JP2016065319A - Evaluation method of surface quality of high strength steel sheet and manufacturing method of high strength steel sheet - Google Patents

Evaluation method of surface quality of high strength steel sheet and manufacturing method of high strength steel sheet Download PDF

Info

Publication number
JP2016065319A
JP2016065319A JP2015232560A JP2015232560A JP2016065319A JP 2016065319 A JP2016065319 A JP 2016065319A JP 2015232560 A JP2015232560 A JP 2015232560A JP 2015232560 A JP2015232560 A JP 2015232560A JP 2016065319 A JP2016065319 A JP 2016065319A
Authority
JP
Japan
Prior art keywords
mass
strength steel
steel sheet
less
high strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015232560A
Other languages
Japanese (ja)
Inventor
孝子 山下
Takako Yamashita
孝子 山下
杉原 玲子
Reiko Sugihara
玲子 杉原
河野 崇史
Takashi Kono
崇史 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2015232560A priority Critical patent/JP2016065319A/en
Publication of JP2016065319A publication Critical patent/JP2016065319A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • C23G1/02Cleaning or pickling metallic material with solutions or molten salts with acid solutions
    • C23G1/08Iron or steel
    • C23G1/085Iron or steel solutions containing HNO3

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a high strength steel sheet suitable for a raw material for automobile components without deteriorating surface appearance.SOLUTION: There is provided an evaluation method of a surface quality of a high strength steel sheet including determining that the surface quality of the high strength steel sheet containing contents of Mn, Ca and S satisfying the following formula (1) in the high strength steel sheet containing C:0.05 to 0.35 mass%, Si:0.50 to 3.00 mass%, Mn:0.50 to 3.00 mass%, P:0.050 mass% or less, S:0.0050 mass% or less, Al:less than 0.100 mass%, Ca:0.0010 mass% or more and the balance Fe with inevitable impurities is good. (Mn×Ca)/S≤3.00 (1), where symbols of element represent contents (mass%) of each element.SELECTED DRAWING: Figure 1

Description

本発明は、表面性状に優れた高強度鋼板に関する。   The present invention relates to a high-strength steel sheet having excellent surface properties.

近年、地球環境保全の観点から自動車の燃費改善が求められている。また、衝突時における乗員保護の観点から、自動車車体の安全性の向上も要求されている。そのため、自動車車体の軽量化と強化が積極的に進められている。自動車車体の軽量化と強化とを両立させるには、部品の素材を高強度化することが効果的である。最近では、自動車部品用鋼板には、高強度鋼板が積極的に使用されている。   In recent years, improvement in fuel efficiency of automobiles has been demanded from the viewpoint of global environmental conservation. In addition, from the viewpoint of occupant protection in the event of a collision, it is also required to improve the safety of the automobile body. Therefore, weight reduction and strengthening of automobile bodies are being actively promoted. In order to achieve both weight reduction and strengthening of the automobile body, it is effective to increase the strength of the parts. Recently, high-strength steel sheets have been actively used as automotive parts steel sheets.

また、鋼板を素材とする自動車部品の多くがプレス加工によって成形されることから、自動車部品用鋼板にはプレス成形性に優れることも要求されている。優れたプレス成形性を実現するには、高い延性を確保することが重要である。   In addition, since many automobile parts made of steel plates are formed by press working, steel sheets for automobile parts are also required to have excellent press formability. In order to achieve excellent press formability, it is important to ensure high ductility.

延性に優れる高強度鋼板としては、フェライトとマルテンサイトの複合組織を有する二相組織鋼板が代表的である。例えば、非特許文献1に記載されているように、0.11mass%CにSi、Mnを適量添加し、残留オーステナイトに起因する変態誘起塑性(Transformation Induced Plasticity:TRIP)を利用した高延性鋼板も実用化の段階に至っている。   A typical example of a high-strength steel sheet having excellent ductility is a dual-phase steel sheet having a composite structure of ferrite and martensite. For example, as described in Non-Patent Document 1, a high ductility steel sheet using transformation induced plasticity (TRIP) due to transformation of induced austenite by adding appropriate amounts of Si and Mn to 0.11 mass% C is also available. It has reached the stage of practical application.

これらの鋼板の多くは延性向上のためにSiが比較的多く含有されていることから、焼鈍時にSiの酸化物が鋼板表面に濃化し、通常の鋼板に比べてめっきや塗膜が剥がれ易くなるという問題が生じていた。このようなSiやMnの酸化物の表面濃化によるめっきや塗装剥離性を改善するために、例えば、特許文献1に記載されているように、酸および/またはブラシを用いてスケールを除去する方法が取られている。   Since many of these steel sheets contain a relatively large amount of Si in order to improve ductility, the oxide of Si is concentrated on the surface of the steel sheet during annealing, and plating and coating films are more easily peeled off than ordinary steel sheets. There was a problem. In order to improve the plating and paint peelability due to the surface concentration of such oxides of Si and Mn, for example, as described in Patent Document 1, the scale is removed using an acid and / or a brush. The method is taken.

特開2003−201538号公報JP 2003-201538 A

(社)日本鉄鋼協会編「材料とプロセス vol.4 (1991) P.1942」The Japan Iron and Steel Institute “Materials and Processes vol.4 (1991) P.1942”

しかしながら、特にスケール除去のために強い酸洗を実施した鋼板では、熱延板や焼鈍板の表面に黒い筋状の欠陥が生成し、表面外観が損なわれるため、製品として使用できないという問題が生じていた。   However, especially in steel sheets that have been subjected to strong pickling to remove scale, black streak defects are generated on the surface of hot-rolled sheets and annealed sheets, and the surface appearance is impaired. It was.

本発明は、上記の実状に鑑みてなされたもので、表面外観が損なわれず、自動車部品用素材として好適な高強度鋼板を提供することを目的とする。   This invention is made | formed in view of said actual condition, and it aims at providing the high strength steel plate suitable as a raw material for motor vehicle parts, without the surface appearance being impaired.

本発明者らは、鋭意検討した結果、鋼の成分組成を特定の範囲に限定することによって、表面外観が損なわれず、自動車部品用素材として好適な高強度鋼板を得ることができることを見出した。   As a result of intensive studies, the present inventors have found that by limiting the component composition of steel to a specific range, the surface appearance is not impaired and a high-strength steel sheet suitable as a material for automobile parts can be obtained.

本発明の要旨は以下のとおりである。
[1]成分組成として、C:0.05〜0.35mass%、Si:0.50〜3.00mass%、Mn:0.50〜3.00mass%、P:0.050mass%以下、S:0.0050mass%以下、Al:0.100mass%未満、Ca:0.0010mass%以上を含有し、残部はFeおよび不可避的不純物からなる高強度鋼板において、
Mn、CaおよびSの含有量が下記式(1)を満たして含有する高強度鋼板を表面性状が良好であると判定することを特徴とする高強度鋼板の表面性状の評価方法。
(Mn×Ca)/S≦3.00・・・(1)
なお、式(1)中の元素記号は、それぞれの元素の含有量(mass%)を示す。
[2]前記表面性状は、製品板に筋状欠陥の発生率(製造したスラブ数に対して欠陥が発生したスラブ数)が20%以下であるものを良好と判定することを特徴とする[1]に記載の高強度鋼板の表面性状の評価方法。
[3]前記高強度鋼板の成分組成に加えて、さらに、Ti、NbおよびVのうちから選ばれる1種または2種以上を合計で0.001〜0.300mass%含有することを特徴とする[1]または[2]に記載の高強度鋼板の表面性状の評価方法。
[4]成分組成として、C:0.05〜0.35mass%、Si:0.50〜3.00mass%、Mn:0.50〜3.00mass%、P:0.050mass%以下、S:0.0050mass%以下、Al:0.100mass%未満、Ca:0.0010mass%以上を含有し、かつMn、CaおよびSの含有量が下記式(1)を満たして含有し、残部はFeおよび不可避的不純物からなるスラブを、熱間圧延後、冷間圧延し、次いでHClとHNOの混合液中に浸漬する酸洗処理を施すことを特徴とする高強度鋼板の製造方法。
(Mn×Ca)/S≦3.00・・・(1)
なお、式(1)中の元素記号は、それぞれの元素の含有量(mass%)を示す。
[5]前記酸洗処理において、HClとHNOの混合液中に6〜21秒間浸漬することを特徴とする[4]に記載の高強度鋼板の製造方法。
なお、本発明において高強度鋼板とは、引張強度780MPa以上をいう。
The gist of the present invention is as follows.
[1] Component composition: C: 0.05 to 0.35 mass%, Si: 0.50 to 3.00 mass%, Mn: 0.50 to 3.00 mass%, P: 0.050 mass% or less, S: In a high-strength steel sheet containing 0.0050 mass% or less, Al: less than 0.100 mass%, Ca: 0.0010 mass% or more, and the balance being Fe and inevitable impurities,
A method for evaluating the surface properties of a high-strength steel plate, wherein the surface properties of a high-strength steel plate containing Mn, Ca and S satisfying the following formula (1) are determined to be good.
(Mn × Ca) /S≦3.00 (1)
In addition, the element symbol in Formula (1) shows content (mass%) of each element.
[2] The surface texture is characterized in that a product plate having a streak defect occurrence rate (the number of slabs in which defects have occurred relative to the number of manufactured slabs) determined to be 20% or less is determined as good [ 1] The evaluation method of the surface property of the high-strength steel sheet.
[3] In addition to the component composition of the high-strength steel plate, 0.001 to 0.300 mass% in total of one or more selected from Ti, Nb and V is further contained. The evaluation method of the surface property of the high-strength steel sheet according to [1] or [2].
[4] As component composition, C: 0.05 to 0.35 mass%, Si: 0.50 to 3.00 mass%, Mn: 0.50 to 3.00 mass%, P: 0.050 mass% or less, S: 0.0050 mass% or less, Al: less than 0.100 mass%, Ca: 0.0010 mass% or more, and the contents of Mn, Ca and S satisfy the following formula (1), with the balance being Fe and A method for producing a high-strength steel sheet, comprising subjecting a slab made of inevitable impurities to hot rolling, cold rolling, and then dipping in a mixed solution of HCl and HNO 3 .
(Mn × Ca) /S≦3.00 (1)
In addition, the element symbol in Formula (1) shows content (mass%) of each element.
[5] The method for producing a high-strength steel sheet according to [4], wherein in the pickling treatment, the steel sheet is immersed in a mixed solution of HCl and HNO 3 for 6 to 21 seconds.
In the present invention, the high strength steel sheet means a tensile strength of 780 MPa or more.

本発明によれば、表面外観が損なわれず、自動車部品用素材として好適な高強度鋼板を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the surface external appearance is not impaired and the high strength steel plate suitable as a raw material for motor vehicle parts can be provided.

Mn×Caと、Sとの関係を示すグラフである。It is a graph which shows the relationship between MnxCa and S.

以下、本発明を具体的に説明する。   Hereinafter, the present invention will be specifically described.

まず、本発明の高強度鋼板が有すべき成分組成について具体的に説明する。   First, the component composition that the high-strength steel sheet of the present invention should have will be specifically described.

C:0.05〜0.35mass%
Cは、鋼の高強度化に不可欠の元素である。しかしながら、Cが0.05mass%に満たないと、所望の高強度を得ることができない。一方、Cが0.35mass%を超えると、溶接性の劣化を招く。このため、Cは0.05〜0.35mass%の範囲とする。より好ましくは、0.10〜0.25mass%である。
C: 0.05-0.35 mass%
C is an element indispensable for increasing the strength of steel. However, if C is less than 0.05 mass%, a desired high strength cannot be obtained. On the other hand, when C exceeds 0.35 mass%, the weldability is deteriorated. For this reason, C is set to a range of 0.05 to 0.35 mass%. More preferably, it is 0.10 to 0.25 mass%.

Si:0.50〜3.00mass%
Siは、固溶強化によって鋼の強化に寄与するだけでなく、鋼の延性を向上させる元素である。しかしながら、Siが0.50mass%に満たないと、含有効果に乏しい。一方、
Siが3.00mass%を超えると、変態挙動に変化を与え延性の劣化を招く。このため、Siは0.50〜3.00mass%の範囲とする。より好ましくは、1.00〜2.00mass%である。
Si: 0.50 to 3.00 mass%
Si is an element that not only contributes to strengthening steel by solid solution strengthening but also improves the ductility of steel. However, if Si is less than 0.50 mass%, the content effect is poor. on the other hand,
When Si exceeds 3.00 mass%, the transformation behavior is changed and ductility is deteriorated. For this reason, Si is made into the range of 0.50-3.00 mass%. More preferably, it is 1.00 to 2.00 mass%.

Mn:0.50〜3.00mass%
Mnは、固溶強化によって鋼を強化するだけでなく、鋼の焼入性を向上させて機械的特性を向上させる作用がある。このような作用は、Mn量が0.50mass%以上で認められる。一方、3.00mass%を超えると効果は飽和に達し、含有量に見合うだけの効果が期待できなくなり、むしろコストの上昇を招く。このため、Mnは0.50〜3.00mass%の範囲とする。より好ましくは、1.00〜2.00mass%である。
Mn: 0.50 to 3.00 mass%
Mn not only strengthens steel by solid solution strengthening, but also improves the hardenability of the steel and improves the mechanical properties. Such an effect is recognized when the amount of Mn is 0.50 mass% or more. On the other hand, if it exceeds 3.00 mass%, the effect reaches saturation, and an effect corresponding to the content cannot be expected, but rather the cost increases. For this reason, Mn is taken as 0.50 to 3.00 mass%. More preferably, it is 1.00 to 2.00 mass%.

P:0.050mass%以下
Pは、固溶強化元素であり、通常、高強度鋼板を得る上で有用な元素ではある。しかしながら、0.050mass%を超えると、スポット溶接性の低下を招く。そのため、本発明では、0.050mass%以下とする。より好ましくは、0.020mass%以下である。
P: 0.050 mass% or less P is a solid solution strengthening element, and is usually an element useful for obtaining a high-strength steel sheet. However, if it exceeds 0.050 mass%, the spot weldability is reduced. Therefore, in this invention, it is set as 0.050 mass% or less. More preferably, it is 0.020 mass% or less.

S:0.0050mass%以下
Sは、鋼中にMnSを形成し、鋼板の靭性を低下させる有害元素である。このため、Sの混入は極力低減することが好ましいが、0.0050mass%以下であれば許容できる。より好ましくは、0.0030mass%以下である。
S: 0.0050 mass% or less S is a harmful element that forms MnS in steel and lowers the toughness of the steel sheet. For this reason, it is preferable to reduce the mixing of S as much as possible, but it is acceptable if it is 0.0050 mass% or less. More preferably, it is 0.0030 mass% or less.

Al:0.100mass%未満
Alは、製鋼段階での脱酸剤として有効に寄与し、穴拡げ性を低下させる非金属介在物をスラグ中に分離するために必要な元素である。しかしながら、0.100mass%以上の含有は合金コストを上昇させてしまう。そのため、本発明では、0.100mass%未満とする。より好ましくは、0.020〜0.090mass%である。
Al: Less than 0.100 mass% Al is an element necessary for separating non-metallic inclusions, which effectively contribute as a deoxidizing agent in the steelmaking stage and reduce hole expandability, into the slag. However, the content of 0.100 mass% or more increases the alloy cost. Therefore, in this invention, it is set as less than 0.100 mass%. More preferably, it is 0.020-0.090 mass%.

Ca:0.0010mass%以上
Caは、本発明の高強度鋼板を製造するのに必要な元素であり、0.0010mass%以上含有する。
Ca: 0.0010 mass% or more Ca is an element necessary for producing the high-strength steel sheet of the present invention, and is contained in 0.0010 mass% or more.

一方で、Caは硫化物系介在物の生成に寄与しており、CaはSと結びついてCaSを生成しやすく、さらに酸素が共存しやすい状況では酸硫化物や酸化物を形成しやすい元素である。したがって、Caについて、何らかの制御をする必要がある。そこで本発明者らは、スケール除去のために強塩酸あるいは硝塩酸による強い酸洗を実施した鋼板において、熱延板や焼鈍板の表面に黒い筋状の欠陥が生成する原因について鋭意検討した結果、比較的Siを多く添加した鋼板に対して酸洗を施すと、黒い筋状の欠陥が発生しやすいことを確認した。そして、この欠陥を詳細に分析したところ、欠陥部の鋼板表面には介在物(析出物)が多数生成しており、その析出物の多くはCaやMnを含む酸化物あるいは硫化物または酸硫化物であることがわかり、これらの析出物が鋼板の表層に生成することが欠陥の原因であるという知見を得た。また、鉄鋼中の硫化物としては通常MnSが生成することが多いものの、CaSはMnSに比べて熱力学的に安定な化合物であるため、微量混入しただけでCaSが生成してしまう。したがって、極力Caを低減させなければならないと考えられる。   On the other hand, Ca contributes to the generation of sulfide inclusions, and Ca is an element that easily forms CaS by combining with S, and also easily forms oxysulfides and oxides in a situation where oxygen easily coexists. is there. Therefore, some control is required for Ca. Therefore, the present inventors have conducted intensive studies on the causes of black streak defects on the surface of hot-rolled sheets and annealed sheets in steel sheets subjected to strong pickling with strong hydrochloric acid or nitric acid for scale removal. It was confirmed that black streak-like defects are likely to occur when pickling is performed on a steel sheet to which a relatively large amount of Si is added. And when this defect was analyzed in detail, many inclusions (precipitates) were generated on the surface of the defective steel plate, and most of the precipitates were oxides or sulfides or oxysulfides containing Ca and Mn. It was found that these precipitates are the cause of defects due to the formation of these precipitates on the surface layer of the steel sheet. Further, although MnS is usually generated as a sulfide in steel, CaS is a compound that is thermodynamically stable as compared with MnS, so CaS is generated only by mixing a small amount. Therefore, it is considered that Ca must be reduced as much as possible.

SEMを用いて析出物の粒子解析を行った結果、CaSとMnSの割合(CaS/MnS)に変化があり、欠陥の解析結果と相関があることを見出した。そこで本発明者らは、この欠陥は、CaSの生成を低減することによって画期的に改善されると考えた。MnS/CaSに着目し、CaSの生成はMnやSの含有量に影響されると考え、鋼中に存在するCaの量とMn、Sの量の関係について検討した。   As a result of conducting particle analysis of precipitates using SEM, it was found that the ratio of CaS and MnS (CaS / MnS) was changed and correlated with the analysis results of defects. Therefore, the present inventors thought that this defect could be improved epoch-makingly by reducing the production of CaS. Focusing on MnS / CaS, the production of CaS was considered to be affected by the contents of Mn and S, and the relationship between the amount of Ca present in steel and the amounts of Mn and S was examined.

まず、表1に示す成分組成を有する溶鋼を、転炉にて溶製し、連続鋳造によりスラブとした。得られたスラブを、板厚:3.0mmまで熱間圧延し、ついで酸洗後、冷間圧延により板厚:1.6mmの冷延鋼板とした。ついで、これらの冷延鋼板を、連続焼鈍ラインにて、加熱保持したのち、冷却し、冷却後、53℃の(0.6%HCl+26%HNO)混合液中に6〜21秒間浸漬する酸洗処理を施し、ついで水洗、乾燥後、圧下率:0.5%の調質圧延を施し鋼板を得た。この鋼板について、目視により筋状欠陥の有無を調べた。ここで、製品板に筋状欠陥が発生する発生率(製造したスラブ数に対して欠陥が発生したスラブ数)が20%以下のものを表面性状良好とし、逆に表面性状不良は20%以上のものである。結果を図1に示す。 First, molten steel having the component composition shown in Table 1 was melted in a converter and made into a slab by continuous casting. The obtained slab was hot-rolled to a thickness of 3.0 mm, then pickled, and then cold-rolled to obtain a cold-rolled steel plate having a thickness of 1.6 mm. Next, these cold-rolled steel sheets are heated and held in a continuous annealing line, cooled, and after cooling, an acid immersed in a (0.6% HCl + 26% HNO 3 ) mixed solution at 53 ° C. for 6 to 21 seconds. Washing was performed, then water washing and drying, and then subjected to temper rolling with a rolling reduction of 0.5% to obtain a steel sheet. The steel sheet was visually inspected for the presence of streak defects. Here, when the incidence of streak defects on the product plate (the number of slabs with defects generated relative to the number of manufactured slabs) is 20% or less, the surface quality is good, and conversely, the surface quality is 20% or more belongs to. The results are shown in FIG.

Figure 2016065319
Figure 2016065319

図1の結果から、上記の成分組成を満たし、かつ、Mn、Ca、Sの元素の含有量(mass%)について、(Mn×Ca)/S≦3.00を満たすことにより、表面性状が良好であることがわかる。一方、(Mn×Ca)/S>3.00では、表面性状が不良であることがわかる。これは、MnSの生成により、CaSの生成を低減することができ、黒い筋状の欠陥を抑制できるためであると考えられる。図1の結果から、Mn、Caの量を適宜制御することにより、CaSの生成を制御することができる。   From the results of FIG. 1, the surface properties are satisfied by satisfying the above component composition and satisfying (Mn × Ca) /S≦3.00 with respect to the element content (mass%) of Mn, Ca, and S. It turns out that it is favorable. On the other hand, in (Mn × Ca) / S> 3.00, it can be seen that the surface properties are poor. This is considered to be because generation of CaS can be reduced by generation of MnS and black streak-like defects can be suppressed. From the results in FIG. 1, the production of CaS can be controlled by appropriately controlling the amounts of Mn and Ca.

以上より、本発明において、上記成分組成を満たし、かつMn、Ca、Sの含有量が、
(Mn×Ca)/S≦3.00・・・(1)
(式(1)中の元素記号は、それぞれの元素の含有量(mass%)を示す。)
を満足するような範囲に制御することによって、上記CaSの生成を抑制できる。そして、上記成分組成を満たし、かつ式(1)を満足するように制御することにより、高強度鋼板の表面性状を良好に保つことができる。
From the above, in the present invention, the above-described component composition is satisfied, and the contents of Mn, Ca, and S
(Mn × Ca) /S≦3.00 (1)
(The element symbols in the formula (1) indicate the content (mass%) of each element.)
The production of CaS can be suppressed by controlling in a range that satisfies the above. And the surface property of a high-strength steel plate can be kept favorable by controlling so that the said component composition may be satisfied and Formula (1) may be satisfied.

本発明において、上記成分組成の他に、Nb、TiおよびVのうちから選ばれる1種または2種の元素を、以下の範囲で含有することができる。   In the present invention, in addition to the above component composition, one or two elements selected from Nb, Ti and V can be contained in the following ranges.

Nb、TiおよびVのうちから選ばれる1種または2種以上の合計の含有量:0.001〜0.300mass%
Ti、NbおよびVはいずれも、炭化物(Ti、Nb、V)Cを析出して、連続焼鈍時の加熱段階でのフェライト相の成長を抑え、鋼組織を微細化して、強度および穴拡げ性を著しく向上させるのに有用な元素であるほか、TRIP効果を左右する固溶Cを変化させる。かかる効果を発現させるためには、少なくとも0.001mass%以上とする。一方、0.300mass%を超えると、析出強化により引張強度YSが上昇し、加工性が低下してしまうだけでなく、TRIP効果を発現させるための残留オーステナイトを減少させてしまう不利が生じる。したがって、本発明では、Ti、Nb、Vについて、単独含有または複合含有のいずれの場合も、合計の含有量は0.001〜0.300mass%であることが好ましい。より好ましくは、0.001〜0.100mass%である。
Total content of one or more selected from Nb, Ti and V: 0.001 to 0.300 mass%
All of Ti, Nb and V precipitate carbide (Ti, Nb, V) C, suppress the growth of the ferrite phase during the heating stage during continuous annealing, refine the steel structure, and increase strength and hole expandability. In addition to being an element useful for remarkably improving the content, the solid solution C that affects the TRIP effect is changed. In order to exhibit such an effect, the content is at least 0.001 mass%. On the other hand, if it exceeds 0.300 mass%, the tensile strength YS increases due to precipitation strengthening, and not only the workability decreases, but also there is a disadvantage that the retained austenite for expressing the TRIP effect is reduced. Therefore, in the present invention, the total content of Ti, Nb, and V is preferably 0.001 to 0.300 mass%, regardless of whether they are contained alone or in combination. More preferably, it is 0.001 to 0.100 mass%.

残部はFeおよび不可避的不純物である。   The balance is Fe and inevitable impurities.

つぎに、本発明の高強度鋼板の製造方法について説明する。上記の成分組成の溶鋼を、通常公知の転炉または電気炉で溶製し、連続鋳造によりスラブとする。ついで、得られたスラブを加熱し熱間圧延することにより、熱延板とする。熱間圧延のスラブ加熱温度としては、材質安定性の点から、1100〜1250℃の温度範囲とすることが好ましい。また、熱間圧延の仕上温度は、硫化物抑制の点から、950〜1000℃の温度とすることが好ましい。熱延板は、後工程における加工性を改善する目的で、必要に応じて、熱延板焼鈍を行うことができる。(熱延板焼鈍を行う場合は、600〜800℃で5時間以上の箱焼鈍をするか、600〜800℃の温度範囲での短時間の連続焼鈍をすることが好適である。)なお、熱延板は、脱スケール処理を行って、そのまま製品とすることも、また、冷間圧延用素材とすることもできる。冷間圧延用素材の熱延板は、冷延圧下率:40%以上の冷間圧延を施され、冷延板とされる。冷延圧下率は、55〜60%が好適である。また、冷延板のさらなる加工性の付与のために、400℃以上、好ましくは500〜600℃の再結晶焼鈍を行うことができる。また、冷延−焼鈍を2回以上繰り返し行ってもよい。さらに、光沢性が要求される場合には、スキンパス等を施してもよい。なお、熱間圧延後または焼鈍後は、酸洗処理を行うことが好ましい。酸洗工程で表面に生成したスケールを除去し、しかる後冷間圧延する。なお、酸洗条件としては、特に限定しないが、硫酸塩酸洗といった厳しい酸洗条件であってもよい。また、冷間圧延後の鋼板には、形状矯正や表面粗度の調整などを目的に調質圧延を行うこともできる。   Below, the manufacturing method of the high strength steel plate of this invention is demonstrated. Molten steel having the above component composition is melted in a generally known converter or electric furnace, and is made into a slab by continuous casting. Next, the obtained slab is heated and hot-rolled to obtain a hot-rolled sheet. The slab heating temperature for hot rolling is preferably set to a temperature range of 1100 to 1250 ° C. from the viewpoint of material stability. Moreover, it is preferable that the finishing temperature of hot rolling shall be 950-1000 degreeC from the point of sulfide suppression. The hot-rolled sheet can be subjected to hot-rolled sheet annealing as necessary for the purpose of improving workability in a subsequent process. (When performing hot-rolled sheet annealing, it is preferable to perform box annealing at 600 to 800 ° C. for 5 hours or more, or to perform continuous annealing for a short time in the temperature range of 600 to 800 ° C.) The hot-rolled sheet can be descaled to obtain a product as it is, or a cold-rolled material. The hot-rolled sheet of the material for cold rolling is subjected to cold rolling at a cold rolling reduction ratio of 40% or more to obtain a cold-rolled sheet. The cold rolling reduction ratio is preferably 55 to 60%. Moreover, in order to provide further workability of the cold-rolled sheet, recrystallization annealing can be performed at 400 ° C. or higher, preferably 500 to 600 ° C. Moreover, you may perform cold rolling-annealing twice or more. Furthermore, when glossiness is required, a skin pass or the like may be applied. In addition, it is preferable to perform a pickling process after hot rolling or after annealing. The scale formed on the surface in the pickling process is removed, and then cold rolled. In addition, although it does not specifically limit as pickling conditions, Strict pickling conditions, such as sulfuric acid hydrochloric acid washing, may be sufficient. Further, the steel sheet after cold rolling can be subjected to temper rolling for the purpose of shape correction, adjustment of surface roughness, and the like.

表2に示す成分組成になる溶鋼を、転炉にて溶製し、連続鋳造によりスラブとした。得られたスラブを、板厚:3.0mmまで熱間圧延し、ついで酸洗後、冷間圧延により板厚:1.6mmの冷延鋼板とした。ついで、これらの冷延鋼板を、連続焼鈍ラインにて、加熱保持したのち、冷却し、冷却後、53℃の(0.6%HCl+26%HNO)混合液中に6〜21秒間浸漬する酸洗処理を施し、ついで水洗、乾燥後、圧下率:0.5%の調質圧延を施した。 Molten steel having the composition shown in Table 2 was melted in a converter and made into a slab by continuous casting. The obtained slab was hot-rolled to a thickness of 3.0 mm, then pickled, and then cold-rolled to obtain a cold-rolled steel plate having a thickness of 1.6 mm. Next, these cold-rolled steel sheets are heated and held in a continuous annealing line, cooled, and after cooling, an acid immersed in a (0.6% HCl + 26% HNO 3 ) mixed solution at 53 ° C. for 6 to 21 seconds. Washing treatment was performed, followed by washing with water and drying, followed by temper rolling with a rolling reduction of 0.5%.

Figure 2016065319
Figure 2016065319

得られた鋼板について、表面外観および機械的特性について調べた。測定方法および評価基準は以下の通りである。
<表面外観>
表面外観は、目視で判断し、製品板表面に筋状の欠陥が発生する割合を、製品板に筋状欠陥が発生する発生率(製造したスラブ数に対して欠陥が発生したスラブ数)で求めた。欠陥の発生率が20%以下を外観良好、欠陥の発生率が20%以上を外観不良と判定した。
<機械的特性>
引張強さ、降伏強度および延性は、引張試験を行い評価した。引張試験はJIS5号試験片を用い、JIS Z 2241に準拠して行い、引張強さTS(MPa))、降伏強度YP(MPa)、および全伸びEL(%)を測定した。引張強さは780MPa以上を合格とした。降伏強度は、380MPa以上を合格とした。延性は、全伸び30%以上を合格とした。
The obtained steel sheet was examined for surface appearance and mechanical properties. The measurement method and evaluation criteria are as follows.
<Surface appearance>
The surface appearance is judged visually, and the rate of occurrence of streak defects on the product plate surface is the rate of occurrence of streak defects on the product plate (number of slabs with defects relative to the number of manufactured slabs). Asked. A defect occurrence rate of 20% or less was judged as good appearance, and a defect occurrence rate of 20% or more was judged as poor appearance.
<Mechanical properties>
Tensile strength, yield strength, and ductility were evaluated by conducting a tensile test. The tensile test was performed according to JIS Z 2241 using a JIS No. 5 test piece, and the tensile strength TS (MPa), the yield strength YP (MPa), and the total elongation EL (%) were measured. The tensile strength was 780 MPa or more. A yield strength of 380 MPa or more was considered acceptable. For the ductility, a total elongation of 30% or more was regarded as acceptable.

結果を表3に示す。   The results are shown in Table 3.

Figure 2016065319
Figure 2016065319

表3の結果から、本発明例はいずれも表面外観が良好であり、機械的特性にも優れている。一方、比較例は、満足な表面外観および機械的特性を得ることができなかった。なお、別の強い酸洗条件として、55℃の5%HCl溶液中に17秒間浸漬する酸洗処理を行った場合についても検討したところ、本発明例は表面外観および機械的特性のいずれも合格基準を満たした。   From the results of Table 3, all of the inventive examples have good surface appearance and excellent mechanical properties. On the other hand, the comparative example could not obtain a satisfactory surface appearance and mechanical properties. In addition, as another strong pickling condition, the case where the pickling treatment was performed by immersing in a 5% HCl solution at 55 ° C. for 17 seconds was also examined. As a result, the present invention example passed both the surface appearance and the mechanical properties. Satisfies the criteria.

Claims (5)

成分組成として、C:0.05〜0.35mass%、Si:0.50〜3.00mass%、Mn:0.50〜3.00mass%、P:0.050mass%以下、S:0.0050mass%以下、Al:0.100mass%未満、Ca:0.0010mass%以上を含有し、残部はFeおよび不可避的不純物からなる高強度鋼板において、
Mn、CaおよびSの含有量が下記式(1)を満たして含有する高強度鋼板を表面性状が良好であると判定することを特徴とする高強度鋼板の表面性状の評価方法。
(Mn×Ca)/S≦3.00・・・(1)
なお、式(1)中の元素記号は、それぞれの元素の含有量(mass%)を示す。
As component composition, C: 0.05 to 0.35 mass%, Si: 0.50 to 3.00 mass%, Mn: 0.50 to 3.00 mass%, P: 0.050 mass% or less, S: 0.0050 mass % Or less, Al: less than 0.100 mass%, Ca: 0.0010 mass% or more, with the balance being high strength steel plate made of Fe and inevitable impurities,
A method for evaluating the surface properties of a high-strength steel plate, wherein the surface properties of a high-strength steel plate containing Mn, Ca and S satisfying the following formula (1) are determined to be good.
(Mn × Ca) /S≦3.00 (1)
In addition, the element symbol in Formula (1) shows content (mass%) of each element.
前記表面性状は、製品板に筋状欠陥の発生率(製造したスラブ数に対して欠陥が発生したスラブ数)が20%以下であるものを良好と判定することを特徴とする請求項1に記載の高強度鋼板の表面性状の評価方法。   The surface texture is determined to be good when the rate of occurrence of streak defects on the product plate (the number of slabs with defects relative to the number of manufactured slabs) is 20% or less. The evaluation method of the surface property of the high strength steel plate of description. 前記高強度鋼板の成分組成に加えて、さらに、Ti、NbおよびVのうちから選ばれる1種または2種以上を合計で0.001〜0.300mass%含有することを特徴とする請求項1または2に記載の高強度鋼板の表面性状の評価方法。   2. In addition to the component composition of the high-strength steel sheet, further, 0.001 to 0.300 mass% in total of one or more selected from Ti, Nb and V is contained. Or the evaluation method of the surface property of the high strength steel plate of 2. 成分組成として、C:0.05〜0.35mass%、Si:0.50〜3.00mass%、Mn:0.50〜3.00mass%、P:0.050mass%以下、S:0.0050mass%以下、Al:0.100mass%未満、Ca:0.0010mass%以上を含有し、かつMn、CaおよびSの含有量が下記式(1)を満たして含有し、残部はFeおよび不可避的不純物からなるスラブを、熱間圧延後、冷間圧延し、次いでHClとHNOの混合液中に浸漬する酸洗処理を施すことを特徴とする高強度鋼板の製造方法。
(Mn×Ca)/S≦3.00・・・(1)
なお、式(1)中の元素記号は、それぞれの元素の含有量(mass%)を示す。
As component composition, C: 0.05 to 0.35 mass%, Si: 0.50 to 3.00 mass%, Mn: 0.50 to 3.00 mass%, P: 0.050 mass% or less, S: 0.0050 mass % Or less, Al: less than 0.100 mass%, Ca: 0.0010 mass% or more, and the contents of Mn, Ca and S satisfy the following formula (1), the balance being Fe and inevitable impurities A method for producing a high-strength steel sheet, comprising subjecting a slab made of the above to hot rolling, cold rolling, and then dipping in a mixed solution of HCl and HNO 3 .
(Mn × Ca) /S≦3.00 (1)
In addition, the element symbol in Formula (1) shows content (mass%) of each element.
前記酸洗処理において、HClとHNOの混合液中に6〜21秒間浸漬することを特徴とする請求項4に記載の高強度鋼板の製造方法。 5. The method for producing a high-strength steel sheet according to claim 4, wherein in the pickling treatment, the steel sheet is immersed in a mixed solution of HCl and HNO 3 for 6 to 21 seconds.
JP2015232560A 2015-11-30 2015-11-30 Evaluation method of surface quality of high strength steel sheet and manufacturing method of high strength steel sheet Pending JP2016065319A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015232560A JP2016065319A (en) 2015-11-30 2015-11-30 Evaluation method of surface quality of high strength steel sheet and manufacturing method of high strength steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015232560A JP2016065319A (en) 2015-11-30 2015-11-30 Evaluation method of surface quality of high strength steel sheet and manufacturing method of high strength steel sheet

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2013059930A Division JP2014185359A (en) 2013-03-22 2013-03-22 High strength steel sheet

Publications (1)

Publication Number Publication Date
JP2016065319A true JP2016065319A (en) 2016-04-28

Family

ID=55805011

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015232560A Pending JP2016065319A (en) 2015-11-30 2015-11-30 Evaluation method of surface quality of high strength steel sheet and manufacturing method of high strength steel sheet

Country Status (1)

Country Link
JP (1) JP2016065319A (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5488827A (en) * 1977-12-26 1979-07-14 Kawasaki Steel Co Production of high tensile hot rolling steel plate with excellent extensibility and flanging property
JP2000008136A (en) * 1998-06-19 2000-01-11 Kawasaki Steel Corp High strength steel plate excellent in stretch-flanging property and delayed fracture resistance
JP2001107178A (en) * 1999-10-06 2001-04-17 Kawasaki Steel Corp Ca-CONTAINING STEEL SMALL IN INCREASE IN RUST GENERATION
JP2003201538A (en) * 2001-10-30 2003-07-18 Jfe Steel Kk High strength, high ductility cold rolled steel sheet having excellent salt hot water resisting secondary adhesion and production method therefor
JP2004277789A (en) * 2003-03-14 2004-10-07 Jfe Steel Kk High-strength and high-ductility cold-rolled steel sheet superior in secondary adhesiveness for hot salt water, and manufacturing method therefor
JP2009203549A (en) * 2008-01-31 2009-09-10 Jfe Steel Corp High-strength steel sheet and process for production thereof
JP2009209451A (en) * 2008-02-08 2009-09-17 Jfe Steel Corp High-strength hot-dip galvanized steel sheet excellent in workability and process for production thereof
JP2010065273A (en) * 2008-09-10 2010-03-25 Jfe Steel Corp High-strength steel sheet and method for manufacturing the same
JP2010090475A (en) * 2008-09-10 2010-04-22 Jfe Steel Corp High-strength steel plate and manufacturing method thereof
JP2011184757A (en) * 2010-03-09 2011-09-22 Jfe Steel Corp Method for manufacturing high-strength steel sheet
JP2012132093A (en) * 2010-08-31 2012-07-12 Jfe Steel Corp Method for manufacturing cold-rolled steel sheet, cold-rolled steel sheet, and automobile member

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5488827A (en) * 1977-12-26 1979-07-14 Kawasaki Steel Co Production of high tensile hot rolling steel plate with excellent extensibility and flanging property
JP2000008136A (en) * 1998-06-19 2000-01-11 Kawasaki Steel Corp High strength steel plate excellent in stretch-flanging property and delayed fracture resistance
JP2001107178A (en) * 1999-10-06 2001-04-17 Kawasaki Steel Corp Ca-CONTAINING STEEL SMALL IN INCREASE IN RUST GENERATION
JP2003201538A (en) * 2001-10-30 2003-07-18 Jfe Steel Kk High strength, high ductility cold rolled steel sheet having excellent salt hot water resisting secondary adhesion and production method therefor
JP2004277789A (en) * 2003-03-14 2004-10-07 Jfe Steel Kk High-strength and high-ductility cold-rolled steel sheet superior in secondary adhesiveness for hot salt water, and manufacturing method therefor
JP2009203549A (en) * 2008-01-31 2009-09-10 Jfe Steel Corp High-strength steel sheet and process for production thereof
JP2009209451A (en) * 2008-02-08 2009-09-17 Jfe Steel Corp High-strength hot-dip galvanized steel sheet excellent in workability and process for production thereof
JP2010065273A (en) * 2008-09-10 2010-03-25 Jfe Steel Corp High-strength steel sheet and method for manufacturing the same
JP2010090475A (en) * 2008-09-10 2010-04-22 Jfe Steel Corp High-strength steel plate and manufacturing method thereof
JP2011184757A (en) * 2010-03-09 2011-09-22 Jfe Steel Corp Method for manufacturing high-strength steel sheet
JP2012132093A (en) * 2010-08-31 2012-07-12 Jfe Steel Corp Method for manufacturing cold-rolled steel sheet, cold-rolled steel sheet, and automobile member

Similar Documents

Publication Publication Date Title
KR101638719B1 (en) Galvanized steel sheet and method for manufacturing the same
JP6043801B2 (en) Steel plate for warm press forming, warm press forming member, and manufacturing method thereof
JP6696048B2 (en) Cold-rolled high-strength steel sheet having excellent phosphatability and formability, and method for producing the same
KR101923327B1 (en) High strength galvanized steel sheet and production method therefor
JP5233346B2 (en) High-strength cold-rolled steel sheet excellent in chemical conversion treatment and post-coating corrosion resistance and method for producing the same
US10294542B2 (en) Method for producing high-strength galvanized steel sheet and high-strength galvannealed steel sheet
KR101607041B1 (en) Method for producing high-strength cold-rolled steel sheet having excellent anti-aging property and bake hardening property
JP2014019928A (en) High strength cold rolled steel sheet and method for producing high strength cold rolled steel sheet
JP5531757B2 (en) High strength steel plate
KR20190073469A (en) High strength steel sheet and manufacturing method thereof
JP6610749B2 (en) High strength cold rolled steel sheet
JP5825343B2 (en) Alloyed hot-dip galvanized steel sheet and method for producing the same
JP2019533083A (en) Cold-rolled steel sheet for hot forming excellent in corrosion resistance and spot weldability, hot-formed member, and manufacturing method thereof
JP2007162078A (en) High strength steel sheet and production method
JP6222040B2 (en) High formability and high strength cold-rolled steel sheet excellent in chemical conversion treatment and production method thereof
JP5391607B2 (en) High-strength hot-dip galvanized steel sheet with excellent appearance and method for producing the same
KR102471559B1 (en) Cold-rolled and coated steel sheet and its manufacturing method
JP2010156031A (en) Hot dip galvanized high strength steel sheet having excellent formability, and method for producing the same
JP2013227635A (en) High strength cold rolled steel sheet, high strength galvanized steel sheet, method for manufacturing high strength cold rolled steel sheet, and method for manufacturing high strength galvanized steel sheet
JP2017025397A (en) Hot rolled steel sheet and method of producing the same
JP2009030148A (en) Method for manufacturing cold-rolled steel sheet and plated steel sheet
JP2014185359A (en) High strength steel sheet
JP2016065319A (en) Evaluation method of surface quality of high strength steel sheet and manufacturing method of high strength steel sheet
JP5780019B2 (en) Method for producing high-Si, high-tensile cold-rolled steel strip with excellent chemical conversion properties
JP4301013B2 (en) Cold-rolled steel sheet with excellent dent resistance

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161006

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161018

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161122

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170328