JP2016042525A - Thermoelectric conversion module - Google Patents

Thermoelectric conversion module Download PDF

Info

Publication number
JP2016042525A
JP2016042525A JP2014165716A JP2014165716A JP2016042525A JP 2016042525 A JP2016042525 A JP 2016042525A JP 2014165716 A JP2014165716 A JP 2014165716A JP 2014165716 A JP2014165716 A JP 2014165716A JP 2016042525 A JP2016042525 A JP 2016042525A
Authority
JP
Japan
Prior art keywords
thermoelectric conversion
conversion element
element group
substrate
outer peripheral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014165716A
Other languages
Japanese (ja)
Other versions
JP6524406B2 (en
Inventor
英治 奥薗
Eiji Okuzono
英治 奥薗
典昭 湯川
Noriaki Yugawa
典昭 湯川
久詞 加納
Hisashi Kano
久詞 加納
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2014165716A priority Critical patent/JP6524406B2/en
Priority to US14/820,511 priority patent/US9412929B2/en
Publication of JP2016042525A publication Critical patent/JP2016042525A/en
Priority to US15/203,693 priority patent/US20160315242A1/en
Application granted granted Critical
Publication of JP6524406B2 publication Critical patent/JP6524406B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a thermoelectric conversion module that can implement high conversion efficiency from heat to electric power.SOLUTION: A thermoelectric conversion module has a first board 12, a second board 13, and outer peripheral edge side thermoelectric conversion element groups 14 and a center side thermoelectric conversion element group 15 each of which is mounted between the first board 12 and the second board 13 and has plural thermoelectric conversion elements 16. The outer peripheral edge side thermoelectric conversion element groups 14 are arranged at the outer peripheral edge sides of the first board 12 and the second board 13. The center side thermoelectric conversion element group 15 is disposed to be nearer to the center side of the first and second boards 12 and 13 than the outer peripheral edge side thermoelectric conversion element groups 14. The plural thermoelectric conversion elements 16 of the center side thermoelectric conversion element group 15 are mounted in higher density than the plural thermoelectric conversion elements 16 of the outer peripheral edge side thermoelectric conversion element groups 14.SELECTED DRAWING: Figure 1

Description

本発明は、各種電子機器に使用される熱電変換モジュールに関するものである。   The present invention relates to a thermoelectric conversion module used in various electronic devices.

以下、従来の熱電変換モジュールについて図面を用いて説明する。図7は従来の熱電変換モジュールの構成を示した分解斜視図であり、図8は従来の熱電変換モジュールの外観図である。熱電変換モジュール1は、複数の熱電変換素子2が縦横に配置されて、第1基板3と第2基板4とのそれぞれに実装されることによって構成されている。ここで、熱電変換素子2は第1基板3に設けられた配線パターン5と第2基板に設けられた配線パターン5とによって交互に直列に接続されている。そして、第一端の熱電変換素子6および第二端の熱電変換素子7は、引き出しリード線8、9に接続されている。
そして、図8に示すように熱電変換モジュール1は、発熱体10に接触配置されることによって発熱体10で生じた熱を電力へと変換して、引き出しリード線8、9から熱電変換モジュール1の外部へと熱電変換後の電力を出力している。
Hereinafter, a conventional thermoelectric conversion module will be described with reference to the drawings. FIG. 7 is an exploded perspective view showing a configuration of a conventional thermoelectric conversion module, and FIG. 8 is an external view of the conventional thermoelectric conversion module. The thermoelectric conversion module 1 is configured by arranging a plurality of thermoelectric conversion elements 2 vertically and horizontally and being mounted on each of the first substrate 3 and the second substrate 4. Here, the thermoelectric conversion elements 2 are alternately connected in series by the wiring pattern 5 provided on the first substrate 3 and the wiring pattern 5 provided on the second substrate. The first end thermoelectric conversion element 6 and the second end thermoelectric conversion element 7 are connected to lead wires 8 and 9.
As shown in FIG. 8, the thermoelectric conversion module 1 is arranged in contact with the heating element 10 to convert heat generated in the heating element 10 into electric power, and from the lead wires 8 and 9 to the thermoelectric conversion module 1. The electric power after thermoelectric conversion is output to the outside.

なお、この出願の発明に関連する先行技術文献情報としては、例えば特許文献1が知られている。   For example, Patent Document 1 is known as prior art document information related to the invention of this application.

特開2014−82403号公報JP 2014-82403 A

しかしながら、従来の熱電変換モジュール1では、熱電変換モジュール1が発熱体10の上に配置されて発熱体10からの熱を受けた際に、発熱体10と接触する熱電変換モジュール1における第1基板3の温度は上昇するものの、その温度分布はムラを有する。この温度分布のムラは、熱電変換モジュール1の側面などの露出部分が周囲環境に対して熱を放射することによって生じるものである。このため、第1基板3において破線によって示された概ね閉じた形状の等温度線は、熱電変換モジュールの中央側に向かうにつれて高い温度を示す。   However, in the conventional thermoelectric conversion module 1, when the thermoelectric conversion module 1 is arranged on the heating element 10 and receives heat from the heating element 10, the first substrate in the thermoelectric conversion module 1 that contacts the heating element 10. Although the temperature of 3 rises, the temperature distribution is uneven. The unevenness of the temperature distribution is caused when an exposed portion such as a side surface of the thermoelectric conversion module 1 radiates heat to the surrounding environment. For this reason, the generally closed isothermal line indicated by the broken line in the first substrate 3 shows a higher temperature toward the center side of the thermoelectric conversion module.

つまり、熱電変換モジュール1の外周縁部1aと中央部1b付近とでは生じる温度が異なることから、個々の伝熱変換素子2によって生じる電力にも差が生じる。この結果として熱電変換モジュール1は、発熱体10から熱電変換素子2へと伝えられる熱が高い効率で電力へと変換され難いという課題を有するものであった。   That is, since the generated temperatures are different between the outer peripheral edge portion 1a and the central portion 1b of the thermoelectric conversion module 1, there is also a difference in the electric power generated by the individual heat transfer conversion elements 2. As a result, the thermoelectric conversion module 1 has a problem that heat transferred from the heating element 10 to the thermoelectric conversion element 2 is difficult to be converted into electric power with high efficiency.

そこで本発明は、熱から電力へ高い効率によって変換することを目的とするものである。   Therefore, the present invention aims to convert heat to electric power with high efficiency.

そして、この目的を達成するために本発明は、第1基板と、第2基板と、前記第1基板と前記第2基板との間に実装配置されて、かつ、それぞれが複数の熱電変換素子を有する、外周縁側熱電変換素子群と中央側熱電変換素子群とを備え、前記外周縁側熱電変換素子群は、前記第1基板および前記第2基板における外周縁側に配置され、前記中央側熱電変換素子群は、前記外周縁側熱電変換素子群よりも前記第1基板および前記第2基板における中央側に配置され、かつ、前記外周縁側熱電変換素子群よりも高密度で実装配置された、ことを特徴としたものである。   In order to achieve this object, the present invention provides a first substrate, a second substrate, and a plurality of thermoelectric conversion elements that are mounted and disposed between the first substrate and the second substrate. An outer peripheral side thermoelectric conversion element group and a central side thermoelectric conversion element group, wherein the outer peripheral side thermoelectric conversion element group is disposed on the outer peripheral side of the first substrate and the second substrate, and the central side thermoelectric conversion The element group is disposed closer to the center of the first substrate and the second substrate than the outer peripheral side thermoelectric conversion element group, and is mounted and arranged at a higher density than the outer peripheral side thermoelectric conversion element group. It is a feature.

本発明によれば、熱電変換モジュールは熱から電力へ高い効率によって変換することができるものである。   According to the present invention, the thermoelectric conversion module can convert heat to electric power with high efficiency.

本発明の実施の形態における熱電変換モジュールの構成を示す分解斜視図The disassembled perspective view which shows the structure of the thermoelectric conversion module in embodiment of this invention 本発明の実施の形態における熱電変換モジュールの外観斜視図External perspective view of thermoelectric conversion module according to an embodiment of the present invention 本発明の実施の形態における熱電変換モジュールの構成の一部を示す詳細図Detailed drawing which shows a part of structure of the thermoelectric conversion module in embodiment of this invention 本発明の実施の形態における熱電変換モジュールの温度分布を示す特性図The characteristic view which shows the temperature distribution of the thermoelectric conversion module in embodiment of this invention 本発明の実施の形態における熱電変換モジュールの第1の上面図The 1st top view of the thermoelectric conversion module in an embodiment of the invention 本発明の実施の形態における熱電変換モジュールの第2の上面図Second top view of thermoelectric conversion module in the embodiment of the present invention 従来の熱電変換モジュールの分解斜視図An exploded perspective view of a conventional thermoelectric conversion module 従来の熱電変換モジュールの外観図External view of conventional thermoelectric conversion module

以下、本発明の実施の形態の一例について図面を参照しながら説明する。   Hereinafter, an example of an embodiment of the present invention will be described with reference to the drawings.

(実施の形態)
図1は本発明の実施の形態における熱電変換モジュールの構成を示す分解斜視図であり、図2は本発明の実施の形態における熱電変換モジュールの外観斜視図である。熱電変換モジュール11は、第1基板12と、第2基板13と、外周縁側熱電変換素子群14と、中央側熱電変換素子群15とを含む。
(Embodiment)
FIG. 1 is an exploded perspective view showing a configuration of a thermoelectric conversion module according to an embodiment of the present invention, and FIG. 2 is an external perspective view of the thermoelectric conversion module according to an embodiment of the present invention. The thermoelectric conversion module 11 includes a first substrate 12, a second substrate 13, an outer peripheral side thermoelectric conversion element group 14, and a center side thermoelectric conversion element group 15.

そして、外周縁側熱電変換素子群14と中央側熱電変換素子群15とは、第1基板12と第2基板13との間に実装配置されている。また、外周縁側熱電変換素子群14および、中央側熱電変換素子群15は、それぞれが複数の熱電変換素子16を有する。   The outer peripheral side thermoelectric conversion element group 14 and the center side thermoelectric conversion element group 15 are mounted and disposed between the first substrate 12 and the second substrate 13. Further, each of the outer peripheral side thermoelectric conversion element group 14 and the central side thermoelectric conversion element group 15 includes a plurality of thermoelectric conversion elements 16.

ここで、外周縁側熱電変換素子群14は、第1基板12および第2基板13における外周縁側に配置されている。そして、中央側熱電変換素子群15は、外周縁側熱電変換素子群14よりも第1基板12および第2基板13における中央側に配置されている。そしてさらに、中央側熱電変換素子群15における複数の熱電変換素子16は、外周縁側熱電変換素子群14における複数の熱電変換素子16よりも高密度で実装配置されている。   Here, the outer peripheral side thermoelectric conversion element group 14 is arranged on the outer peripheral side of the first substrate 12 and the second substrate 13. The center-side thermoelectric conversion element group 15 is arranged closer to the center side of the first substrate 12 and the second substrate 13 than the outer peripheral edge-side thermoelectric conversion element group 14. Further, the plurality of thermoelectric conversion elements 16 in the central thermoelectric conversion element group 15 are mounted and arranged at a higher density than the plurality of thermoelectric conversion elements 16 in the outer peripheral side thermoelectric conversion element group 14.

以上の構成によって、発熱体17によって発生した熱は熱電変換モジュール11に伝達されるとともに、熱電変換モジュール11の外周縁部11aに比較して温度が高くなった熱電変換モジュール11の中央部11bの熱は、中央側熱電変換素子群15によって高い効率で電力へと変換される。   With the above configuration, the heat generated by the heating element 17 is transmitted to the thermoelectric conversion module 11, and the temperature of the central portion 11 b of the thermoelectric conversion module 11 whose temperature is higher than that of the outer peripheral edge portion 11 a of the thermoelectric conversion module 11. The heat is converted into electric power with high efficiency by the central thermoelectric conversion element group 15.

つまり、温度が高くなる熱電変換モジュール11の中央部11bは、複数の熱電変換素子16が外周縁部11aに比較して高密度で実装された中央側熱電変換素子群15が配置されている部分でもある。したがって、大きな熱エネルギーが多くの熱電変換素子16によって熱電変換されるので、発熱体17によって発生した熱は少ない損失で効率よく電力に変換される。   In other words, the central portion 11b of the thermoelectric conversion module 11 where the temperature is high is a portion where the central thermoelectric conversion element group 15 in which a plurality of thermoelectric conversion elements 16 are mounted at a higher density than the outer peripheral edge portion 11a is disposed. But there is. Therefore, since large heat energy is thermoelectrically converted by many thermoelectric conversion elements 16, the heat generated by the heating element 17 is efficiently converted into electric power with little loss.

以下、熱電変換モジュール11の詳しい構成および動作について説明する。外周縁側熱電変換素子群14と中央側熱電変換素子群15とは、第1基板12と第2基板13との間に実装配置されることで第1基板12と第2基板13へ電気的に接続されている。そしてさらに、外周縁側熱電変換素子群14と中央側熱電変換素子群15とは、第1基板12と第2基板13との間に配置された接着剤などからなる樹脂層18によって第1基板12および第2基板13へ機械的に固着されている。   Hereinafter, the detailed configuration and operation of the thermoelectric conversion module 11 will be described. The outer peripheral side thermoelectric conversion element group 14 and the center side thermoelectric conversion element group 15 are electrically mounted to the first substrate 12 and the second substrate 13 by being mounted between the first substrate 12 and the second substrate 13. It is connected. Furthermore, the outer peripheral side thermoelectric conversion element group 14 and the central side thermoelectric conversion element group 15 are formed by the resin layer 18 made of an adhesive or the like disposed between the first substrate 12 and the second substrate 13. And mechanically fixed to the second substrate 13.

また、図3の本発明の実施の形態における熱電変換モジュールの構成の一部を示す詳細図のように、第1基板12に設けられた配線パターン19aは、P型半導体あるいはN型半導体である個々の熱電変換素子16を直列に接続している。ここでは省略しているが実際には図面中の上側に、配線パターン19bが設けられた第2基板13が配置されている。ここで、第1基板12および第2基板13は、銅などの高い熱伝導性を有する材質を用いることが望ましい。また、ここでは図示していないが、第1基板12および第2基板13における熱電変換素子16の実装面にはポリイミド樹脂などの薄く、かつ、絶縁性に優れた樹脂層が形成されたうえで、配線パターン19a、19bが設けられるとよい。これにより、第1基板12から熱電変換素子16への熱伝導性を低下させることなく、あるいは、第2基板13から熱電変換素子16への熱伝導性を低下させることなく、熱電変換素子16と第1基板12あるいは第2基板13との絶縁性が確保できる。   Further, as shown in the detailed view showing a part of the configuration of the thermoelectric conversion module in the embodiment of the present invention in FIG. 3, the wiring pattern 19 a provided on the first substrate 12 is a P-type semiconductor or an N-type semiconductor. Individual thermoelectric conversion elements 16 are connected in series. Although omitted here, the second substrate 13 provided with the wiring pattern 19b is actually arranged on the upper side in the drawing. Here, the first substrate 12 and the second substrate 13 are preferably made of a material having high thermal conductivity such as copper. Although not shown here, a thin resin layer having excellent insulating properties such as polyimide resin is formed on the mounting surface of the thermoelectric conversion element 16 on the first substrate 12 and the second substrate 13. The wiring patterns 19a and 19b are preferably provided. Thereby, without reducing the thermal conductivity from the first substrate 12 to the thermoelectric conversion element 16 or without reducing the thermal conductivity from the second substrate 13 to the thermoelectric conversion element 16, Insulation with the first substrate 12 or the second substrate 13 can be ensured.

また、複数が直列に接続された熱電変換素子16における最も端部に配置された端部熱電変換素子16a、16bにはぞれぞれ、引き出しリード線20a、20bが接続されている。   In addition, lead-out leads 20a and 20b are connected to the end thermoelectric conversion elements 16a and 16b arranged at the end of the thermoelectric conversion elements 16 connected in series, respectively.

図3では、複数の熱電変換素子16が単一の群を形成しているが、先にも述べたように、本発明の実施の形態では複数の熱電変換素子16によって、複数の外周縁側熱電変換素子群14および中央側熱電変換素子群15が形成されている。また、外周縁側熱電変換素子群14と中央側熱電変換素子群15とは、引き出しリード線20a、20bによって接続されてもよく、あるいは、群間接続配線パターン(図示せず)によって接続されてもよい。また図1では、外周縁側熱電変換素子群14と中央側熱電変換素子群15とは空間を介して第1基板12に配置されているが、これは便宜上のためであり、外周縁側熱電変換素子群14と中央側熱電変換素子群15とは密接して配置されていても構わない。また、外周縁側熱電変換素子群14と中央側熱電変換素子群15とは互いに一部が混在した境界領域を有しても構わない。   In FIG. 3, the plurality of thermoelectric conversion elements 16 form a single group. However, as described above, in the embodiment of the present invention, a plurality of thermoelectric conversion elements 16 are used to form a plurality of outer peripheral side thermoelectric elements. A conversion element group 14 and a center side thermoelectric conversion element group 15 are formed. Further, the outer peripheral side thermoelectric conversion element group 14 and the central side thermoelectric conversion element group 15 may be connected by lead wires 20a and 20b, or may be connected by an inter-group connection wiring pattern (not shown). Good. In FIG. 1, the outer peripheral side thermoelectric conversion element group 14 and the central side thermoelectric conversion element group 15 are arranged on the first substrate 12 through a space, but this is for convenience, and the outer peripheral side thermoelectric conversion element. The group 14 and the center side thermoelectric conversion element group 15 may be arranged in close contact with each other. Moreover, the outer peripheral side thermoelectric conversion element group 14 and the center side thermoelectric conversion element group 15 may have a boundary region in which a part thereof is mixed.

ここで、熱電変換モジュール11内では、全て同等特性のN型の熱電変換素子16ならびに、全て同等特性のP型の熱電変換素子16が用いられている。また、個々の熱電変換素子16が有する熱から電力への変換特性も同等であるとともに、この変換特性は熱電変換素子16が有する固有の定数と、熱電変換素子16の両端に存在する温度差に依存する。この温度差は、概ね第1基板12と第2基板13との温度差に相当する。   Here, in the thermoelectric conversion module 11, an N-type thermoelectric conversion element 16 having the same characteristics and a P-type thermoelectric conversion element 16 having the same characteristics are used. In addition, the conversion characteristics from heat to electric power of each thermoelectric conversion element 16 are equivalent, and this conversion characteristic depends on the inherent constant of the thermoelectric conversion element 16 and the temperature difference existing at both ends of the thermoelectric conversion element 16. Dependent. This temperature difference substantially corresponds to the temperature difference between the first substrate 12 and the second substrate 13.

しかし、個々の熱電変換素子16が熱を電力へと変換するにあたっては、変換量あるいは変換効率に限界が存在する。このため、熱容量やあるいは温度差が大きな部位には、個々の能力を向上させた熱電変換素子16としてではなく、熱電変換素子16を配置密度が大きな群として熱電変換素子群が配置されるとよい。この一方で、熱容量やあるいは温度差が小さな部位には、配置密度を小さくした熱電変換素子群が配置されるとよい。   However, when each thermoelectric conversion element 16 converts heat into electric power, there is a limit in the conversion amount or conversion efficiency. For this reason, the thermoelectric conversion element group is preferably arranged in a portion having a large heat density and / or temperature difference as a group having a high arrangement density of the thermoelectric conversion elements 16 instead of the thermoelectric conversion elements 16 having improved individual capacities. . On the other hand, a thermoelectric conversion element group with a reduced arrangement density is preferably arranged at a site where the heat capacity or temperature difference is small.

ここでは、図4の本発明の実施の形態における熱電変換モジュールの温度分布を示す特性図のように、熱電変換モジュール11における発熱体17と接する第1基板12と第2基板13とでは温度分布が異なる。   Here, as shown in the characteristic diagram showing the temperature distribution of the thermoelectric conversion module in the embodiment of the present invention in FIG. 4, the temperature distribution between the first substrate 12 and the second substrate 13 in contact with the heating element 17 in the thermoelectric conversion module 11. Is different.

発熱体17に対して直接に接触している第1基板12は、特に外部環境へ露出しない中央部11bの温度は発熱体17の温度に対応して上昇し易く、この一方で外部環境へ一部が露出している外周縁部11aの温度は中央部11bに比較して上昇し難い特性を有する。   In the first substrate 12 that is in direct contact with the heating element 17, the temperature of the central portion 11 b that is not exposed to the external environment tends to rise corresponding to the temperature of the heating element 17. The temperature of the outer peripheral edge portion 11a where the portion is exposed has a characteristic that it is difficult to rise compared to the central portion 11b.

また、発熱体17に対して直接に接触していない第2基板13は、第1基板12の温度特性の曲線に比較して、外周縁部11aと中央部11bとで温度の差は生じ難い。これは、第2基板13は、発熱体17とは反対面が全て外部環境へ露出することに起因するものである。   Further, the second substrate 13 that is not in direct contact with the heating element 17 is less likely to cause a temperature difference between the outer peripheral edge portion 11a and the central portion 11b as compared with the temperature characteristic curve of the first substrate 12. . This is because the second substrate 13 has the entire surface opposite to the heating element 17 exposed to the external environment.

このため、熱電変換モジュール11の、外周縁部11aにおける第1基板12と第2基板13との温度差△Taと、中央部11bにおける第1基板12と第2基板13との温度差△Tbとの間では、△Tbは△Taよりも大きくなるという関係が常に成立する。そして、中央部11bにおける温度差△Tbは大きい値となるため、個々の熱電変換素子16によって生じる電力は大きくなるものの、同時に第1基板12の中央部11bにおける熱容量も大きくなっているため、効率よく熱電変換を行うために中央部11bの近傍には大きな熱容量に対応した熱電変換素子群が必要となる。   Therefore, in the thermoelectric conversion module 11, the temperature difference ΔTa between the first substrate 12 and the second substrate 13 at the outer peripheral edge portion 11a, and the temperature difference ΔTb between the first substrate 12 and the second substrate 13 at the center portion 11b. The relationship that ΔTb is larger than ΔTa is always established. Since the temperature difference ΔTb in the central portion 11b is a large value, the power generated by each thermoelectric conversion element 16 is large, but at the same time, the heat capacity in the central portion 11b of the first substrate 12 is also large. In order to perform thermoelectric conversion well, a thermoelectric conversion element group corresponding to a large heat capacity is required in the vicinity of the central portion 11b.

そこで、熱電変換モジュール11において、発熱体17から供給される熱が蓄積され易く熱容量が大きくなる部位である中央部11bには、高密度に熱電変換素子16が実装配置された、中央側熱電変換素子群15が対応するように配置されるとよい。この一方で、発熱体17から供給される熱が蓄積され難く熱容量が比較のうえで中央部11bよりも小さな部位である外周縁部11aには、中央側熱電変換素子群15に比較して低密度で熱電変換素子16が実装配置された外周縁側熱電変換素子群14が対応するように配置されるとよい。   Therefore, in the thermoelectric conversion module 11, the center side thermoelectric conversion in which the thermoelectric conversion elements 16 are mounted and arranged at high density in the central portion 11 b, which is a portion where heat supplied from the heating element 17 is easily accumulated and the heat capacity increases. The element groups 15 are preferably arranged so as to correspond. On the other hand, the heat supplied from the heating element 17 is hard to accumulate, and the heat capacity is compared with the outer peripheral edge portion 11a, which is smaller than the central portion 11b, in comparison with the central thermoelectric conversion element group 15. It is preferable that the outer peripheral side thermoelectric conversion element group 14 on which the thermoelectric conversion elements 16 are mounted and arranged by density correspond to each other.

これにより、熱電変換モジュール11が発熱体17から受ける熱容量が大きな部位では、高密度に配置された多くの熱電変換素子16が熱電変換を行う。この結果、熱電変換モジュール11における熱電変換は効率が向上する。   Thereby, in the site | part where the heat capacity which the thermoelectric conversion module 11 receives from the heat generating body 17 is large, many thermoelectric conversion elements 16 arrange | positioned with high density perform thermoelectric conversion. As a result, the efficiency of the thermoelectric conversion in the thermoelectric conversion module 11 is improved.

図1における説明では、概ね矩形の列状とした外周縁側熱電変換素子群14および中央側熱電変換素子群15を一例とし、両端側に配置された外周縁側熱電変換素子群14によって中央側熱電変換素子群15が挟まれた位置関係としている。しかしながら、外周縁側熱電変換素子群14および中央側熱電変換素子群15の配置は、図5の本発明の実施の形態における熱電変換モジュールの第1の上面図に示すように、第1基板12へ枠状に配置した外周縁側熱電変換素子群14の内側に中央側熱電変換素子群15が配置されても構わない。またあるいは、ドーナツ状に配置した外周縁側熱電変換素子群14の内側に中央側熱電変換素子群15が配置され、同心円状に外周縁側熱電変換素子群14と中央側熱電変換素子群15とが配置されても構わない。   In the description of FIG. 1, the outer peripheral side thermoelectric conversion element group 14 and the central side thermoelectric conversion element group 15 in a substantially rectangular array are taken as an example, and the central side thermoelectric conversion is performed by the outer peripheral side thermoelectric conversion element groups 14 arranged on both ends. The positional relationship is such that the element group 15 is sandwiched. However, the arrangement of the outer peripheral side thermoelectric conversion element group 14 and the central side thermoelectric conversion element group 15 is arranged on the first substrate 12 as shown in the first top view of the thermoelectric conversion module in the embodiment of the present invention in FIG. The center side thermoelectric conversion element group 15 may be arranged inside the outer peripheral side thermoelectric conversion element group 14 arranged in a frame shape. Alternatively, the central thermoelectric conversion element group 15 is arranged inside the outer peripheral thermoelectric conversion element group 14 arranged in a donut shape, and the outer peripheral thermoelectric conversion element group 14 and the central thermoelectric conversion element group 15 are arranged concentrically. It does not matter.

また、図6の本発明の実施の形態における熱電変換モジュールの第2の上面図に示すように、第1基板12へ配置した外周縁側熱電変換素子群14と中央側熱電変換素子群15とでは、それぞれの内部における熱電変換素子16の接続状態が異なった形態としてもよい。例えば、中央側熱電変換素子群15において配置される熱電変換素子16の数量が、外周縁側熱電変換素子群14において配置される熱電変換素子16の2倍であると仮定する。ここで、外周縁側熱電変換素子群14では全ての熱電変換素子16が直列に接続され、中央側熱電変換素子群15では2等分で直列接続された熱電変換素子16が並列に配置されてもよい。   Moreover, as shown in the 2nd top view of the thermoelectric conversion module in embodiment of this invention of FIG. 6, with the outer periphery side thermoelectric conversion element group 14 and the center side thermoelectric conversion element group 15 which are arrange | positioned at the 1st board | substrate 12, The connection states of the thermoelectric conversion elements 16 in the respective interiors may be different. For example, it is assumed that the number of thermoelectric conversion elements 16 arranged in the central thermoelectric conversion element group 15 is twice the number of thermoelectric conversion elements 16 arranged in the outer peripheral side thermoelectric conversion element group 14. Here, all the thermoelectric conversion elements 16 are connected in series in the outer peripheral side thermoelectric conversion element group 14, and even if the thermoelectric conversion elements 16 connected in series in two equal parts are arranged in parallel in the central side thermoelectric conversion element group 15. Good.

これにより、引き出しリード線20a、20b間の電圧は、全てが直列接続であった場合に比較して1/2倍となるが、供給可能な電流は全てが直列接続であった場合に比較して2倍とすることができる。つまり、出力に必要な電圧値あるいは電流値に応じて外周縁側熱電変換素子群14や中央側熱電変換素子群15の内部の接続状態が、配線パターン19a、19bによって変化させられるとよい。当然ながら、引き出しリード線20a、20b間の抵抗値も上記のように外周縁側熱電変換素子群14や中央側熱電変換素子群15の内部の接続状態によって変化させることができる。   As a result, the voltage between the lead wires 20a and 20b is ½ times that when all are connected in series, but the current that can be supplied is compared with when all are connected in series. Can be doubled. That is, it is preferable that the connection state inside the outer peripheral side thermoelectric conversion element group 14 and the center side thermoelectric conversion element group 15 is changed by the wiring patterns 19a and 19b according to the voltage value or current value required for output. Of course, the resistance value between the lead wires 20a and 20b can also be changed according to the connection state inside the outer peripheral side thermoelectric conversion element group 14 and the central side thermoelectric conversion element group 15 as described above.

図6に示す例では、中央側熱電変換素子群15において2等分されて概ね同数によって直列接続された熱電変換素子16が並列に配置されている。ここで、熱電変換素子16は双方の直列接続部15aで電力が生じる。よって、双方の直列接続部15aによる起電力が不平衡となることに起因する循環電流が生じないように、双方の直列接続部15aにおける起電力が平衡状態とされていることが望ましい。   In the example shown in FIG. 6, thermoelectric conversion elements 16 that are divided into two equal parts in the central thermoelectric conversion element group 15 and connected in series by approximately the same number are arranged in parallel. Here, the thermoelectric conversion element 16 generates power at both of the series connection portions 15a. Therefore, it is desirable that the electromotive forces in both the series connection portions 15a are in a balanced state so that a circulating current due to the unbalance between the electromotive forces in both the series connection portions 15a does not occur.

また、外周縁側熱電変換素子群14と中央側熱電変換素子群15とは近似したインピーダンスを有することが望ましい。ここでは外周縁側熱電変換素子群14と中央側熱電変換素子群15とのそれぞれにおける両端のインピーダンスはRとしている。これにより、外周縁側熱電変換素子群14と中央側熱電変換素子群15とにおいて生じる電力損失は概ね均等となり、特定の領域で電力損失が大きくなることに起因した発電電力の低下は生じない。   Moreover, it is desirable that the outer peripheral side thermoelectric conversion element group 14 and the central side thermoelectric conversion element group 15 have approximate impedances. Here, the impedance at both ends in each of the outer peripheral side thermoelectric conversion element group 14 and the central side thermoelectric conversion element group 15 is R. Thereby, the power loss generated in the outer peripheral side thermoelectric conversion element group 14 and the central side thermoelectric conversion element group 15 is substantially equal, and the generated power is not reduced due to the increase of the power loss in a specific region.

また図4に示すように、中央部11bにおいて第1基板12と第2基板13とでは、先にも説明したように温度の絶対値や熱容量が大きくなるのみならず、温度差△Tbもまた他の領域に比較して大きくなる。この領域では、第1基板12と第2基板13との間に中央側熱電変換素子群15として複数の熱電変換素子16が高密度で配置されている。そして温度差△Tbが大きくなること、および熱電変換素子16が多く存在することによって、中央側熱電変換素子群15における発生電力が大きくなる。しかしこの一方で、温度差△Tbが大きくなることによって第1基板12から第2基板13への熱電変換素子16を介しての熱伝導が多く発生する。そして、この熱伝導が第1基板12と第2基板13との温度差△Tbを縮小させる。さらにこの結果として、上記の熱伝導が熱電変換素子16における発生電力を大きくする妨げとなる可能性が生じてしまう。   As shown in FIG. 4, in the central portion 11b, the first substrate 12 and the second substrate 13 not only increase the absolute value of the temperature and the heat capacity as described above, but also the temperature difference ΔTb. Larger than other areas. In this region, a plurality of thermoelectric conversion elements 16 are arranged at high density as the central thermoelectric conversion element group 15 between the first substrate 12 and the second substrate 13. And since the temperature difference (DELTA) Tb becomes large and there exist many thermoelectric conversion elements 16, the electric power generated in the center side thermoelectric conversion element group 15 becomes large. However, on the other hand, a large temperature difference ΔTb causes a large amount of heat conduction from the first substrate 12 to the second substrate 13 through the thermoelectric conversion element 16. This heat conduction reduces the temperature difference ΔTb between the first substrate 12 and the second substrate 13. Furthermore, as a result, there is a possibility that the above-described heat conduction hinders the generation of electric power in the thermoelectric conversion element 16.

ここで、中央側熱電変換素子群15として配置されている複数の熱電変換素子16における第1基板12から第2基板13へと向かう方向に関する断面積が、外周縁側熱電変換素子群14として配置されている複数の熱電変換素子16における同方向の断面積よりも小さくされるとよい。これによって、第1基板12から第2基板13への熱電変換素子16を介しての熱伝導が低下する。この結果として、第1基板12と第2基板13との温度差△Tbの縮小は抑制され、中央側熱電変換素子群15での熱電変換効率は向上するとともに、発電量が大きくなる。   Here, the cross-sectional area in the direction from the first substrate 12 to the second substrate 13 in the plurality of thermoelectric conversion elements 16 arranged as the center side thermoelectric conversion element group 15 is arranged as the outer peripheral side thermoelectric conversion element group 14. The cross-sectional area in the same direction of the plurality of thermoelectric conversion elements 16 may be smaller. Thereby, the heat conduction from the first substrate 12 to the second substrate 13 via the thermoelectric conversion element 16 is reduced. As a result, the reduction of the temperature difference ΔTb between the first substrate 12 and the second substrate 13 is suppressed, the thermoelectric conversion efficiency in the central thermoelectric conversion element group 15 is improved, and the amount of power generation is increased.

しかしながら、個々の熱電変換素子16の断面積を小さくすると、個々の熱電変換素子16の抵抗値は大きくなる。これは熱電変換素子16における発生電力を大きくする妨げとなる。一般的にここの熱電変換素子16の発電量Pは、ゼーベック係数S、熱電変換素子16の内部抵抗Riとすると、
P=(S2・△Tb2)/(4・Ri)
として求められる。したがって、発電量Pが大きくなるために、熱電変換素子16の断面積を小さくした前後における、温度差△Tbを2乗した値の増加率が内部抵抗Riの増加率よりも大きくすればよい。
However, when the cross-sectional area of each thermoelectric conversion element 16 is reduced, the resistance value of each thermoelectric conversion element 16 is increased. This hinders increasing the generated power in the thermoelectric conversion element 16. In general, the power generation amount P of the thermoelectric conversion element 16 here is the Seebeck coefficient S and the internal resistance Ri of the thermoelectric conversion element 16.
P = (S 2 · ΔTb 2) / (4 · Ri)
As required. Therefore, in order to increase the power generation amount P, the increase rate of the value obtained by squaring the temperature difference ΔTb before and after the cross-sectional area of the thermoelectric conversion element 16 is decreased may be larger than the increase rate of the internal resistance Ri.

例えば、外周縁側熱電変換素子群14における熱電変換素子16で縮小前の断面積での内部抵抗をRe、中央側熱電変換素子群15で縮小後の断面積での内部抵抗をRc、外周縁側熱電変換素子群14と中央側熱電変換素子群15とで同一の熱電変換素子16を適用したときの中央部11bの温度差を△Tb1、中央側熱電変換素子群15の熱電変換素子16の断面積を縮小したときの中央部11bの温度差を△Tb2とすると、
((Rc−Re)/Re)<((△Tb2−△Tb1)2/△Tb12)
の関係が成立すればよい。
これにより、熱電変換素子16の断面積を小さくすることで、中央側熱電変換素子群15での熱電変換効率は向上する。
For example, the thermoelectric conversion element 16 in the outer peripheral side thermoelectric conversion element group 14 has Re as the internal resistance in the cross-sectional area before reduction, the central side thermoelectric conversion element group 15 has the internal resistance in the reduced cross-sectional area as Rc, and the outer peripheral side thermoelectric element. When the same thermoelectric conversion element 16 is applied to the conversion element group 14 and the central thermoelectric conversion element group 15, the temperature difference of the central portion 11b is ΔTb1, and the cross-sectional area of the thermoelectric conversion element 16 of the central thermoelectric conversion element group 15 If the temperature difference of the central part 11b when Δ is reduced is ΔTb2,
((Rc−Re) / Re) <((ΔTb2−ΔTb1) 2 / ΔTb12)
It is sufficient if the relationship is established.
Thereby, the thermoelectric conversion efficiency in the center side thermoelectric conversion element group 15 improves by making the cross-sectional area of the thermoelectric conversion element 16 small.

また、ここでは個々の熱電変換素子16の断面積が小さくされることに加えて、第1基板12と第2基板13との温度差△Tbが維持されるように、中央側熱電変換素子群15が設けられている。しかしながら、中央側熱電変換素子群15における複数の熱電変換素子16は、外周縁側熱電変換素子群14における複数の熱電変換素子16よりも高密度で実装配置されている。このため先にも述べたように、第1基板12から第2基板13への熱電変換素子16を介しての熱伝導は、中央側熱電変換素子群15の方が外周縁側熱電変換素子群14よりも大きい。よって、中央側熱電変換素子群15と外周縁側熱電変換素子群14とで複数の熱電変換素子16が同等の密度で実装配置されている場合に比較して、△Taと△Tbとの差は拡大方向となることを抑制する、あるいは縮小方向となる。   Here, in addition to reducing the cross-sectional area of each thermoelectric conversion element 16, the central thermoelectric conversion element group is maintained so that the temperature difference ΔTb between the first substrate 12 and the second substrate 13 is maintained. 15 is provided. However, the plurality of thermoelectric conversion elements 16 in the center side thermoelectric conversion element group 15 are mounted and arranged at a higher density than the plurality of thermoelectric conversion elements 16 in the outer peripheral side thermoelectric conversion element group 14. Therefore, as described above, the heat conduction from the first substrate 12 to the second substrate 13 through the thermoelectric conversion element 16 is greater in the central thermoelectric conversion element group 15 than in the outer peripheral thermoelectric conversion element group 14. Bigger than. Therefore, compared with the case where a plurality of thermoelectric conversion elements 16 are mounted and arranged at the same density in the center side thermoelectric conversion element group 15 and the outer peripheral side thermoelectric conversion element group 14, the difference between ΔTa and ΔTb is It is possible to suppress the enlargement direction or the reduction direction.

したがって、第1基板12に生じる歪みや反りは低減され、熱電変換素子16に加わる機械的応力も低減される。この結果、熱電変換モジュール11の信頼性が向上することにもなる。   Therefore, distortion and warpage generated in the first substrate 12 are reduced, and mechanical stress applied to the thermoelectric conversion element 16 is also reduced. As a result, the reliability of the thermoelectric conversion module 11 is also improved.

本発明の熱電変換モジュールは、熱から電力へ高い効率によって変換することができるという効果を有し、各種電子機器において有用である。   The thermoelectric conversion module of the present invention has the effect of being able to convert heat to electric power with high efficiency, and is useful in various electronic devices.

11 熱電変換モジュール
11a 外周縁部
11b 中央部
12 第1基板
13 第2基板
14 外周縁側熱電変換素子群
15 中央側熱電変換素子群
16 熱電変換素子
17 発熱体
18 樹脂層
19a、19b 配線パターン
20a、20b 引き出しリード線
DESCRIPTION OF SYMBOLS 11 Thermoelectric conversion module 11a Outer peripheral edge part 11b Central part 12 1st board | substrate 13 2nd board | substrate 14 Outer peripheral edge side thermoelectric conversion element group 15 Central side thermoelectric conversion element group 16 Thermoelectric conversion element 17 Heating element 18 Resin layer 19a, 19b Wiring pattern 20a, 20b Lead wire

Claims (2)

第1基板と、
第2基板と、
前記第1基板と前記第2基板との間に実装配置されて、かつ、それぞれが複数の熱電変換素子を有する、外周縁側熱電変換素子群と中央側熱電変換素子群とを備え、
前記外周縁側熱電変換素子群は、前記第1基板および前記第2基板における外周縁側に配置され、
前記中央側熱電変換素子群は、前記外周縁側熱電変換素子群よりも前記第1基板および前記第2基板における中央側に配置され、
前記中央側熱電変換素子群における前記複数の熱電変換素子は、前記外周縁側熱電変換素子群における前記複数の熱電変換素子よりも高密度で実装配置された熱電変換モジュール。
A first substrate;
A second substrate;
An outer peripheral side thermoelectric conversion element group and a central side thermoelectric conversion element group, which are mounted and arranged between the first substrate and the second substrate, and each have a plurality of thermoelectric conversion elements,
The outer peripheral side thermoelectric conversion element group is disposed on the outer peripheral side of the first substrate and the second substrate,
The center-side thermoelectric conversion element group is disposed closer to the center side of the first substrate and the second substrate than the outer peripheral edge-side thermoelectric conversion element group,
The thermoelectric conversion module in which the plurality of thermoelectric conversion elements in the central side thermoelectric conversion element group are mounted and arranged at a higher density than the plurality of thermoelectric conversion elements in the outer peripheral side thermoelectric conversion element group.
前記中央側熱電変換素子群における熱電変換素子の断面積は、
前記外周縁側熱電変換素子群における熱電変換素子の断面積よりも小さくした、
請求項1に記載の熱電変換モジュール。
The cross-sectional area of the thermoelectric conversion element in the central thermoelectric conversion element group is
Smaller than the cross-sectional area of the thermoelectric conversion element in the outer peripheral side thermoelectric conversion element group,
The thermoelectric conversion module according to claim 1.
JP2014165716A 2014-08-18 2014-08-18 Thermoelectric conversion module Active JP6524406B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2014165716A JP6524406B2 (en) 2014-08-18 2014-08-18 Thermoelectric conversion module
US14/820,511 US9412929B2 (en) 2014-08-18 2015-08-06 Thermoelectric conversion module
US15/203,693 US20160315242A1 (en) 2014-08-18 2016-07-06 Thermoelectric conversion module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014165716A JP6524406B2 (en) 2014-08-18 2014-08-18 Thermoelectric conversion module

Publications (2)

Publication Number Publication Date
JP2016042525A true JP2016042525A (en) 2016-03-31
JP6524406B2 JP6524406B2 (en) 2019-06-05

Family

ID=55592147

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014165716A Active JP6524406B2 (en) 2014-08-18 2014-08-18 Thermoelectric conversion module

Country Status (1)

Country Link
JP (1) JP6524406B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016058503A (en) * 2014-09-09 2016-04-21 京セラ株式会社 Thermoelectric module
JP2017034132A (en) * 2015-08-03 2017-02-09 株式会社デンソー Thermoelectric generator

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04359765A (en) * 1991-02-12 1992-12-14 Baldwin Printing Controls Ltd Cylinder or roller adapted to be heated or cooled using electronic cooling and heating element and its heating and cooling system
JPH05275795A (en) * 1992-03-25 1993-10-22 Fujitsu Ltd Semiconductor laser using temperature controller and manufacture thereof
JPH11307826A (en) * 1998-04-22 1999-11-05 Yamaha Corp Thermionic module
JP2000294868A (en) * 1999-02-04 2000-10-20 Furukawa Electric Co Ltd:The Semiconductor laser module and peltier module used for the same
JP2001082829A (en) * 1999-09-08 2001-03-30 Komatsu Ltd Thermoelectric module and temperature regulation module using thermoelectric module
JP2001196650A (en) * 2000-01-13 2001-07-19 Komatsu Ltd Thermoelectric converting module
JP2009129968A (en) * 2007-11-20 2009-06-11 Kelk Ltd Thermoelectric module

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04359765A (en) * 1991-02-12 1992-12-14 Baldwin Printing Controls Ltd Cylinder or roller adapted to be heated or cooled using electronic cooling and heating element and its heating and cooling system
JPH05275795A (en) * 1992-03-25 1993-10-22 Fujitsu Ltd Semiconductor laser using temperature controller and manufacture thereof
JPH11307826A (en) * 1998-04-22 1999-11-05 Yamaha Corp Thermionic module
JP2000294868A (en) * 1999-02-04 2000-10-20 Furukawa Electric Co Ltd:The Semiconductor laser module and peltier module used for the same
JP2001082829A (en) * 1999-09-08 2001-03-30 Komatsu Ltd Thermoelectric module and temperature regulation module using thermoelectric module
JP2001196650A (en) * 2000-01-13 2001-07-19 Komatsu Ltd Thermoelectric converting module
JP2009129968A (en) * 2007-11-20 2009-06-11 Kelk Ltd Thermoelectric module

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016058503A (en) * 2014-09-09 2016-04-21 京セラ株式会社 Thermoelectric module
JP2017034132A (en) * 2015-08-03 2017-02-09 株式会社デンソー Thermoelectric generator

Also Published As

Publication number Publication date
JP6524406B2 (en) 2019-06-05

Similar Documents

Publication Publication Date Title
US9620700B2 (en) Wafer scale thermoelectric energy harvester
JP6166701B2 (en) Semiconductor device
JP6217756B2 (en) Semiconductor module
KR101519071B1 (en) Thermoelectric module assembly for dehumidifier
JP2011505072A5 (en)
KR101822415B1 (en) Thermoelectric conversion module
US9412929B2 (en) Thermoelectric conversion module
JP2016072579A (en) Thermoelectric conversion module
JP6058353B2 (en) Semiconductor device
JP2016042525A (en) Thermoelectric conversion module
JP2017208478A (en) Thermoelectric conversion module and thermoelectric conversion device
JP2010177619A (en) Semiconductor module
JP7119399B2 (en) semiconductor equipment
JP6555177B2 (en) Semiconductor module
JP6540587B2 (en) Power module
JP6435504B2 (en) Thermoelectric conversion module
JP7077893B2 (en) Semiconductor device
JP5626184B2 (en) Semiconductor unit and method for manufacturing semiconductor unit
WO2020100749A1 (en) Thermoelectric conversion module
WO2016067377A1 (en) Heat-dissipating structure
JP2011003636A (en) Semiconductor device
KR102456680B1 (en) Thermoelectric element
JP2018125498A (en) Thermoelectric conversion device
JP7170272B2 (en) Power board and high voltage module with it
JP2023110166A (en) semiconductor module

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20160520

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181002

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181011

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20190116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190319

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190401

R151 Written notification of patent or utility model registration

Ref document number: 6524406

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151