効果がより顕著になる。
前記Tg1stが、20℃以上であると、耐熱保存性の低下、現像機内でのブロッキング、及び感光体へのフィルミングが発生するという問題を防ぐことができ、50℃以下であると、トナーの低温定着性が低下するという問題を防ぐことができる。
<Glass transition temperature (Tg1st)>
The toner preferably has a glass transition temperature (Tg1st) of 20 ° C. or more and 50 ° C. or less at the first temperature increase in differential scanning calorimetry (DSC).
In the case of a conventional toner, when the Tg is about 50 ° C. or less, toner aggregation is likely to occur due to temperature changes in the summer environment and the tropical region during transportation of the toner and in a storage environment. As a result, solidification in the toner bottle and fixation of the toner in the developing machine occur. Also, replenishment failure due to toner clogging in the toner bottle and image abnormality due to toner fixation in the developing machine are likely to occur.
The toner of the present invention has a lower Tg than conventional toners. However, since the polyester resin having a structure represented by any one of the above structural formulas 1) to 3), which is a low Tg component in the toner, is non-linear, the toner of the present invention has heat resistant storage stability. Can be held. In particular, when the polyester resin having the structure represented by any one of the structural formulas 1) to 3) has a urethane bond or a urea bond having a high cohesive force, the effect of maintaining heat-resistant storage stability becomes more remarkable. .
When Tg1st is 20 ° C. or higher, problems such as deterioration in heat-resistant storage stability, blocking in the developing machine, and filming on the photoreceptor can be prevented. It is possible to prevent the problem that the low-temperature fixability is lowered.
本発明の好ましい態様として、前記ポリエステル樹脂が、上記1)〜3)のいずれかで表される構造を有するポリエステル樹脂及び前記他のポリエステル樹脂の2種類を含有し、前記ポリエステル樹脂を含有するトナーのTg1stが、20℃以上50℃以下である態様が挙げられる。
また、前記トナーの示差走査熱量測定(DSC)の昇温1回目のガラス転移温度(Tg1st)と昇温2回目のガラス転移温度(Tg2nd)との差(Tg1st−Tg2nd)としては、特に制限はなく、目的に応じて適宜選択することができるが、10℃以上であることがより好ましい。前記差の上限は、特に制限はなく、目的に応じて適宜選択することができるが、前記差(Tg1st−Tg2nd)は、50℃以下が好ましい。
本発明の好ましい態様として、前記ポリエステル樹脂に、更に結晶性ポリエステル樹脂を含有し、これらを含有するトナーのTg1stとTg2ndとの差(Tg1st−Tg2nd)が、10℃以上である態様が挙げられる。
前記差が10℃以上であると、より低温定着性に優れる点で有利である。前記差が10℃以上であることは、加熱前(昇温1回目の前)には非相溶状態で存在していた前記結晶性ポリエステル樹脂と、前記ポリエステル樹脂とが、加熱後(昇温1回目の後)には相溶状態になることを意味する。
なお、加熱後の相溶状態は、完全な相溶状態である必要はない。
前記トナーの融点としては、特に制限はなく、目的に応じて適宜選択することができるが、60℃以上80℃以下が好ましい。
As a preferred embodiment of the present invention, the polyester resin contains two types of the polyester resin having the structure represented by any one of the above 1) to 3) and the other polyester resin, and contains the polyester resin. The aspect whose Tg1st of this is 20 degreeC or more and 50 degrees C or less is mentioned.
The difference (Tg1st−Tg2nd) between the glass transition temperature (Tg1st) of the first temperature increase and the glass transition temperature (Tg2nd) of the second temperature increase in the differential scanning calorimetry (DSC) of the toner is not particularly limited. However, it is more preferably 10 ° C. or higher. The upper limit of the difference is not particularly limited and may be appropriately selected depending on the purpose. The difference (Tg1st−Tg2nd) is preferably 50 ° C. or less.
A preferred embodiment of the present invention includes an embodiment in which the polyester resin further contains a crystalline polyester resin, and the difference between Tg1st and Tg2nd (Tg1st−Tg2nd) of the toner containing these is 10 ° C. or more.
When the difference is 10 ° C. or more, it is advantageous in that the low-temperature fixability is excellent. The difference of 10 ° C. or more indicates that the crystalline polyester resin and the polyester resin, which existed in an incompatible state before heating (before the first temperature increase), are heated (temperature increase). This means that after the first time, a compatible state is reached.
In addition, the compatible state after a heating does not need to be a complete compatible state.
There is no restriction | limiting in particular as melting | fusing point of the said toner, Although it can select suitably according to the objective, 60 to 80 degreeC is preferable.
<体積平均粒径>
前記トナーの体積平均粒径としては、特に制限はなく、目的に応じて適宜選択することができるが、3μm以上7μm以下であることが好ましい。また、個数平均粒径に対する体積平均粒径の比は1.2以下であることが好ましい。また、体積平均粒径が2μm以下である成分を1個数%以上10個数%以下含有することが好ましい。
<Volume average particle diameter>
The volume average particle diameter of the toner is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 3 μm or more and 7 μm or less. The ratio of the volume average particle diameter to the number average particle diameter is preferably 1.2 or less. Further, it is preferable to contain 1% by number or more and 10% by number or less of a component having a volume average particle diameter of 2 μm or less.
<トナー及びトナー構成成分の各種特性の算出方法及び分析方法>
前記ポリエステル樹脂、前記結晶性ポリエステル樹脂、及び離型剤のSP値、Tg、酸価、水酸基価、分子量、及び融点は、それぞれ、それ自体について測定してもよいが、実際のトナーからゲル浸透クロマトグラフィー(GPC)等により分離を行い、その分離した各成分について後述の分析手法を採ることで、SP値、Tg、分子量、融点、構成成分の質量比を算出してもよい。
GPCによる各成分の分離は、例えば、以下の方法により行うことができる。
THF(テトラヒドロフラン)を移動相としたGPC測定において、溶出液についてフラクションコレクターなどにより分取を行い、溶出曲線の全面積分のうちの所望の分子量部分に相当するフラクションをまとめる。
このまとめた溶出液をエバポレーターなどにより濃縮及び乾燥した後、固形分を重クロロホルム又は重THFなどの重溶媒に溶解させ、1H−NMR測定を行い、各元素の積分比率から、溶出成分における樹脂の構成モノマー比率を算出する。
また、他の手法としては、溶出液を濃縮後、水酸化ナトリウムなどにより加水分解を行い、分解生成物を高速液体クロマトグラフィー(HPLC)などにより定性定量分析することで構成モノマー比率を算出する。
なお、前記トナーの製造方法が、前記非線状の反応性前駆体と前記硬化剤との伸長反応及び/又は架橋反応によりポリエステル樹脂を生成しながら、トナー母体粒子を形成する場合には、実際のトナーからGPC等により分離を行い、前記ポリエステル樹脂のTgなどを求めてもよいし、別途、前記非線状の反応性前駆体と前記硬化剤との伸長反応及び/又は架橋反応によりポリエステル樹脂を合成し、その合成したポリエステル樹脂からTgなどを測定してもよい。
<Calculation method and analysis method of various characteristics of toner and toner component>
SP value, Tg, acid value, hydroxyl value, molecular weight, and melting point of the polyester resin, the crystalline polyester resin, and the release agent may be measured on their own, but gel penetration from an actual toner It is possible to calculate the SP value, Tg, molecular weight, melting point, and mass ratio of the constituent components by performing separation by chromatography (GPC) or the like, and taking the analysis method described later for the separated components.
Separation of each component by GPC can be performed, for example, by the following method.
In GPC measurement using THF (tetrahydrofuran) as a mobile phase, the eluate is fractionated by a fraction collector or the like, and fractions corresponding to a desired molecular weight portion of the entire surface of the elution curve are collected.
After concentrating and drying the collected eluate with an evaporator or the like, the solid content is dissolved in a heavy solvent such as deuterated chloroform or deuterated THF, and 1 H-NMR measurement is performed. The constituent monomer ratio of is calculated.
As another method, after concentrating the eluate, it is hydrolyzed with sodium hydroxide or the like, and the decomposition product is subjected to qualitative quantitative analysis by high performance liquid chromatography (HPLC) to calculate the constituent monomer ratio.
In the case where the toner base particles are formed by forming the polyester resin by the elongation reaction and / or the cross-linking reaction between the nonlinear reactive precursor and the curing agent, The toner may be separated from the toner by GPC or the like to obtain Tg of the polyester resin, or separately, the polyester resin may be subjected to an extension reaction and / or a crosslinking reaction between the nonlinear reactive precursor and the curing agent. And Tg and the like may be measured from the synthesized polyester resin.
<<トナー構成成分の分離手段>>
前記トナーを分析する際の各成分の分離手段の一例を詳細に示す。
まず、トナー1gを100mLのTHF中に投入し、25℃の条件下、30分間攪拌しながら可溶分が溶解した溶解液を得る。
これを目開き0.2μmのメンブランフィルターにてろ過し、トナー中のTHF可溶分を得る。
次いで、これをTHFに溶解してGPC測定用の試料とし、前述の各樹脂の分子量測定に用いるGPCに注入する。
一方、GPCの溶出液排出口にフラクションコレクターを配置して、所定のカウントごとに溶出液を分取しておき、溶出曲線の溶出開始(曲線の立ち上がり)から面積率で5%毎に溶出液を得る。
次いで、各溶出分について、1mLの重クロロホルムに30mgのサンプルを溶解させ、基準物質として0.05体積%のテトラメチルシラン(TMS)を添加する。
溶液を5mm径のNMR測定用ガラス管に充填し、核磁気共鳴装置(日本電子株式会社製JNM−AL400)を用い、23℃〜25℃の温度下、128回の積算を行い、スペクトルを得る。
トナーに含まれる前記ポリエステル樹脂及び前記結晶性ポリエステル樹脂などのモノマー組成、及び構成比率は得られたスペクトルのピーク積分比率から求めることができる。
例えば、以下のようにピークの帰属を行い、それぞれの積分比から構成モノマーの成分比率を求める。
ピークの帰属は、例えば、
8.25ppm付近:トリメリット酸のベンゼン環由来(水素1個分)
8.07ppm〜8.10ppm付近:テレフタル酸のベンゼン環由来(水素4個分)
7.1ppm〜7.25ppm付近:ビスフェノールAのベンゼン環由来(水素4個分)
6.8ppm付近:ビスフェノールAのベンゼン環由来(水素4個分)及びフマル酸の二重結合由来(水素2個分)
5.2ppm〜5.4ppm付近:ビスフェノールAプロピレンオキサイド付加物のメチン由来(水素1個分)
3.7ppm〜4.7ppm付近:ビスフェノールAプロピレンオキサイド付加物のメチレン由来(水素2個分)及びビスフェノールAエチレンオキサイド付加物のメチレン由来(水素4個分)
1.6ppm付近:ビスフェノールAのメチル基由来(水素6個分)
とすることができる。
これらの結果から、例えば、上記構造式1)〜3)のいずれかで表される構造を有するポリエステル樹脂が90%以上を占めるフラクションに回収された抽出物を上記構造式1)〜3)のいずれかで表される構造を有するポリエステル樹脂として扱うことができる。
また、同様に前記他のポリエステル樹脂が90%以上を占めるフラクションに回収された抽出物を前記他のポリエステル樹脂として扱うことができる。
また、前記結晶性ポリエステル樹脂が90%以上を占めるフラクションに回収された抽出物を前記結晶性ポリエステル樹脂として扱うことができる。
<< Toner component separation means >>
An example of the separation means for each component when analyzing the toner will be described in detail.
First, 1 g of toner is put into 100 mL of THF, and a solution in which the soluble components are dissolved is obtained while stirring for 30 minutes at 25 ° C.
This is filtered through a membrane filter having an opening of 0.2 μm to obtain a THF soluble component in the toner.
Subsequently, this is melt | dissolved in THF, it is set as the sample for GPC measurement, and it inject | pours into GPC used for the molecular weight measurement of each above-mentioned resin.
On the other hand, a fraction collector is placed at the eluate discharge port of GPC, and the eluate is collected every predetermined count, and the eluate is eluted every 5% in area ratio from the elution curve elution start (curve rise). Get.
Next, for each elution, 30 mg of sample is dissolved in 1 mL of deuterated chloroform, and 0.05% by volume of tetramethylsilane (TMS) is added as a reference substance.
The solution is filled in a 5 mm diameter glass tube for NMR measurement, and a spectrum is obtained by performing integration 128 times at a temperature of 23 ° C. to 25 ° C. using a nuclear magnetic resonance apparatus (JNM-AL400 manufactured by JEOL Ltd.). .
The monomer composition and the composition ratio of the polyester resin and the crystalline polyester resin contained in the toner can be obtained from the peak integration ratio of the obtained spectrum.
For example, peak assignment is performed as follows, and the component ratio of the constituent monomer is determined from each integral ratio.
The attribution of the peak is, for example,
Near 8.25 ppm: derived from benzene ring of trimellitic acid (for one hydrogen)
8.07 ppm to around 8.10 ppm: derived from benzene ring of terephthalic acid (for 4 hydrogens)
7.1 ppm to 7.25 ppm vicinity: derived from benzene ring of bisphenol A (for 4 hydrogens)
Around 6.8 ppm: derived from benzene ring of bisphenol A (for 4 hydrogens) and from double bond of fumaric acid (for 2 hydrogens)
5.2 ppm to around 5.4 ppm: methine derived from bisphenol A propylene oxide adduct (one hydrogen)
3.7 ppm to around 4.7 ppm: bisphenol A propylene oxide adduct derived from methylene (for 2 hydrogens) and bisphenol A ethylene oxide adduct derived from methylene (for 4 hydrogens)
Around 1.6 ppm: derived from methyl group of bisphenol A (for 6 hydrogens)
It can be.
From these results, for example, the extract recovered in the fraction in which the polyester resin having the structure represented by any one of the structural formulas 1) to 3) occupies 90% or more is represented by the structural formulas 1) to 3). It can be handled as a polyester resin having a structure represented by either.
Similarly, the extract recovered in the fraction in which the other polyester resin occupies 90% or more can be treated as the other polyester resin.
Moreover, the extract recovered in the fraction in which the crystalline polyester resin occupies 90% or more can be handled as the crystalline polyester resin.
<<水酸基価、酸価の測定方法>>
水酸基価は、JIS K0070−1966に準拠した方法を用いて測定することができる。
具体的には、まず、試料0.5gを100mLのメスフラスコに精秤し、これにアセチル化試薬5mLを加える。次に、100±5℃の温浴中で1時間〜2時間加熱した後、フラスコを温浴から取り出して放冷する。更に、水を加えて振り動かして無水酢酸を分解する。
次に、無水酢酸を完全に分解させるために、再びフラスコを温浴中で10分間以上加熱して放冷した後、有機溶剤でフラスコの壁を十分に洗う。更に、電位差自動滴定装置DL−53 Titrator(メトラー・トレド社製)及び電極DG113−SC(メトラー・トレド社製)を用いて、23℃で水酸基価を測定し、解析ソフトLabX Light Version 1.00.000を用いて解析する。なお、装置の校正には、トルエン120mLとエタノール30mLの混合溶媒を用いる。
このとき、測定条件は、以下の通りである。
〔測定条件〕
Stir
Speed[%] 25
Time[s] 15
EQP titration
Titrant/Sensor
Titrant CH3ONa
Concentration[mol/L] 0.1
Sensor DG115
Unit of measurement mV
Predispensing to volume
Volume[mL] 1.0
Wait time[s] 0
Titrant addition Dynamic
dE(set)[mV] 8.0
dV(min)[mL] 0.03
dV(max)[mL] 0.5
Measure mode Equilibrium controlled
dE[mV] 0.5
dt[s] 1.0
t(min)[s] 2.0
t(max)[s] 20.0
Recognition
Threshold 100.0
Steepest jump only No
Range No
Tendency None
Termination
at maximum volume[mL] 10.0
at potential No
at slope No
after number EQPs Yes
n=1
comb.termination conditions No
Evaluation
Procedure Standard
Potential1 No
Potential2 No
Stop for reevaluation No
酸価は、JIS K0070−1992に準拠した方法を用いて測定することができる。
具体的には、まず、試料0.5g(酢酸エチル可溶分では0.3g)をトルエン120mLに添加して、23℃で約10時間撹拌することにより溶解させる。次に、エタノール30mLを添加して試料溶液とする。なお、試料が溶解しない場合は、ジオキサン、テトラヒドロフラン等の溶媒を用いる。
さらに、電位差自動滴定装置DL−53 Titrator(メトラー・トレド社製)及び電極DG113−SC(メトラー・トレド社製)を用いて、23℃で酸価を測定し、解析ソフトLabX Light Version 1.00.000を用いて解析する。
なお、装置の校正には、トルエン120mLとエタノール30mLの混合溶媒を用いる。
このとき、測定条件は、上記した水酸基価の場合と同様である。
酸価は、以上のようにして測定することができるが、具体的には、予め標定された0.1N水酸化カリウム/アルコール溶液で滴定し、滴定量から、酸価[mgKOH/g]=滴定量[mL]×N×56.1[mg/mL]/試料[g](ただし、Nは、0.1N水酸化カリウム/アルコール溶液のファクター)により酸価を算出する。
<< Method for measuring hydroxyl value and acid value >>
The hydroxyl value can be measured using a method based on JIS K0070-1966.
Specifically, first, 0.5 g of a sample is precisely weighed into a 100 mL volumetric flask, and 5 mL of an acetylating reagent is added thereto. Next, after heating in a 100 ± 5 ° C. warm bath for 1 to 2 hours, the flask is removed from the warm bath and allowed to cool. Furthermore, water is added and shaken to decompose acetic anhydride.
Next, in order to completely decompose acetic anhydride, the flask is again heated in a warm bath for 10 minutes or more and allowed to cool, and then the wall of the flask is thoroughly washed with an organic solvent. Furthermore, the hydroxyl value was measured at 23 ° C. using an automatic potentiometric titrator DL-53 Titrator (manufactured by METTLER TOLEDO) and electrode DG113-SC (manufactured by METTLER TOLEDO), and analysis software LabX Light Version 1.00 Analyze using .000. For calibration of the apparatus, a mixed solvent of 120 mL of toluene and 30 mL of ethanol is used.
At this time, the measurement conditions are as follows.
〔Measurement condition〕
Still
Speed [%] 25
Time [s] 15
EQP titration
Titrant / Sensor
Titrant CH 3 ONa
Concentration [mol / L] 0.1
Sensor DG115
Unit of measurement mV
Predispensing to volume
Volume [mL] 1.0
Wait time [s] 0
Titrant addition Dynamic
dE (set) [mV] 8.0
dV (min) [mL] 0.03
dV (max) [mL] 0.5
Measurement mode Equilibrium controlled
dE [mV] 0.5
dt [s] 1.0
t (min) [s] 2.0
t (max) [s] 20.0
Recognition
Threshold 100.0
Steppes jump only No
Range No
Tendency None
Termination
at maximum volume [mL] 10.0
at potential No
at slope No
after number EQPs Yes
n = 1
comb. termination conditions No
Evaluation
Procedure Standard
Potential1 No
Potentialial No
Stop for revaluation No
The acid value can be measured using a method based on JIS K0070-1992.
Specifically, first, 0.5 g of a sample (0.3 g in the case where ethyl acetate is soluble) is added to 120 mL of toluene and dissolved by stirring at 23 ° C. for about 10 hours. Next, 30 mL of ethanol is added to prepare a sample solution. When the sample does not dissolve, a solvent such as dioxane or tetrahydrofuran is used.
Furthermore, an acid value was measured at 23 ° C. using an automatic potentiometric titrator DL-53 Titator (manufactured by METTLER TOLEDO) and electrode DG113-SC (manufactured by METTLER TOLEDO), and analysis software LabX Light Version 1.00 Analyze using .000.
For calibration of the apparatus, a mixed solvent of 120 mL of toluene and 30 mL of ethanol is used.
At this time, the measurement conditions are the same as in the case of the hydroxyl value described above.
The acid value can be measured as described above. Specifically, titration is performed with a 0.1N potassium hydroxide / alcohol solution standardized in advance, and the acid value [mg KOH / g] = The acid value is calculated by titration [mL] × N × 56.1 [mg / mL] / sample [g] (where N is a factor of 0.1 N potassium hydroxide / alcohol solution).
<<融点、及びガラス転移温度(Tg)の測定方法>>
本発明における融点、ガラス転移温度(Tg)は、例えば、DSCシステム(示差走査熱量計)(「Q−200」、TAインスツルメント社製)を用いて測定することができる。
具体的には、対象試料の融点、ガラス転移温度は、下記手順により測定できる。
まず、対象試料約5.0mgをアルミニウム製の試料容器に入れ、試料容器をホルダーユニットに載せ、電気炉中にセットする。次いで、窒素雰囲気下、−80℃から昇温速度10℃/minにて150℃まで加熱する(昇温1回目)。その後、150℃から降温速度10℃/minにて−80℃まで冷却させ、更に昇温速度10℃/minにて150℃まで加熱(昇温2回目)する。この昇温1回目、及び昇温2回目のそれぞれにおいて、示差走査熱量計(「Q−200」、TAインスツルメント社製)を用いてDSC曲線を計測する。
得られるDSC曲線から、Q−200システム中の解析プログラムを用いて、1回目の昇温時におけるDSC曲線を選択し、対象試料の昇温1回目におけるガラス転移温度を求めることができる。また同様に、2回目の昇温時におけるDSC曲線を選択し、対象試料の昇温2回目におけるガラス転移温度を求めることができる。
また、得られるDSC曲線から、Q−200システム中の解析プログラムを用いて、1回目の昇温時におけるDSC曲線を選択し、対象試料の昇温1回目における吸熱ピークトップ温度を融点として求めることができる。また同様に、2回目の昇温時におけるDSC曲線を選択し、対象試料の昇温2回目における吸熱ピークトップ温度を融点として求めることができる。
本明細書では、対象試料としてトナーを用いた際の、1回目昇温時におけるガラス転移温度をTg1st、2回目昇温時におけるガラス転移温度をTg2ndとする。
また、本明細書では、前記ポリエステル樹脂、前記結晶性ポリエステル樹脂、更には前記離型剤等のその他構成成分のガラス転移温度、融点については、特に断りが無い場合、2回目昇温時における吸熱ピークトップ温度、Tgを各対象試料の融点、Tgとする。
<< Measurement Method of Melting Point and Glass Transition Temperature (Tg) >>
The melting point and glass transition temperature (Tg) in the present invention can be measured using, for example, a DSC system (differential scanning calorimeter) (“Q-200”, manufactured by TA Instruments).
Specifically, the melting point and glass transition temperature of the target sample can be measured by the following procedure.
First, about 5.0 mg of a target sample is placed in an aluminum sample container, and the sample container is placed on a holder unit and set in an electric furnace. Next, heating is performed from −80 ° C. to 150 ° C. at a temperature rising rate of 10 ° C./min in a nitrogen atmosphere (first temperature increase). Thereafter, the temperature is decreased from 150 ° C. to −80 ° C. at a temperature decrease rate of 10 ° C./min, and further heated to 150 ° C. at a temperature increase rate of 10 ° C./min (second temperature increase). In each of the first temperature increase and the second temperature increase, the DSC curve is measured using a differential scanning calorimeter (“Q-200”, manufactured by TA Instruments).
From the obtained DSC curve, the DSC curve at the first temperature rise can be selected using the analysis program in the Q-200 system, and the glass transition temperature at the first temperature rise of the target sample can be obtained. Similarly, the DSC curve at the second temperature increase can be selected, and the glass transition temperature at the second temperature increase of the target sample can be obtained.
Further, from the obtained DSC curve, using the analysis program in the Q-200 system, the DSC curve at the first temperature rise is selected, and the endothermic peak top temperature at the first temperature rise of the target sample is obtained as the melting point. Can do. Similarly, a DSC curve at the second temperature increase can be selected, and the endothermic peak top temperature at the second temperature increase of the target sample can be obtained as the melting point.
In this specification, when the toner is used as the target sample, the glass transition temperature at the first temperature rise is Tg1st, and the glass transition temperature at the second temperature rise is Tg2nd.
In addition, in the present specification, unless otherwise specified, the endothermic heat at the second temperature rise is the glass transition temperature and the melting point of the polyester resin, the crystalline polyester resin, and the other components such as the release agent. Let the peak top temperature and Tg be the melting point and Tg of each target sample.
<<粒度分布の測定方法>>
前記トナーの体積平均粒径(D4)と個数平均粒径(Dn)、その比(D4/Dn)は、例えば、コールターカウンターTA−II、コールターマルチサイザーII(いずれもコールター社製)等を用いて測定することができる。
本発明ではコールターマルチサイザーIIを使用した。
以下に測定方法について述べる。
まず、電解水溶液100mL〜150mL中に分散剤として界面活性剤(好ましくはポリオキシエチレンアルキルエーテル(非イオン性の界面活性剤))を0.1mL〜5mL加える。ここで、電解水溶液とは1級塩化ナトリウムを用いて1質量%NaCl水溶液を調製したもので、例えばISOTON−II(コールター社製)が使用できる。ここで、更に測定試料を2mg〜20mg加える。
試料を懸濁した電解水溶液は、超音波分散器で約1分間〜3分間分散処理を行ない、前記測定装置により、アパーチャーとして100μmアパーチャーを用いて、トナー粒子又はトナーの体積、個数を測定して、体積分布と個数分布を算出する。
得られた分布から、トナーの体積平均粒径(D4)、個数平均粒径(Dn)を求めることができる。
チャンネルとしては、2.00μm以上2.52μm未満;2.52μm以上3.17μm未満;3.17μm以上4.00μm未満;4.00μm以上5.04μm未満;5.04μm以上6.35μm未満;6.35μm以上8.00μm未満;8.00μm以上10.08μm未満;10.08μm以上12.70μm未満;12.70μm以上16.00μm未満;16.00μm以上20.20μm未満;20.20μm以上25.40μm未満;25.40μm以上32.00μm未満;32.00μm以上40.30μm未満の13チャンネルを使用し、粒径2.00μm以上40.30μm未満の粒子を対象とする。
<< Measurement Method of Particle Size Distribution >>
For the volume average particle diameter (D4) and number average particle diameter (Dn) of the toner, the ratio (D4 / Dn) is, for example, Coulter Counter TA-II, Coulter Multisizer II (both manufactured by Coulter Co., Ltd.) or the like. Can be measured.
In the present invention, Coulter Multisizer II is used.
The measurement method is described below.
First, 0.1 mL to 5 mL of a surfactant (preferably polyoxyethylene alkyl ether (nonionic surfactant)) as a dispersant is added to 100 mL to 150 mL of the electrolytic aqueous solution. Here, the electrolytic aqueous solution is a 1 mass% NaCl aqueous solution prepared using primary sodium chloride, and for example, ISOTON-II (manufactured by Coulter) can be used. Here, 2 mg to 20 mg of a measurement sample is further added.
The electrolytic aqueous solution in which the sample is suspended is subjected to a dispersion treatment with an ultrasonic disperser for about 1 to 3 minutes, and the measurement device is used to measure the volume and number of toner particles or toner using a 100 μm aperture as the aperture. Calculate volume distribution and number distribution.
From the obtained distribution, the volume average particle diameter (D4) and the number average particle diameter (Dn) of the toner can be obtained.
As a channel, it is 2.00 micrometers or more and less than 2.52 micrometers; 2.52 micrometers or more and less than 3.17 micrometers; 3.17 micrometers or more and less than 4.00 micrometers; 4.00 micrometers or more and less than 5.04 micrometers; 5.04 micrometers or more and less than 6.35 micrometers; .35 μm or more and less than 8.00 μm; 8.00 μm or more and less than 10.08 μm; 10.08 μm or more and less than 12.70 μm; 12.70 μm or more and less than 16.00 μm; 16.00 μm or more and less than 20.20 μm; Less than 40 μm; 25.40 μm or more and less than 32.00 μm; 3 channels of 32.00 μm or more and less than 40.30 μm are used, and particles having a particle size of 2.00 μm or more and less than 40.30 μm are targeted.
<<分子量の測定>>
トナーの各構成成分の分子量は、例えば、以下の方法で測定することができる。
ゲルパーミエーションクロマトグラフィ(GPC)測定装置:GPC−8220GPC(東ソー社製)
カラム:TSKgel SuperHZM−H 15cm 3連(東ソー社製)
温度:40℃
溶媒:テトラヒドロフラン(THF)
流速:0.35mL/min
試料:0.15質量%の試料を0.4mL注入
試料の前処理:トナーをテトラヒドロフランTHF(安定剤含有和光純薬製)に0.15質量%で溶解後0.2μmフィルターで濾過し、その濾液を試料として用いる。
前記THF試料溶液を100μL注入して測定する。
試料の分子量測定にあたっては、試料の有する分子量分布を、数種の単分散ポリスチレン標準試料により作製された検量線の対数値とカウント数との関係から算出する。
検量線作成用の標準ポリスチレン試料としては、昭和電工社製ShowdexSTANDARDのStd.No S−7300、S−210、S−390、S−875、S−1980、S−10.9、S−629、S−3.0、S−0.580を用いる。
検出器にはRI(屈折率)検出器を用いる。
<< Measurement of molecular weight >>
The molecular weight of each component of the toner can be measured, for example, by the following method.
Gel permeation chromatography (GPC) measuring device: GPC-8220GPC (manufactured by Tosoh Corporation)
Column: TSKgel SuperHZM-H 15 cm triple (manufactured by Tosoh Corporation)
Temperature: 40 ° C
Solvent: tetrahydrofuran (THF)
Flow rate: 0.35 mL / min
Sample: 0.4 mL injection of 0.15% by mass sample Pretreatment of sample: Toner was dissolved in tetrahydrofuran THF (manufactured by Wako Pure Chemical Industries, Ltd.) at 0.15% by mass and filtered through a 0.2 μm filter. The filtrate is used as a sample.
100 μL of the THF sample solution is injected and measured.
In measuring the molecular weight of a sample, the molecular weight distribution of the sample is calculated from the relationship between the logarithmic value of a calibration curve prepared from several types of monodisperse polystyrene standard samples and the number of counts.
As a standard polystyrene sample for preparing a calibration curve, Showd STANDARD Std. No S-7300, S-210, S-390, S-875, S-1980, S-10.9, S-629, S-3.0, S-0.580 are used.
An RI (refractive index) detector is used as the detector.
<トナーの製造方法>
前記トナーの製造方法としては、特に制限はなく、目的に応じて適宜選択することができるが、前記トナーは、前記ポリエステル樹脂を含み、好ましく前記結晶性ポリエステル樹脂を更に含み、更に必要に応じて、前記離型剤、前記着色剤などを含む油相を水系媒体中で分散させることにより造粒されることが好ましい。特に前記ポリエステル樹脂が、上記構造式1)〜3)のいずれかで表される構造を有するポリエステル樹脂と、前記他のポリエステル樹脂との2種類のポリエステル樹脂を含んでいるとより好ましい。
また、前記トナーは、前記ポリエステル樹脂として、前記ポリエステルプレポリマー(前記R2のポリエステルの樹脂部と前記ポリイソシアネートとの反応生成物や、前記R2のポリエステルの樹脂部と前記一般式(I)で表されるイソシアネート化合物との反応生成物、つまり硬化剤と反応させる反応前駆体をいう)であるポリエステル樹脂と、ウレタン結合及びウレア結合を有しない前記他のポリエステル樹脂を含み、好ましくは前記結晶性ポリエステル樹脂を含み、更に必要に応じて、前記硬化剤、前記離型剤、前記着色剤などを含む油相を水系媒体中で分散させることにより造粒されることがさらに好ましい。
<Toner production method>
The toner production method is not particularly limited and may be appropriately selected depending on the intended purpose. However, the toner contains the polyester resin, preferably further contains the crystalline polyester resin, and further if necessary. It is preferable to granulate by dispersing an oil phase containing the release agent, the colorant and the like in an aqueous medium. In particular, it is more preferable that the polyester resin contains two types of polyester resins, that is, a polyester resin having a structure represented by any one of the above structural formulas 1) to 3) and the other polyester resin.
Further, the toner may be represented by the polyester prepolymer (the reaction product of the R2 polyester resin portion and the polyisocyanate, the R2 polyester resin portion and the general formula (I)) as the polyester resin. A polyester resin that is a reaction product with an isocyanate compound, that is, a reaction precursor to be reacted with a curing agent, and the other polyester resin having no urethane bond and urea bond, preferably the crystalline polyester It is more preferable that the composition is granulated by dispersing an oil phase containing a resin and further containing the curing agent, the mold release agent, the colorant and the like in an aqueous medium as necessary.
また、本発明においては、前記R2のポリエステルの樹脂部と前記一般式(I)で表されるイソシアネート化合物との反応生成物からなるプレポリマーを製造する際、次の条件に留意するのが好ましい。前記一般式(I)で表されるイソシアネート化合物としてジフェニルメタンジイソシアネート(MDI)を用いる場合、前記R2を含む中間体ポリエステルと前記ジフェニルメタンジイソシアネート(MDI)とを反応させる時の(MDIのイソシアネート基/中間体ポリエステルの水酸基)のモル比は1.5以上3.0未満となるようにするとよい。 In the present invention, it is preferable to pay attention to the following conditions when producing a prepolymer comprising a reaction product of the resin part of the polyester of R2 and the isocyanate compound represented by the general formula (I). . When diphenylmethane diisocyanate (MDI) is used as the isocyanate compound represented by the general formula (I), when the intermediate polyester containing R2 is reacted with the diphenylmethane diisocyanate (MDI) (isocyanate group / intermediate of MDI) The molar ratio of the hydroxyl group of the polyester is preferably 1.5 or more and less than 3.0.
このような前記トナーの製造方法の一例としては、公知の溶解懸濁法が挙げられる。前記トナーの製造方法の一例として、前記ポリエステルプレポリマーと前記硬化剤との伸長反応及び/又は架橋反応により上記構造式1)〜3)のいずれかで表される構造を有するポリエステル樹脂を生成しながら、トナー母体粒子を形成する方法を以下に示す。このような方法においては、水系媒体の調製、トナー材料を含有する油相の調製、トナー材料の乳化乃至分散、有機溶媒の除去を行う。 An example of such a method for producing the toner is a known dissolution suspension method. As an example of the method for producing the toner, a polyester resin having a structure represented by any one of the above structural formulas 1) to 3) is generated by an extension reaction and / or a crosslinking reaction between the polyester prepolymer and the curing agent. A method for forming toner base particles will be described below. In such a method, the aqueous medium is prepared, the oil phase containing the toner material is prepared, the toner material is emulsified or dispersed, and the organic solvent is removed.
−水系媒体(水相)の調製−
前記水系媒体の調製は、例えば、樹脂粒子を水系媒体に分散させることにより行うことができる。前記樹脂粒子の水系媒体中の添加量は、特に制限はなく、目的に応じて適宜選択することができるが、前記水系媒体100質量部に対して、0.5質量部〜10質量部が好ましい。
前記水系媒体としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、水、水と混和可能な溶媒、これらの混合物などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。これらの中でも、水が好ましい。
前記水と混和可能な溶媒としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、アルコール、ジメチルホルムアミド、テトラヒドロフラン、セロソルブ類、低級ケトン類などが挙げられる。前記アルコールとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、メタノール、イソプロパノール、エチレングリコールなどが挙げられる。前記低級ケトン類としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、アセトン、メチルエチルケトンなどが挙げられる。
-Preparation of aqueous medium (aqueous phase)-
The aqueous medium can be prepared, for example, by dispersing resin particles in an aqueous medium. The amount of the resin particles added to the aqueous medium is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 0.5 parts by mass to 10 parts by mass with respect to 100 parts by mass of the aqueous medium. .
There is no restriction | limiting in particular as said aqueous medium, According to the objective, it can select suitably, For example, water, the solvent miscible with water, these mixtures etc. are mentioned. These may be used individually by 1 type and may use 2 or more types together. Among these, water is preferable.
The solvent miscible with water is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include alcohols, dimethylformamide, tetrahydrofuran, cellosolves, and lower ketones. There is no restriction | limiting in particular as said alcohol, According to the objective, it can select suitably, For example, methanol, isopropanol, ethylene glycol etc. are mentioned. There is no restriction | limiting in particular as said lower ketone, According to the objective, it can select suitably, For example, acetone, methyl ethyl ketone, etc. are mentioned.
−油相の調製−
前記トナー材料を含有する油相の調製は、前記ポリエステルプレポリマーと、前記他のポリエステル樹脂と、前記結晶性ポリエステル樹脂とを少なくとも含み、更に必要に応じて前記硬化剤、前記離型剤、前記着色剤などを含むトナー材料を、有機溶媒中に溶解乃至分散させることにより行うことができる。
前記有機溶媒としては、特に制限はなく、目的に応じて適宜選択することができるが、除去が容易である点で、沸点が150℃未満の有機溶媒が好ましい。
前記沸点が150℃未満の有機溶媒としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、トルエン、キシレン、ベンゼン、四塩化炭素、塩化メチレン、1,2−ジクロロエタン、1,1,2−トリクロロエタン、トリクロロエチレン、クロロホルム、モノクロロベンゼン、ジクロロエチリデン、酢酸メチル、酢酸エチル、メチルエチルケトン、メチルイソブチルケトンなどが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
これらの中でも、酢酸エチル、トルエン、キシレン、ベンゼン、塩化メチレン、1,2−ジクロロエタン、クロロホルム、四塩化炭素等が好ましく、酢酸エチルがより好ましい。
-Preparation of oil phase-
Preparation of the oil phase containing the toner material includes at least the polyester prepolymer, the other polyester resin, and the crystalline polyester resin, and if necessary, the curing agent, the release agent, The toner material containing a colorant can be dissolved or dispersed in an organic solvent.
There is no restriction | limiting in particular as said organic solvent, Although it can select suitably according to the objective, The organic solvent whose boiling point is less than 150 degreeC is preferable at the point which is easy to remove.
The organic solvent having a boiling point of less than 150 ° C. is not particularly limited and may be appropriately selected depending on the intended purpose. For example, toluene, xylene, benzene, carbon tetrachloride, methylene chloride, 1,2-dichloroethane, 1 1,2-trichloroethane, trichloroethylene, chloroform, monochlorobenzene, dichloroethylidene, methyl acetate, ethyl acetate, methyl ethyl ketone, methyl isobutyl ketone, and the like. These may be used individually by 1 type and may use 2 or more types together.
Among these, ethyl acetate, toluene, xylene, benzene, methylene chloride, 1,2-dichloroethane, chloroform, carbon tetrachloride and the like are preferable, and ethyl acetate is more preferable.
−乳化乃至分散−
前記トナー材料の乳化乃至分散は、前記トナー材料を含有する油相を、前記水系媒体中に分散させることにより行うことができる。そして、前記トナー材料を乳化乃至分散させる際に、前記硬化剤と前記ポリエステルプレポリマーとを伸長反応及び/又は架橋反応させることにより、上記構造式1)〜3)のいずれかで表される構造を有するポリエステル樹脂が生成する。
上記構造式1)〜3)のいずれかで表される構造を有するポリエステル樹脂は、例えば、以下の(1)〜(3)の方法により生成させることができる。
(1)前記ポリエステルプレポリマーと前記硬化剤とを含む油相を、水系媒体中で乳化又は分散させ、水系媒体中で前記硬化剤と前記ポリエステルプレポリマーとを伸長反応及び/又は架橋反応させることにより上記構造式1)〜3)のいずれかで表される構造を有するポリエステル樹脂を生成させる方法。
(2)前記ポリエステルプレポリマーを含む油相を、予め前記硬化剤を添加した水系媒体中で乳化又は分散させ、水系媒体中で前記硬化剤と前記ポリエステルプレポリマーとを伸長反応及び/又は架橋反応させることにより上記構造式1)〜3)のいずれかで表される構造を有するポリエステル樹脂を生成させる方法。
(3)前記ポリエステルプレポリマーを含む油相を水系媒体中で乳化又は分散させた後で、水系媒体中に前記硬化剤を添加し、水系媒体中で粒子界面から前記硬化剤と前記ポリエステルプレポリマーとを伸長反応及び/又は架橋反応させることにより上記構造式1)〜3)のいずれかで表される構造を有するポリエステル樹脂を生成させる方法。
なお、粒子界面から前記硬化剤と前記ポリエステルプレポリマーとを伸長反応及び/又は架橋反応させる場合、生成するトナーの表面に優先的に上記構造式1)〜3)のいずれかで表される構造を有するポリエステル樹脂が形成され、トナー中に上記構造式1)〜3)のいずれかで表される構造を有するポリエステル樹脂の濃度勾配を設けることもできる。
-Emulsification or dispersion-
The emulsification or dispersion of the toner material can be performed by dispersing the oil phase containing the toner material in the aqueous medium. When the toner material is emulsified or dispersed, the curing agent and the polyester prepolymer are subjected to an extension reaction and / or a cross-linking reaction, whereby the structure represented by any one of the above structural formulas 1) to 3). This produces a polyester resin having
The polyester resin having the structure represented by any one of the above structural formulas 1) to 3) can be produced, for example, by the following methods (1) to (3).
(1) An oil phase containing the polyester prepolymer and the curing agent is emulsified or dispersed in an aqueous medium, and the curing agent and the polyester prepolymer are subjected to an extension reaction and / or a crosslinking reaction in the aqueous medium. To produce a polyester resin having a structure represented by any one of the above structural formulas 1) to 3).
(2) The oil phase containing the polyester prepolymer is emulsified or dispersed in an aqueous medium to which the curing agent is added in advance, and the curing agent and the polyester prepolymer are subjected to an extension reaction and / or a crosslinking reaction in the aqueous medium. To produce a polyester resin having a structure represented by any one of the above structural formulas 1) to 3).
(3) After emulsifying or dispersing the oil phase containing the polyester prepolymer in an aqueous medium, the curing agent is added to the aqueous medium, and the curing agent and the polyester prepolymer are added from the particle interface in the aqueous medium. A polyester resin having a structure represented by any one of the above structural formulas 1) to 3).
When the curing agent and the polyester prepolymer are subjected to an extension reaction and / or a crosslinking reaction from the particle interface, the structure represented by any one of the above structural formulas 1) to 3) is preferentially formed on the surface of the toner to be produced. A polyester resin having a structure represented by any one of the above structural formulas 1) to 3) may be provided in the toner.
上記構造式1)〜3)のいずれかで表される構造を有するポリエステル樹脂を生成させるための反応条件(反応時間、反応温度)としては、特に制限はなく、前記硬化剤と、前記ポリエステルプレポリマーとの組み合わせに応じて、適宜選択することができる。
前記反応時間としては、特に制限はなく、目的に応じて適宜選択することができるが、10分間〜40時間が好ましく、2時間〜24時間がより好ましい。
前記反応温度としては、特に制限はなく、目的に応じて適宜選択することができるが、0℃〜150℃が好ましく、40℃〜98℃がより好ましい。
前記水系媒体中において、前記ポリエステルプレポリマーを含有する分散液を安定に形成する方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、水系媒体相中に、トナー材料を溶媒に溶解乃至分散させて調製した油相を添加し、せん断力により分散させる方法などが挙げられる。
前記分散のための分散機としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、低速せん断式分散機、高速せん断式分散機、摩擦式分散機、高圧ジェット式分散機、超音波分散機などが挙げられる。
これらの中でも、分散体(油滴)の粒子径を2μm〜20μmに制御することができる点で、高速せん断式分散機が好ましい。
前記高速せん断式分散機を用いた場合、回転数、分散時間、分散温度等の条件は、目的に応じて適宜選択することができる。
前記回転数としては、特に制限はなく、目的に応じて適宜選択することができるが、1,000rpm〜30,000rpmが好ましく、5,000rpm〜20,000rpmがより好ましい。
前記分散時間としては、特に制限はなく、目的に応じて適宜選択することができるが、バッチ方式の場合、0.1分間〜5分間が好ましい。
前記分散温度としては、特に制限はなく、目的に応じて適宜選択することができるが、加圧下において、0℃〜150℃が好ましく、40℃〜98℃がより好ましい。なお、一般に、前記分散温度が高温である方が分散は容易である。
前記トナー材料を乳化乃至分散させる際の、水系媒体の使用量としては、特に制限はなく、目的に応じて適宜選択することができるが、トナー材料100質量部に対して、50質量部〜2,000質量部が好ましく、100質量部〜1,000質量部がより好ましい。
前記水系媒体の使用量が、50質量部以上であると、前記トナー材料の分散状態が悪くなって、所定の粒子径のトナー母体粒子が得られないという問題を防ぐことができ、2,000質量部以下であると、生産コストを抑えることができる。
The reaction conditions (reaction time, reaction temperature) for producing the polyester resin having the structure represented by any one of the above structural formulas 1) to 3) are not particularly limited, and the curing agent and the polyester pre-polymer are not limited. It can select suitably according to the combination with a polymer.
There is no restriction | limiting in particular as said reaction time, Although it can select suitably according to the objective, 10 minutes-40 hours are preferable, and 2 hours-24 hours are more preferable.
There is no restriction | limiting in particular as said reaction temperature, Although it can select suitably according to the objective, 0 to 150 degreeC is preferable and 40 to 98 degreeC is more preferable.
A method for stably forming the dispersion containing the polyester prepolymer in the aqueous medium is not particularly limited and may be appropriately selected depending on the intended purpose. For example, in the aqueous medium phase, the toner material And a method of adding an oil phase prepared by dissolving or dispersing in a solvent and dispersing it by shearing force.
The disperser for the dispersion is not particularly limited and can be appropriately selected according to the purpose. For example, a low-speed shear disperser, a high-speed shear disperser, a friction disperser, and a high-pressure jet disperser. And an ultrasonic disperser.
Among these, a high-speed shearing disperser is preferable in that the particle diameter of the dispersion (oil droplets) can be controlled to 2 μm to 20 μm.
When the high-speed shearing disperser is used, conditions such as the number of rotations, the dispersion time, and the dispersion temperature can be appropriately selected according to the purpose.
There is no restriction | limiting in particular as said rotation speed, Although it can select suitably according to the objective, 1,000 rpm-30,000 rpm are preferable, and 5,000 rpm-20,000 rpm are more preferable.
There is no restriction | limiting in particular as said dispersion | distribution time, Although it can select suitably according to the objective, In the case of a batch system, 0.1 minute-5 minutes are preferable.
There is no restriction | limiting in particular as said dispersion | distribution temperature, Although it can select suitably according to the objective, 0 degreeC-150 degreeC is preferable under pressure, and 40 degreeC-98 degreeC is more preferable. In general, dispersion is easier when the dispersion temperature is higher.
The amount of the aqueous medium used when emulsifying or dispersing the toner material is not particularly limited and may be appropriately selected depending on the intended purpose. It is 50 to 2 parts by mass with respect to 100 parts by mass of the toner material. 1,000 parts by mass is preferable, and 100 parts by mass to 1,000 parts by mass is more preferable.
When the amount of the aqueous medium used is 50 parts by mass or more, it is possible to prevent a problem that the dispersion state of the toner material is deteriorated and toner base particles having a predetermined particle diameter cannot be obtained. The production cost can be suppressed when the content is less than or equal to mass parts.
前記トナー材料を含有する油相を乳化乃至分散する際には、油滴等の分散体を安定化させ、所望の形状にすると共に粒度分布をシャープにする観点から、分散剤を用いることが好ましい。
前記分散剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、界面活性剤、難水溶性の無機化合物分散剤、高分子系保護コロイドなどが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。これらの中でも、界面活性剤が好ましい。
前記界面活性剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、陰イオン界面活性剤、陽イオン界面活性剤、非イオン界面活性剤、両性界面活性剤などを用いることができる。
前記陰イオン界面活性剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、アルキルベンゼンスルホン酸塩、α−オレフィンスルホン酸塩、リン酸エステルなどが挙げられる。これらの中でも、フルオロアルキル基を有するものが好ましい。
上記構造式1)〜3)のいずれかで表される構造を有するポリエステル樹脂を生成させる際の伸長反応及び/又は架橋反応には、触媒を用いることができる。
前記触媒としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ジブチルスズラウレート、ジオクチルスズラウレートなどが挙げられる。
When emulsifying or dispersing the oil phase containing the toner material, it is preferable to use a dispersant from the viewpoint of stabilizing the dispersion such as oil droplets to obtain a desired shape and sharpening the particle size distribution. .
There is no restriction | limiting in particular as said dispersing agent, According to the objective, it can select suitably, For example, surfactant, a slightly water-soluble inorganic compound dispersing agent, a polymeric protective colloid, etc. are mentioned. These may be used individually by 1 type and may use 2 or more types together. Among these, surfactants are preferable.
There is no restriction | limiting in particular as said surfactant, According to the objective, it can select suitably, For example, an anionic surfactant, a cationic surfactant, a nonionic surfactant, an amphoteric surfactant etc. are used. be able to.
There is no restriction | limiting in particular as said anionic surfactant, According to the objective, it can select suitably, For example, alkylbenzene sulfonate, (alpha) -olefin sulfonate, phosphate ester etc. are mentioned. Among these, those having a fluoroalkyl group are preferable.
A catalyst can be used for the elongation reaction and / or the cross-linking reaction when the polyester resin having the structure represented by any one of the above structural formulas 1) to 3) is produced.
The catalyst is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include dibutyltin laurate and dioctyltin laurate.
−有機溶媒の除去−
前記乳化スラリー等の分散液から有機溶媒を除去する方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、反応系全体を徐々に昇温させて、油滴中の有機溶媒を蒸発させる方法、分散液を乾燥雰囲気中に噴霧して、油滴中の有機溶媒を除去する方法などが挙げられる。
前記有機溶媒が除去されると、トナー母体粒子が形成される。トナー母体粒子に対しては、洗浄、乾燥等を行うことができ、さらに分級等を行うことができる。前記分級は、液中でサイクロン、デカンター、遠心分離などにより、微粒子部分を取り除くことにより行ってもよいし、乾燥後に分級操作を行ってもよい。
前記得られたトナー母体粒子は、前記外添剤、前記帯電制御剤等の粒子と混合してもよい。このとき、機械的衝撃力を印加することにより、トナー母体粒子の表面から前記外添剤等の粒子が脱離するのを抑制することができる。
前記機械的衝撃力を印加する方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、高速で回転する羽根を用いて混合物に衝撃力を印加する方法、高速気流中に混合物を投入し、加速させて粒子同士又は粒子を適当な衝突板に衝突させる方法などが挙げられる。
前記方法に用いる装置としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、オングミル(ホソカワミクロン社製)、I式ミル(日本ニューマチック社製)を改造して粉砕エアー圧力を下げた装置、ハイブリダイゼイションシステム(奈良機械製作所製)、クリプトロンシステム(川崎重工業社製)、自動乳鉢などが挙げられる。
-Removal of organic solvent-
The method for removing the organic solvent from the dispersion such as the emulsified slurry is not particularly limited and may be appropriately selected depending on the intended purpose. For example, the temperature of the entire reaction system is gradually raised, Examples include a method of evaporating the organic solvent, and a method of removing the organic solvent in the oil droplets by spraying the dispersion into a dry atmosphere.
When the organic solvent is removed, toner base particles are formed. The toner base particles can be washed, dried, etc., and further classified. The classification may be performed by removing fine particle portions in a liquid by a cyclone, a decanter, centrifugation, or the like, or may be performed after drying.
The obtained toner base particles may be mixed with particles such as the external additive and the charge control agent. At this time, by applying a mechanical impact force, it is possible to prevent the particles such as the external additive from detaching from the surface of the toner base particles.
The method for applying the mechanical impact force is not particularly limited and can be appropriately selected depending on the purpose. For example, a method for applying the impact force to the mixture using blades rotating at high speed, For example, a method may be used in which the mixture is charged and accelerated to cause the particles or particles to collide with an appropriate collision plate.
The apparatus used in the above method is not particularly limited and can be appropriately selected depending on the purpose. For example, an ang mill (manufactured by Hosokawa Micron), an I-type mill (manufactured by Nippon Pneumatic Co., Ltd.) and a pulverization air pressure are modified. And a hybridization system (manufactured by Nara Machinery Co., Ltd.), a kryptron system (manufactured by Kawasaki Heavy Industries, Ltd.), and an automatic mortar.
(現像剤)
本発明の現像剤は、少なくとも前記トナーを含み、必要に応じてキャリア等の適宜選択されるその他の成分を含む。
このため、転写性、帯電性等に優れ、高画質な画像を安定に形成することができる。なお、現像剤は、一成分現像剤であってもよいし、二成分現像剤であってもよいが、近年の情報処理速度の向上に対応した高速プリンタ等に使用する場合には、寿命が向上することから、二成分現像剤が好ましい。
<キャリア>
前記キャリアとしては、特に制限はなく、目的に応じて適宜選択することができるが、芯材と、芯材を被覆する樹脂層を有するものが好ましい。
(Developer)
The developer of the present invention contains at least the toner and, if necessary, other components such as a carrier as appropriate.
For this reason, it is excellent in transferability, chargeability, etc., and a high quality image can be formed stably. The developer may be a one-component developer or a two-component developer. However, when used in a high-speed printer or the like that supports an increase in information processing speed in recent years, the lifetime is shortened. A two-component developer is preferred because it improves.
<Career>
There is no restriction | limiting in particular as said carrier, Although it can select suitably according to the objective, What has a core material and the resin layer which coat | covers a core material is preferable.
(画像形成装置、及び画像形成方法)
本発明の画像形成装置は、静電潜像担持体と、静電潜像形成手段と、現像手段とを少なくとも有し、更に必要に応じて、その他の手段を有する。
本発明に関する画像形成方法は、静電潜像形成工程と、現像工程とを少なくとも含み、更に必要に応じて、その他の工程を含む。
前記画像形成方法は、前記画像形成装置により好適に行うことができ、前記静電潜像形成工程は、前記静電潜像形成手段により好適に行うことができ、前記現像工程は、前記現像手段により好適に行うことができ、前記その他の工程は、前記その他の手段により好適に行うことができる。
(Image forming apparatus and image forming method)
The image forming apparatus of the present invention includes at least an electrostatic latent image carrier, an electrostatic latent image forming unit, and a developing unit, and further includes other units as necessary.
The image forming method according to the present invention includes at least an electrostatic latent image forming step and a developing step, and further includes other steps as necessary.
The image forming method can be preferably performed by the image forming apparatus, the electrostatic latent image forming step can be preferably performed by the electrostatic latent image forming unit, and the developing step can be performed by the developing unit. The other steps can be preferably performed by the other means.
<静電潜像担持体>
前記静電潜像担持体の材質、構造、大きさとしては、特に制限はなく、公知のものの中から適宜選択することができ、その材質としては、例えば、アモルファスシリコン、セレン等の無機感光体、ポリシラン、フタロポリメチン等の有機感光体などが挙げられる。これらの中でも、長寿命性の点でアモルファスシリコンが好ましい。
<Electrostatic latent image carrier>
The material, structure, and size of the electrostatic latent image carrier are not particularly limited and may be appropriately selected from known materials. Examples of the material include inorganic photoreceptors such as amorphous silicon and selenium. And organic photoreceptors such as polysilane and phthalopolymethine. Among these, amorphous silicon is preferable in terms of long life.
<静電潜像形成手段>
前記静電潜像形成手段としては、前記静電潜像担持体上に静電潜像を形成する手段であれば、特に制限はなく、目的に応じて適宜選択することができ、例えば、前記静電潜像担持体の表面を帯電させる帯電部材と、前記静電潜像担持体の表面を像様に露光する露光部材とを少なくとも有する手段などが挙げられる。
<Electrostatic latent image forming means>
The electrostatic latent image forming means is not particularly limited as long as it is a means for forming an electrostatic latent image on the electrostatic latent image carrier, and can be appropriately selected according to the purpose. Examples thereof include at least a charging member that charges the surface of the electrostatic latent image carrier and an exposure member that exposes the surface of the electrostatic latent image carrier imagewise.
<現像手段>
前記現像手段としては、前記静電潜像担持体に形成された前記静電潜像を現像して可視像を形成する、トナーを備える現像手段であれば、特に制限はなく、目的に応じて適宜選択することができる。
<Developing means>
The developing unit is not particularly limited as long as it is a developing unit including toner that develops the electrostatic latent image formed on the electrostatic latent image carrier to form a visible image. Can be selected as appropriate.
<その他の手段>
前記その他の手段としては、例えば、転写手段、定着手段、クリーニング手段、除電手段、リサイクル手段、制御手段などが挙げられる。
<Other means>
Examples of the other means include a transfer means, a fixing means, a cleaning means, a static elimination means, a recycling means, and a control means.
次に、本発明の画像形成装置により画像を形成する方法を実施する一の態様について、図1を参照しながら説明する。図1に示すカラー画像形成装置100Aは、前記静電潜像担持体としての感光体ドラム10(以下「感光体10」と称することがある)と、前記帯電手段としての帯電ローラ20と、前記露光手段としての露光装置30と、前記現像手段としての現像器40と、中間転写体50と、クリーニングブレードを有する前記クリーニング手段としてのクリーニング装置60と、前記除電手段としての除電ランプ70とを備える。
中間転写体50は、無端ベルトであり、その内側に配置されこれを張架する3個のローラ51によって、矢印方向に移動可能に設計されている。3個のローラ51の一部は、中間転写体50へ所定の転写バイアス(一次転写バイアス)を印加可能な転写バイアスローラとしても機能する。中間転写体50の近傍には、クリーニングブレードを有するクリーニング装置90が配置されている。また、中間転写体50の近傍には、記録媒体としての転写紙95に現像像(トナー画像)を転写(二次転写)するための転写バイアスを印加可能な前記転写手段としての転写ローラ80が、中間転写体50に対向して配置されている。中間転写体50の周囲には、中間転写体50上のトナー画像に電荷を付与するためのコロナ帯電器58が、該中間転写体50の回転方向において、感光体10と中間転写体50との接触部と、中間転写体50と転写紙95との接触部との間に配置されている。
現像器40は、前記現像剤担持体としての現像ベルト41と、現像ベルト41の周囲に併設したブラック現像ユニット45K、イエロー現像ユニット45Y、マゼンタ現像ユニット45M及びシアン現像ユニット45Cとから構成されている。なお、ブラック現像ユニット45Kは、現像剤収容部42Kと現像剤供給ローラ43Kと現像ローラ44Kとを備えている。イエロー現像ユニット45Yは、現像剤収容部42Yと現像剤供給ローラ43Yと現像ローラ44Yとを備えている。マゼンタ現像ユニット45Mは、現像剤収容部42Mと現像剤供給ローラ43Mと現像ローラ44Mとを備えている。シアン現像ユニット45Cは、現像剤収容部42Cと現像剤供給ローラ43Cと現像ローラ44Cとを備えている。また、現像ベルト41は、無端ベルトであり、複数のベルトローラに回転可能に張架され、一部が静電潜像担持体10と接触している。
図1に示すカラー画像形成装置100において、例えば、帯電ローラ20が感光体ドラム10を一様に帯電させる。露光装置30が感光体ドラム10上に像様に露光を行い、静電潜像を形成する。感光体ドラム10上に形成された静電潜像を、現像器40からトナーを供給して現像してトナー画像を形成する。該トナー画像が、ローラ51から印加された電圧により中間転写体50上に転写(一次転写)され、更に転写紙95上に転写(二次転写)される。その結果、転写紙95上には転写像が形成される。なお、感光体10上の残存トナーは、クリーニング装置60により除去され、感光体10における帯電は除電ランプ70により一旦、除去される。
Next, one mode for carrying out the method of forming an image by the image forming apparatus of the present invention will be described with reference to FIG. A color image forming apparatus 100A shown in FIG. 1 includes a photosensitive drum 10 as the electrostatic latent image carrier (hereinafter also referred to as “photosensitive member 10”), a charging roller 20 as the charging unit, and the An exposure apparatus 30 as an exposure means, a developing device 40 as the development means, an intermediate transfer member 50, a cleaning device 60 as the cleaning means having a cleaning blade, and a static elimination lamp 70 as the static elimination means. .
The intermediate transfer member 50 is an endless belt, and is designed to be movable in the direction of an arrow by three rollers 51 that are arranged inside and stretched. Part of the three rollers 51 also functions as a transfer bias roller that can apply a predetermined transfer bias (primary transfer bias) to the intermediate transfer member 50. A cleaning device 90 having a cleaning blade is disposed in the vicinity of the intermediate transfer member 50. Also, in the vicinity of the intermediate transfer member 50, there is a transfer roller 80 as the transfer means capable of applying a transfer bias for transferring (secondary transfer) a developed image (toner image) onto a transfer sheet 95 as a recording medium. The intermediate transfer member 50 is disposed opposite to the intermediate transfer member 50. Around the intermediate transfer member 50, a corona charger 58 for applying a charge to the toner image on the intermediate transfer member 50 is arranged between the photosensitive member 10 and the intermediate transfer member 50 in the rotation direction of the intermediate transfer member 50. It is disposed between the contact portion and the contact portion between the intermediate transfer member 50 and the transfer paper 95.
The developing device 40 includes a developing belt 41 as the developer carrying member, and a black developing unit 45K, a yellow developing unit 45Y, a magenta developing unit 45M, and a cyan developing unit 45C provided around the developing belt 41. . The black developing unit 45K includes a developer accommodating portion 42K, a developer supply roller 43K, and a developing roller 44K. The yellow developing unit 45Y includes a developer container 42Y, a developer supply roller 43Y, and a developing roller 44Y. The magenta developing unit 45M includes a developer container 42M, a developer supply roller 43M, and a developing roller 44M. The cyan developing unit 45C includes a developer container 42C, a developer supply roller 43C, and a developing roller 44C. Further, the developing belt 41 is an endless belt, is rotatably stretched around a plurality of belt rollers, and a part thereof is in contact with the electrostatic latent image carrier 10.
In the color image forming apparatus 100 shown in FIG. 1, for example, the charging roller 20 charges the photosensitive drum 10 uniformly. The exposure device 30 performs imagewise exposure on the photosensitive drum 10 to form an electrostatic latent image. The electrostatic latent image formed on the photosensitive drum 10 is developed by supplying toner from the developing device 40 to form a toner image. The toner image is transferred (primary transfer) onto the intermediate transfer member 50 by the voltage applied from the roller 51 and further transferred (secondary transfer) onto the transfer paper 95. As a result, a transfer image is formed on the transfer paper 95. The residual toner on the photoconductor 10 is removed by the cleaning device 60, and the charge on the photoconductor 10 is temporarily removed by the charge eliminating lamp 70.
図2に、本発明の画像形成装置の他の一例を示す。図2に示す画像形成装置は、複写装置本体150と、給紙テーブル200と、スキャナ300と、原稿自動搬送装置(ADF)400とを備えている。
複写装置本体150には、無端ベルト状の中間転写体50が中央部に設けられている。そして、中間転写体50は、支持ローラ14、15及び16に張架され、図2中、時計回りに回転可能とされている。支持ローラ15の近傍には、中間転写体50上の残留トナーを除去するための中間転写体クリーニング装置17が配置されている。支持ローラ14と支持ローラ15とにより張架された中間転写体50には、その搬送方向に沿って、イエロー、シアン、マゼンタ、ブラックの4つの画像形成手段18が対向して並置されたタンデム型現像器120が配置されている。タンデム型現像器120の近傍には、前記露光部材である露光装置21が配置されている。中間転写体50における、タンデム型現像器120が配置された側とは反対側には、二次転写装置22が配置されている。二次転写装置22においては、無端ベルトである二次転写ベルト24が一対のローラ23に張架されており、二次転写ベルト24上を搬送される転写紙と中間転写体50とは互いに接触可能である。二次転写装置22の近傍には前記定着手段である定着装置25が配置されている。定着装置25は、無端ベルトである定着ベルト26と、これに押圧されて配置された加圧ローラ27とを備えている。
なお、タンデム画像形成装置においては、二次転写装置22及び定着装置25の近傍に、転写紙の両面に画像形成を行うために該転写紙を反転させるためのシート反転装置28が配置されている。
FIG. 2 shows another example of the image forming apparatus of the present invention. The image forming apparatus shown in FIG. 2 includes a copying apparatus main body 150, a paper feed table 200, a scanner 300, and an automatic document feeder (ADF) 400.
The copying apparatus main body 150 is provided with an endless belt-like intermediate transfer member 50 at the center. The intermediate transfer member 50 is stretched around the support rollers 14, 15 and 16, and can be rotated clockwise in FIG. 2. An intermediate transfer member cleaning device 17 for removing residual toner on the intermediate transfer member 50 is disposed in the vicinity of the support roller 15. The intermediate transfer member 50 stretched between the support roller 14 and the support roller 15 is a tandem type in which four image forming units 18 of yellow, cyan, magenta, and black are arranged to face each other along the conveyance direction. A developing device 120 is disposed. In the vicinity of the tandem developing device 120, an exposure device 21 as the exposure member is disposed. A secondary transfer device 22 is disposed on the side of the intermediate transfer member 50 opposite to the side on which the tandem developing device 120 is disposed. In the secondary transfer device 22, a secondary transfer belt 24, which is an endless belt, is stretched around a pair of rollers 23, and the transfer paper conveyed on the secondary transfer belt 24 and the intermediate transfer body 50 are in contact with each other. Is possible. In the vicinity of the secondary transfer device 22, a fixing device 25 as the fixing means is arranged. The fixing device 25 includes a fixing belt 26 that is an endless belt, and a pressure roller 27 that is pressed against the fixing belt 26.
In the tandem image forming apparatus, a sheet reversing device 28 for reversing the transfer paper for image formation on both sides of the transfer paper is disposed in the vicinity of the secondary transfer device 22 and the fixing device 25. .
次に、タンデム型現像器120を用いたフルカラー画像の形成(カラーコピー)について説明する。即ち、先ず、原稿自動搬送装置(ADF)400の原稿台130上に原稿をセットするか、あるいは原稿自動搬送装置400を開いてスキャナ300のコンタクトガラス32上に原稿をセットし、原稿自動搬送装置400を閉じる。
スタートスイッチ(不図示)を押すと、原稿自動搬送装置400に原稿をセットした時は、原稿が搬送されてコンタクトガラス32上へと移動された後で、一方、コンタクトガラス32上に原稿をセットした時は直ちに、スキャナ300が駆動する。そして、第1走行体33及び第2走行体34が走行する。このとき、第1走行体33により、光源からの光が照射されると共に原稿面からの反射光を第2走行体34におけるミラーで反射し、結像レンズ35を通して読取りセンサ36で受光されてカラー原稿(カラー画像)が読み取られ、ブラック、イエロー、マゼンタ及びシアンの画像情報とされる。
そして、ブラック、イエロー、マゼンタ、及びシアンの各画像情報は、タンデム型現像器120における各画像形成手段18(ブラック用画像形成手段、イエロー用画像形成手段、マゼンタ用画像形成手段、及びシアン用画像形成手段)にそれぞれ伝達される。そして、各画像形成手段において、ブラック、イエロー、マゼンタ、及びシアンの各トナー画像が形成される。即ち、タンデム型現像器120における各画像形成手段18(ブラック用画像形成手段、イエロー用画像形成手段、マゼンタ用画像形成手段及びシアン用画像形成手段)は、それぞれ、静電潜像担持体10(ブラック用静電潜像担持体10K、イエロー用静電潜像担持体10Y、マゼンタ用静電潜像担持体10M、及びシアン用静電潜像担持体10C)と、該静電潜像担持体10を一様に帯電させる前記帯電手段である帯電装置160と、各カラー画像情報に基づいて各カラー画像対応画像様に前記静電潜像担持体を露光し、該静電潜像担持体上に各カラー画像に対応する静電潜像を形成する露光装置と、該静電潜像を各カラートナー(ブラックトナー、イエロートナー、マゼンタトナー、及びシアントナー)を用いて現像して各カラートナーによるトナー画像を形成する前記現像手段である現像装置61と、該トナー画像を中間転写体50上に転写させるための転写帯電器62と、クリーニング装置63と、除電器64とを備えている。そして、各画像形成手段18は、それぞれのカラーの画像情報に基づいて各単色の画像(ブラック画像、イエロー画像、マゼンタ画像、及びシアン画像)を形成可能である。こうして形成された該ブラック画像、該イエロー画像、該マゼンタ画像及び該シアン画像は、支持ローラ14、15及び16により回転移動される中間転写体50上にそれぞれ、ブラック用静電潜像担持体10K上に形成されたブラック画像、イエロー用静電潜像担持体10Y上に形成されたイエロー画像、マゼンタ用静電潜像担持体10M上に形成されたマゼンタ画像及びシアン用静電潜像担持体10C上に形成されたシアン画像が、順次転写(一次転写)される。そして、中間転写体50上に前記ブラック画像、前記イエロー画像、マゼンタ画像、及びシアン画像が重ね合わされて合成カラー画像(カラー転写像)が形成される。
一方、給紙テーブル200においては、給紙ローラ142の1つを選択的に回転させ、ペーパーバンク143に多段に備える給紙カセット144の1つからシート(記録紙)を繰り出す。シートは、分離ローラ145で1枚ずつ分離されて給紙路146に送り出され、搬送ローラ147で搬送されて複写機本体150内の給紙路148に導かれ、レジストローラ49に突き当てて止められる。あるいは、給紙ローラ142を回転して手差しトレイ54上のシート(記録紙)を繰り出し、分離ローラ52で1枚ずつ分離して手差し給紙路53に入れ、同じくレジストローラ49に突き当てて止める。なお、レジストローラ49は、一般には接地されて使用されるが、シートの紙粉除去のためにバイアスが印加された状態で使用されてもよい。そして、中間転写体50上に合成された合成カラー画像(カラー転写像)にタイミングを合わせてレジストローラ49を回転させ、中間転写体50と二次転写装置22との間にシート(記録紙)を送出させ、二次転写装置22により該合成カラー画像(カラー転写像)を該シート(記録紙)上に転写(二次転写)する。そうすることにより、該シート(記録紙)上にカラー画像が転写され形成される。なお、画像転写後の中間転写体50上の残留トナーは、中間転写体クリーニング装置17によりクリーニングされる。
カラー画像が転写され形成された前記シート(記録紙)は、二次転写装置22により搬送されて、定着装置25へと送出され、定着装置25において、熱と圧力とにより前記合成カラー画像(カラー転写像)が該シート(記録紙)上に定着される。その後、該シート(記録紙)は、切換爪55で切り換えて排出ローラ56により排出され、排紙トレイ57上にスタックされる。あるいは、シートは、切換爪55で切り換えてシート反転装置28により反転されて再び転写位置へと導かれ、裏面にも画像を記録した後、排出ローラ56により排出され、排紙トレイ57上にスタックされる。
Next, formation of a full-color image (color copy) using the tandem developing device 120 will be described. That is, first, a document is set on the document table 130 of the automatic document feeder (ADF) 400, or the automatic document feeder 400 is opened and the document is set on the contact glass 32 of the scanner 300. 400 is closed.
When a start switch (not shown) is pressed, when the document is set on the automatic document feeder 400, the document is transported and moved onto the contact glass 32, and then the document is set on the contact glass 32. Immediately after that, the scanner 300 is driven. Then, the first traveling body 33 and the second traveling body 34 travel. At this time, light from the light source is irradiated by the first traveling body 33 and reflected light from the document surface is reflected by the mirror in the second traveling body 34 and is received by the reading sensor 36 through the imaging lens 35 to be color. An original (color image) is read and used as black, yellow, magenta, and cyan image information.
Each image information of black, yellow, magenta, and cyan is stored in each image forming unit 18 (black image forming unit, yellow image forming unit, magenta image forming unit, and cyan image) in the tandem developing device 120. Forming means). In each image forming unit, black, yellow, magenta, and cyan toner images are formed. In other words, each image forming means 18 (black image forming means, yellow image forming means, magenta image forming means, and cyan image forming means) in the tandem developing device 120 is an electrostatic latent image carrier 10 ( Electrostatic latent image carrier for black 10K, electrostatic latent image carrier for yellow 10Y, electrostatic latent image carrier for magenta 10M, electrostatic latent image carrier for cyan 10C), and electrostatic latent image carrier 10 is a charging device 160 that uniformly charges 10 and the electrostatic latent image carrier is exposed like an image corresponding to each color image based on each color image information. An exposure apparatus for forming an electrostatic latent image corresponding to each color image, and developing the electrostatic latent image with each color toner (black toner, yellow toner, magenta toner, and cyan toner). A developing device 61 which is the developing means for forming a toner image by, and a transfer charger 62 for transferring the toner image on the intermediate transfer member 50, a cleaning device 63, and a discharger 64. Each image forming unit 18 can form each monochrome image (black image, yellow image, magenta image, and cyan image) based on the image information of each color. The black image, the yellow image, the magenta image, and the cyan image formed in this way are respectively transferred to the black electrostatic latent image carrier 10K on the intermediate transfer member 50 that is rotationally moved by the support rollers 14, 15, and 16. Black image formed on top, yellow image formed on electrostatic latent image carrier 10Y for yellow, magenta image formed on electrostatic latent image carrier 10M for magenta, and electrostatic latent image carrier for cyan The cyan image formed on 10C is sequentially transferred (primary transfer). Then, the black image, the yellow image, the magenta image, and the cyan image are superimposed on the intermediate transfer member 50 to form a composite color image (color transfer image).
On the other hand, in the paper feed table 200, one of the paper feed rollers 142 is selectively rotated to feed out a sheet (recording paper) from one of the paper feed cassettes 144 provided in multiple stages in the paper bank 143. The sheets are separated one by one by the separation roller 145, sent to the paper feed path 146, transported by the transport roller 147, guided to the paper feed path 148 in the copier body 150, and abutted against the registration roller 49 to stop. It is done. Alternatively, the sheet feed roller 142 is rotated to feed out sheets (recording paper) on the manual feed tray 54, separated one by one by the separation roller 52, put into the manual feed path 53, and abutted against the registration roller 49 and stopped. . The registration roller 49 is generally used while being grounded, but may be used in a state where a bias is applied to remove paper dust from the sheet. Then, the registration roller 49 is rotated in synchronization with the synthesized color image (color transfer image) synthesized on the intermediate transfer member 50, and a sheet (recording paper) is interposed between the intermediate transfer member 50 and the secondary transfer device 22. Then, the composite color image (color transfer image) is transferred (secondary transfer) onto the sheet (recording paper) by the secondary transfer device 22. By doing so, a color image is transferred and formed on the sheet (recording paper). The residual toner on the intermediate transfer member 50 after image transfer is cleaned by the intermediate transfer member cleaning device 17.
The sheet (recording paper) on which the color image has been transferred is conveyed by the secondary transfer device 22 and sent to the fixing device 25, where the combined color image (color) is generated by heat and pressure. (Transfer image) is fixed on the sheet (recording paper). Thereafter, the sheet (recording paper) is switched by a switching claw 55 and discharged by a discharge roller 56 and is stacked on a discharge tray 57. Alternatively, the sheet is switched by the switching claw 55 and reversed by the sheet reversing device 28 and guided to the transfer position again. Is done.
以下、本発明の実施例について説明するが、本発明は下記実施例に何ら限定されるものではない。「部」は、特に明示しない限り「質量部」を表す。「%」は、特に明示しない限り「質量%」を表す。
下記実施例における各測定値は、本明細書中に記載の方法により測定した。尚、上記構造式1)〜3)のいずれかで表される構造を有するポリエステル樹脂、前記他のポリエステル樹脂、結晶性ポリエステル樹脂などのTg、分子量は、製造例で得られた各樹脂から測定した。
Examples of the present invention will be described below, but the present invention is not limited to the following examples. “Part” represents “part by mass” unless otherwise specified. “%” Represents “% by mass” unless otherwise specified.
Each measured value in the following examples was measured by the method described in this specification. The Tg and molecular weight of the polyester resin having the structure represented by any one of the above structural formulas 1) to 3), the other polyester resin, and the crystalline polyester resin are measured from each resin obtained in the production examples. did.
(製造例1)
<ケチミンの合成>
撹拌棒及び温度計をセットした反応容器に、イソホロンジアミン170部、及びメチルエチルケトン75部を仕込み、50℃で5時間反応を行い、[ケチミン化合物1]を得た。
[ケチミン化合物1]のアミン価は418であった。
(Production Example 1)
<Synthesis of ketimine>
170 parts of isophoronediamine and 75 parts of methyl ethyl ketone were charged into a reaction vessel equipped with a stirrer and a thermometer, and reacted at 50 ° C. for 5 hours to obtain [ketimine compound 1].
The amine value of [ketimine compound 1] was 418.
(製造例A−1)
<ポリエステル樹脂A−1の合成>
−プレポリマーA−1の合成−
冷却管、撹拌機及び窒索導入管の付いた反応容器中に、3−メチル−1,5−ペンタンジオール、テレフタル酸、アジピン酸を、水酸基とカルボキシル基のモル比であるOH/COOHが1.3であり、ジオール成分の構成が3−メチル−1,5−ペンタンジオール100mol%であり、ジカルボン酸成分の構成がテレフタル酸50mol%及びアジピン酸50mol%となるように、チタンテトライソプロポキシド(樹脂成分に対して1,000ppm)とともに投入した。
その後、4時間程度で200℃まで昇温し、次いで、2時間かけて230℃に昇温し、流出水がなくなるまで反応を行った。
その後更に、10mmHg〜15mmHgの減圧下で5時間反応し中間体ポリエステルA’−1を得た。
得られた中間体ポリエステルA’−1のTgは−45℃、Mw10,000、Mw/Mn2.3であった。
次に、冷却管、撹拌機及び窒素導入管の付いた反応容器中に、中間体ポリエステルA’−1とリジントリイソシアネート(RTI)とをモル比(RTIのイソシアネート基/中間体ポリエステルの水酸基)0.2で投入し、酢酸エチルで50%酢酸エチル溶液となるように希釈後、100℃で5時間反応させ、中間体ポリエステルA−1溶液を得た。
得られた中間体ポリエステルA−1のTgは−40℃、Mw12,000、Mw/Mn2.5であった。
次に、冷却管、撹拌機及び窒素導入管の付いた反応容器中に、中間体ポリエステルA−1溶液とジフェニルメタンジイソシアネート(MDI)とをモル比(MDIのイソシアネート基/中間体ポリエステルの水酸基)1.5で投入し、酢酸エチルで50%酢酸エチル溶液となるように希釈後、100℃で5時間反応させ、プレポリマーA−1溶液を得た。
−ポリエステル樹脂A−1の合成−
得られたプレポリマーA−1を加熱装置、撹拌機及び窒素導入管の付いた反応容器中で撹拌し、更にプレポリマーA−1中のイソシアネート量に対して[ケチミン化合物1]のアミン量が等モルになる量の[ケチミン化合物1]を反応容器に滴下していき、45℃で10時間撹拌後にプレポリマー伸長物を取り出した。
得られたプレポリマー伸長物を残酢酸エチル量が100ppm以下になるまで50℃で減圧乾燥させ、非晶質のポリエステル樹脂A−1を得た。
得られたポリエステル樹脂A−1の物性値を表1−1に示す。
(Production Example A-1)
<Synthesis of polyester resin A-1>
-Synthesis of Prepolymer A-1-
3-Methyl-1,5-pentanediol, terephthalic acid, and adipic acid are mixed in a reaction vessel equipped with a cooling pipe, a stirrer, and a nitrogen introduction pipe, and OH / COOH which is a molar ratio of hydroxyl group to carboxyl group is 1 .3, the composition of the diol component is 100 mol% of 3-methyl-1,5-pentanediol, and the composition of the dicarboxylic acid component is 50 mol% of terephthalic acid and 50 mol% of adipic acid so that titanium tetraisopropoxide (1,000 ppm relative to the resin component).
Thereafter, the temperature was raised to 200 ° C. in about 4 hours, and then the temperature was raised to 230 ° C. over 2 hours until the effluent water disappeared.
Thereafter, the reaction was carried out under reduced pressure of 10 mmHg to 15 mmHg for 5 hours to obtain an intermediate polyester A′-1.
Tg of the obtained intermediate polyester A′-1 was −45 ° C., Mw 10,000, and Mw / Mn 2.3.
Next, in a reaction vessel equipped with a cooling pipe, a stirrer, and a nitrogen introduction pipe, the molar ratio of the intermediate polyester A′-1 and lysine triisocyanate (RTI) (the isocyanate group of RTI / the hydroxyl group of the intermediate polyester) The solution was added at 0.2, diluted with ethyl acetate to a 50% ethyl acetate solution, and reacted at 100 ° C. for 5 hours to obtain an intermediate polyester A-1 solution.
Tg of the obtained intermediate polyester A-1 was −40 ° C., Mw12,000, Mw / Mn2.5.
Next, the molar ratio of the intermediate polyester A-1 solution and diphenylmethane diisocyanate (MDI) (MDI isocyanate group / intermediate polyester hydroxyl group) in a reaction vessel equipped with a cooling tube, a stirrer and a nitrogen introduction tube 1 5 and diluted with ethyl acetate to a 50% ethyl acetate solution and reacted at 100 ° C. for 5 hours to obtain a prepolymer A-1 solution.
-Synthesis of polyester resin A-1-
The obtained prepolymer A-1 was stirred in a reaction vessel equipped with a heating device, a stirrer, and a nitrogen introduction tube, and the amount of amine of [ketimine compound 1] relative to the amount of isocyanate in the prepolymer A-1 was An equimolar amount of [ketimine compound 1] was dropped into the reaction vessel, and the prepolymer extension product was taken out after stirring at 45 ° C. for 10 hours.
The obtained prepolymer extension product was dried under reduced pressure at 50 ° C. until the amount of residual ethyl acetate was 100 ppm or less, to obtain amorphous polyester resin A-1.
The physical property values of the obtained polyester resin A-1 are shown in Table 1-1.
(製造例A−2)
<ポリエステル樹脂A−2の合成>
−プレポリマーA−2の合成−
冷却管、撹拌機及び窒索導入管の付いた反応容器中に、3−メチル−1,5−ペンタンジオール、テレフタル酸、アジピン酸を、水酸基とカルボキシル基のモル比であるOH/COOHが1.3であり、ジオール成分の構成が3−メチル−1,5−ペンタンジオール100mol%であり、ジカルボン酸成分の構成がテレフタル酸50mol%及びアジピン酸50mol%となるように、チタンテトライソプロポキシド(樹脂成分に対して1,000ppm)とともに投入した。
その後、4時間程度で200℃まで昇温し、次いで、2時間かけて230℃に昇温し、流出水がなくなるまで反応を行った。
その後更に、10mmHg〜15mmHgの減圧下で5時間反応し中間体ポリエステルA’−2を得た。
得られた中間体ポリエステルA’−2のTgは−45℃、Mw10,000、Mw/Mn2.3であった。
次に、冷却管、撹拌機及び窒素導入管の付いた反応容器中に、中間体ポリエステルA’−2とジフェニルメタンジイソシアネート(MDI)とをモル比(MDIのイソシアネート基/中間体ポリエステルの水酸基)1.5で投入し、酢酸エチルで50%酢酸エチル溶液となるように希釈後、100℃で5時間反応させ、中間体ポリエステルA−2溶液を得た。
次に、冷却管、撹拌機及び窒素導入管の付いた反応容器中に、中間体ポリエステル溶液A−2とトリメチロールプロパン(TMP)とをモル比(中間体ポリエステルA−2のイソシアネート基/TMPの水酸基)5.0で投入し、酢酸エチルで50%酢酸エチル溶液となるように希釈後、100℃で5時間反応させ、プレポリマーA−2を得た。
−ポリエステル樹脂A−2の合成−
得られたプレポリマーA−2を加熱装置、撹拌機及び窒素導入管の付いた反応容器中で撹拌し、更にプレポリマーA−2中のイソシアネート量に対して[ケチミン化合物1]のアミン量が等モルになる量の[ケチミン化合物1]を反応容器に滴下していき、45℃で10時間撹拌後にプレポリマー伸長物を取り出した。
得られたプレポリマー伸長物を残酢酸エチル量が100ppm以下になるまで50℃で減圧乾燥させ、非晶質のポリエステル樹脂A−2を得た。
得られたポリエステル樹脂A−2の物性値を表1−1に示す。
(Production Example A-2)
<Synthesis of polyester resin A-2>
-Synthesis of Prepolymer A-2-
3-Methyl-1,5-pentanediol, terephthalic acid, and adipic acid are mixed in a reaction vessel equipped with a cooling pipe, a stirrer, and a nitrogen introduction pipe, and OH / COOH which is a molar ratio of hydroxyl group to carboxyl group is 1 .3, the composition of the diol component is 100 mol% of 3-methyl-1,5-pentanediol, and the composition of the dicarboxylic acid component is 50 mol% of terephthalic acid and 50 mol% of adipic acid so that titanium tetraisopropoxide (1,000 ppm relative to the resin component).
Thereafter, the temperature was raised to 200 ° C. in about 4 hours, and then the temperature was raised to 230 ° C. over 2 hours until the effluent water disappeared.
Thereafter, the reaction was carried out under reduced pressure of 10 mmHg to 15 mmHg for 5 hours to obtain an intermediate polyester A′-2.
The resulting intermediate polyester A′-2 had Tg of −45 ° C., Mw 10,000, and Mw / Mn 2.3.
Next, in a reaction vessel equipped with a cooling pipe, a stirrer and a nitrogen introduction pipe, the molar ratio of the intermediate polyester A′-2 and diphenylmethane diisocyanate (MDI) (isocyanate group of MDI / hydroxyl group of the intermediate polyester) 1 5 and diluted with ethyl acetate to a 50% ethyl acetate solution, followed by reaction at 100 ° C. for 5 hours to obtain an intermediate polyester A-2 solution.
Next, in a reaction vessel equipped with a cooling pipe, a stirrer, and a nitrogen introduction pipe, a molar ratio of the intermediate polyester solution A-2 and trimethylolpropane (TMP) (isocyanate group / TMP of the intermediate polyester A-2) Of hydroxyl group) 5.0, diluted with ethyl acetate to a 50% ethyl acetate solution, and reacted at 100 ° C. for 5 hours to obtain Prepolymer A-2.
-Synthesis of polyester resin A-2-
The obtained prepolymer A-2 was stirred in a reaction vessel equipped with a heating device, a stirrer, and a nitrogen introduction tube, and the amine amount of [ketimine compound 1] was higher than the isocyanate amount in the prepolymer A-2. An equimolar amount of [ketimine compound 1] was dropped into the reaction vessel, and the prepolymer extension product was taken out after stirring at 45 ° C. for 10 hours.
The obtained prepolymer extension product was dried under reduced pressure at 50 ° C. until the amount of residual ethyl acetate was 100 ppm or less to obtain amorphous polyester resin A-2.
The physical properties of the obtained polyester resin A-2 are shown in Table 1-1.
(製造例A−3)
<ポリエステル樹脂A−3の合成>
−プレポリマーA−3の合成−
冷却管、撹拌機及び窒索導入管の付いた反応容器中に、3−メチル−1,5−ペンタンジオール、テレフタル酸、アジピン酸を、水酸基とカルボキシル基のモル比であるOH/COOHが1.3であり、ジオール成分の構成が3−メチル−1,5−ペンタンジオール100mol%であり、ジカルボン酸成分の構成がテレフタル酸50mol%及びアジピン酸50mol%となるように、チタンテトライソプロポキシド(樹脂成分に対して1,000ppm)とともに投入した。
その後、4時間程度で200℃まで昇温し、次いで、2時間かけて230℃に昇温し、流出水がなくなるまで反応を行った。
その後更に、10mmHg〜15mmHgの減圧下で5時間反応し中間体ポリエステルA’−3を得た。
得られた中間体ポリエステルA’−3のTgは−45℃、Mw10,000、Mw/Mn2.3であった。
次に、冷却管、撹拌機及び窒素導入管の付いた反応容器中に、中間体ポリエステルA’−3とジフェニルメタンジイソシアネート(MDI)とをモル比(MDIのイソシアネート基/中間体ポリエステルの水酸基)1.5で投入し、酢酸エチルで50%酢酸エチル溶液となるように希釈後、100℃で5時間反応させ、中間体ポリエステルA−3溶液を得た。
得られた中間体ポリエステルA−3のTgは−25℃、Mw40,000、Mw/Mn8.0であった。
次に、冷却管、撹拌機及び窒素導入管の付いた反応容器中に、中間体ポリエステルA−3とリジントリイソシアネート(RTI)とをモル比(RTIのイソシアネート基/中間体ポリエステルのイソシアネート基)0.2で投入し、酢酸エチルで50%酢酸エチル溶液となるように希釈後、反応系内に存在するNCO量に対して、モル比で0.5となる量の純水を滴下した後、100℃で5時間反応させ、プレポリマーA−3溶液を得た。
−ポリエステル樹脂A−3の合成−
得られたプレポリマーA−3を加熱装置、撹拌機及び窒素導入管の付いた反応容器中で撹拌し、更にプレポリマーA−3中のイソシアネート量に対して[ケチミン化合物1]のアミン量が等モルになる量の[ケチミン化合物1]を反応容器に滴下していき、45℃で10時間撹拌後にプレポリマー伸長物を取り出した。
得られたプレポリマー伸長物を残酢酸エチル量が100ppm以下になるまで50℃で減圧乾燥させ、非晶質のポリエステル樹脂A−3を得た。
得られたポリエステル樹脂A−3の物性値を表1−1に示す。
(Production Example A-3)
<Synthesis of polyester resin A-3>
-Synthesis of Prepolymer A-3-
3-Methyl-1,5-pentanediol, terephthalic acid, and adipic acid are mixed in a reaction vessel equipped with a cooling pipe, a stirrer, and a nitrogen introduction pipe, and OH / COOH which is a molar ratio of hydroxyl group to carboxyl group is 1 .3, the composition of the diol component is 100 mol% of 3-methyl-1,5-pentanediol, and the composition of the dicarboxylic acid component is 50 mol% of terephthalic acid and 50 mol% of adipic acid so that titanium tetraisopropoxide (1,000 ppm relative to the resin component).
Thereafter, the temperature was raised to 200 ° C. in about 4 hours, and then the temperature was raised to 230 ° C. over 2 hours until the effluent water disappeared.
Thereafter, the reaction was carried out under reduced pressure of 10 mmHg to 15 mmHg for 5 hours to obtain an intermediate polyester A′-3.
The resulting intermediate polyester A′-3 had Tg of −45 ° C., Mw 10,000, and Mw / Mn 2.3.
Next, in a reaction vessel equipped with a cooling pipe, a stirrer and a nitrogen introduction pipe, the molar ratio of intermediate polyester A′-3 and diphenylmethane diisocyanate (MDI) (isocyanate group of MDI / hydroxyl group of intermediate polyester) 1 5 and diluted with ethyl acetate to a 50% ethyl acetate solution and reacted at 100 ° C. for 5 hours to obtain an intermediate polyester A-3 solution.
The obtained intermediate polyester A-3 had Tg of -25 ° C, Mw 40,000, and Mw / Mn 8.0.
Next, in a reaction vessel equipped with a cooling pipe, a stirrer, and a nitrogen introduction pipe, the molar ratio of the intermediate polyester A-3 and lysine triisocyanate (RTI) (the isocyanate group of RTI / the isocyanate group of the intermediate polyester) After adding 0.2 and diluting with ethyl acetate to a 50% ethyl acetate solution, after adding dropwise an amount of pure water of 0.5 in molar ratio to the amount of NCO present in the reaction system The mixture was reacted at 100 ° C. for 5 hours to obtain a prepolymer A-3 solution.
-Synthesis of polyester resin A-3-
The obtained prepolymer A-3 was stirred in a reaction vessel equipped with a heating device, a stirrer, and a nitrogen introduction tube, and the amine amount of [ketimine compound 1] was higher than the isocyanate amount in the prepolymer A-3. An equimolar amount of [ketimine compound 1] was dropped into the reaction vessel, and the prepolymer extension product was taken out after stirring at 45 ° C. for 10 hours.
The obtained prepolymer extension product was dried under reduced pressure at 50 ° C. until the amount of residual ethyl acetate was 100 ppm or less to obtain amorphous polyester resin A-3.
The physical properties of the obtained polyester resin A-3 are shown in Table 1-1.
(製造例A−4)
<ポリエステル樹脂A−4の合成>
−プレポリマーA−4の合成−
冷却管、撹拌機及び窒索導入管の付いた反応容器中に、3−メチル−1,5−ペンタンジオール、テレフタル酸、アジピン酸を、水酸基とカルボキシル基のモル比であるOH/COOHが1.15であり、ジオール成分の構成が3−メチル−1,5−ペンタンジオール100mol%であり、ジカルボン酸成分の構成がテレフタル酸50mol%及びアジピン酸50mol%となるように、チタンテトライソプロポキシド(樹脂成分に対して1,000ppm)とともに投入した。
その後、4時間程度で200℃まで昇温し、次いで、2時間かけて230℃に昇温し、流出水がなくなるまで反応を行った。
その後更に、10mmHg〜15mmHgの減圧下で5時間反応し中間体ポリエステルA’−4を得た。
得られた中間体ポリエステルA’−4のTgは−35℃、Mw18,000、Mw/Mn2.0であった。
次に、冷却管、撹拌機及び窒素導入管の付いた反応容器中に、中間体ポリエステルA’−4とリジントリイソシアネート(RTI)とをモル比(RTIのイソシアネート基/中間体ポリエステルの水酸基)0.2で投入し、酢酸エチルで50%酢酸エチル溶液となるように希釈後、100℃で5時間反応させ、中間体ポリエステルA−4溶液を得た。
得られた中間体ポリエステルA−4のTgは−35℃、Mw20,000、Mw/Mn2.5であった。
次に、冷却管、撹拌機及び窒素導入管の付いた反応容器中に、中間体ポリエステルA−4溶液とジフェニルメタンジイソシアネート(MDI)とをモル比(MDIのイソシアネート基/中間体ポリエステルの水酸基)1.5で投入し、酢酸エチルで50%酢酸エチル溶液となるように希釈後、100℃で5時間反応させ、プレポリマーA−4溶液を得た。
−ポリエステル樹脂A−4の合成−
得られたプレポリマーA−4を加熱装置、撹拌機及び窒素導入管の付いた反応容器中で撹拌し、更にプレポリマーA−4中のイソシアネート量に対して[ケチミン化合物1]のアミン量が等モルになる量の[ケチミン化合物1]を反応容器に滴下していき、45℃で10時間撹拌後にプレポリマー伸長物を取り出した。
得られたプレポリマー伸長物を残酢酸エチル量が100ppm以下になるまで50℃で減圧乾燥させ、非晶質のポリエステル樹脂A−4を得た。
得られたポリエステル樹脂A−4の物性値を表1−1に示す。
(Production Example A-4)
<Synthesis of polyester resin A-4>
-Synthesis of Prepolymer A-4-
3-Methyl-1,5-pentanediol, terephthalic acid, and adipic acid are mixed in a reaction vessel equipped with a cooling pipe, a stirrer, and a nitrogen introduction pipe, and OH / COOH which is a molar ratio of hydroxyl group to carboxyl group is 1 .15, the composition of the diol component is 100 mol% of 3-methyl-1,5-pentanediol, and the composition of the dicarboxylic acid component is 50 mol% of terephthalic acid and 50 mol% of adipic acid. (1,000 ppm relative to the resin component).
Thereafter, the temperature was raised to 200 ° C. in about 4 hours, and then the temperature was raised to 230 ° C. over 2 hours until the effluent water disappeared.
Thereafter, the reaction was further performed under reduced pressure of 10 mmHg to 15 mmHg for 5 hours to obtain an intermediate polyester A′-4.
The Tg of the obtained intermediate polyester A′-4 was −35 ° C., Mw 18,000, and Mw / Mn 2.0.
Next, in a reaction vessel equipped with a cooling tube, a stirrer, and a nitrogen introduction tube, the molar ratio of intermediate polyester A′-4 and lysine triisocyanate (RTI) (the isocyanate group of RTI / the hydroxyl group of intermediate polyester) The solution was added at 0.2, diluted with ethyl acetate to a 50% ethyl acetate solution, and reacted at 100 ° C. for 5 hours to obtain an intermediate polyester A-4 solution.
Tg of the obtained intermediate polyester A-4 was -35 ° C, Mw20,000, Mw / Mn2.5.
Next, a molar ratio of the intermediate polyester A-4 solution and diphenylmethane diisocyanate (MDI) (isocyanate group of MDI / hydroxyl group of intermediate polyester) 1 in a reaction vessel equipped with a cooling pipe, a stirrer, and a nitrogen introduction pipe. 5 and diluted with ethyl acetate to a 50% ethyl acetate solution and reacted at 100 ° C. for 5 hours to obtain a prepolymer A-4 solution.
-Synthesis of polyester resin A-4-
The obtained prepolymer A-4 was stirred in a reaction vessel equipped with a heating device, a stirrer, and a nitrogen introduction tube, and the amount of amine of [ketimine compound 1] relative to the amount of isocyanate in the prepolymer A-4 was An equimolar amount of [ketimine compound 1] was dropped into the reaction vessel, and the prepolymer extension product was taken out after stirring at 45 ° C. for 10 hours.
The obtained prepolymer extension product was dried under reduced pressure at 50 ° C. until the amount of residual ethyl acetate was 100 ppm or less to obtain amorphous polyester resin A-4.
Table 1-1 shows the physical properties of the obtained polyester resin A-4.
(製造例A−5)
<ポリエステル樹脂A−5の合成>
−プレポリマーA−5の合成−
冷却管、撹拌機及び窒索導入管の付いた反応容器中に、3−メチル−1,5−ペンタンジオール、テレフタル酸、アジピン酸を、水酸基とカルボキシル基のモル比であるOH/COOHが1.15であり、ジオール成分の構成が3−メチル−1,5−ペンタンジオール100mol%であり、ジカルボン酸成分の構成がテレフタル酸50mol%及びアジピン酸50mol%となるように、チタンテトライソプロポキシド(樹脂成分に対して1,000ppm)とともに投入した。
その後、4時間程度で200℃まで昇温し、次いで、2時間かけて230℃に昇温し、流出水がなくなるまで反応を行った。
その後更に、10mmHg〜15mmHgの減圧下で5時間反応し中間体ポリエステルA’−5を得た。
得られた中間体ポリエステルA’−5のTgは−35℃、Mw18,000、Mw/Mn2.0であった。
次に、冷却管、撹拌機及び窒素導入管の付いた反応容器中に、中間体ポリエステルA’−5とリジントリイソシアネート(RTI)とをモル比(RTIのイソシアネート基/中間体ポリエステルの水酸基)0.2で投入し、酢酸エチルで50%酢酸エチル溶液となるように希釈後、100℃で5時間反応させ、中間体ポリエステルA−5溶液を得た。
得られた中間体ポリエステルA−5のTgは−35℃、Mw20,000、Mw/Mn2.5であった。
次に、冷却管、撹拌機及び窒素導入管の付いた反応容器中に、中間体ポリエステルA−5溶液とジフェニルメタンジイソシアネート(MDI)とをモル比(MDIのイソシアネート基/中間体ポリエステルの水酸基)1.7で投入し、酢酸エチルで50%酢酸エチル溶液となるように希釈後、100℃で5時間反応させ、プレポリマーA−5溶液を得た。
−ポリエステル樹脂A−5の合成−
得られたプレポリマーA−5を加熱装置、撹拌機及び窒素導入管の付いた反応容器中で撹拌し、更にプレポリマーA−5中のイソシアネート量に対して[ケチミン化合物1]のアミン量が等モルになる量の[ケチミン化合物1]を反応容器に滴下していき、45℃で10時間撹拌後にプレポリマー伸長物を取り出した。
得られたプレポリマー伸長物を残酢酸エチル量が100ppm以下になるまで50℃で減圧乾燥させ、非晶質のポリエステル樹脂A−5を得た。
得られたポリエステル樹脂A−5の物性値を表1−2に示す。
(Production Example A-5)
<Synthesis of polyester resin A-5>
-Synthesis of Prepolymer A-5-
3-Methyl-1,5-pentanediol, terephthalic acid, and adipic acid are mixed in a reaction vessel equipped with a cooling pipe, a stirrer, and a nitrogen introduction pipe, and OH / COOH which is a molar ratio of hydroxyl group to carboxyl group is 1 .15, the composition of the diol component is 100 mol% of 3-methyl-1,5-pentanediol, and the composition of the dicarboxylic acid component is 50 mol% of terephthalic acid and 50 mol% of adipic acid. (1,000 ppm relative to the resin component).
Thereafter, the temperature was raised to 200 ° C. in about 4 hours, and then the temperature was raised to 230 ° C. over 2 hours until the effluent water disappeared.
Thereafter, the reaction was further performed under reduced pressure of 10 mmHg to 15 mmHg for 5 hours to obtain an intermediate polyester A′-5.
Tg of obtained intermediate polyester A′-5 was −35 ° C., Mw 18,000, and Mw / Mn 2.0.
Next, in a reaction vessel equipped with a cooling pipe, a stirrer, and a nitrogen introduction pipe, the molar ratio of the intermediate polyester A′-5 and lysine triisocyanate (RTI) (the isocyanate group of RTI / the hydroxyl group of the intermediate polyester) The solution was added at 0.2, diluted with ethyl acetate to a 50% ethyl acetate solution, and reacted at 100 ° C. for 5 hours to obtain an intermediate polyester A-5 solution.
The obtained intermediate polyester A-5 had Tg of -35 ° C, Mw20,000, Mw / Mn2.5.
Next, a molar ratio of the intermediate polyester A-5 solution and diphenylmethane diisocyanate (MDI) (isocyanate group of MDI / hydroxyl group of intermediate polyester) 1 in a reaction vessel equipped with a cooling pipe, a stirrer and a nitrogen introduction pipe. 7 and diluted with ethyl acetate to a 50% ethyl acetate solution and reacted at 100 ° C. for 5 hours to obtain a prepolymer A-5 solution.
-Synthesis of polyester resin A-5-
The obtained prepolymer A-5 was stirred in a reaction vessel equipped with a heating device, a stirrer, and a nitrogen introduction tube, and the amine amount of [ketimine compound 1] was larger than the isocyanate amount in the prepolymer A-5. An equimolar amount of [ketimine compound 1] was dropped into the reaction vessel, and the prepolymer extension product was taken out after stirring at 45 ° C. for 10 hours.
The obtained prepolymer extension product was dried under reduced pressure at 50 ° C. until the amount of residual ethyl acetate was 100 ppm or less to obtain amorphous polyester resin A-5.
The physical property values of the obtained polyester resin A-5 are shown in Table 1-2.
(製造例A−6)
<ポリエステル樹脂A−6の合成>
−プレポリマーA−6の合成−
冷却管、撹拌機及び窒索導入管の付いた反応容器中に、3−メチル−1,5−ペンタンジオール、テレフタル酸、アジピン酸を、水酸基とカルボキシル基のモル比であるOH/COOHが1.15であり、ジオール成分の構成が3−メチル−1,5−ペンタンジオール100mol%であり、ジカルボン酸成分の構成がテレフタル酸50mol%及びアジピン酸50mol%となるように、チタンテトライソプロポキシド(樹脂成分に対して1,000ppm)とともに投入した。
その後、4時間程度で200℃まで昇温し、次いで、2時間かけて230℃に昇温し、流出水がなくなるまで反応を行った。
その後更に、10mmHg〜15mmHgの減圧下で5時間反応し中間体ポリエステルA’−6を得た。
得られた中間体ポリエステルA’−6のTgは−35℃、Mw18,000、Mw/Mn2.0であった。
次に、冷却管、撹拌機及び窒素導入管の付いた反応容器中に、中間体ポリエステルA’−6とリジントリイソシアネート(RTI)とをモル比(RTIのイソシアネート基/中間体ポリエステルの水酸基)0.3で投入し、酢酸エチルで50%酢酸エチル溶液となるように希釈後、100℃で5時間反応させ、中間体ポリエステルA−6溶液を得た。
得られた中間体ポリエステルA−6のTgは−30℃、Mw24,000、Mw/Mn2.5であった。
次に、冷却管、撹拌機及び窒素導入管の付いた反応容器中に、中間体ポリエステルA−6溶液とジフェニルメタンジイソシアネート(MDI)とをモル比(MDIのイソシアネート基/中間体ポリエステルの水酸基)1.5で投入し、酢酸エチルで50%酢酸エチル溶液となるように希釈後、100℃で5時間反応させ、プレポリマーA−6溶液を得た。
−ポリエステル樹脂A−6の合成−
得られたプレポリマーA−6を加熱装置、撹拌機及び窒素導入管の付いた反応容器中で撹拌し、更にプレポリマーA−6中のイソシアネート量に対して[ケチミン化合物1]のアミン量が等モルになる量の[ケチミン化合物1]を反応容器に滴下していき、45℃で10時間撹拌後にプレポリマー伸長物を取り出した。
得られたプレポリマー伸長物を残酢酸エチル量が100ppm以下になるまで50℃で減圧乾燥させ、非晶質のポリエステル樹脂A−6を得た。
得られたポリエステル樹脂A−6の物性値を表1−2に示す。
(Production Example A-6)
<Synthesis of polyester resin A-6>
-Synthesis of Prepolymer A-6-
3-Methyl-1,5-pentanediol, terephthalic acid, and adipic acid are mixed in a reaction vessel equipped with a cooling pipe, a stirrer, and a nitrogen introduction pipe, and OH / COOH which is a molar ratio of hydroxyl group to carboxyl group is 1 .15, the composition of the diol component is 100 mol% of 3-methyl-1,5-pentanediol, and the composition of the dicarboxylic acid component is 50 mol% of terephthalic acid and 50 mol% of adipic acid. (1,000 ppm relative to the resin component).
Thereafter, the temperature was raised to 200 ° C. in about 4 hours, and then the temperature was raised to 230 ° C. over 2 hours until the effluent water disappeared.
Thereafter, the reaction was further performed under reduced pressure of 10 mmHg to 15 mmHg for 5 hours to obtain an intermediate polyester A′-6.
The resulting intermediate polyester A′-6 had Tg of −35 ° C., Mw 18,000, and Mw / Mn 2.0.
Next, in a reaction vessel equipped with a cooling tube, a stirrer and a nitrogen introduction tube, the molar ratio of the intermediate polyester A′-6 and lysine triisocyanate (RTI) (the isocyanate group of RTI / the hydroxyl group of the intermediate polyester) The solution was added at 0.3, diluted with ethyl acetate to a 50% ethyl acetate solution, and reacted at 100 ° C. for 5 hours to obtain an intermediate polyester A-6 solution.
The resulting intermediate polyester A-6 had Tg of -30 ° C, Mw 24,000, and Mw / Mn 2.5.
Next, the molar ratio of the intermediate polyester A-6 solution and diphenylmethane diisocyanate (MDI) (isocyanate group of MDI / hydroxyl group of intermediate polyester) 1 in a reaction vessel equipped with a cooling pipe, a stirrer and a nitrogen introduction pipe. 5 and diluted with ethyl acetate to a 50% ethyl acetate solution and reacted at 100 ° C. for 5 hours to obtain a prepolymer A-6 solution.
-Synthesis of polyester resin A-6-
The obtained prepolymer A-6 was stirred in a reaction vessel equipped with a heating device, a stirrer, and a nitrogen introduction tube, and the amine amount of [ketimine compound 1] relative to the isocyanate amount in the prepolymer A-6. An equimolar amount of [ketimine compound 1] was dropped into the reaction vessel, and the prepolymer extension product was taken out after stirring at 45 ° C. for 10 hours.
The obtained prepolymer extension product was dried under reduced pressure at 50 ° C. until the amount of residual ethyl acetate was 100 ppm or less to obtain amorphous polyester resin A-6.
The physical property values of the obtained polyester resin A-6 are shown in Table 1-2.
(製造例A−7)
<ポリエステル樹脂A−7の合成>
−プレポリマーA−7の合成−
冷却管、撹拌機及び窒索導入管の付いた反応容器中に、3−メチル−1,5−ペンタンジオール、テレフタル酸、アジピン酸を、水酸基とカルボキシル基のモル比であるOH/COOHが1.2であり、ジオール成分の構成が3−メチル−1,5−ペンタンジオール100mol%であり、ジカルボン酸成分の構成がテレフタル酸50mol%及びアジピン酸50mol%となるように、チタンテトライソプロポキシド(樹脂成分に対して1,000ppm)とともに投入した。
その後、4時間程度で200℃まで昇温し、次いで、2時間かけて230℃に昇温し、流出水がなくなるまで反応を行った。
その後更に、10mmHg〜15mmHgの減圧下で5時間反応し中間体ポリエステルA’−7を得た。
得られた中間体ポリエステルA’−7のTgは−40℃、Mw15,000、Mw/Mn2.0であった。
次に、冷却管、撹拌機及び窒素導入管の付いた反応容器中に、中間体ポリエステルA’−7とリジントリイソシアネート(RTI)とをモル比(RTIのイソシアネート基/中間体ポリエステルの水酸基)0.2で投入し、酢酸エチルで50%酢酸エチル溶液となるように希釈後、100℃で5時間反応させ、中間体ポリエステルA−7溶液を得た。
得られた中間体ポリエステルA−7のTgは−35℃、Mw20,000、Mw/Mn2.2であった。
次に、冷却管、撹拌機及び窒素導入管の付いた反応容器中に、中間体ポリエステルA−7溶液とイソホロンジイソシアネート(IPDI)とをモル比(IPDIのイソシアネート基/中間体ポリエステルの水酸基)1.5で投入し、酢酸エチルで50%酢酸エチル溶液となるように希釈後、100℃で5時間反応させ、プレポリマーA−7溶液を得た。
−ポリエステル樹脂A−7の合成−
得られたプレポリマーA−7を加熱装置、撹拌機及び窒素導入管の付いた反応容器中で撹拌し、更にプレポリマーA−7中のイソシアネート量に対して[ケチミン化合物1]のアミン量が等モルになる量の[ケチミン化合物1]を反応容器に滴下していき、45℃で10時間撹拌後にプレポリマー伸長物を取り出した。
得られたプレポリマー伸長物を残酢酸エチル量が100ppm以下になるまで50℃で減圧乾燥させ、非晶質のポリエステル樹脂A−7を得た。
得られたポリエステル樹脂A−7の物性値を表2に示す。
(Production Example A-7)
<Synthesis of polyester resin A-7>
-Synthesis of Prepolymer A-7-
3-Methyl-1,5-pentanediol, terephthalic acid, and adipic acid are mixed in a reaction vessel equipped with a cooling pipe, a stirrer, and a nitrogen introduction pipe, and OH / COOH which is a molar ratio of hydroxyl group to carboxyl group is 1 , The composition of the diol component is 100 mol% of 3-methyl-1,5-pentanediol, and the composition of the dicarboxylic acid component is 50 mol% of terephthalic acid and 50 mol% of adipic acid so that titanium tetraisopropoxide (1,000 ppm relative to the resin component).
Thereafter, the temperature was raised to 200 ° C. in about 4 hours, and then the temperature was raised to 230 ° C. over 2 hours until the effluent water disappeared.
Thereafter, the reaction was further performed under reduced pressure of 10 mmHg to 15 mmHg for 5 hours to obtain an intermediate polyester A′-7.
The obtained intermediate polyester A′-7 had Tg of −40 ° C., Mw 15,000, and Mw / Mn 2.0.
Next, in a reaction vessel equipped with a cooling tube, a stirrer and a nitrogen introduction tube, the molar ratio of the intermediate polyester A′-7 and lysine triisocyanate (RTI) (the isocyanate group of RTI / the hydroxyl group of the intermediate polyester) The solution was added at 0.2, diluted with ethyl acetate to a 50% ethyl acetate solution, and reacted at 100 ° C. for 5 hours to obtain an intermediate polyester A-7 solution.
Tg of the obtained intermediate polyester A-7 was -35 ° C, Mw20,000, Mw / Mn2.2.
Next, a molar ratio of the intermediate polyester A-7 solution and isophorone diisocyanate (IPDI) in a reaction vessel equipped with a cooling pipe, a stirrer and a nitrogen introduction pipe (IPDI isocyanate group / intermediate polyester hydroxyl group) 1 5 and diluted with ethyl acetate to a 50% ethyl acetate solution, followed by reaction at 100 ° C. for 5 hours to obtain a prepolymer A-7 solution.
-Synthesis of polyester resin A-7-
The obtained prepolymer A-7 was stirred in a reaction vessel equipped with a heating device, a stirrer, and a nitrogen introduction tube, and the amine amount of [ketimine compound 1] was higher than the isocyanate amount in the prepolymer A-7. An equimolar amount of [ketimine compound 1] was dropped into the reaction vessel, and the prepolymer extension product was taken out after stirring at 45 ° C. for 10 hours.
The obtained prepolymer extension product was dried under reduced pressure at 50 ° C. until the amount of residual ethyl acetate was 100 ppm or less to obtain amorphous polyester resin A-7.
Table 2 shows the physical properties of the obtained polyester resin A-7.
(製造例A−8)
<ポリエステル樹脂A−8の合成>
−プレポリマーA−8の合成−
冷却管、撹拌機及び窒素導入管の付いた反応容器中に、アルコール成分として3−メチル−1,5−ペンタンジオールを97モル%、及びトリメチロールプロパン(TMP)3モル%、酸成分としてアジピン酸を50モル%、及びテレフタル酸50モル%とし、水酸基とカルボキシル基とのモル比であるOH/COOH=1.1となるように、チタンテトライソプロポキシド(300ppm対樹脂成分)とともに投入した。
その後、4時間程度で200℃まで昇温し、次いで、2時間かけて230℃に昇温し、流出水がなくなるまで反応させた。
その後、更に10mmHg〜15mmHgの減圧下で5時間反応し中間体ポリエステルA−8を得た。
得られた中間体ポリエステルA−8のTgは−39℃、Mw12,000、Mw/Mn2.5であった。
次に、冷却管、撹拌機及び窒素導入管の付いた反応容器中に、中間体ポリエステルA−8とイソホロンジイソシアネート(IPDI)とをモル比(IPDIのイソシアネート基/中間体ポリエステルの水酸基)2.1で投入し、酢酸エチルで48%酢酸エチル溶液となるように希釈後、100℃で5時間反応させ、非線状のプレポリマーA−8を得た。
−ポリエステル樹脂A−8の合成−
得られたプレポリマーA−8を加熱装置、撹拌機及び窒素導入管の付いた反応容器中で撹拌し、更にプレポリマーA−8中のイソシアネート量に対して[ケチミン化合物1]のアミン量が等モルになる量の[ケチミン化合物1]を反応容器に滴下していき、45℃で10時間撹拌後にプレポリマー伸長物を取り出した。
得られたプレポリマー伸長物を残酢酸エチル量が100ppm以下になるまで50℃で減圧乾燥させ、非晶質のポリエステル樹脂A−8を得た。
得られたポリエステル樹脂A−8の物性値を表2に示す。
(Production Example A-8)
<Synthesis of polyester resin A-8>
-Synthesis of Prepolymer A-8-
In a reaction vessel equipped with a condenser, a stirrer, and a nitrogen introduction tube, 97 mol% of 3-methyl-1,5-pentanediol as an alcohol component, 3 mol% of trimethylolpropane (TMP), and adipine as an acid component The acid was 50 mol% and terephthalic acid 50 mol%, and was added together with titanium tetraisopropoxide (300 ppm to resin component) so that the molar ratio of hydroxyl group to carboxyl group was OH / COOH = 1.1. .
Thereafter, the temperature was raised to 200 ° C. in about 4 hours, and then the temperature was raised to 230 ° C. over 2 hours until the effluent water disappeared.
Thereafter, the reaction was further performed under reduced pressure of 10 mmHg to 15 mmHg for 5 hours to obtain an intermediate polyester A-8.
Tg of the obtained intermediate polyester A-8 was -39 ° C, Mw12,000, Mw / Mn2.5.
Next, a molar ratio of the intermediate polyester A-8 and isophorone diisocyanate (IPDI) in a reaction vessel equipped with a cooling pipe, a stirrer and a nitrogen introduction pipe (isocyanate group of IPDI / hydroxyl group of intermediate polyester) 2. 1 and diluted with ethyl acetate to a 48% ethyl acetate solution and reacted at 100 ° C. for 5 hours to obtain a non-linear prepolymer A-8.
-Synthesis of polyester resin A-8-
The obtained prepolymer A-8 was stirred in a reaction vessel equipped with a heating device, a stirrer, and a nitrogen introduction tube, and the amine amount of [ketimine compound 1] was larger than the isocyanate amount in the prepolymer A-8. An equimolar amount of [ketimine compound 1] was dropped into the reaction vessel, and the prepolymer extension product was taken out after stirring at 45 ° C. for 10 hours.
The obtained prepolymer extension product was dried under reduced pressure at 50 ° C. until the amount of residual ethyl acetate was 100 ppm or less, to obtain amorphous polyester resin A-8.
Table 2 shows the physical properties of the obtained polyester resin A-8.
(製造例A−9)
<ポリエステル樹脂A−9の合成>
−プレポリマーA−9の合成−
冷却管、撹拌機及び窒索導入管の付いた反応容器中に、3−メチル−1,5−ペンタンジオール、テレフタル酸、アジピン酸を、水酸基とカルボキシル基のモル比であるOH/COOHが1.2であり、ジオール成分の構成が3−メチル−1,5−ペンタンジオール100mol%であり、ジカルボン酸成分の構成がテレフタル酸90mol%及びアジピン酸10mol%となるように、チタンテトライソプロポキシド(樹脂成分に対して1,000ppm)とともに投入した。
その後、4時間程度で200℃まで昇温し、次いで、2時間かけて230℃に昇温し、流出水がなくなるまで反応を行った。
その後更に、10mmHg〜15mmHgの減圧下で5時間反応し中間体ポリエステルA’−9を得た。
得られた中間体ポリエステルA’−9のTgは−5℃、Mw13,000、Mw/Mn2.2であった。
次に、冷却管、撹拌機及び窒素導入管の付いた反応容器中に、中間体ポリエステルA’−9とリジントリイソシアネート(RTI)とをモル比(RTIのイソシアネート基/中間体ポリエステルの水酸基)0.2で投入し、酢酸エチルで50%酢酸エチル溶液となるように希釈後、100℃で5時間反応させ、中間体ポリエステルA−9溶液を得た。
得られた中間体ポリエステルA−9のTgは0℃、Mw19,000、Mw/Mn2.4であった。
次に、冷却管、撹拌機及び窒素導入管の付いた反応容器中に、中間体ポリエステルA−9溶液とイソホロンジイソシアネート(IPDI)とをモル比(IPDIのイソシアネート基/中間体ポリエステルの水酸基)1.5で投入し、酢酸エチルで50%酢酸エチル溶液となるように希釈後、100℃で5時間反応させ、プレポリマーA−9溶液を得た。
−ポリエステル樹脂A−9の合成−
得られたプレポリマーA−9を加熱装置、撹拌機及び窒素導入管の付いた反応容器中で撹拌し、更にプレポリマーA−9中のイソシアネート量に対して[ケチミン化合物1]のアミン量が等モルになる量の[ケチミン化合物1]を反応容器に滴下していき、45℃で10時間撹拌後にプレポリマー伸長物を取り出した。
得られたプレポリマー伸長物を残酢酸エチル量が100ppm以下になるまで50℃で減圧乾燥させ、非晶質のポリエステル樹脂A−9を得た。
得られたポリエステル樹脂A−9の物性値を表2に示す。
(Production Example A-9)
<Synthesis of polyester resin A-9>
-Synthesis of Prepolymer A-9-
3-Methyl-1,5-pentanediol, terephthalic acid, and adipic acid are mixed in a reaction vessel equipped with a cooling pipe, a stirrer, and a nitrogen introduction pipe. 2 and the composition of the diol component is 100 mol% of 3-methyl-1,5-pentanediol, and the composition of the dicarboxylic acid component is 90 mol% of terephthalic acid and 10 mol% of adipic acid, so that titanium tetraisopropoxide (1,000 ppm relative to the resin component).
Thereafter, the temperature was raised to 200 ° C. in about 4 hours, and then the temperature was raised to 230 ° C. over 2 hours until the effluent water disappeared.
Thereafter, the reaction was further performed under reduced pressure of 10 mmHg to 15 mmHg for 5 hours to obtain an intermediate polyester A′-9.
The resulting intermediate polyester A′-9 had Tg of −5 ° C., Mw 13,000, and Mw / Mn 2.2.
Next, in a reaction vessel equipped with a cooling tube, a stirrer and a nitrogen introduction tube, the molar ratio of the intermediate polyester A′-9 and lysine triisocyanate (RTI) (the isocyanate group of RTI / the hydroxyl group of the intermediate polyester) The solution was added at 0.2, diluted with ethyl acetate to a 50% ethyl acetate solution, and reacted at 100 ° C. for 5 hours to obtain an intermediate polyester A-9 solution.
The resulting intermediate polyester A-9 had Tg of 0 ° C., Mw 19,000, and Mw / Mn 2.4.
Next, a molar ratio of the intermediate polyester A-9 solution and isophorone diisocyanate (IPDI) in a reaction vessel equipped with a cooling pipe, a stirrer and a nitrogen introduction pipe (IPDI isocyanate group / intermediate polyester hydroxyl group) 1 5 and diluted with ethyl acetate to a 50% ethyl acetate solution and reacted at 100 ° C. for 5 hours to obtain a prepolymer A-9 solution.
-Synthesis of polyester resin A-9-
The obtained prepolymer A-9 was stirred in a reaction vessel equipped with a heating device, a stirrer, and a nitrogen introduction tube, and the amine amount of [ketimine compound 1] was larger than the isocyanate amount in the prepolymer A-9. An equimolar amount of [ketimine compound 1] was dropped into the reaction vessel, and the prepolymer extension product was taken out after stirring at 45 ° C. for 10 hours.
The obtained prepolymer extension product was dried under reduced pressure at 50 ° C. until the amount of residual ethyl acetate was 100 ppm or less to obtain amorphous polyester resin A-9.
Table 2 shows the physical properties of the obtained polyester resin A-9.
(製造例B−1)
<ポリエステル樹脂B−1の合成>
窒素導入管、脱水管、攪拌器及び熱伝対を装備した四つ口フラスコに、ビスフェノールAエチレンオキサイドサイド2モル付加物、ビスフェノールAプロピレンオキサイド3モル付加物、イソフタル酸、及びアジピン酸を、ビスフェノールAエチレンオキサイドサイド2モル付加物とビスフェノールAプロピレンオキサイド3モル付加物とがモル比(ビスフェノールAエチレンオキサイドサイド2モル付加物/ビスフェノールAプロピレンオキサイド3モル付加物)で85/15であり、テレフタル酸とアジピン酸とがモル比(テレフタル酸/アジピン酸)で80/20であり、水酸基とカルボキシル基とのモル比であるOH/COOHが1.2となるように仕込み、チタンテトライソプロポキシド(樹脂成分に対して500ppm)と共に常圧で230℃で8時間反応し、更に10mmHg〜15mmHgの減圧で4時間反応後、反応容器に無水トリメリット酸を全樹脂成分に対して1mol%になるよう入れ、180℃、常圧で3時間反応し、非晶質のポリエステル樹脂B−1を得た。
物性値を表1−1、1−2、及び2に記載した。
(Production Example B-1)
<Synthesis of polyester resin B-1>
Bisphenol A ethylene oxide side 2 mol adduct, bisphenol A propylene oxide 3 mol adduct, isophthalic acid, and adipic acid are added to a four-necked flask equipped with a nitrogen introduction tube, a dehydration tube, a stirrer, and a thermocouple. A molar ratio (bisphenol A ethylene oxide side 2 mol adduct / bisphenol A propylene oxide 3 mol adduct) is 85/15, and terephthalic acid is A ethylene oxide side 2 mol adduct and bisphenol A propylene oxide 3 mol adduct And adipic acid in a molar ratio (terephthalic acid / adipic acid) of 80/20 and charged so that OH / COOH, which is the molar ratio of hydroxyl group to carboxyl group, is 1.2, titanium tetraisopropoxide ( With 500ppm of resin component) The reaction was carried out at 230 ° C. for 8 hours, and further after 4 hours of reaction at a reduced pressure of 10 mmHg to 15 mmHg. Reacting for a time, amorphous polyester resin B-1 was obtained.
The physical property values are shown in Tables 1-1, 1-2, and 2.
(製造例C−1)
<結晶性ポリエステル樹脂C−1の合成>
窒素導入管、脱水管、攪拌器及び熱伝対を装備した5Lの四つ口フラスコに、ドデカン二酸、及び1,6−ヘキサンジオールを、水酸基とカルボキシル基とのモル比であるOH/COOHが0.9となるように仕込み、チタンテトライソプロポキシド(樹脂成分に対して500ppm)と共に、180℃で10時間反応させた後、200℃に昇温して3時間反応させ、更に8.3kPaの圧力にて2時間反応させて結晶性ポリエステル樹脂C−1を得た。
物性値を表1−1、1−2、及び2に記載した。
(Production Example C-1)
<Synthesis of Crystalline Polyester Resin C-1>
To a 5 L four-necked flask equipped with a nitrogen introduction tube, a dehydration tube, a stirrer, and a thermocouple, dodecanedioic acid and 1,6-hexanediol are mixed with OH / COOH, which is a molar ratio of hydroxyl group to carboxyl group. Is made to be 0.9, reacted with titanium tetraisopropoxide (500 ppm with respect to the resin component) at 180 ° C. for 10 hours, then heated to 200 ° C. and reacted for 3 hours, and further 8. Reaction was performed at a pressure of 3 kPa for 2 hours to obtain a crystalline polyester resin C-1.
The physical property values are shown in Tables 1-1, 1-2, and 2.
(実施例1)
<マスターバッチ(MB)の調製>
水1,200部、カーボンブラック(Printex35デクサ製)〔DBP吸油量=42mL/100mg、pH=9.5〕500部、及び前記ポリエステル樹脂B−1 500部を加え、ヘンシェルミキサー(三井鉱山社製)で混合し、混合物を2本ロールを用いて150℃で30分間混練後、圧延冷却しパルペライザーで粉砕し、[マスターバッチ1]を得た。
<WAX分散液の作製>
撹拌棒、及び温度計をセットした容器に離型剤1としてパラフィンワックス50部(日本精鑞株式会社製、HNP−9、炭化水素系ワックス、融点75℃、SP値8.8)、及び酢酸エチル450部を仕込み、撹拌下80℃に昇温し、80℃のまま5時間保持した後、1時問で30℃に冷却し、ビーズミル(ウルトラビスコミル、アイメックス社製)を用いて、送液速度1kg/hr、ディスク周速度6m/秒間、直径0.5mmジルコニアビーズを80体積%充填、3パスの条件で、分散を行い[WAX分散液1]を得た。
<結晶性ポリエステル樹脂分散液の作製>
撹拌棒、及び温度計をセットした容器に結晶性ポリエステル樹脂C−1 50部、及び酢酸エチル450部を仕込み、撹拌下80℃に昇温し、80℃のまま5時間保持した後、1時間で30℃に冷却し、ビーズミル(ウルトラビスコミル、アイメックス社製)を用いて、送液速度1kg/hr、ディスク周速度6m/秒間、直径0.5mmジルコニアビーズを80体積%充填、3パスの条件で、分散を行ない[結晶性ポリエステル樹脂分散液1]を得た。
Example 1
<Preparation of master batch (MB)>
1,200 parts of water, carbon black (manufactured by Printex 35 Dexa) [DBP oil absorption = 42 mL / 100 mg, pH = 9.5] and 500 parts of polyester resin B-1 are added, and Henschel mixer (manufactured by Mitsui Mining Co., Ltd.). The mixture was kneaded at 150 ° C. for 30 minutes using two rolls, rolled and cooled, and pulverized with a pulverizer to obtain [Masterbatch 1].
<Preparation of WAX dispersion>
50 parts of paraffin wax (manufactured by Nippon Seiki Co., Ltd., HNP-9, hydrocarbon wax, melting point 75 ° C., SP value 8.8) as a mold release agent 1 in a container set with a stir bar and a thermometer, and acetic acid 450 parts of ethyl was charged, heated to 80 ° C. with stirring, held at 80 ° C. for 5 hours, cooled to 30 ° C. at 1 hour, and sent using a bead mill (Ultra Visco Mill, manufactured by IMEX). Dispersion was carried out under the conditions of a liquid speed of 1 kg / hr, a disk peripheral speed of 6 m / sec, 80% by volume of 0.5 mm diameter zirconia beads, and 3 passes to obtain [WAX Dispersion 1].
<Preparation of crystalline polyester resin dispersion>
A container equipped with a stir bar and a thermometer was charged with 50 parts of crystalline polyester resin C-1 and 450 parts of ethyl acetate, heated to 80 ° C. with stirring, held at 80 ° C. for 5 hours, and then for 1 hour. To 30 ° C., and using a bead mill (Ultra Visco Mill, manufactured by Imex Co., Ltd.), a liquid feeding speed of 1 kg / hr, a disk peripheral speed of 6 m / sec, and filling with 80% by volume of 0.5 mm diameter zirconia beads, 3 passes Under the conditions, dispersion was performed to obtain [Crystalline polyester resin dispersion 1].
<油相の調製>
[WAX分散液1]500部、[プレポリマーA−1]200部、[結晶性ポリエステル樹脂分散液1]500部、[ポリエステル樹脂B−1]750部、[マスターバッチ1]100部、及び硬化剤として[ケチミン化合物1]2部を容器に入れ、TKホモミキサー(特殊機化製)で5,000rpmで60分間混合し、[油相1]を得た。
<有機微粒子エマルション(微粒子分散液)の合成>
撹拌棒、及び温度計をセットした反応容器に、水683部、メタクリル酸エチレンオキサイド付加物硫酸エステルのナトリウム塩(エレミノールRS−30:三洋化成工業株式会社製)11部、スチレン138部、メタクリル酸138部、及び過硫酸アンモニウム1部を仕込み、400回転/分間で15分間撹拌したところ、白色の乳濁液が得られた。加熱して、系内温度75℃まで昇温し、5時間反応させた。更に、1%過硫酸アンモニウム水溶液30部加え、75℃で5時間熟成してビニル系樹脂(スチレン−メタクリル酸−メタクリル酸エチレンオキサイド付加物硫酸エステルのナトリウム塩の共重合体)の水性分散液[微粒子分散液1]を得た。
[微粒子分散液1]をLA−920(HORIBA社製)で測定した体積平均粒径は、0.14μmであった。[微粒子分散液1]の一部を乾燥して樹脂分を単離した。
<水相の調製>
水990部、[微粒子分散液]83部、ドデシルジフェニルエーテルジスルホン酸ナトリウムの48.5%水溶液(エレミノールMON−7:三洋化成工業株式会社製)37部、及び酢酸エチル90部を混合撹拌し、乳白色の液体を得た。これを[水相1]とした。
<Preparation of oil phase>
[WAX dispersion 1] 500 parts, [Prepolymer A-1] 200 parts, [Crystalline polyester resin dispersion 1] 500 parts, [Polyester resin B-1] 750 parts, [Masterbatch 1] 100 parts, and As a curing agent, 2 parts of [ketimine compound 1] were put in a container and mixed for 60 minutes at 5,000 rpm with a TK homomixer (manufactured by Tokushu Kika) to obtain [oil phase 1].
<Synthesis of organic fine particle emulsion (fine particle dispersion)>
In a reaction vessel equipped with a stir bar and a thermometer, 683 parts of water, 11 parts of a sodium salt of ethylene oxide methacrylate adduct sulfate (Eleminol RS-30: Sanyo Chemical Industries, Ltd.), 138 parts of styrene, methacrylic acid When 138 parts and 1 part of ammonium persulfate were charged and stirred at 400 rpm for 15 minutes, a white emulsion was obtained. The system was heated to raise the system temperature to 75 ° C. and reacted for 5 hours. Further, 30 parts of a 1% ammonium persulfate aqueous solution was added, and the mixture was aged at 75 ° C. for 5 hours, and an aqueous dispersion of a vinyl resin (a copolymer of sodium salt of styrene-methacrylic acid-methacrylic acid ethylene oxide adduct sulfate) [fine particles Dispersion 1] was obtained.
The volume average particle size of the [fine particle dispersion 1] measured with LA-920 (manufactured by HORIBA) was 0.14 μm. A portion of [Fine Particle Dispersion 1] was dried to isolate the resin component.
<Preparation of aqueous phase>
990 parts of water, 83 parts of [fine particle dispersion], 37 parts of 48.5% aqueous solution of sodium dodecyl diphenyl ether disulfonate (Eleminol MON-7: manufactured by Sanyo Chemical Industries Ltd.) and 90 parts of ethyl acetate were mixed and stirred to give a milky white color Obtained liquid. This was designated as [Aqueous Phase 1].
<乳化・脱溶剤>
[油相1]が入った容器に、[水相1]1,200部を加え、TKホモミキサーで、回転数13,000rpmで20分間混合し[乳化スラリー1]を得た。
撹拌機及び温度計をセットした容器に、[乳化スラリー1]を投入し、30℃で8時間脱溶剤した後、45℃で4時間熟成を行い、[分散スラリー1]を得た。
<洗浄・乾燥>
[分散スラリー1]100部を減圧濾過した後、
(1):濾過ケーキにイオン交換水100部を加え、TKホモミキサーで混合(回転数12,000rpmで10分間)した後濾過した。
(2):(1)の濾過ケーキに10%水酸化ナトリウム水溶液100部を加え、TKホモミキサーで混合(回転数12,000rpmで30分間)した後、減圧濾過した。
(3):(2)の濾過ケーキに10%塩酸100部を加え、TKホモミキサーで混合(回転数12,000rpmで10分間)した後濾過した。
(4):(3)の濾過ケーキにイオン交換水300部を加え、TKホモミキサーで混合(回転数12,000rpmで10分間)した後濾過する、という前記(1)〜(4)の操作を2回行い[濾過ケーキ]を得た。
[濾過ケーキ]を循風乾燥機にて45℃で48時間乾燥し、目開き75μmのメッシュで篩い[トナー母体粒子1]を得た。
得られた[トナー母体粒子1]の構成比、Tg1st、及びTg2ndを表1−1に示す。
<外添処理>
トナー母体粒子1を100質量部に対して、平均粒径100nmの疎水性シリカ0.6質量部と、平均粒径20nmの酸化チタン1.0質量部と、平均粒径15nmの疎水性シリカ微粉体を0.8部とをヘンシェルミキサーにて混合し、トナー1を得た。
<Emulsification / desolvation>
1,200 parts of [Aqueous phase 1] was added to a container containing [Oil phase 1], and mixed with a TK homomixer at 13,000 rpm for 20 minutes to obtain [Emulsified slurry 1].
[Emulsion slurry 1] was put into a container equipped with a stirrer and a thermometer, and after removing the solvent at 30 ° C. for 8 hours, aging was carried out at 45 ° C. for 4 hours to obtain [Dispersion slurry 1].
<Washing and drying>
[Dispersion Slurry 1] After filtering 100 parts under reduced pressure,
(1): 100 parts of ion-exchanged water was added to the filter cake, mixed with a TK homomixer (10 minutes at 12,000 rpm), and then filtered.
(2): 100 parts of a 10% aqueous sodium hydroxide solution was added to the filter cake of (1), mixed with a TK homomixer (30 minutes at 12,000 rpm), and then filtered under reduced pressure.
(3): 100 parts of 10% hydrochloric acid was added to the filter cake of (2), mixed with a TK homomixer (rotation speed: 12,000 rpm for 10 minutes), and then filtered.
(4): The operations of (1) to (4) above, wherein 300 parts of ion-exchanged water is added to the filter cake of (3), mixed with a TK homomixer (10 minutes at 12,000 rpm) and then filtered. Was performed twice to obtain a [filter cake].
[Filter cake] was dried with a circulating dryer at 45 ° C. for 48 hours, and sieved with a mesh having an opening of 75 μm to obtain [Mother toner particles 1].
Table 1-1 shows the composition ratio, Tg1st, and Tg2nd of the obtained [toner base particle 1].
<External processing>
To 100 parts by mass of toner base particles 1, 0.6 parts by mass of hydrophobic silica having an average particle size of 100 nm, 1.0 part by mass of titanium oxide having an average particle size of 20 nm, and hydrophobic silica fine powder having an average particle size of 15 nm Toner 1 was obtained by mixing 0.8 part of the body with a Henschel mixer.
<キャリアの作製>
トルエン100質量部に、シリコーン樹脂(オルガノストレートシリコーン)100質量部、γ−(2−アミノエチル)アミノプロピルトリメトキシシラン5質量部、及びカーボンブラック10質量部を添加し、ホモミキサーで20分間分散させて、樹脂層塗布液を調製した。流動床型コーティング装置を用いて、平均粒径50μmの球状マグネタイト1,000質量部の表面に前記樹脂層塗布液を塗布して、キャリアを作製した。
<現像剤の作製>
ボールミルを用いて、前記トナー1 5質量部と前記キャリア95質量部とを混合し、現像剤を作製した。次に、作製した各現像剤を用いて、以下のようにして諸特性の評価を行った。結果を表1−1に示す。
<Creation of carrier>
To 100 parts by mass of toluene, 100 parts by mass of a silicone resin (organostraight silicone), 5 parts by mass of γ- (2-aminoethyl) aminopropyltrimethoxysilane, and 10 parts by mass of carbon black are added and dispersed for 20 minutes with a homomixer. To prepare a resin layer coating solution. Using a fluid bed type coating device, the resin layer coating solution was applied to the surface of 1,000 parts by mass of spherical magnetite having an average particle size of 50 μm to prepare a carrier.
<Production of developer>
Using a ball mill, 15 parts by mass of toner 15 and 95 parts by mass of carrier were mixed to prepare a developer. Next, various characteristics were evaluated using the produced developers as follows. The results are shown in Table 1-1.
<帯電性>
23℃、湿度53±3%の環境下にて、トナー母体粒子0.35g、キャリア5gをSUS製の円筒状容器(内径25mm、高さ30mm)に入れて12時間以上調湿した後、容器を密閉し、回転数300rpmにて5分間容器を回転させた。容器からトナーとキャリアの混合物をサンプリングし、400メッシュのブローオフゲージに入れ、エア圧5KPaにて3分間エアブローした後、エッピング社製のQ/Mメーター(EPPING社製)を用いて測定した。Q/Mメーターの設定としては、メッシュサイズが400メッシュ(ステンレス製)、ソフトブロー圧(1050V)吸引時間が90秒である。帯電量の算出は下記式により求められる。
帯電量(μC/g)=90秒後の総電気量(μC)/吸引されたトナー量(g)
このようにして求められた帯電量には適正値が存在し、高すぎても低すぎて良くない。本発明においては、従来のトナー母体粒子(デジタルフルカラー複合機Imagio MP C4002(株式会社リコー製)搭載のシアン色トナー母体粒子)の帯電量を基準値とし、以下の評価基準により評価を行った。
〔評価基準〕
◎:従来トナー並の帯電量(基準値−40μC/g以上−30μC/g未満)
○:やや帯電量が低いが使用可能(−30μC/g以上−20μC/g未満)
△:帯電量が低く使用困難(−20μC/g以上−10μC/g未満)
×:帯電量が低くすぎ使用できない(−10μC/g以上)
<Chargeability>
In an environment of 23 ° C. and a humidity of 53 ± 3%, 0.35 g of toner base particles and 5 g of carrier are placed in a SUS cylindrical container (inner diameter 25 mm, height 30 mm), and the humidity is adjusted for 12 hours or more. Was sealed, and the container was rotated at 300 rpm for 5 minutes. The mixture of toner and carrier was sampled from the container, put in a 400 mesh blow-off gauge, air blown at an air pressure of 5 KPa for 3 minutes, and then measured using a Q / M meter (manufactured by EPPING) manufactured by Epping. As for the setting of the Q / M meter, the mesh size is 400 mesh (made of stainless steel), the soft blow pressure (1050 V) suction time is 90 seconds. The charge amount is calculated by the following formula.
Charge amount (μC / g) = Total amount of electricity after 90 seconds (μC) / Amount of attracted toner (g)
There is an appropriate value for the charge amount obtained in this way, and it is not good because it is too high or too low. In the present invention, the charge amount of conventional toner base particles (cyan toner base particles mounted on a digital full-color multifunction peripheral, Image MP C4002 (manufactured by Ricoh Co., Ltd.)) was used as a reference value, and evaluation was performed according to the following evaluation criteria.
〔Evaluation criteria〕
A: Charge amount equivalent to that of conventional toner (reference value −40 μC / g or more and less than −30 μC / g)
○: Slightly low charge, but usable (-30 μC / g or more and less than -20 μC / g)
Δ: Charge amount is low and difficult to use (-20 μC / g or more and less than -10 μC / g)
X: Charge amount is too low to be used (-10 μC / g or more)
<画像光沢>
imagioMP C5002(株式会社リコー製)の定着部を改造した装置を用いて、PODグロスコート 128g/m2(王子製紙株式会社製)に複写テストを行った。
具体的には、定着温度を140度で通紙した画像の光沢度を求めた。複写テスト後の画像を光沢度計VG−7000(日本電色株式会社製)で60度光沢を計測した。
定着評価条件は、紙送りの線速度を100mm/秒間、面圧を1.0kgf/cm2、ニップ幅を7mmとした。
〔評価基準〕
◎:光沢度が20%以上
○:光沢度が15%以上20%未満
△:光沢度が10%以上15%未満
×:光沢度が10%未満
<Image gloss>
A copy test was performed on POD gloss coat 128 g / m 2 (manufactured by Oji Paper Co., Ltd.) using an apparatus in which the fixing unit of imagiMP C5002 (manufactured by Ricoh Co., Ltd.) was modified.
Specifically, the glossiness of an image that has been passed at a fixing temperature of 140 degrees was obtained. The image after the copying test was measured for 60 degree gloss with a gloss meter VG-7000 (Nippon Denshoku Co., Ltd.).
The fixing evaluation conditions were a paper feed linear velocity of 100 mm / second, a surface pressure of 1.0 kgf / cm 2 , and a nip width of 7 mm.
〔Evaluation criteria〕
◎: Glossiness is 20% or more ○: Glossiness is 15% or more and less than 20% △: Glossiness is 10% or more and less than 15% ×: Glossiness is less than 10%
<定着性>
imageo MP C5002(株式会社リコー製)の定着部を改造した装置を用いて、タイプ6200紙(株式会社リコー製)に複写テストを行った。
具体的には、定着温度を変化させてコールドオフセット温度(定着下限温度)及び高温
オフセット温度(定着上限温度)を求めた。
定着下限温度の評価条件は、紙送りの線速度を200mm/秒間、面圧を1.0kgf/cm2、ニップ幅を7mmとした。
また、定着上限温度の評価条件は、紙送りの線速度を100mm/秒間、面圧を1.0kgf/cm2、ニップ幅を7mmとした。
定着下限温度が低い程、低温定着性に優れる。以下の基準により、定着下限を評価した。一方、定着上限温度170℃以上であれば、本発明で得られる耐高温オフセット性の効果として十分なものである。
〔評価基準〕
◎:定着下限温度が109℃以下
○:定着下限温度が110℃以上114℃以下
△:定着下限温度が115℃以上119℃以下
×:定着下限温度が120℃以上
<Fixability>
A copy test was performed on type 6200 paper (manufactured by Ricoh Co., Ltd.) using an apparatus in which the fixing unit of imageo MP C5002 (manufactured by Ricoh Co., Ltd.) was modified.
Specifically, the cold offset temperature (fixing lower limit temperature) and the high temperature offset temperature (fixing upper limit temperature) were determined by changing the fixing temperature.
The evaluation conditions for the minimum fixing temperature were a paper feed linear velocity of 200 mm / second, a surface pressure of 1.0 kgf / cm 2 , and a nip width of 7 mm.
Further, the evaluation conditions for the upper limit fixing temperature were a linear speed of paper feed of 100 mm / second, a surface pressure of 1.0 kgf / cm 2 , and a nip width of 7 mm.
The lower the minimum fixing temperature, the better the low-temperature fixability. The lower limit of fixing was evaluated according to the following criteria. On the other hand, if the fixing upper limit temperature is 170 ° C. or higher, the effect of high temperature offset resistance obtained in the present invention is sufficient.
〔Evaluation criteria〕
A: Fixing lower limit temperature is 109 ° C. or less ○: Fixing lower limit temperature is 110 ° C. or more and 114 ° C. or less Δ: Fixing lower limit temperature is 115 ° C. or more and 119 ° C. or less ×: Fixing lower limit temperature is 120 ° C. or more
<耐熱保存性>
50mLのガラス容器にトナー10gを充填し、トナー粉体の見掛け密度の変化が無くなるまで十分にタッピングし、容器に蓋をし、50℃の恒温槽に24時間放置した後、24℃に冷却し、針入度試験(JIS K2235−1991)により、針入度(mm)を測定し、下記基準で耐熱保存性を評価した。なお、針入度が大きい程、耐熱保存性が優れていることを意味し、針入度が15mm未満であるものは、使用上、問題が発生する可能性が高い。
〔評価基準〕
◎:針入度が25mm以上
○:針入度が20mm以上25mm未満
△:針入度が15mm以上20mm未満
×:針入度が15mm未満
<Heat resistant storage stability>
Fill a 50 mL glass container with 10 g of toner, tapping well until there is no change in the apparent density of the toner powder, cover the container, leave it in a constant temperature bath at 50 ° C. for 24 hours, then cool to 24 ° C. The penetration (mm) was measured by a penetration test (JIS K2235-1991), and the heat resistant storage stability was evaluated according to the following criteria. In addition, the greater the penetration, the better the heat-resistant storage stability, and those having a penetration of less than 15 mm are more likely to cause problems in use.
〔Evaluation criteria〕
◎: Needle penetration is 25 mm or more ○: Needle penetration is 20 mm or more and less than 25 mm △: Needle penetration is 15 mm or more and less than 20 mm ×: Needle penetration is less than 15 mm
(実施例2)
実施例1において、プレポリマーA−1をプレポリマーA−2に代えた以外は、実施例1と同様にして、[トナー母体粒子2]を得、係る[トナー母体粒子2]を用いた[トナー2]に対して、実施例1と同様にして評価を行った。結果を表1−1に示す。
(実施例3)
実施例1において、プレポリマーA−1をプレポリマーA−3に代えた以外は、実施例1と同様にして、[トナー母体粒子3]を得、係る[トナー母体粒子3]を用いた[トナー3]に対して、実施例1と同様にして評価を行った。結果を表1−1に示す。
(実施例4)
実施例1において、プレポリマーA−1をプレポリマーA−4に代えた以外は、実施例1と同様にして、[トナー母体粒子4]を得、係る[トナー母体粒子4]を用いた[トナー4]に対して、実施例1と同様にして評価を行った。結果を表1−1に示す。
(実施例5)
実施例1において、プレポリマーA−1をプレポリマーA−5に代えた以外は、実施例1と同様にして、[トナー母体粒子5]を得、係る[トナー母体粒子5]を用いた[トナー5]に対して、実施例1と同様にして評価を行った。結果を表1−2に示す。
(実施例6)
実施例1において、プレポリマーA−1をプレポリマーA−6に代えた以外は、実施例1と同様にして、[トナー母体粒子6]を得、係る[トナー母体粒子6]を用いた[トナー6]に対して、実施例1と同様にして評価を行った。結果を表1−2に示す。
(Example 2)
In Example 1, except that Prepolymer A-1 was replaced with Prepolymer A-2, [Toner Base Particle 2] was obtained in the same manner as in Example 1, and such [Toner Base Particle 2] was used [ Toner 2] was evaluated in the same manner as in Example 1. The results are shown in Table 1-1.
Example 3
In Example 1, except that Prepolymer A-1 was replaced with Prepolymer A-3, [Toner Base Particle 3] was obtained in the same manner as in Example 1, and [Toner Base Particle 3] was used [ Toner 3] was evaluated in the same manner as in Example 1. The results are shown in Table 1-1.
Example 4
In Example 1, except that Prepolymer A-1 was replaced with Prepolymer A-4, [Toner Base Particle 4] was obtained in the same manner as in Example 1, and [Toner Base Particle 4] was used [ Toner 4] was evaluated in the same manner as in Example 1. The results are shown in Table 1-1.
(Example 5)
In Example 1, except that Prepolymer A-1 was replaced with Prepolymer A-5, [Toner Base Particle 5] was obtained in the same manner as in Example 1, and [Toner Base Particle 5] was used [ Toner 5] was evaluated in the same manner as in Example 1. The results are shown in Table 1-2.
(Example 6)
In Example 1, except that Prepolymer A-1 was replaced with Prepolymer A-6, [Toner Base Particle 6] was obtained in the same manner as in Example 1, and such [Toner Base Particle 6] was used [ Toner 6] was evaluated in the same manner as in Example 1. The results are shown in Table 1-2.
(比較例1)
実施例1において、プレポリマーA−1をプレポリマーA−7に代えた以外は、実施例1と同様にして、[トナー母体粒子7]を得、係る[トナー母体粒子7]を用いた[トナー7]に対して、実施例1と同様にして評価を行った。結果を表2に示す。
(比較例2)
実施例1において、プレポリマーA−1をプレポリマーA−8に代えた以外は、実施例1と同様にして、[トナー母体粒子8]を得、係る[トナー母体粒子8]を用いた[トナー8]に対して、実施例1と同様にして評価を行った。結果を表2に示す。
(比較例3)
実施例1において、プレポリマーA−1をプレポリマーA−9に代えた以外は、実施例1と同様にして、[トナー母体粒子9]を得、係る[トナー母体粒子9]を用いた[トナー9]に対して、実施例1と同様にして評価を行った。結果を表2に示す。
(Comparative Example 1)
In Example 1, except that Prepolymer A-1 was replaced with Prepolymer A-7, [Toner Base Particle 7] was obtained in the same manner as in Example 1, and [Toner Base Particle 7] was used [ Toner 7] was evaluated in the same manner as in Example 1. The results are shown in Table 2.
(Comparative Example 2)
In Example 1, except that the prepolymer A-1 was replaced with the prepolymer A-8, [Toner Base Particles 8] were obtained in the same manner as in Example 1, and such [Toner Base Particles 8] were used [ Toner 8] was evaluated in the same manner as in Example 1. The results are shown in Table 2.
(Comparative Example 3)
In Example 1, except that Prepolymer A-1 was replaced with Prepolymer A-9, [Toner Base Particle 9] was obtained in the same manner as in Example 1, and [Toner Base Particle 9] was used [ Toner 9] was evaluated in the same manner as in Example 1. The results are shown in Table 2.
本発明の態様は、例えば、以下のとおりである。
<1> 少なくともポリエステル樹脂を含有するトナーであって、前記ポリエステル樹脂が、以下構造式1)〜3)のいずれかで表される構造を有することを特徴とするトナーである。
1) R1−(NHCONH−R2−X−R3)n−
2) R1−(NHCOO−R2−X−R3)n−
3) R1−(OCONH−R2−X−R3)n−
(上記式中、n=3
R1:芳香族、又は脂肪族系の有機基、
R2:ポリカルボン酸、及びポリオールの少なくともいずれかからなるポリエステル、並びにポリエステルがイソシアネート変性された変性ポリエステルのいずれかの樹脂に由来する基、
X:ウレア結合、又はウレタン結合、
R3:下記一般式(I)で表される化合物に由来する基を表す。
<2> 前記ポリエステル樹脂が、構成成分としてジオール成分を含み、前記ジオール成分が、炭素数4〜12の脂肪族ジオールを50mol%以上含有し、かつ前記ジオール成分の主鎖となる部分の炭素数が奇数であり、前記ジオール成分が、アルキル基を側鎖に有する前記<1>に記載のトナーである。
<3> 前記ポリエステル樹脂の重量平均分子量(Mw)が30,000〜60,000であり、重量平均分子量/数平均分子量(Mw/Mn)が6〜12であり、ガラス転移温度が−60℃以上0℃以下である前記<1>から<2>のいずれかに記載のトナーである。
<4> 前記一般式(I)で表される化合物としてジフェニルメタンジイソシアネート(MDI)を用い、前記R2を含む中間体ポリエステルと前記ジフェニルメタンジイソシアネート(MDI)とを反応させて前記構造式1)〜3)のいずれかで表される構造を有するポリエステル樹脂を製造する場合、前記構造式1)〜3)のいずれかで表される構造を有するポリエステル樹脂が、前記中間体ポリエステルと前記ジフェニルメタンジイソシアネート(MDI)とを(MDIのイソシアネート基/中間体ポリエステルの水酸基)のモル比が、1.5以上3.0未満となるように反応させて製造されたものである前記<1>から<3>のいずれかに記載のトナーである。
<5> 前記トナーの示差走査熱量測定(DSC)の昇温1回目のDSC曲線から求められるガラス転移温度(Tg1st)が、20℃以上50℃以下である前記<1>から<4>のいずれかに記載のトナーである。
<6> 前記ポリエステル樹脂が、テトラヒドロフラン(THF)に不溶である前記<1>から<5>のいずれかに記載のトナーである。
<7> 前記ポリエステル樹脂が、構成成分としてジカルボン酸成分を含み、前記ジカルボン酸成分が、炭素数4〜12の脂肪族ジカルボン酸を30mol%以上含有する前記<1>から<6>のいずれかに記載のトナーである。
<8> 更に、ガラス転移温度が40℃以上70℃以下である第二のポリエステル樹脂を含有し、前記トナーの示差走査熱量測定(DSC)の昇温1回目におけるガラス転移温度(Tg1st)が20℃以上50℃以下である前記<1>から<7>のいずれかに記載のトナーである。
<9> 更に、結晶性ポリエステル樹脂を含有し、前記結晶性ポリエステル樹脂の融点が、60℃以上80℃以下であり、前記トナーの示差走査熱量測定(DSC)の昇温1回目のガラス転移温度(Tg1st)と昇温2回目のガラス転移温度(Tg2nd)との差(Tg1st−Tg2nd)が、10℃以上である前記<1>から<8>のいずれかに記載のトナーである。
<10> 前記結晶性ポリエステル樹脂が、炭素数4以上12以下の直鎖飽和脂肪族ジカルボン酸と、炭素数2以上12以下の直鎖飽和脂肪族ジオールとから構成される前記<9>に記載のトナーである。
<11> 前記一般式(I)で表されるイソシアネート化合物がジフェニルメタンジイソシアネート(MDI)である前記<1>から<10>のいずれかに記載のトナーである。
<12> 前記構造式1)〜3)が、下記構造式a)〜c)で表される前記<1>から<11>のいずれかに記載のトナーである。
1) R1−(NHCONH−R3−Y−R2’−X−R3)n−
2) R1−(NHCOO−R3−Y−R2’−X−R3)n−
3) R1−(OCONH−R3−Y−R2’−X−R3)n−
(上記式中、n、R1、R3、Xは、構造式1)〜3)における説明と同じものを表す。また、R2’:ポリエステルに由来する基であり、Y:ウレア結合、又はウレタン結合を表す。)
<13> 前記<1>から<12>のいずれかに記載のトナーを含むことを特徴とする現像剤である。
<14> 静電潜像担持体と、前記静電潜像担持体上に静電潜像を形成する静電潜像形成手段と、前記静電潜像担持体に形成された前記静電潜像を現像して可視像を形成する、トナーを備える現像手段とを有し、
前記トナーが、前記<1>から<12>のいずれかに記載のトナーであることを特徴とする画像形成装置である。
Aspects of the present invention are as follows, for example.
<1> A toner containing at least a polyester resin, wherein the polyester resin has a structure represented by any one of structural formulas 1) to 3) below.
1) R1- (NHCONH-R2-X-R3) n-
2) R1- (NHCOO-R2-X-R3) n-
3) R1- (OCONH-R2-X-R3) n-
(Where n = 3
R1: aromatic or aliphatic organic group,
R2: a group derived from a resin comprising at least one of a polycarboxylic acid and a polyol, and a modified polyester obtained by modifying the polyester with an isocyanate;
X: Urea bond or urethane bond,
R3: represents a group derived from a compound represented by the following general formula (I).
<2> The polyester resin contains a diol component as a constituent component, the diol component contains 50 mol% or more of an aliphatic diol having 4 to 12 carbon atoms, and the number of carbon atoms of the portion that becomes the main chain of the diol component Is a toner according to <1>, wherein the diol component has an alkyl group in a side chain.
<3> The polyester resin has a weight average molecular weight (Mw) of 30,000 to 60,000, a weight average molecular weight / number average molecular weight (Mw / Mn) of 6 to 12, and a glass transition temperature of −60 ° C. The toner according to any one of <1> to <2>, which is 0 ° C. or higher.
<4> Using diphenylmethane diisocyanate (MDI) as the compound represented by the general formula (I), the intermediate polyester containing R2 and the diphenylmethane diisocyanate (MDI) are reacted to form the structural formulas 1) to 3). In the case of producing a polyester resin having a structure represented by any one of the above, the polyester resin having the structure represented by any one of the structural formulas 1) to 3) is the intermediate polyester and the diphenylmethane diisocyanate (MDI). Any one of <1> to <3> above, wherein a molar ratio of (isocyanate group of MDI / hydroxyl group of intermediate polyester) is 1.5 to less than 3.0 The toner according to claim 1.
<5> Any one of <1> to <4>, wherein a glass transition temperature (Tg1st) obtained from a first DSC curve of differential scanning calorimetry (DSC) of the toner is 20 ° C. or more and 50 ° C. or less. The toner according to claim 1.
<6> The toner according to any one of <1> to <5>, wherein the polyester resin is insoluble in tetrahydrofuran (THF).
<7> The above <1> to <6>, wherein the polyester resin includes a dicarboxylic acid component as a constituent component, and the dicarboxylic acid component contains 30 mol% or more of an aliphatic dicarboxylic acid having 4 to 12 carbon atoms. The toner described in 1.
<8> Further, the toner contains a second polyester resin having a glass transition temperature of 40 ° C. or higher and 70 ° C. or lower, and has a glass transition temperature (Tg1st) of 20 at the first temperature increase in differential scanning calorimetry (DSC) of the toner. The toner according to any one of <1> to <7>, wherein the toner is at least 50 ° C and at most 50 ° C.
<9> Further, it contains a crystalline polyester resin, the melting point of the crystalline polyester resin is 60 ° C. or more and 80 ° C. or less, and the glass transition temperature at the first temperature increase in differential scanning calorimetry (DSC) of the toner. The toner according to any one of <1> to <8>, wherein a difference (Tg1st−Tg2nd) between (Tg1st) and a second glass transition temperature (Tg2nd) is 10 ° C. or more.
<10> The <9>, wherein the crystalline polyester resin is composed of a linear saturated aliphatic dicarboxylic acid having 4 to 12 carbon atoms and a linear saturated aliphatic diol having 2 to 12 carbon atoms. Toner.
<11> The toner according to any one of <1> to <10>, wherein the isocyanate compound represented by the general formula (I) is diphenylmethane diisocyanate (MDI).
<12> The toner according to any one of <1> to <11>, wherein the structural formulas 1) to 3) are represented by the following structural formulas a) to c).
1) R1- (NHCONH-R3-Y-R2'-X-R3) n-
2) R1- (NHCOO-R3-Y-R2'-X-R3) n-
3) R1- (OCONH-R3-Y-R2'-X-R3) n-
(In the above formula, n, R1, R3, and X represent the same as described in Structural Formulas 1) to 3). R2 ′ is a group derived from polyester, and Y represents a urea bond or a urethane bond. )
<13> A developer comprising the toner according to any one of <1> to <12>.
<14> An electrostatic latent image carrier, an electrostatic latent image forming unit that forms an electrostatic latent image on the electrostatic latent image carrier, and the electrostatic latent image formed on the electrostatic latent image carrier. Developing means comprising toner for developing the image to form a visible image;
An image forming apparatus, wherein the toner is the toner according to any one of <1> to <12>.
前記<1>から<12>のいずれかに記載のトナー、前記<13>に記載の現像剤、前記<14>に記載の画像形成装置は、従来における前記諸問題を解決し、以下の目的を達成することを課題とする。即ち、優れた低温定着性、耐高温オフセット性、高光沢、高色再現性、優れた帯電特性及び耐熱保存性を有するトナー、該トナーを有する現像剤、及び該現像剤を用いた画像形成装置を提供することを目的とする。 The toner according to any one of <1> to <12>, the developer according to <13>, and the image forming apparatus according to <14> solve the above-described problems, and have the following objects: The goal is to achieve this. That is, a toner having excellent low-temperature fixability, high-temperature offset resistance, high gloss, high color reproducibility, excellent charging characteristics and heat-resistant storage stability, a developer having the toner, and an image forming apparatus using the developer The purpose is to provide.
10 静電潜像担持体
21 露光装置
25 定着装置
61 現像装置
160 帯電装置
DESCRIPTION OF SYMBOLS 10 Electrostatic latent image carrier 21 Exposure apparatus 25 Fixing apparatus 61 Developing apparatus 160 Charging apparatus
Claims (10)
1) R1−(NHCONH−R2−X−R3)n−
2) R1−(NHCOO−R2−X−R3)n−
3) R1−(OCONH−R2−X−R3)n−
(上記式中、n=3
R1:芳香族、又は脂肪族系の有機基、
R2:ポリカルボン酸、及びポリオールの少なくともいずれかからなるポリエステル、並びにポリエステルがイソシアネート変性された変性ポリエステルのいずれかの樹脂に由来する基、
X:ウレア結合、又はウレタン結合、
R3:下記一般式(I)で表される化合物に由来する基を表す。
1) R1- (NHCONH-R2-X-R3) n-
2) R1- (NHCOO-R2-X-R3) n-
3) R1- (OCONH-R2-X-R3) n-
(Where n = 3
R1: aromatic or aliphatic organic group,
R2: a group derived from a resin comprising at least one of a polycarboxylic acid and a polyol, and a modified polyester obtained by modifying the polyester with an isocyanate;
X: Urea bond or urethane bond,
R3: represents a group derived from a compound represented by the following general formula (I).
前記トナーが、請求項1から8のいずれかに記載のトナーであることを特徴とする画像形成装置。 An electrostatic latent image carrier, electrostatic latent image forming means for forming an electrostatic latent image on the electrostatic latent image carrier, and developing the electrostatic latent image formed on the electrostatic latent image carrier And a developing means comprising toner for forming a visible image,
An image forming apparatus, wherein the toner is the toner according to claim 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015111471A JP6544052B2 (en) | 2015-06-01 | 2015-06-01 | Toner, developer, and image forming apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015111471A JP6544052B2 (en) | 2015-06-01 | 2015-06-01 | Toner, developer, and image forming apparatus |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2016224309A true JP2016224309A (en) | 2016-12-28 |
JP6544052B2 JP6544052B2 (en) | 2019-07-17 |
Family
ID=57748024
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015111471A Active JP6544052B2 (en) | 2015-06-01 | 2015-06-01 | Toner, developer, and image forming apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6544052B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017187751A (en) * | 2016-03-30 | 2017-10-12 | 三洋化成工業株式会社 | Toner binder and method for producing the same, and resin particle |
JP2017187748A (en) * | 2016-03-30 | 2017-10-12 | 三洋化成工業株式会社 | Toner binder and method for producing the same, and resin particle |
JP2018146620A (en) * | 2017-03-01 | 2018-09-20 | 株式会社リコー | Toner, developer, image forming apparatus, and process cartridge |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1987004811A1 (en) * | 1986-01-30 | 1987-08-13 | Mitsui Toatsu Chemicals, Incorporated | Toner composition for electrophotography |
JPH06175388A (en) * | 1992-12-02 | 1994-06-24 | Fuji Xerox Co Ltd | Encapsulated toner and its production |
JPH09281746A (en) * | 1996-04-12 | 1997-10-31 | Mitsubishi Chem Corp | Electrostatic charge image developing toner |
JP2007025622A (en) * | 2005-04-11 | 2007-02-01 | Sekisui Chem Co Ltd | Method for preparing resin composition for toner, resin composition for toner and toner |
JP2010503736A (en) * | 2006-09-15 | 2010-02-04 | スティッチング ダッチ ポリマー インスティテュート | Process for the production of polyesters based on dianhydrohexitol |
JP2011070128A (en) * | 2009-09-28 | 2011-04-07 | Sharp Corp | Method of manufacturing capsule toner |
JP2013190666A (en) * | 2012-03-14 | 2013-09-26 | Ricoh Co Ltd | Toner and developer |
JP2015052697A (en) * | 2013-09-06 | 2015-03-19 | 株式会社リコー | Toner, developer, and image forming apparatus |
JP2015079240A (en) * | 2013-09-11 | 2015-04-23 | 株式会社リコー | Toner for forming image, developer, and image forming apparatus |
JP2016014130A (en) * | 2014-06-09 | 2016-01-28 | 株式会社リコー | Polyester resin binder for toner, toner, developer, image forming device and process cartridge |
-
2015
- 2015-06-01 JP JP2015111471A patent/JP6544052B2/en active Active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1987004811A1 (en) * | 1986-01-30 | 1987-08-13 | Mitsui Toatsu Chemicals, Incorporated | Toner composition for electrophotography |
JPH06175388A (en) * | 1992-12-02 | 1994-06-24 | Fuji Xerox Co Ltd | Encapsulated toner and its production |
JPH09281746A (en) * | 1996-04-12 | 1997-10-31 | Mitsubishi Chem Corp | Electrostatic charge image developing toner |
JP2007025622A (en) * | 2005-04-11 | 2007-02-01 | Sekisui Chem Co Ltd | Method for preparing resin composition for toner, resin composition for toner and toner |
JP2010503736A (en) * | 2006-09-15 | 2010-02-04 | スティッチング ダッチ ポリマー インスティテュート | Process for the production of polyesters based on dianhydrohexitol |
JP2011070128A (en) * | 2009-09-28 | 2011-04-07 | Sharp Corp | Method of manufacturing capsule toner |
JP2013190666A (en) * | 2012-03-14 | 2013-09-26 | Ricoh Co Ltd | Toner and developer |
JP2015052697A (en) * | 2013-09-06 | 2015-03-19 | 株式会社リコー | Toner, developer, and image forming apparatus |
JP2015079240A (en) * | 2013-09-11 | 2015-04-23 | 株式会社リコー | Toner for forming image, developer, and image forming apparatus |
JP2016014130A (en) * | 2014-06-09 | 2016-01-28 | 株式会社リコー | Polyester resin binder for toner, toner, developer, image forming device and process cartridge |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017187751A (en) * | 2016-03-30 | 2017-10-12 | 三洋化成工業株式会社 | Toner binder and method for producing the same, and resin particle |
JP2017187748A (en) * | 2016-03-30 | 2017-10-12 | 三洋化成工業株式会社 | Toner binder and method for producing the same, and resin particle |
JP2018146620A (en) * | 2017-03-01 | 2018-09-20 | 株式会社リコー | Toner, developer, image forming apparatus, and process cartridge |
Also Published As
Publication number | Publication date |
---|---|
JP6544052B2 (en) | 2019-07-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5884797B2 (en) | Toner, developer, and image forming apparatus | |
JP5884876B2 (en) | toner | |
JP6497136B2 (en) | Toner, developer, and image forming apparatus | |
JP6582846B2 (en) | Toner, toner storage unit, and image forming apparatus | |
JP6459052B2 (en) | Toner, developer, image forming apparatus, and process cartridge | |
JP6260315B2 (en) | Toner, developer, process cartridge, and image forming apparatus | |
JP6350648B2 (en) | Toner, developer, image forming apparatus | |
KR101892892B1 (en) | Toner, developer, and image forming apparatus | |
JP6569218B2 (en) | Layered inorganic mineral, toner, and image forming apparatus | |
JP6485228B2 (en) | Toner, developer, and image forming apparatus | |
JP2018031987A (en) | Toner for electrostatic charge image development, electrostatic charge image developer, toner cartridge, process cartridge, image forming apparatus, and image forming method | |
JP6544052B2 (en) | Toner, developer, and image forming apparatus | |
JP6237192B2 (en) | Toner, developer, image forming apparatus | |
JP6686451B2 (en) | Toner, toner containing unit, image forming apparatus, and image forming method | |
JP2019101410A (en) | Toner, toner storage unit, image forming apparatus, and image forming method | |
JP2018180515A (en) | Toner, developer, and image forming apparatus | |
JP6217368B2 (en) | Toner, developer, and image forming apparatus | |
JP6451060B2 (en) | Toner container and image forming apparatus | |
JP6540233B2 (en) | Toner, developer and developer storage unit | |
JP6318714B2 (en) | Toner, developer, and image forming apparatus | |
JP2019133066A (en) | Toner, developer, and image forming apparatus | |
JP2018151546A (en) | Toner, developer, toner storage unit, image forming apparatus, and image forming method | |
JP2018155829A (en) | Toner, toner storage unit, and image forming apparatus | |
JP2017227881A (en) | Toner, toner storage unit, image forming apparatus, and method for manufacturing toner | |
JP2019109544A (en) | Toner, developer, and image forming apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20180517 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20181212 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20181218 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190215 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20190312 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190509 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20190521 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20190603 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 6544052 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |