JP2016070650A - 空調室内機 - Google Patents
空調室内機 Download PDFInfo
- Publication number
- JP2016070650A JP2016070650A JP2015139149A JP2015139149A JP2016070650A JP 2016070650 A JP2016070650 A JP 2016070650A JP 2015139149 A JP2015139149 A JP 2015139149A JP 2015139149 A JP2015139149 A JP 2015139149A JP 2016070650 A JP2016070650 A JP 2016070650A
- Authority
- JP
- Japan
- Prior art keywords
- air conditioning
- indoor
- temperature
- air
- unit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Air Conditioning Control Device (AREA)
Abstract
【解決手段】室内側制御部47,57,67,77は、過熱度目標値SHt若しくは過冷却度目標値SCt、風量の設定値、又は蒸発温度Te若しくは凝縮温度Tcの目標値に変化があったとき、能力制御による定期的な演算を待つことなく割り込んで要求能力を演算して更新する割り込み能力制御を行う。その結果、室内温度Trが目標値から逸脱することが防止される。
【選択図】図4
Description
図1は、本発明の一実施形態にかかる空調室内機を備えた空調機の概略構成図である。空調機10は、蒸気圧縮式の冷凍サイクル運転によって、ビル等の室内の冷暖房を行う装置である。空調機10は、1台の空調室外機20と、それに並列に接続された複数台(本実施形態では、3台)の空調室内機40,50,60,70と、空調室外機20と空調室内機40,50,60,70とを接続する液冷媒連絡管81およびガス冷媒連絡管82とを備えている。
空調室内機40,50,60,70は、ビル等の室内の天井に埋め込みや吊り下げ等により、または、室内の壁面に壁掛け等により設置されている。
室内膨張弁41は、電動式膨張弁である。室内膨張弁41は、室内側冷媒回路11a内を流れる冷媒の流量の調節等を行うために、室内熱交換器42の液側に接続される。また、室内膨張弁41は、冷媒の通過を遮断することもできる。
室内熱交換器42は、伝熱管と多数のフィンとにより構成されたクロスフィン式のフィン・アンド・チューブ型熱交換器である。室内熱交換器42は、冷房運転時には冷媒の蒸発器として機能して室内空気を冷却し、暖房運転時には冷媒の凝縮器として機能して室内空気を加熱する。
空調室内機40は、室内ファン43を有している。室内ファン43は、空調室内機40内に室内空気を吸入して、室内熱交換器42において冷媒と熱交換させた後に、供給空気として室内に供給する。また、室内ファン43は、室内熱交換器42に供給する空気の風量を所定風量範囲において変更することができる。
空調室内機40には、各種のセンサが設けられている。先ず、液側温度センサ44が、室内熱交換器42の液側に設けられている。液側温度センサ44は、暖房運転における凝縮温度Tcに対応する冷媒温度を、または冷房運転における蒸発温度Teに対応する冷媒温度を検出する。
図2は、空調室内機の制御部を示すブロック図である。図2において、空調室内機40は、室内側制御部47を有している。室内側制御部47は、空調室内機40を構成する各部の動作を制御する。室内側制御部47には、空調能力演算部47a、要求温度演算部47b、及びメモリ47cが含まれている。
空調室外機20は、ビル等の室外に設置されており、液冷媒連絡管81およびガス冷媒連絡管82を介して空調室内機40,50,60,70に接続されており、空調室内機40,50,60,70とともに冷媒回路11を構成している。
圧縮機21は容量可変式圧縮機であり、そのモータ21mの駆動はインバータにより回転数が制御される。本実施形態において、圧縮機21は1台のみであるが、これに限定されず、空調室内機の接続台数等に応じて、2台以上の圧縮機が並列に接続されていても良い。
四路切換弁22は、冷媒の流れの方向を切り換える弁である。冷房運転時、四路切換弁22は圧縮機21の吐出側と室外熱交換器23のガス側とを接続するとともに圧縮機21の吸入側(具体的には、アキュムレータ24)とガス冷媒連絡管82側とを接続する(冷房運転状態:図1の四路切換弁22の実線を参照)。
室外熱交換器23は、クロスフィン式のフィン・アンド・チューブ型熱交換器である。但し、これに限定されず、他の型式の熱交換器であっても良い。
室外膨張弁38は、電動膨張弁であり、室外側冷媒回路11e内を流れる冷媒の圧力や流量等の調節を行う。室外膨張弁38は、冷房運転時の冷媒回路11における冷媒の流れ方向において室外熱交換器23の下流側に配置されている。
室外ファン28は、吸入した室外空気を室外熱交換器23に送風して冷媒と熱交換させる。室外ファン28は、室外熱交換器23に送風する際の風量を可変することができる。室外ファン28は、プロペラファン等であり、DCファンモータ等からなるモータ28mによって駆動される。
液側閉鎖弁26及びガス側閉鎖弁27は、液冷媒連絡管81及びガス冷媒連絡管82との接続口に設けられる弁である。
空調室外機20には、吸入圧力センサ29、吐出圧力センサ30、吸入温度センサ31、吐出温度センサ32、及び室外温度センサ36が設けられている。
また、図2に示すように、空調室外機20は室外側制御部37を有している。室外側制御部37は、目標値決定部37a、メモリ37b、インバータ回路(図示せず)等を有している。目標値決定部37aは、目標蒸発温度Tetまたは目標凝縮温度Tctを決定する。メモリ37bは、各種データを格納する。
制御部80は、室内側制御部47,57,67,77と室外側制御部37と伝送線80aとによって構成されている。制御部80は、各種センサと接続され、各種センサからの検出信号等に基づいて各種機器を制御する。
冷媒連絡管81,82は、空調機10をビル等の設置場所に設置する際に、現地にて施工される冷媒管である。冷媒連絡管81,82は、設置場所や空調室外機と空調室内機との組み合わせ等の設置条件に応じて種々の長さや管径を有するものが使用されるので、空調機10の据付時には、冷媒連絡管81,82の長さや管径等の設置条件に応じた適正な量の冷媒が充填される。
空調機10では、冷房運転および暖房運転において、利用者がリモコン等の入力装置により設定している設定温度Tsに室内温度Trを近づける制御を、各空調室内機40,50,60,70に対して行っている。ここで、制御方式の概略を説明する。
室内側制御部47,57,67,77は、例えばリモコン(図示せず)を介して冷房運転などの特定の運転モードが選択された旨の入力を受けたとき、室外側制御部37に対して、圧縮機21の起動を要求し、能力制御が開始される。以下、図面を参照しながら能力制御について説明する。
ところが、目標蒸発温度Tet若しくは目標凝縮温度Tct、過熱度目標値SHt若しくは過冷却度目標値SCt、又は風量設定値が室内側制御部47,57,67,77の意図しない値に変更された場合、上記のような定期的に要求空調能力Qを更新する制御だけでは、要求空調能力Qの更新までの間に室内温度Trが目標値から逸脱し、快適性の低下、制御の安定性低下を招来するおそれがある。
ここでは、冷房運転及び暖房運転を例に、能力制御による空調機10の動作について説明する。
冷房運転時、四路切換弁22は、圧縮機21の吐出側と室外熱交換器23のガス側とを接続し、且つ圧縮機21の吸入側と室内熱交換器42,52,62,72のガス側とを接続する(図1の実線で示される状態)。
ここで、冷房運転時の要求空調能力の演算プロセスについて説明する。図5は、図4のステップS2における冷房運転時の詳細フローチャートである。以下、図2〜図5を参照しながら説明する。
特性値CQは、空調室内機40,50,60,70が自由に制御できる項g(G)と項h(SCH)との積を示す値であるので、特性値CQを実現する過熱度SH及び風量の組合せは無数にある。空調室内機40,50,60,70は、その中から冷媒側熱伝達率がより高くなる組合せを決定する。
室内側制御部47,57,67,77は、ステップS5で決定された過熱度SHを過熱度目標値SHtとして、室内熱交換器42,52,62,72の冷媒出口における冷媒の過熱度SHが過熱度目標値SHtとなるように各室内膨張弁41,51,61,71の開度を調節する。
暖房運転時は、四路切換弁22は、圧縮機21の吐出側と室内熱交換器42,52,62,72のガス側とを接続し、且つ圧縮機21の吸入側と室外熱交換器23のガス側とを接続する(図1の破線で示される状態)。
ここで、暖房運転時の要求空調能力の演算プロセスについて説明する。図6は、図4のステップS2における暖房運転時の詳細フローチャートである。以下、図2〜図4、及び図6を参照しながら説明する。
特性値CQは、空調室内機40,50,60,70が自由に制御できる項g(G)と項h(SC)との積を示す値であるので、特性値CQを実現する過冷却度SC及び風量の組合せは無数にある。空調室内機40,50,60,70は、その中から冷媒側熱伝達率がより高くなる組合せを決定する。
室内側制御部47,57,67,77は、ステップS5で決定された最適な過冷却度を過冷却度目標値SCtとして、室内熱交換器42,52,62,72の冷媒出口における冷媒の過冷却度SCが過冷却度目標値SCtとなるように各室内膨張弁41,51,61,71の開度を調節する。
(4−1)
室内側制御部47,57,67,77は、過熱度目標値SHt若しくは過冷却度目標値SCt、風量の設定値、又は目標蒸発温度Tet若しくは目標凝縮温度Tctに変化があったとき、能力制御による定期的な演算を待つことなく割り込んで要求能力を演算して更新する割り込み能力制御を行う。その結果、室内温度Trが目標値から逸脱することが防止される。
室内側制御部47,57,67,77は、割り込み能力制御において、冷媒側熱伝達率が高くなるように過熱度若しくは過冷却度の最適化を行うので、室内温度Trが目標値から逸脱することが防止される上に、風量を最小化させることができ省エネルギーである。
室内側制御部47,57,67,77は、割り込み能力制御において、室内温度Trと蒸発温度Te又は凝縮温度Tcとの温度差の最小化を図るため、空調室外機20に要求すべき要求蒸発温度Ter又は要求凝縮温度Tcrを演算する。
室内側制御部47,57,67,77は、空調室外機20から目標蒸発温度Tet又は目標凝縮温度Tctの入力を受けたとき、その目標値が空調室外機に対して出力した要求値と一致するか否かにかかわらず、割り込み能力制御を実行する。その結果、室内温度Trが目標値から逸脱することが防止される。
室内側制御部47,57,67,77は、自身の能力制御以外の制御において過熱度目標値SHt若しくは過冷却度目標値SCtが変更されたとき、又は空調室外機20から過熱度目標値SHt若しくは過冷却度目標値SCtの入力を受けたとき、割り込み能力制御を実行し、室内温度が目標値から逸脱することを防止する。
室内側制御部47,57,67,77は、風量手動モードによる風量の設定値の入力を受けたとき、割り込み能力制御を実行すし、室内温度Trが目標値から逸脱することを防止する。
(5−1)
上記実施形態では、能力制御のパラメータに過熱度SH、過冷却度SCを採り入れているが、過熱度SH、過冷却度SCに替えて、相対過熱度RSH、相対過冷却度RSCを用いてもよい。
熱交関数の誤差にそなえ、アクチュエータの過剰変動が発生しないように動作量を調整できるようにしてもよい。ユーザーの快適性の観点から、アクチュエータを一度に大きく変化させることを避けるためである。
(6−1)
上記実施形態では、図4において、割り込み能力制御をステップS2の手前に割り込ませているが、これに限定されるものではなく、例えば図7に示すように、割り込み能力制御をステップS4の手前に割り込ませてもよい。
上記実施形態では、要求空調能力Qの更新から次の定期的更新までの間で、割り込み能力制御があっても先の更新から所定時間t1後の更新を待っているが、これに限定されるものではない。例えば図8に示すように、「タイマーリセット」の指令をステップS62として従来のステップS61の下流側に挿入して、次の要求空調能力Qの更新が「割り込み能力制御による要求空調能力Qの更新」から所定時間t1経過後に行われてもよい。
ここでは、具体的な条件設定の下、システムとして能力が不足している場合、及びシステムとして能力が過剰になっている場合の空調機の動作について説明する。
(7−1−1)能力制御
図9Aは、システムとして能力が不足している場合の各空調対象空間の室温、各空調室内機の風量及び蒸発温度を示した表である。図9Bは、省エネルギーの観点からシステムとして理想状態が実現している場合の各空調対象空間の室温、各空調室内機の風量及び蒸発温度を示した表である。
空調室内機A40は、現在の蒸発温度Te(=10℃)の条件下では風量100%に設定されていても、その空調能力Q1aは空調負荷QLoaを下回っており、設定温度27℃に対して実際の室温は28℃である。空調室内機A40が能力不足を補うためには熱交関数の項f(ΔT)の値を大きくする、即ち蒸発温度を下げる必要があり、要求すべき蒸発温度は9℃である。
一方、空調室内機B50は、現在の蒸発温度Te(=10℃)の条件下では風量100%ならば空調能力Q1bが空調負荷QLobを下回っておらず、必要能力を過不足なく満たしている。
他方、空調室内機C60は、現在の蒸発温度Te(=10℃)の条件下では風量85%でも空調能力Q1cが空調負荷QLocを下回っておらず、必要能力を超える潜在能力を有している。
また、空調室内機D70は、現在の蒸発温度Te(=10℃)の条件下では風量80%でも空調能力Q1dが空調負荷QLodを下回っておらず、必要能力を超える潜在能力を有している。
各空調室内機の室内側制御部47,57,67,77から異なる要求△Teを受信した室外側制御部37は、最大負荷機である空調室内機A40からの要求△Te=−1degに合わせるため、各空調室内機の室内側制御部47,57,67,77に対し目標蒸発温度Tet=9℃とする指令を送信する。
室内側制御部47,57,67,77は、通常なら次に要求空調能力Qを更新するのは直近の更新から所定時間t1(例えば3分間)後であるが、その所定時間t1内に目標蒸発温度Tet=9℃に設定されたので、所定時間t1の経過を待たずに要求空調能力Qを演算し、更新する。これが、割り込み能力制御である。
室外側制御部37が目標蒸発温度Tet=9℃に設定した結果、蒸発温度Teが現実に9℃まで低下し、空調室内機A40の空調能力Q1aが増加し、風量Gaを100%で維持しつつ室温を設定温度の27℃まで低下させることができた。
一方、空調室内機B50は、蒸発温度Teが9℃まで低下したことにより、能力過剰になるおそれがある。そこで、室内側制御部57は熱交関数の項f(ΔT)の値が増えた分、風量Gaを90%まで低下させて項g(G)×項h(SH)の値を減らし、空調能力Q1bの安定維持を図る。
他方、空調室内機C60も、蒸発温度Teが9℃まで低下したことにより、能力過剰になるおそれがある。そこで、室内側制御部67は熱交関数の項f(ΔT)の値が増えた分、風量Gaを75%まで低下させて項g(G)×項h(SH)の値を減らし、空調能力Q1cの安定維持を図る。
空調室内機D70も、蒸発温度Teが9℃まで低下したことにより、能力過剰になるおそれがある。そこで、室内側制御部77は熱交関数の項f(ΔT)の値が増えた分、風量Gaを70%まで低下させて項g(G)×項h(SH)の値を減らし、空調能力Q1dの安定維持を図る。
各空調室内機の室内側制御部47,57,67,77から異なる要求△Teを受信した室外側制御部37は、最大負荷機である空調室内機A40からの要求△Te=±0degに合わせるため、各空調室内機の室内側制御部47,57,67,77に対し目標蒸発温度Tet=9℃を維持する指令を送信する。
以上のように、室外側制御部37が蒸発温度を9℃まで低下させたことによって、空調室内機A40の能力は増加し、風量を100%に維持することによって室温が設定温度27℃まで低下する。
(7−2−1)能力制御
図10Aは、システムとして能力が過剰になっている場合の各空調対象空間の室温、各空調室内機の風量及び蒸発温度を示した表である。図10Bは、省エネルギーの観点からシステムとして理想状態が実現している場合の各空調対象空間の室温、各空調室内機の風量及び蒸発温度を示した表である。
空調室内機A40は、現在の蒸発温度Te(=10℃)の条件下では風量100%では能力過剰となるので、風量90%まで低下させることによって、空調能力Q1aを安定維持している。
空調室内機B50は、現在の蒸発温度Te(=10℃)の条件下では風量100%では能力過剰となるので、風量80%まで低下させることによって、空調能力Q1bを安定維持している。
空調室内機C60は、現在の蒸発温度Te(=10℃)の条件下では風量100%では能力過剰となるので、風量70%まで低下させることによって、空調能力Q1cを安定維持している。
空調室内機D70は、現在の蒸発温度Te(=10℃)の条件下では風量100%では能力過剰となるので、風量65%まで低下させることによって、空調能力Q1dを安定維持している。
各空調室内機の室内側制御部47,57,67,77から異なる要求△Teを受信した室外側制御部37は、最大負荷機である空調室内機A40からの要求△Te=+1degに合わせるため、各空調室内機の室内側制御部47,57,67,77に対し目標蒸発温度Tet=11℃とする指令を送信する。
ここでは、図10Bを参照しながら、室外側制御部37から目標蒸発温度Tet=11℃を受信した室内側制御部47,57,67,77の動作について説明する。
室外側制御部37が目標蒸発温度Tet=11℃に設定した結果、蒸発温度Teが現実に11℃まで上昇したので、室内側制御部47は空調能力Q1aを維持するため、熱交関数の項f(ΔT)の値が低下した分を項g(G)×項h(SH)の値で補えるように、風量を直近の90%から100%まで上げる。蒸発温度Te(=11℃)、風量100%ならば空調能力Q1aは、空調負荷QLoaを下回らず、必要能力を過不足なく満たすことになる。
蒸発温度Teが現実に11℃まで上昇したので、室内側制御部57は空調能力Q1bを維持するため、熱交関数の項f(ΔT)の値が低下した分を項g(G)×項h(SH)の値で補えるように、風量を直近の80%から90%まで上げる。
蒸発温度Teが現実に11℃まで上昇したので、室内側制御部67は空調能力Q1cを維持するため、熱交関数の項f(ΔT)の値が低下した分を項g(G)×項h(SH)の値で補えるように、風量を直近の70%から80%まで上げる。
蒸発温度Teが現実に11℃まで上昇したので、室内側制御部77は空調能力Q1dを維持するため、熱交関数の項f(ΔT)の値が低下した分を項g(G)×項h(SH)の値で補えるように、風量を直近の65%から75%まで上げる。
各空調室内機の室内側制御部47,57,67,77から異なる要求△Teを受信した室外側制御部37は、最大負荷機である空調室内機A40からの要求△Te=±0degに合わせるため、各空調室内機の室内側制御部47,57,67,77に対し目標蒸発温度Tet=11℃を維持する指令を送信する。
以上のように、室外側制御部37が蒸発温度を11℃まで上昇させたことによって、空調室内機A40の能力が抑制されるものの、風量を100%に維持することによって室温が設定温度27℃で安定維持される。
本発明に係る実施形態は、熱交関数の中で空調室内機40,50,60,70が自由に制御できる項g(G)と項h(SCH)との積を示す値、つまりg(G)・h(SCH)を特性値CQと定義付け、特性値CQを調整することによって、能力の過不足を解消し、省エネ理想状態を実現することができる。
40,50,60 空調室内機
47,57,67 室内側制御部
Claims (6)
- 現在室温と設定室温とから決まる要求能力を定期的に演算しながら、過熱度若しくは過冷却度、風量、又は蒸発温度若しくは凝縮温度に基づいて能力を調節する能力制御を行う、空調室内機であって、
前記能力制御を実行する室内側制御部(47,57,67,77)を備え、
前記室内側制御部(47,57,67,77)は、前記過熱度若しくは前記過冷却度の目標値、前記風量の設定値、又は前記蒸発温度若しくは前記凝縮温度の目標値に変化があったとき、前記能力制御による定期的な演算を待つことなく割り込んで前記要求能力を演算して更新する割り込み能力制御を行う、
空調室内機。 - 前記室内側制御部(47,57,67,77)は、前記割り込み能力制御において更新した前記要求能力を実現する前記過熱度若しくは前記過冷却度及び前記風量の組合せのうち、最も省エネルギーとなる組合せを選択する、
請求項1に記載の空調室内機。 - 前記空調室内機は、空調室外機(20)に対して複数の空調室内機が接続されるマルチタイプ空調機に用いられる空調室内機であって、
前記室内側制御部(47,57,67,77)は、前記割り込み能力制御において、前記現在室温と前記蒸発温度又は前記凝縮温度との温度差の最小化を図るため、前記空調室外機(20)に対して要求すべき蒸発温度又は凝縮温度を演算する、
請求項1又は請求項2に記載の空調室内機。 - 前記空調室内機は、空調室外機(20)に対して複数の空調室内機が接続されるマルチタイプ空調機に用いられる空調室内機であって、
前記室内側制御部(47,57,67,77)は、前記能力制御における前記要求能力を定期的に演算する際に、前記空調室外機(20)に対して要求すべき前記蒸発温度又は前記凝縮温度の要求値を演算し、
さらに前記室内側制御部(47,57,67,77)は、前記空調室外機(20)から前記蒸発温度又は前記凝縮温度の目標値の入力を受けたとき、前記目標値が前記空調室外機(20)に対して出力した前記要求値と一致するか否かにかかわらず、前記割り込み能力制御を実行する、
請求項1に記載の空調室内機。 - 前記空調室内機は、空調室外機(20)に対して一つ以上の空調室内機が接続される空調機に用いられる空調室内機であって、
前記室内側制御部(47,57,67,77)は、前記能力制御以外の制御において前記過熱度若しくは前記過冷却度の目標値が変更されたとき、又は前記空調室外機(20)から前記過熱度若しくは前記過冷却度の目標値の入力を受けたとき、前記割り込み能力制御を実行する、
請求項1に記載の空調室内機。 - 前記室内側制御部(47,57,67,77)は、前記風量を自動で設定する風量自動モード、及び前記風量を手動で設定する風量手動モードのいずれかを介して前記風量の設定値の入力を受けており、
さらに前記室内側制御部(47,57,67,77)は、前記風量手動モードによる前記風量の設定値の入力を受けたとき、前記割り込み能力制御を実行する、
請求項1に記載の空調室内機。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014202307 | 2014-09-30 | ||
JP2014202307 | 2014-09-30 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2016070650A true JP2016070650A (ja) | 2016-05-09 |
JP6115594B2 JP6115594B2 (ja) | 2017-04-19 |
Family
ID=55864466
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015139149A Active JP6115594B2 (ja) | 2014-09-30 | 2015-07-10 | 空調室内機 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6115594B2 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108332370A (zh) * | 2018-01-11 | 2018-07-27 | 广东美的制冷设备有限公司 | 空调器的控制方法和空调器 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020217310A1 (ja) | 2019-04-23 | 2020-10-29 | 三菱電機株式会社 | 電動機制御装置およびこれを備えた空気調和装置 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002071192A (ja) * | 2000-08-28 | 2002-03-08 | Daikin Ind Ltd | 空気調和装置 |
JP2011257126A (ja) * | 2010-05-11 | 2011-12-22 | Daikin Industries Ltd | 空気調和装置の運転制御装置及びそれを備えた空気調和装置 |
-
2015
- 2015-07-10 JP JP2015139149A patent/JP6115594B2/ja active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002071192A (ja) * | 2000-08-28 | 2002-03-08 | Daikin Ind Ltd | 空気調和装置 |
JP2011257126A (ja) * | 2010-05-11 | 2011-12-22 | Daikin Industries Ltd | 空気調和装置の運転制御装置及びそれを備えた空気調和装置 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108332370A (zh) * | 2018-01-11 | 2018-07-27 | 广东美的制冷设备有限公司 | 空调器的控制方法和空调器 |
Also Published As
Publication number | Publication date |
---|---|
JP6115594B2 (ja) | 2017-04-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5831661B1 (ja) | 空調機 | |
KR101462745B1 (ko) | 공기 조화 장치의 운전 제어 장치 및 이를 구비한 공기 조화 장치 | |
JP4497234B2 (ja) | 空気調和装置 | |
JP4840522B2 (ja) | 冷凍装置 | |
US10371407B2 (en) | Air conditioning apparatus | |
AU2009263631A1 (en) | Air conditioning apparatus and air conditioning apparatus refrigerant quantity determination method | |
JP5954538B2 (ja) | 空気調和機のデマンド制御装置 | |
JP2007218532A (ja) | 空気調和装置 | |
WO2014061129A1 (ja) | 空気調和装置 | |
JP5910719B1 (ja) | 空気調和装置 | |
CN109716035B (zh) | 用于空气调节和热水供给的系统 | |
CN109716033B (zh) | 用于空气调节和热水供给的系统 | |
WO2015115251A1 (ja) | 空気調和装置 | |
CN110741208A (zh) | 空调装置 | |
JP5593905B2 (ja) | 冷凍装置 | |
JP2011007482A (ja) | 空気調和装置 | |
JP6115594B2 (ja) | 空調室内機 | |
GB2548526A (en) | Indoor unit and air conditioning device using same | |
US11493226B2 (en) | Airconditioning apparatus | |
JP2017026287A (ja) | 空調機 | |
JP6036783B2 (ja) | 空調室内機 | |
JP2011232013A (ja) | 空気調和装置およびその制御方法 | |
CN109790984B (zh) | 用于空气调节和热水供给的系统 | |
JP6271011B2 (ja) | 冷凍空調装置 | |
AU2013200092A1 (en) | Air conditioning apparatus and air conditioning apparatus refrigerant quantity determination method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20160826 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20160830 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20161021 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20170221 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20170306 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 6115594 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |