JP2015520776A - Degradable materials derived from biological components - Google Patents

Degradable materials derived from biological components Download PDF

Info

Publication number
JP2015520776A
JP2015520776A JP2015504830A JP2015504830A JP2015520776A JP 2015520776 A JP2015520776 A JP 2015520776A JP 2015504830 A JP2015504830 A JP 2015504830A JP 2015504830 A JP2015504830 A JP 2015504830A JP 2015520776 A JP2015520776 A JP 2015520776A
Authority
JP
Japan
Prior art keywords
weight
water
degradable material
degradable
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015504830A
Other languages
Japanese (ja)
Other versions
JP6214624B2 (en
Inventor
カラー ベアト
カラー ベアト
シュヴェンデマン ダニエル
シュヴェンデマン ダニエル
ミュラー ベッティーナ
ミュラー ベッティーナ
グシュヴェント フローリアン
グシュヴェント フローリアン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FluidSolids AG
Original Assignee
FluidSolids AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FluidSolids AG filed Critical FluidSolids AG
Publication of JP2015520776A publication Critical patent/JP2015520776A/en
Application granted granted Critical
Publication of JP6214624B2 publication Critical patent/JP6214624B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L89/00Compositions of proteins; Compositions of derivatives thereof
    • C08L89/04Products derived from waste materials, e.g. horn, hoof or hair
    • C08L89/06Products derived from waste materials, e.g. horn, hoof or hair derived from leather or skin, e.g. gelatin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B5/00Producing shaped articles from the material in moulds or on moulding surfaces, carried or formed by, in or on conveyors irrespective of the manner of shaping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B7/00Moulds; Cores; Mandrels
    • B28B7/34Moulds, cores, or mandrels of special material, e.g. destructible materials
    • B28B7/342Moulds, cores, or mandrels of special material, e.g. destructible materials which are at least partially destroyed, e.g. broken, molten, before demoulding; Moulding surfaces or spaces shaped by, or in, the ground, or sand or soil, whether bound or not; Cores consisting at least mainly of sand or soil, whether bound or not
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B7/00Moulds; Cores; Mandrels
    • B28B7/34Moulds, cores, or mandrels of special material, e.g. destructible materials
    • B28B7/346Manufacture of moulds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B7/00Moulds; Cores; Mandrels
    • B28B7/34Moulds, cores, or mandrels of special material, e.g. destructible materials
    • B28B7/348Moulds, cores, or mandrels of special material, e.g. destructible materials of plastic material or rubber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B7/00Moulds; Cores; Mandrels
    • B28B7/36Linings or coatings, e.g. removable, absorbent linings, permanent anti-stick coatings; Linings becoming a non-permanent layer of the moulded article
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C39/00Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor
    • B29C39/003Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/0011Combinations of extrusion moulding with other shaping operations combined with compression moulding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/022Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/10Reinforcing macromolecular compounds with loose or coherent fibrous material characterised by the additives used in the polymer mixture
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L89/00Compositions of proteins; Compositions of derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L97/00Compositions of lignin-containing materials
    • C08L97/02Lignocellulosic material, e.g. wood, straw or bagasse
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/12Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. gelatine proteins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B7/00Moulds; Cores; Mandrels
    • B28B7/0064Moulds characterised by special surfaces for producing a desired surface of a moulded article, e.g. profiled or polished moulding surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B7/00Moulds; Cores; Mandrels
    • B28B7/20Moulds for making shaped articles with undercut recesses, e.g. dovetails
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0805Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation
    • B29C2035/0827Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation using UV radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/112Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using individual droplets, e.g. from jetting heads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2089/00Use of proteins, e.g. casein, gelatine or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/0058Liquid or visquous
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0059Degradable
    • B29K2995/0062Degradable water-soluble
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/757Moulds, cores, dies
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2389/00Characterised by the use of proteins; Derivatives thereof
    • C08J2389/04Products derived from waste materials, e.g. horn, hoof or hair
    • C08J2389/06Products derived from waste materials, e.g. horn, hoof or hair derived from leather or skin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2265Oxides; Hydroxides of metals of iron
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/30Sulfur-, selenium- or tellurium-containing compounds
    • C08K2003/3045Sulfates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/06Biodegradable
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/06Polymer mixtures characterised by other features having improved processability or containing aids for moulding methods

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Dermatology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Textile Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Dispersion Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Dry Formation Of Fiberboard And The Like (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Biological Depolymerization Polymers (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

少なくとも1のタンパク質からのタンパク質接着剤(1)10〜60質量%並びに天然繊維(4)2〜50質量%を含有する、生物学的成分由来の分解性材料。さらに、少なくとも1の吸湿性無機材(7)2〜15質量%、水(2)10〜55質量%並びに添加剤成分(5)0〜50質量%が材料(10)に存在する。Biodegradable material-derived degradable material comprising 10-60% by weight protein adhesive (1) from at least one protein and 2-50% by weight natural fiber (4). Furthermore, at least one hygroscopic inorganic material (7) 2 to 15% by mass, water (2) 10 to 55% by mass and additive component (5) 0 to 50% by mass are present in the material (10).

Description

技術分野
本発明は、生物学的成分由来の分解性材料並びに前記分解性材料からの成形部材の製造方法に関する。
TECHNICAL FIELD The present invention relates to a degradable material derived from a biological component and a method for producing a molded member from the degradable material.

先行技術
US 7,387,756 (Guilbert et al.)は、天然繊維ベース材料の製造方法を記載する。天然繊維は、粉末の形の天然のタンパク質結合剤と混合され、ここで、天然繊維は1〜15%の湿分含有量を有する。湿分含有量は6〜24%に調節され、そして引き続きこの混合物を加熱プレス工程により成形する。
Prior art
US 7,387,756 (Guilbert et al.) Describes a method for producing natural fiber-based materials. Natural fibers are mixed with a natural protein binder in powder form, where the natural fibers have a moisture content of 1-15%. The moisture content is adjusted to 6-24% and the mixture is subsequently shaped by a hot pressing process.

US 6,284,838 (Novamont SpA)は、リグニン又はリグニン含有材料及びタンパク質からの生分解性組成物を開示する。前記組成物は、更なる添加剤を含んでもよい。リグニン又はリグニン含有材料をタンパク質と一緒に加熱し、そして溶融させる。リグニン含有材料として微細木材粒子も使用できる。好ましいタンパク質としては、植物性又は動物性カゼイン又はゼラチンが使用される。   US 6,284,838 (Novamont SpA) discloses a biodegradable composition from lignin or lignin-containing material and protein. Said composition may comprise further additives. The lignin or lignin-containing material is heated with the protein and melted. Fine wood particles can also be used as the lignin-containing material. As preferred protein, vegetable or animal casein or gelatin is used.

US 5,360,586 (Wyatt Danny)は、セルロース含有材料由来の分解性成形部材の製造方法を記載する。前記セルロース含有材料は、50%未満の水を含み、かつ、結合剤及び発泡剤と混合される。この混合物を押出機に充填し、水と混合し、引き続き押出して成形部材にする。   US 5,360,586 (Wyatt Danny) describes a method for producing degradable molded parts derived from cellulose-containing materials. The cellulose-containing material contains less than 50% water and is mixed with a binder and a blowing agent. This mixture is filled into an extruder, mixed with water and subsequently extruded into molded parts.

DE 461 775 (Hans Brandt)は、木材より安価かつ軽量であり、そしてより高い引火点並びにより高い耐水性を示す木材代替材料を開示する。前記材料の製造には、紙を水酸化カリウム水溶液中で煮、引き続きタンニン酸及び水酸化ナトリウムと混合する。前記材料を乾燥させ、粉末にする。引き続き、前記粉末をセメント、炭酸ナトリウム、タルク及び塩化アンチモンと混合し並びに皮膠の硫化水素溶液を撹拌下で混合する。発生する材料を板に伸ばすか又はプレス成形して成形品にする。   DE 461 775 (Hans Brandt) discloses a wood substitute material that is cheaper and lighter than wood and exhibits a higher flash point and higher water resistance. For the production of the material, the paper is boiled in an aqueous potassium hydroxide solution and subsequently mixed with tannic acid and sodium hydroxide. The material is dried to a powder. Subsequently, the powder is mixed with cement, sodium carbonate, talc and antimony chloride and the hydrogen sulfide solution of the skin is mixed under stirring. The generated material is drawn on a plate or press-molded to form a molded product.

DE 334 183 (Dr. Kukula)は、鉛筆軸(Bleistiftfassung)を製造するための木材代替材料を記載する。前記材料を、木材繊維と無機材及び水との混合物から製造する。結合剤として、前記混合物に膠及びデキストリン又は植物粘質物が添加される。前記材料を加熱せずにマイルドな加圧下で適した型においてプレスする。例としては、4〜5質量部の砕木パルプ又はおがくず(少量のパルプが添加されてよい)を、1質量部のアスベスト、珪藻土又はタルク並びに1質量部の骨膠又はゼラチン及び1質量部の植物粘質物又はデキストリンを、可能な限り少量の水の添加下で混合してよいことが挙げられる。   DE 334 183 (Dr. Kukula) describes a wood substitute material for producing pencil stems (Bleistiftfassung). The material is made from a mixture of wood fiber, inorganic material and water. As a binder, glue and dextrin or plant mucilage is added to the mixture. The material is pressed in a suitable mold under mild pressure without heating. Examples include 4-5 parts by weight of ground pulp or sawdust (a small amount of pulp may be added), 1 part by weight of asbestos, diatomaceous earth or talc and 1 part by weight of bone glue or gelatin and 1 part by weight of plant mucous. It is mentioned that the mass or dextrin may be mixed with the addition of as little water as possible.

WO 2009/079579 (E2E Materials)は、生分解性の、ホルムアルデヒド不含のボール紙、特にダイズ由来の接着剤を有するボール紙を記載する。前記ボール紙は、ダイズ樹脂から製造された第1のプレート並びに植物繊維材料由来の更なるプレートからなる。前記第1のプレートを、波状エレメントと接続させる。植物繊維には、アマ、アサ、ラミー、サイザル、ジュート、木綿、バナナ、パイナップル又はケナフの繊維が含まれてよい。繊維は、織布又は不織布として存在してよい。好ましくは、しかし、前記繊維は、天然結合剤、例えばポリラクチドで結びつけられた不織マットとして存在する。前記波状エレメントは、好ましくはポップ種の穀粒から製造され、特にコムギ、コメ又はトウモロコシの穀粒である。製造方法の第1工程において、植物繊維製の第1の数のプレートをダイズ樹脂で含浸し、乾燥させ、一緒に加圧してプレスプレートにし、引き続き波状エレメントと接着させる。最後に、前記波状エレメントに第2のプレスプレートを設けて接着させる。ダイズ樹脂は、さらにポリサッカリド、特に寒天、ゲラン又はその混合物を含んでよい。   WO 2009/079579 (E2E Materials) describes biodegradable, formaldehyde-free cardboard, in particular cardboard with an adhesive derived from soybeans. The cardboard consists of a first plate made from soy resin and a further plate derived from plant fiber material. The first plate is connected to a wave element. Plant fibers may include flax, clam, ramie, sisal, jute, cotton, banana, pineapple or kenaf fibers. The fiber may be present as a woven or non-woven fabric. Preferably, however, the fibers are present as a nonwoven mat bound with a natural binder, such as polylactide. Said wavy elements are preferably made from pop kernels, in particular wheat, rice or corn kernels. In the first step of the production process, a first number of plates made of vegetable fiber is impregnated with soy resin, dried, pressed together into a press plate and subsequently bonded to the undulating element. Finally, a second press plate is provided on the corrugated element and bonded. The soy resin may further comprise a polysaccharide, in particular agar, gellan or mixtures thereof.

WO 2004/0291 35 (K.U. Leuven)は、グルテンをベースとする生体ポリマー並びにグルテンでコーティングされている繊維製複合材料を開示する。前記材料を、グルテンと複数のチオール基を含む分子との混合により製造する。グルテンは、そのために、前記分子と一緒に好ましくは水溶液中に分散される。さらに、繊維もまたグルテンでコーティングされてよく、そして、複合材料に加工されてよい。前記繊維は、合成であってもよいし、天然であってもよい。特別な実施態様において、繊維のまわりにグルテン架橋が形成される。そうして得られた繊維マトリックスは、引き続き、圧力キャスティング法においてプレスされてよい。繊維として、この場合には一方では、セルロース繊維又は茎、外皮、鞘又は果実が使用されてよい。   WO 2004/0291 35 (K.U. Leuven) discloses gluten-based biopolymers and fiber composites coated with gluten. The material is produced by mixing gluten with molecules containing a plurality of thiol groups. Gluten is therefore preferably dispersed together with the molecules in an aqueous solution. In addition, the fibers may also be coated with gluten and processed into a composite material. The fiber may be synthetic or natural. In a special embodiment, gluten bridges are formed around the fibers. The fiber matrix thus obtained may subsequently be pressed in a pressure casting process. As fibers, on the one hand, cellulose fibers or stems, hulls, pods or fruits may be used on the one hand.

公知の材料の欠点は、前記材料から製造された成形部材が、その硬化が、特にタンパク質接着剤が存在する場合に、幾ばくかの時間がかかるために、まず少ない機械的安定性しか有しないことである。さらに、前記材料は、全ての使用した材料が分解性でなく、そして、環境に優しいわけでないため、廃棄物において処理されなければならない。   The disadvantages of the known materials are that molded parts made from said materials first have little mechanical stability, since their curing takes some time, especially in the presence of protein adhesives. It is. Furthermore, the material must be processed in waste because not all materials used are degradable and environmentally friendly.

発明の説明
本発明の課題は、製造される成形部材が可能な限り迅速に良好な機械的安定性を有するように、先行技術から知られている材料に比較してより迅速に硬化し、かつ、完全に溶解でき、かつ分解可能である、導入部で挙げた技術分野に属する材料を作り出すことである。
DESCRIPTION OF THE INVENTION The object of the present invention is to cure more rapidly compared to materials known from the prior art, so that the molded parts produced have good mechanical stability as quickly as possible, and To create materials belonging to the technical fields mentioned in the introduction, which can be completely dissolved and decomposable.

前記課題の解決策は、請求項1の特徴部に定義されている。本発明によれば、前記材料は、少なくとも1のタンパク質からのタンパク質接着剤10〜60質量%を含有する。さらに、前記分解性材料は、天然繊維2〜50質量%、少なくとも1の吸湿性無機材2〜15質量%並びに水10〜55質量%を含有する。さらに、前記材料中には、添加剤成分が0〜50質量%の量で存在してよい。   The solution to the problem is defined in the characterizing part of claim 1. According to the invention, the material contains 10-60% by weight of protein adhesive from at least one protein. Furthermore, the degradable material contains 2 to 50% by mass of natural fibers, 2 to 15% by mass of at least one hygroscopic inorganic material, and 10 to 55% by mass of water. Furthermore, additive components may be present in the material in an amount of 0 to 50% by weight.

本発明の材料は、「分解性」である。本願の意味合いにおいて、「分解性」とは、前記材料が生物学的プロセスを介して完全に溶解(aufloesen)できることが理解される。   The material of the present invention is “degradable”. In the meaning of the present application, “degradable” is understood to mean that the material can be completely auffloesed through a biological process.

「タンパク質接着剤」として、本願の意味合いでは、硬化プロセスを介して三次元架橋を形成できるタンパク質溶液が理解される。前記硬化プロセスは好ましくは可逆性であり、特に水添加及び付加的な熱作用によって可逆性である。好ましくは、タンパク質接着剤は唯一のタンパク質又は唯一のタンパク質クラスからなる。代わりに、前記タンパク質接着剤は、複数の異なるタンパク質又は異なるタンパク質クラスのタンパク質からなってよい。   As “protein adhesive”, in the sense of the present application, a protein solution is understood that can form a three-dimensional cross-link through a curing process. The curing process is preferably reversible, in particular by water addition and additional thermal action. Preferably, the protein adhesive consists of only one protein or only one protein class. Alternatively, the protein adhesive may consist of a plurality of different proteins or proteins of different protein classes.

前記材料は、10〜60質量%、好ましくは30〜50質量%、特に好ましくは40〜45質量%のタンパク質接着剤を含む。   Said material comprises 10-60% by weight, preferably 30-50% by weight, particularly preferably 40-45% by weight of protein adhesive.

前記材料は、さらに2〜50質量%、好ましくは5〜35質量%、特に好ましくは7〜20質量%の天然繊維を含む。   The material further comprises 2 to 50% by weight, preferably 5 to 35% by weight, particularly preferably 7 to 20% by weight, of natural fibers.

さらに、2〜15質量%、好ましくは5〜12質量%、特に好ましくは7〜10質量%の少なくとも1の吸湿性無機材並びに10〜55質量%、好ましくは20〜50質量%、特に好ましくは35〜45質量%の水が分解性材料に存在する。前記吸湿性無機材は、特に好ましくは粉末形で材料中に存在する。   Furthermore, 2-15% by weight, preferably 5-12% by weight, particularly preferably 7-10% by weight of at least one hygroscopic inorganic material and 10-55% by weight, preferably 20-50% by weight, particularly preferably. 35-45% by weight of water is present in the degradable material. The hygroscopic inorganic material is particularly preferably present in the material in powder form.

さらに、前記材料は、0〜50質量%、好ましくは10〜40質量%、特に好ましくは20〜30質量%の量で添加剤成分を含んでよい。前記添加剤成分は必ずしも材料中に存在する必要はない。本発明の材料は、更に上述した技術的課題を添加剤成分なしでも解決する。   Furthermore, the material may contain additive components in an amount of 0-50% by weight, preferably 10-40% by weight, particularly preferably 20-30% by weight. The additive component need not necessarily be present in the material. The material of the present invention further solves the above-mentioned technical problem without an additive component.

吸湿性無機材の添加によって、材料中に存在する水は結晶水として吸湿性無機材に付加し、それによってタンパク質接着剤の硬化速度が高められる。さらに、吸湿性無機材は付加的に水に結合してよく、それによって、材料から製造される成形部材が、タンパク質接着剤の完全な硬化の前であっても、比較的迅速に良好な機械的安定性を有することを生じる。   By the addition of the hygroscopic inorganic material, the water present in the material is added to the hygroscopic inorganic material as crystal water, thereby increasing the curing rate of the protein adhesive. Furthermore, the hygroscopic inorganic material may additionally bind to water, so that the molded part produced from the material is relatively quick and good even before complete curing of the protein adhesive. Resulting in having mechanical stability.

本発明の材料の本質的な利点は、前記材料が熱水中で完全に溶解することである。純粋な天然物質由来の前記材料組成に基づいて、生じる水溶液は問題なしに下水として処理されるか、又は、植物の施肥に使用できる。あるいは、前記材料から製造した成形部材は処理のために燃焼されてよく、その場合には、再生原料の使用のために、ほぼニュートラルなCO2収支が結果として発生する。さらに、本発明の材料は利用後にコンポストとして使用されてもよい。 An essential advantage of the material of the present invention is that it is completely soluble in hot water. Based on the material composition derived from pure natural substances, the resulting aqueous solution can be treated as sewage without problems or used for plant fertilization. Alternatively, a molded part made from said material may be burned for processing, in which case a nearly neutral CO 2 balance results as a result of the use of recycled raw materials. Furthermore, the material of the present invention may be used as compost after use.

分解性材料は最初に液状であり、したがって、例えばプレス処理又は押出によって、極めて容易に成形部材に加工される。さらに、本発明の材料が3Dプリンターのための素地として使用されることが確認された。   The degradable material is initially in liquid form and is therefore very easily processed into a shaped part, for example by pressing or extrusion. Furthermore, it was confirmed that the material of the present invention is used as a substrate for a 3D printer.

吸湿性無機材として、好ましくは少なくとも1の以下の物質が使用される:水酸化アルミニウム、ベントナイト、硫酸カルシウム、塩化カルシウム、炭酸カルシウム、酸化カルシウム、水酸化カルシウム、アルミン酸カルシウム、ケイ酸カルシウム、ケイ酸カリウム、炭酸カリウム、ケイ酸、ケイ酸リチウム、硫酸マグネシウム、炭酸マグネシウム、塩化マグネシウム、硫酸水素マグネシウム、ケイ酸マグネシウム、硫酸ナトリウム、酢酸ナトリウム、硫酸水素ナトリウム、三リン酸五ナトリウム、セピオライト、シリカゲル(ケイ酸ゲル)、二酸化ケイ素、ゼオライト。吸湿性無機材は、さらに好ましくは少なくとも2の前述の物質の混合物を含む。   As hygroscopic inorganic materials, preferably at least one of the following substances is used: aluminum hydroxide, bentonite, calcium sulfate, calcium chloride, calcium carbonate, calcium oxide, calcium hydroxide, calcium aluminate, calcium silicate, silica Potassium acid, potassium carbonate, silicic acid, lithium silicate, magnesium sulfate, magnesium carbonate, magnesium chloride, magnesium hydrogen sulfate, magnesium silicate, sodium sulfate, sodium acetate, sodium hydrogen sulfate, pentasodium triphosphate, sepiolite, silica gel ( Silica gel), silicon dioxide, zeolite. The hygroscopic inorganic material more preferably comprises a mixture of at least two of the aforementioned substances.

硫酸カルシウムは特に好ましくは市販の石膏粉末の形で使用され、その一方で、ケイ酸リチウム、ケイ酸ナトリウム及びケイ酸カリウムは好ましくはいわゆる無定形「水ガラス」の形で使用される。ゼオライトとして、特に好ましくはいわゆるモレキュラーシーブ、好ましくは3オングストロームの孔径を有するモレキュラーシーブが使用される。   Calcium sulfate is particularly preferably used in the form of commercially available gypsum powder, while lithium silicate, sodium silicate and potassium silicate are preferably used in the form of so-called amorphous “water glass”. As the zeolite, so-called molecular sieves are used, preferably molecular sieves having a pore size of 3 Å.

タンパク質接着剤は、好ましくはグルチン(Glutin)、コラーゲン、アルギナート、アルブミン、ゼラチン、コンドリン、寒天、キサンタン又はその混合物を含む。グルチン由来のタンパク質接着剤は、動物の骨、軟骨又は皮から比較的容易に製造される。コラーゲン接着剤として、大量に食品産業から得られるゼラチンが使用できる。アルギナートは、特にアルギン酸の粉末状塩、例えばアルギン酸ナトリウム、アルギン酸カリウム、アルギン酸アンモニウム又はアルギン酸カルシウムとして本発明の材料において使用できる。   The protein adhesive preferably comprises Glutin, collagen, alginate, albumin, gelatin, chondrin, agar, xanthan or mixtures thereof. Glutin-derived protein adhesives are relatively easily produced from animal bone, cartilage or skin. As a collagen adhesive, a large amount of gelatin obtained from the food industry can be used. Alginates can be used in the materials according to the invention, in particular as powdered salts of alginic acid, such as sodium alginate, potassium alginate, ammonium alginate or calcium alginate.

さらに、タンパク質接着剤に加えて、リグニンスルホナート、リグニン、グルコース又はデキストリンもが更なる結合剤として使用できる。   Furthermore, in addition to protein adhesives, lignin sulfonate, lignin, glucose or dextrin can be used as further binders.

代わりに、更なるタンパク質接着剤もまた本発明の材料において使用可能であり、例えばフィブリン接着剤又はイガイ由来の接着タンパク質である。しかし、これらのタンパク質接着剤は、現在では少量のみで高額でしか入手できないため、これらは本発明の材料に混和するには経済的には値しない。   Alternatively, further protein adhesives can also be used in the material of the invention, for example fibrin adhesives or mussel derived adhesion proteins. However, since these protein adhesives are currently available only in small amounts and at a high price, they are not economically worthy of incorporation into the materials of the present invention.

好ましくはタンパク質接着剤として骨膠、皮膠、ウサギ膠又は魚類膠が使用される。これら膠はそれ自体が大量に容易に入手可能であり、かつさらに安価である。さらに、その使用はその比較的低い融点のために容易であり、それというのも製造及び適用のために前記材料は高温に加熱される必要がないからである。   Preferably, bone glue, glue, rabbit glue or fish glue is used as the protein adhesive. These glues themselves are readily available in large quantities and are even cheaper. Furthermore, its use is easy because of its relatively low melting point, because the material does not need to be heated to high temperatures for manufacturing and application.

天然繊維は、好ましくは、木材繊維、穀類繊維、堅果殻繊維、グラスファイバー、コーンミール、セルロース繊維、セルロース凝集体又はその混合物を含む。   Natural fibers preferably include wood fibers, cereal fibers, nutshell fibers, glass fibers, corn meal, cellulose fibers, cellulose aggregates or mixtures thereof.

そのような天然繊維は、農業、林業並びにパルプ産業で廃棄生成物として発生する。特に好ましくは天然繊維として針葉樹繊維が使用される。天然繊維は、前記材料によって製造すべき成形部材に応じて異なるサイズを有してよい。好ましくは0.5mm〜50mmの長さを有する天然繊維が使用される。しかし代わりに、天然繊維は、粉末形で使用されてもよく、例えば0.01mm〜0.5mmの平均粒径を有する粉末として使用されてもよい。そのような粉末は、例えば天然繊維の破砕によって製造されてよい。天然繊維は、例えば硬化した材料からイス又は机が製造される場合に、硬化した材料に必要な機械的強度を授けてより大きい負荷にも耐える。   Such natural fibers are generated as waste products in the agriculture, forestry and pulp industries. Particularly preferably, softwood fibers are used as natural fibers. Natural fibers may have different sizes depending on the molded part to be produced by the material. Natural fibers having a length of preferably 0.5 mm to 50 mm are used. Alternatively, however, natural fibers may be used in powder form, for example as a powder having an average particle size of 0.01 mm to 0.5 mm. Such a powder may be produced, for example, by crushing natural fibers. Natural fibers can withstand the greater loads by imparting the necessary mechanical strength to the cured material, for example when a chair or desk is made from the cured material.

繊維はその天然の状態で又は代わりに化学的修飾後にも使用できる。例えば、セルロース繊維は、本発明の材料のために使用される前に、メチル化、スルホン化、ニトロ化、アセチル化等によって化学的に変化させることができる。   The fiber can be used in its natural state or alternatively after chemical modification. For example, cellulose fibers can be chemically altered by methylation, sulfonation, nitration, acetylation, etc. before being used for the materials of the present invention.

基本的に、本発明の材料には、全ての種類の植物繊維が使用され、例えばタケ繊維、アサ繊維、籾殻繊維(Reisschalenfaser)又は類似物である。   Basically, all kinds of plant fibers are used in the material according to the invention, for example bamboo fibers, Asa fibers, Reisschalenfaser or the like.

吸湿性無機材として好ましくは硫酸カルシウム、硫酸マグネシウム又はその混合物が使用される。特に好ましくは吸湿性無機材が粉末の形で使用される。硫酸カルシウムとして好ましくは市販の石膏粉末が使用される。硫酸カルシウムも硫酸マグネシウムも極めて吸湿性であり、結晶水として前記材料の水を結合する。これは材料中に存在する結合していない水の量を減少させ、それによってタンパク質接着剤の硬化を加速させる。硫酸カルシウムの使用により、前記材料から製造される成形部材の安定性は更に高まり、なぜなら硫酸カルシウムは前記材料の水と付加的に結合し、それによって機械的に安定な構造を形成するからである。   As the hygroscopic inorganic material, calcium sulfate, magnesium sulfate or a mixture thereof is preferably used. Particularly preferably, the hygroscopic inorganic material is used in the form of a powder. Commercially available gypsum powder is preferably used as calcium sulfate. Both calcium sulfate and magnesium sulfate are very hygroscopic and bind the water of the material as crystal water. This reduces the amount of unbound water present in the material, thereby accelerating the hardening of the protein adhesive. The use of calcium sulfate further increases the stability of molded parts made from the material, because calcium sulfate additionally binds to the water of the material, thereby forming a mechanically stable structure. .

吸湿性無機材の好ましい作用は、材料中に存在する自由水が結合されることである。したがって、可能な限り水不含の形態の吸湿性無機材が前記材料の製造のために使用されることが望ましいことが当業者には明らかであるものである。好ましくは、それ故、無水物としての硫酸カルシウム並びに水不含硫酸マグネシウム又は硫酸マグネシウム一水和物が使用されることが望ましい。   The preferred action of the hygroscopic inorganic material is to bind free water present in the material. Therefore, it will be apparent to those skilled in the art that it is desirable to use a hygroscopic inorganic material in a water-free form as much as possible for the production of the material. Preferably, therefore, it is desirable to use calcium sulfate as anhydride and water-free magnesium sulfate or magnesium sulfate monohydrate.

吸湿性無機材の更なる利点は、結晶水侵入(Kristallwassereinlagerung)の発熱である。放出された熱エネルギーによって、タンパク質接着剤の硬化が促進され、このことは前記材料のよい迅速な凝固を生じる。   A further advantage of the hygroscopic inorganic material is the heat generation of crystal water penetration (Kristallwassereinlagerung). The released thermal energy promotes the hardening of the protein adhesive, which results in a good rapid solidification of the material.

添加剤成分は、好ましくは1〜10質量%、好ましくは2〜8質量%の少なくとも1の生分解性可塑剤を含む。生分解性可塑剤は好ましくはグリセリン、尿素、クエン酸トリエチルエステル、ソルビトール、キサンタン又はクエン酸アルキルである。可塑剤の添加によって、前記材料の脆性は変更されることができる。そして、例えば前記材料から製造した成形部材の弾性は改変されることができる。   The additive component preferably comprises 1-10% by weight, preferably 2-8% by weight, of at least one biodegradable plasticizer. The biodegradable plasticizer is preferably glycerin, urea, citric acid triethyl ester, sorbitol, xanthan or alkyl citrate. By adding a plasticizer, the brittleness of the material can be changed. For example, the elasticity of a molded member manufactured from the material can be modified.

あるいは、慣用の可塑剤もまた、例えばポリマー産業から知られている慣用の可塑剤もまた使用できる。但し、そのような可塑剤は環境上懸念がないわけでない。   Alternatively, conventional plasticizers can also be used, for example conventional plasticizers known from the polymer industry. However, such plasticizers are not without environmental concerns.

添加剤成分は、好ましくは0.1〜10質量%、特に好ましくは3〜6質量%の少なくとも1の生分解性安定剤を含む。前記分解性安定剤は好ましくはリグニンスルホナート、アマニ油又は煮アマニ油(Leinoelfirnis)である。前記安定剤の添加によって、前記材料の流動特性は改善されることができる。リグニンスルホナートは、タンパク質接着剤のタンパク質と反応し、その一方で、アマニ油及び煮アマニ油は両者ともに酸化により硬化する。両者の反応は、前記材料に更なる機械的安定性を付与するのに役立つ。さらに、反応の両者は前記材料を湿分から保護し、そのため、前記材料の損傷又は軟化は、予期せぬ液体接触の際に妨げられることができる。   The additive component preferably comprises 0.1 to 10% by weight, particularly preferably 3 to 6% by weight, of at least one biodegradable stabilizer. The degradable stabilizer is preferably lignin sulfonate, linseed oil or boiled linseed oil (Leinoelfirnis). By adding the stabilizer, the flow properties of the material can be improved. Lignin sulfonate reacts with the protein adhesive protein, while linseed oil and boiled linseed oil both harden by oxidation. The reaction of both serves to impart further mechanical stability to the material. Furthermore, both reactions protect the material from moisture, so that damage or softening of the material can be prevented during unexpected liquid contact.

添加剤成分は好ましくはさらに0.1〜10質量%の耐水性向上剤を少なくとも1つ含む。特に好ましくは、耐水性向上剤として、タンニン、コリラギン、ガニジン、カリウムミョウバン、尿素、カゼイン、フェルラ酸、ゴシポール、スルホン酸、酵素、例えばリシルオキシダーゼ、トランスグルタミナーゼ、ラッカーゼ又はその混合物が材料において使用される。そのような剤の使用によって、材料に存在するタンパク質接着剤はさらに架橋し、それによって硬化した材料の耐水性は高まる。更なる架橋は、タンパク質接着剤に存在するタンパク質の化学的変性から、又は酵素触媒作用した架橋反応によって生じる。   The additive component preferably further comprises at least one 0.1 to 10% by weight water resistance improver. Particularly preferably, tannin, corilagin, ganidine, potassium alum, urea, casein, ferulic acid, gossypol, sulfonic acid, enzymes such as lysyl oxidase, transglutaminase, laccase or mixtures thereof are used as water resistance improvers. . By using such agents, the protein adhesive present in the material is further crosslinked, thereby increasing the water resistance of the cured material. Further cross-linking results from chemical denaturation of proteins present in the protein adhesive or by enzyme-catalyzed cross-linking reactions.

あるいは、耐水性の向上のための他の剤、例えば硫酸アルミニウムも使用できる。   Alternatively, other agents for improving water resistance such as aluminum sulfate can be used.

好ましくは、分解性材料はさらに、疎水性成分、特にアラビアゴム、マスチック、コロホニウム、サンダラック又はその混合物を含む。   Preferably, the degradable material further comprises a hydrophobic component, in particular gum arabic, mastic, colophonium, sandalac or mixtures thereof.

さらに好ましくは、疎水性成分は、ワセリン、テレピン油、ミルク、カゼイン又は蜜ろうを含んでよい。   More preferably, the hydrophobic component may comprise petrolatum, turpentine oil, milk, casein or beeswax.

疎水性添加剤によって、硬化した材料の耐水性は高められるか又は調節される。それによって、損傷を被ることなく水に短期間曝されることができ、その一方で、それにもかかわらずより長期間水、特に熱水又は水蒸気に曝すことによって、完全に溶解されることができる材料が製造される。以上のことは、例えば、洗浄可能な皿若しくは鉢、又は、湿式清浄化されることができる表面を有する成形部材の製造のための前記材料の使用を可能にする。   Hydrophobic additives increase or adjust the water resistance of the cured material. Thereby it can be exposed to water for a short time without suffering damage, while nevertheless it can be completely dissolved by exposure to water, especially hot water or water vapor, for a longer period of time. The material is manufactured. The above allows, for example, the use of said materials for the production of washable dishes or bowls or shaped parts having a surface that can be wet cleaned.

あるいは、前記材料から製造した成形部材の耐水性は、適した疎水性コーティングを設けることでも又は塗装によっても高めることができる。   Alternatively, the water resistance of molded parts made from said materials can be increased by providing a suitable hydrophobic coating or by painting.

好ましくは、添加剤成分は、少なくとも1の天然着色剤を含む。天然着色剤は、特に好ましくは酸化鉄顔料である。天然着色剤の添加によって、異なって着色した成形部材が本発明の材料を用いて製造され、この場合に、溶解した前記材料の生物学的相容性は損なわれない。酸化鉄顔料は、黄色(黄色酸化鉄;C.I. Pigment Yellow 42)、赤色(赤色酸化鉄:C.l. Pigment Red 101)並びに黒色(黒色酸化鉄;C.l. Pigment Black 11)に前記材料を着色することを可能にする。さらに、着色剤としての酸化鉄の使用は、安定剤、特にアマニ油又は煮アマニ油のより迅速な酸化を引き起こし、ここで、本発明の材料から製造した成形部材はさらにより迅速に機械的に安定になる。   Preferably, the additive component includes at least one natural colorant. The natural colorant is particularly preferably an iron oxide pigment. By the addition of natural colorants, differently colored shaped parts are produced using the material according to the invention, in which the biological compatibility of the dissolved material is not impaired. Iron oxide pigments allow the material to be colored yellow (yellow iron oxide; CI Pigment Yellow 42), red (red iron oxide: Cl Pigment Red 101) and black (black iron oxide; Cl Pigment Black 11) To do. Furthermore, the use of iron oxide as a colorant causes a more rapid oxidation of stabilizers, in particular linseed oil or boiled linseed oil, where molded parts made from the material of the invention are even more rapidly mechanically mechanical. Become stable.

酸化鉄顔料とともに、他の天然着色剤もまた所望の色に応じて前記材料に混入されてよく、例えば硫酸銅、酢酸銅又はコチニールレッド(C.l. Acid Red 18)である。   Along with iron oxide pigments, other natural colorants may also be incorporated into the material depending on the desired color, for example copper sulfate, copper acetate or cochineal red (C.l. Acid Red 18).

さらに、人工着色剤もまた前記材料中に混入され、それによって、着色剤の環境相容性に応じて、溶解した材料が個別に処理されなければならないことを生じる可能性がある。   Furthermore, artificial colorants can also be incorporated into the material, thereby causing the dissolved material to have to be processed individually, depending on the environmental compatibility of the colorant.

添加剤成分はさらに好ましくは少なくとも1の発泡剤、好ましくは炭酸水素ナトリウムを含む。発泡剤によって、前記材料の密度は、ガス含有物(Gaseinschluess)、特に二酸化炭素の導入によって減少されてよい。発泡剤の量に応じて、ガス含有物の数は変動してよい。ガス含有物の数が大きいと、材料の防音係数又は断熱係数は高まる。   The additive component further preferably comprises at least one blowing agent, preferably sodium bicarbonate. Depending on the blowing agent, the density of the material may be reduced by the introduction of gasses, in particular carbon dioxide. Depending on the amount of blowing agent, the number of gas inclusions may vary. When the number of gas inclusions is large, the soundproofing coefficient or the thermal insulation coefficient of the material increases.

他の好ましい消泡剤は、炭酸ナトリウム十水和物、ポリ(オキシエチレン)ドデシル硫酸ナトリウム、炭酸アンモニウム並びに炭酸カリウムである。   Other preferred antifoaming agents are sodium carbonate decahydrate, poly (oxyethylene) sodium dodecyl sulfate, ammonium carbonate and potassium carbonate.

あるいは、前記材料は他の方法によって、例えば二酸化炭素、窒素又は他の駆動ガスの加圧下での導入によって発泡させることもでき、例えばこれは押出工程の間に行われる。   Alternatively, the material can be foamed by other methods, for example by introducing carbon dioxide, nitrogen or other driving gases under pressure, for example during the extrusion process.

好ましくは、添加剤成分は少なくとも1の生体ポリマーを含む。前記少なくとも1の生体ポリマーは、好ましくはリグニン、キチン、ポリカプロラクトン、熱可塑性澱粉、セルロースアセタート、ポリ乳酸、カゼイン、ポリヒドロキシ酪酸、ポリヒドロキシアルカノアート、セルロース水和物、セルロースアセタート、セルロースアセトブチラート、デキストロース、デキストリン又はその混合物を含む。生体ポリマーの添加によって、前記材料の加工特性、例えば流動性、硬化速度、ポットライフ又は接着力は変更される。さらに、前記材料から成形される成形部材の特性、例えば弾性、機械的強度、質量及び化学的抵抗性もまた狙いを定めて変更されることができる。   Preferably, the additive component comprises at least one biopolymer. Said at least one biopolymer is preferably lignin, chitin, polycaprolactone, thermoplastic starch, cellulose acetate, polylactic acid, casein, polyhydroxybutyric acid, polyhydroxyalkanoate, cellulose hydrate, cellulose acetate, cellulose acetate Contains butyrate, dextrose, dextrin or mixtures thereof. The addition of biopolymers changes the processing properties of the material, such as fluidity, cure speed, pot life or adhesion. In addition, the properties of the molded parts molded from the material, such as elasticity, mechanical strength, mass and chemical resistance, can also be varied with aim.

いくつかの生体ポリマー、例えばコロホニウム、マスチック又はサンダラックは同時に疎水作用を有してよいことに留意が必要であり、すなわち、疎水性成分として又はその一部として使用してもよい。   It should be noted that some biopolymers such as colophonium, mastic or sandalac may have a hydrophobic action at the same time, ie they may be used as a hydrophobic component or as part thereof.

好ましくは、添加剤成分は無機充填剤を含む。前記無機充填剤は特にウォラストナイト、タルク、酸化マグネシウム又はその混合物を含む。   Preferably, the additive component includes an inorganic filler. Said inorganic filler comprises in particular wollastonite, talc, magnesium oxide or mixtures thereof.

更なる好ましい無機充填剤は、雲母、カオリナイト、モンモリロナイト、炭酸カルシウム並びにパーライト又はその混合物を含む。   Further preferred inorganic fillers include mica, kaolinite, montmorillonite, calcium carbonate and perlite or mixtures thereof.

無機充填剤は、前記材料から製造された成形部材の収縮又は歪み(Verzug)を妨げる。さらに、無機充填剤によって、前記材料の耐火性も高められることができる。代わりに、他の無機充填剤も使用できる。   Inorganic fillers prevent shrinkage or distortion (Verzug) of molded parts made from the material. Furthermore, the fire resistance of the material can also be enhanced by the inorganic filler. Alternatively, other inorganic fillers can be used.

ケイ酸リチウム、ケイ酸ナトリウム又はケイ酸カリウム(特に無定形水ガラスとして使用される)並びにコロイダル二酸化ケイ素及びリグニンスルホナートは、本発明の材料において単に好ましい効果を引き起こすというだけでなく、前記材料のレオロジ−特性、耐水性及び硬化速度の改変を引き起こす、という本質的な利点を有する。   Lithium silicate, sodium silicate or potassium silicate (especially used as amorphous water glass) and colloidal silicon dioxide and lignin sulfonate not only cause favorable effects in the materials of the present invention, but also It has the essential advantage of causing a modification of the rheological properties, water resistance and cure rate.

本発明の更なる一観点は、分解性材料からの成形部材の製造方法に関する。本発明の材料では、まず分解性材料が前述の説明に応じて液状で装入される。引き続き、前記分解性材料から、プレス処理、特に成形プレス、押出、ブロー成形、回転成形、キャスティング、射出成形、真空成形又は3Dプリントによって成形部材が製造される。最後に前記成形部材は硬化される。   The further one viewpoint of this invention is related with the manufacturing method of the shaping | molding member from a degradable material. In the material of the present invention, first, the degradable material is charged in a liquid state according to the above description. Subsequently, a molded member is produced from the degradable material by press processing, particularly molding press, extrusion, blow molding, rotational molding, casting, injection molding, vacuum molding or 3D printing. Finally, the molded member is cured.

本発明の分解性材料は、使用される成分に基づいて液状又は少なくとも流動性である。それによって、前記分解性材料は任意の成形部材へと成形され、前記成形部材は硬化後に、使用される天然繊維に基づいて木材類似外観を有する。さらに、本発明の分解性材料は3Dプリンターのための素地(Substrat)として使用できることが見出された。3D印刷では、溶融コーティング方法(fused deposition modelling)に応じて、本発明の材料は液状の形で使用できる。マルチジェットモデリング法(ポリジェットモデリングともいう)で作業されるプリンターにおける使用では、前記材料は前もって乾燥され、そして粉末に破砕される。前記粉末は次いで、3Dプリンターにおいて添加され、ここで結合剤として水が使用される。   The degradable material of the present invention is liquid or at least fluid based on the components used. Thereby, the degradable material is formed into an arbitrary shaped part, which after hardening has a wood-like appearance based on the natural fibers used. Furthermore, it has been found that the degradable material of the present invention can be used as a substrate for 3D printers. In 3D printing, the material of the present invention can be used in liquid form, depending on the fused deposition modeling. For use in printers operating with multi-jet modeling methods (also called polyjet modeling), the material is pre-dried and crushed into a powder. The powder is then added in a 3D printer, where water is used as a binder.

好ましくは、製造した成形部材は硬化の間又は後にUV光で照射される。UV光は好ましくは200nm〜280nm、特に好ましくは253nmの波長を有する。   Preferably, the produced molded part is irradiated with UV light during or after curing. The UV light preferably has a wavelength of 200 nm to 280 nm, particularly preferably 253 nm.

UV光での照射により、タンパク質接着剤に存在するタンパク質は、成形部材の表面で変性され、相互に架橋されてよい。それによって、成形部材の耐水性はさらに高められることができる。   By irradiation with UV light, the proteins present in the protein adhesive may be denatured on the surface of the molded part and cross-linked with each other. Thereby, the water resistance of the molded member can be further increased.

「硬化」として、本願の意味合いにおいて、分解性材料が成形部材の作製後に化学的プロセス又は凝結プロセスによって固化されるプロセスが理解される。硬化は、成形部材の押出、プレス処理、成形又は印刷の直後に開始し、前記材料から成形された成形部材が形状安定になるまで続く。本発明の材料では、硬化時間は典型的に2日までであり、ここで、前記材料の組成に応じて1時間未満の硬化時間も達成できる。   By “curing” is understood in the sense of the present application a process in which the degradable material is solidified by a chemical process or a setting process after the formation of the molded part. Curing begins immediately after extrusion, pressing, molding or printing of the molded member and continues until the molded member molded from the material is shape stable. With the materials of the present invention, the cure time is typically up to 2 days, where a cure time of less than 1 hour can be achieved depending on the composition of the material.

好ましくは、硬化した成形部材はさらに、硬化した材料の水含有量が1質量パーセント未満になるまで乾燥される。特に好ましくは、成形部材はさらに0.2質量パーセント未満の水含有量になるまで乾燥される。   Preferably, the cured molded member is further dried until the water content of the cured material is less than 1 weight percent. Particularly preferably, the molded part is further dried to a water content of less than 0.2 percent by weight.

更なる乾燥工程によって、硬化した材料の耐水性がさらに高められることができることが見出された。理論に捕らわれることを望むことなく、この効果はことによると、1質量パーセント未満への水含有量の低下によって、タンパク質接着剤に存在するタンパク質の更なる分子間アミド結合が形成され、それによってタンパク質の架橋度は追加的に高められることができることによるものである。   It has been found that a further drying step can further increase the water resistance of the cured material. Without wishing to be bound by theory, this effect is possibly due to the reduction of the water content to less than 1 percent by weight, which forms additional intermolecular amide bonds of proteins present in the protein adhesive, thereby This is due to the fact that the degree of crosslinking can be increased additionally.

本発明の更なる観点は、キャスティング材料、好ましくはコンクリートに三次元形態を導入する方法に関する。この場合には、キャスティング材料の流し込み前に、分解性材料からの三次元形態の陰型(Negativabdruck)を鋳型又は型枠(Schalung)の内壁に設ける。特に好ましくは、陰型は3D印刷によって鋳型又は型枠の内壁に設けられる。前記材料のキャスティング及び硬化後に、鋳型又は型枠を取り除き、そして、前記分解性材料からの陰型は熱した液体又は熱した蒸気に暴露することで溶解される。特に好ましくは、陰型は、熱水又は水蒸気によって溶解される。   A further aspect of the invention relates to a method for introducing a three-dimensional form into a casting material, preferably concrete. In this case, before casting the casting material, a three-dimensional form of negative mold (Negativabdruck) from the degradable material is provided on the inner wall of the mold or formwork (Schalung). Particularly preferably, the negative mold is provided on the inner wall of the mold or form by 3D printing. After casting and curing of the material, the mold or form is removed and the negative mold from the degradable material is dissolved by exposure to hot liquid or hot vapor. Particularly preferably, the negative mold is dissolved by hot water or steam.

それによって、多大な手間をかけることなく、例えばコンクリート壁に、複雑な三次元形態が導入される。特に、コンクリート壁へアンダカットした溝を導入することは、本発明の方法によって遙かに容易になる。分解性材料から全ての陰型を除くために、陰型は加圧下で熱い液体に暴露されてよい。   Thereby, a complicated three-dimensional form is introduced into, for example, a concrete wall without much effort. In particular, it is much easier to introduce undercut grooves in the concrete wall by the method of the present invention. In order to remove all the negative mold from the degradable material, the negative mold may be exposed to a hot liquid under pressure.

本発明の更なる観点は、本発明の分解性材料の製造方法に関する。第1の工程において、結合剤成分をタンパク質接着剤と水との混合により製造する。その後に、天然繊維並びに存在する可能性のある添加剤成分は、撹拌機において結合剤成分と混合される。撹拌機として好ましくは遊星型撹拌機が使用される。あるいは、他の撹拌機、例えばコンパウンダーも使用できる。最後に、吸湿性無機材の混入が行われる。   The further viewpoint of this invention is related with the manufacturing method of the degradable material of this invention. In the first step, the binder component is produced by mixing a protein adhesive and water. Thereafter, the natural fibers as well as any additive components that may be present are mixed with the binder component in an agitator. As the stirrer, a planetary stirrer is preferably used. Alternatively, other agitators such as compounders can be used. Finally, the hygroscopic inorganic material is mixed.

添加剤成分に存在する物質は、前記材料へと個々に順次混入される。しかし、代わりに、まず添加剤成分の全ての物質を混合してもよく、ここで、この混合物は引き続き結合剤成分及び天然繊維に添加される。   Substances present in the additive component are mixed individually into the material. Alternatively, however, all substances of the additive component may be mixed first, where this mixture is subsequently added to the binder component and the natural fiber.

好ましくは、結合剤の製造のためには、タンパク質接着剤及び水が60℃〜80℃、好ましくは65℃〜70℃の温度へ混合の前又は間に加熱される。加熱によって、タンパク質接着剤は液状になり、そして水と混合される。   Preferably, for the production of the binder, the protein adhesive and water are heated to a temperature between 60 ° C. and 80 ° C., preferably between 65 ° C. and 70 ° C. before or during mixing. Upon heating, the protein adhesive becomes liquid and is mixed with water.

好ましくは、吸湿性無機材の混入前に、得られる混合物は乾燥され、加工されて粉末になる。吸湿性無機材の混合によって、中間生成物が得られる。前記材料の使用直前に、結合剤成分の製造に使用される量の25〜200質量部に相当する量の水が、中間生成物に混和される。   Preferably, prior to incorporation of the hygroscopic inorganic material, the resulting mixture is dried and processed into a powder. An intermediate product is obtained by mixing the hygroscopic inorganic material. Immediately before use of the material, an amount of water corresponding to 25-200 parts by weight of the amount used for the production of the binder component is incorporated into the intermediate product.

この方法は、マルチジェットモデリング法に応じて作業される、3Dプリンターにおける使用のための本発明の分解性材料の製造に特に良好に適する。この場合に、粉末はプリンター中で水と混合され、適した基盤に設けられる。この方法によって、大規模でも粉末状中間生成物が製造され、前記中間生成物は次いで所定の量を有する小分けにおいて包装され、貯蔵されてよい。前記材料を成形部材に加工する直前に初めて、粉末状中間生成物が、適した量の水と混合される。中間生成物を小分けにするときに、水量は小分けサイズに応じて適合されなければならない。添加する水量の変動によって、さらに、前記材料の粘度及びコンシステンシーが変動されることができる。   This method is particularly well suited for the production of the degradable material of the present invention for use in 3D printers working in response to multi-jet modeling methods. In this case, the powder is mixed with water in a printer and placed on a suitable substrate. By this method, a powdery intermediate product is produced even on a large scale, which may then be packaged and stored in small portions having a predetermined amount. Only before the material is processed into a molded part is the powdered intermediate product mixed with a suitable amount of water. When subdividing the intermediate product, the amount of water must be adapted according to the subdivision size. Variations in the amount of water added can further vary the viscosity and consistency of the material.

以下の詳細な説明及び特許請求の範囲の全体からは、本発明の更なる好ましい実施態様及び特徴組み合わせが明らかである。   Further preferred embodiments and feature combinations of the present invention are apparent from the following detailed description and the entire claims.

図面の簡単な説明
実施例の説明に使用される図面は以下のことを示す。
BRIEF DESCRIPTION OF THE DRAWINGS The drawings used for the description of the embodiments show the following:

図1は、本発明の分解性材料の製造方法を図示する。FIG. 1 illustrates a method for producing a degradable material of the present invention. 図2は、代替的な製造方法を図示する。FIG. 2 illustrates an alternative manufacturing method.

基本的に、図面では同じ部材が同じ符号を有する。   Basically, the same elements have the same reference numbers in the drawings.

本発明の実施方法
図1は、本発明の材料10のための製造方法を図示する。まず、タンパク質接着剤1を水2と65℃〜70℃に加熱しながら遊星型撹拌機において混合して結合剤成分3にする。更なる撹拌下で、まず天然繊維4を結合剤成分3に添加する。引き続き、添加剤成分及び吸湿性無機材7の混合を粉末の形で行う。添加剤成分5において使用した物質を個々に順次に前記材料に添加するか、又はまず全てを相互に混合し、引き続きそこから得られる混合物を前記材料に添加してもよい。そうして得ることができる分解性材料10は、引き続き加工工程11において、プレス処理、押出、ブロー成形、回転成形、キャスティング、射出成形又は真空成形によって加工して成形部材となってよい。
Method of Implementation of the Invention FIG. 1 illustrates a manufacturing method for the material 10 of the present invention. First, the protein adhesive 1 is mixed with water 2 in a planetary stirrer while being heated to 65 ° C. to 70 ° C. to obtain a binder component 3. Under further stirring, the natural fiber 4 is first added to the binder component 3. Subsequently, the additive component and the hygroscopic inorganic material 7 are mixed in the form of powder. The substances used in additive component 5 may be added individually and sequentially to the material, or they may first be all mixed together and subsequently the resulting mixture may be added to the material. The decomposable material 10 that can be obtained in this way may subsequently be processed in the processing step 11 by pressing, extrusion, blow molding, rotational molding, casting, injection molding or vacuum forming into a molded member.

図2は、概略図としての、分解性材料10のための更なる代替的な製造方法を示す。タンパク質接着剤1並びに水2を、遊星型撹拌機において65℃〜70℃に加熱して一緒に混合して結合剤成分3にする。天然繊維4並びに添加剤成分5を混入する。後続の乾燥工程及び粉末化工程6において、混合物を乾燥し、粒径約0.05mmに加工する。粉末化は好ましくは破砕機において行われる。吸湿性無機材を粉末に混合する。そうして得られる中間生成物8を長期間にわたり貯蔵してよい。中間生成物8を後の使用のためにポーションに分け、小分け包装することもできる。使用直前に、中間生成物8には、結合剤成分の製造に使用される量の水2の25〜200質量%に相当する量の水9が混入される。そうして得られる分解性材料10は、後続の加工工程11において、成形部材へと加工されてよく、例えば3Dプリンターによって加工されてよい。   FIG. 2 shows a further alternative manufacturing method for the degradable material 10 as a schematic diagram. Protein adhesive 1 as well as water 2 are heated to 65-70 ° C. in a planetary stirrer and mixed together to form binder component 3. Natural fiber 4 and additive component 5 are mixed. In a subsequent drying step and powdering step 6, the mixture is dried and processed to a particle size of about 0.05 mm. The powdering is preferably carried out in a crusher. Mix hygroscopic inorganic material into powder. The intermediate product 8 thus obtained may be stored for a long time. The intermediate product 8 can also be divided into portions and packaged for later use. Immediately before use, the intermediate product 8 is mixed with an amount of water 9 corresponding to 25-200% by weight of the amount of water 2 used to produce the binder component. The degradable material 10 thus obtained may be processed into a molded member in a subsequent processing step 11, for example, by a 3D printer.

実施例1
第1の実施例において、水30gをウサギ膠38gと低温混合し、引き続き水浴において65℃に加熱した。この結合剤成分に、0.3mm〜1mmの長さを有する針葉樹繊維17g並びにグリセリン7gを混合した。この混合物をエキステンダースクリューポンプ(Extenderschneckenpumpe)の後方の漏斗において充填し、石膏粉末8gを前方の漏斗を通じて、運搬される混合物に連続的に添加した。この材料を約6barの圧力で直径2mmを有するノズルを通じて押出し、スストランドにした。押出した材料を、引き続きさらに加工してよく、例えばプレス処理により加工してよい。代わりに、種々の断面を有する縦長の成形部材も好適なノズルを通じた押出によって製造でき、前記部材は硬化前又は硬化後に、ナイフで又はノコギリで、所望の長さに切断することもできる。
Example 1
In the first example, 30 g of water was cold mixed with 38 g of rabbit glue and subsequently heated to 65 ° C. in a water bath. 17 g of softwood fibers having a length of 0.3 mm to 1 mm and 7 g of glycerin were mixed with this binder component. This mixture was filled in the rear funnel of an extender screw pump (Extenderschneckenpumpe) and 8 g of gypsum powder was continuously added to the conveyed mixture through the front funnel. This material was extruded through a nozzle having a diameter of 2 mm at a pressure of about 6 bar into strands. The extruded material may subsequently be further processed, for example by pressing. Alternatively, elongated shaped members having various cross-sections can also be produced by extrusion through suitable nozzles, which can be cut to the desired length with a knife or saw before or after curing.

実施例2
第2の実施例において、沸騰水28g中にウサギ膠36gを混ぜて撹拌し、結合剤成分を製造した。前記結合剤成分にグリセリン7gを添加した。0.7mm〜3.5mmの長さを有する針葉樹繊維15g、着色剤としての酸化鉄粉末0.6g並びに石膏粉末7.4gを結合剤成分に添加し、得られた材料を遊星型撹拌機で良好に混和した。前記材料の使用直前に、煮アマニ油5gを添加した。前記材料を引き続き型に流し込み、2kg/cm2の圧力でもって20分間低温でプレス処理して成形部材にした。
Example 2
In the second example, 36 g of rabbit glue was mixed in 28 g of boiling water and stirred to produce a binder component. 7 g of glycerin was added to the binder component. 15 g of softwood fibers having a length of 0.7 mm to 3.5 mm, 0.6 g of iron oxide powder as a colorant and 7.4 g of gypsum powder are added to the binder component, and the resulting material is mixed with a planetary stirrer. Mix well. Just prior to use of the material, 5 g of boiled linseed oil was added. The material was then poured into a mold and pressed at a low temperature for 20 minutes with a pressure of 2 kg / cm 2 to form a molded part.

実施例3
第3の実施例において、水26gをウサギ膠33gと混合し、30分間放置し、引き続き水浴において70℃に加熱し、結合剤成分を製造した。引き続き堅果殻グラニュール33gを混和し、遊星型撹拌機において強力に混合した。得られた材料を乾燥させ、引き続き破砕機において平均粒径約0.05mmを有する粉末へと破砕した。石膏粉末8gの混入によって、貯蔵安定性の中間生成物が得られた。引き続き中間生成物を、マルチジェットモデリング法に応じて作業する3Dプリンター(3DSystems社のZPrinter (c) 150)において素地として充填し、ここで水26gを結合剤として使用した。
Example 3
In a third example, 26 g of water was mixed with 33 g of rabbit glue, left for 30 minutes, and subsequently heated to 70 ° C. in a water bath to produce a binder component. Subsequently, 33 g of nutshell granules were mixed and mixed vigorously in a planetary stirrer. The resulting material was dried and subsequently crushed into powder having an average particle size of about 0.05 mm in a crusher. By incorporating 8 g of gypsum powder, a storage stable intermediate product was obtained. The intermediate product was subsequently filled as a substrate in a 3D printer (3DSystems ZPrinter (c) 150) working according to the multi-jet modeling method, where 26 g of water was used as binder.

実施例4
高められた耐水性を有する分解性材料が、以下の第4の例で得られた:
結合剤成分のため、水21gをグルチン膠(Glutinleim)21gと低温混合し、引き続き水浴において65℃〜70℃に加熱した。その後、ミョウバン2gを結合剤に添加した。充填剤(Zuschlagstoff)として、長さ分布0.7〜1.2mmを有する天然木材繊維10gを添加した。実施例1−3において製造した材料に比較して、前記材料は高められた耐水性を示した。
Example 4
A degradable material with increased water resistance was obtained in the following fourth example:
For the binder component, 21 g of water was cold mixed with 21 g of Glutinleim and subsequently heated to 65-70 ° C. in a water bath. Thereafter, 2g of alum was added to the binder. As a filler (Zuschlagstoff), 10 g of natural wood fibers having a length distribution of 0.7 to 1.2 mm were added. Compared to the material produced in Examples 1-3, the material showed increased water resistance.

実施例5
第5の実施例において、水21gをグルチン膠21gと低温混合し、引き続き水浴において65℃〜70℃に加熱した。その後に、エタノール中に溶解してペースト状にした3gのダマールを添加して、前記溶液を混合した。充填剤として、長さ分布0.7〜1.2mmを有する天然木材繊維10gを添加した。実施例1−3において製造した材料に比較して、前記材料は高められた耐水性を示した。
Example 5
In a fifth example, 21 g of water was cold mixed with 21 g of glutin glue and subsequently heated to 65-70 ° C. in a water bath. Thereafter, 3 g of damar dissolved in ethanol to form a paste was added and the solution was mixed. As a filler, 10 g of natural wood fiber having a length distribution of 0.7 to 1.2 mm was added. Compared to the material produced in Examples 1-3, the material showed increased water resistance.

実施例6
第6の実施例において、水21gをグルチン膠21gと低温混合し、引き続き水浴において65℃〜70℃に加熱した。充填剤として、長さ分布0.7〜1.2mmを有する天然木材繊維10gを添加した。引き続き、溶液に二酸化ケイ素8gを添加した。実施例1−5において製造した材料に比較して、前記材料はより迅速な硬化時間を示した。
Example 6
In the sixth example, 21 g of water was cold mixed with 21 g of glutin glue and subsequently heated to 65-70 ° C. in a water bath. As a filler, 10 g of natural wood fiber having a length distribution of 0.7 to 1.2 mm was added. Subsequently, 8 g of silicon dioxide was added to the solution. Compared to the material produced in Examples 1-5, the material showed a faster cure time.

実施例7
第7の実施例において、水21gをグルチン膠21gと低温混合し、引き続き水浴において65℃〜70℃に加熱した。充填剤として、長さ分布0.7〜1.2mmを有する天然木材繊維10gを添加した。続いて、無機充填剤としてパーライト5gを前記混合物に添加した。実施例1−6において製造した材料に比較して、前記材料はより良好な収縮挙動を示した。
Example 7
In the seventh example, 21 g of water was cold mixed with 21 g of glutin glue and subsequently heated to 65-70 ° C. in a water bath. As a filler, 10 g of natural wood fiber having a length distribution of 0.7 to 1.2 mm was added. Subsequently, 5 g of pearlite was added to the mixture as an inorganic filler. Compared to the material produced in Examples 1-6, the material showed better shrinkage behavior.

Claims (16)

少なくとも1のタンパク質からのタンパク質接着剤(1)10〜60質量%、天然繊維(4)2〜50質量%、少なくとも1の吸湿性無機材(7)2〜15質量%、水(2)10〜55質量%及び添加剤成分(5)0〜50質量%を含む、生物学的成分由来の分解性材料。   Protein adhesive from at least one protein (1) 10-60% by weight, natural fiber (4) 2-50% by weight, at least one hygroscopic inorganic material (7) 2-15% by weight, water (2) 10 Biodegradable material-derived degradable material comprising -55% by weight and additive component (5) 0-50% by weight. 前記タンパク質接着剤(1)が、グルチン、コラーゲン、アルギナート、アルブミン、ゼラチン、コンドリン、寒天、キサンタン又はその混合物を含むことを特徴とする請求項1記載の分解性材料。   The degradable material according to claim 1, wherein the protein adhesive (1) contains glutin, collagen, alginate, albumin, gelatin, chondrin, agar, xanthan or a mixture thereof. 前記天然繊維(4)が、木材繊維、穀類繊維、堅果殻繊維、グラスファイバー、コーンミール、セルロース繊維、セルロース凝集体又はその混合物、特に好ましくは針葉樹繊維を含むことを特徴とする請求項1又は2記載の分解性材料。   The natural fiber (4) comprises wood fibers, cereal fibers, nutshell fibers, glass fibers, corn meal, cellulose fibers, cellulose aggregates or mixtures thereof, particularly preferably coniferous fibers. 2. The degradable material according to 2. 前記吸湿性無機材(7)として、硫酸カルシウム、酸化カルシウム、硫酸マグネシウム、ゼオライト又はその混合物を、好ましくは粉末の形態で使用することを特徴とする請求項1から3のいずれか1項記載の分解性材料。   4. The hygroscopic inorganic material (7) according to claim 1, wherein calcium sulfate, calcium oxide, magnesium sulfate, zeolite or a mixture thereof is used, preferably in the form of a powder. Degradable material. 前記添加剤成分(5)が、1〜10質量%、好ましくは2〜8質量%の少なくとも1の生分解性可塑剤、好ましくはグリセリン、尿素、クエン酸トリエチルエステル、ソルビトール、キサンタン又はクエン酸アルキルを含むことを特徴とする請求項1から4のいずれか1項記載の分解性材料。   The additive component (5) is 1 to 10% by weight, preferably 2 to 8% by weight of at least one biodegradable plasticizer, preferably glycerin, urea, citric acid triethyl ester, sorbitol, xanthan or alkyl citrate. The decomposable material according to any one of claims 1 to 4, further comprising: 前記添加剤成分(5)が、0.1〜10質量%、好ましくは3〜6質量%の少なくとも1の生分解性安定剤、好ましくはリグニンスルホナート、アマニ油又は煮アマニ油を含むことを特徴とする請求項1から5のいずれか1項記載の分解性材料。   Said additive component (5) comprises 0.1 to 10% by weight, preferably 3 to 6% by weight of at least one biodegradable stabilizer, preferably lignin sulfonate, linseed oil or boiled linseed oil. The decomposable material according to any one of claims 1 to 5, characterized in that: 前記添加剤成分(5)が、0.1〜10質量%の少なくとも1の耐水性向上剤、好ましくはタンニン、コリラギン、カリウムミョウバン、ガニジン、尿素、カゼイン、フェルラ酸、ゴシポール、酵素、例えばリシルオキシダーゼ、トランスグルタミナーゼ、ラッカーゼ又はその混合物を含むことを特徴とする請求項1から6のいずれか1項記載の分解性材料。   0.1 to 10% by weight of the additive component (5), preferably tannin, corilagin, potassium alum, ganidine, urea, casein, ferulic acid, gossypol, enzyme such as lysyl oxidase The degradable material according to claim 1, comprising transglutaminase, laccase, or a mixture thereof. 前記添加剤成分(5)が、0.1〜10質量%の少なくとも1の疎水性成分、特にアラビアゴム、マスチック、コロホニウム、サンダラック又はその混合物を含むことを特徴とする請求項1から7のいずれか1項記載の分解性材料。   The additive component (5) comprises 0.1 to 10% by weight of at least one hydrophobic component, in particular gum arabic, mastic, colophonium, sandalac or mixtures thereof. The degradable material of any one of Claims. 前記添加剤成分が、少なくとも1の生体ポリマー、好ましくはリグニン、キチン、ポリカプロラクトン、熱可塑性澱粉、セルロースアセタート、ポリ乳酸、カゼイン、ポリヒドロキシ酪酸、ポリヒドロキシアルカノアート、セルロース水和物、セルロースアセタート、セルロースアセトブチラート、デキストロース、デキストリン又はその混合物を含むことを特徴とする請求項1から8のいずれか1項記載の分解性材料。   The additive component comprises at least one biopolymer, preferably lignin, chitin, polycaprolactone, thermoplastic starch, cellulose acetate, polylactic acid, casein, polyhydroxybutyric acid, polyhydroxyalkanoate, cellulose hydrate, cellulose acetate 9. The degradable material according to any one of claims 1 to 8, wherein the degradable material comprises tartar, cellulose acetobutyrate, dextrose, dextrin or a mixture thereof. 前記添加剤成分が、無機充填材、特にウォラストナイト、タルク、酸化マグネシウム又はその混合物を含むことを特徴とする請求項1から9のいずれか1項記載の分解性材料。   The degradable material according to any one of claims 1 to 9, wherein the additive component comprises an inorganic filler, in particular wollastonite, talc, magnesium oxide or a mixture thereof. 次の工程
a)請求項1から10のいずれか1項記載の分解性材料を液状で準備する工程、
b)前記分解性材料をプレス処理、押出、ブロー成形、回転成形、キャスティング、射出成形、真空成形又は3Dプリントして少なくとも1の成形部材を製造する工程、
c)前記成形部材を硬化する工程、
を含む、少なくとも1の成形部材の製造方法。
Next step a) Preparing the degradable material according to any one of claims 1 to 10 in a liquid state,
b) a step of producing at least one molded member by pressing, extruding, blow molding, rotational molding, casting, injection molding, vacuum molding or 3D printing the degradable material;
c) curing the molded member;
A method for producing at least one molded member.
前記材料を前記成形部材の硬化の間又は硬化の後に、UV光で、特に200nm〜280nm、好ましくは253nmの波長を有するUV光でさらに照射することを特徴とする請求項11記載の方法。   12. Method according to claim 11, characterized in that the material is further irradiated with UV light, in particular with UV light having a wavelength of 200 nm to 280 nm, preferably 253 nm, during or after curing of the shaped part. 前記材料を硬化の後に、硬化された材料が1質量%未満、特に0.2質量%未満の水含有量を有するまで、さらに乾燥させることを特徴とする請求項11又は12記載の方法。   13. A method according to claim 11 or 12, characterized in that, after curing, the material is further dried until the cured material has a water content of less than 1% by weight, in particular less than 0.2% by weight. 次の工程
a)請求項1から10のいずれか1項記載の分解性材料(10)からの三次元形態の陰型を鋳型又は型枠の内壁に設ける工程、
b)前記鋳型又は型枠へとキャスティング材料を注ぎ込み、前記キャスティング材料を硬化させる工程、
c)鋳型又は型枠を除去する工程、及び
d)前記分解性材料(10)からの陰型を熱水又は水蒸気に暴露することで溶解させる工程、
を含む、キャスティング材料、好ましくはコンクリートに三次元形態を導入する方法。
Next Step a) A step of providing a three-dimensional shape negative mold from the degradable material (10) according to any one of claims 1 to 10 on an inner wall of a mold or a mold,
b) pouring a casting material into the mold or form and curing the casting material;
c) removing the mold or form, and d) dissolving the negative mold from the degradable material (10) by exposing it to hot water or steam.
A method of introducing a three-dimensional form into a casting material, preferably concrete.
請求項1から10のいずれか1項記載の分解性材料を製造する方法において、
次の工程
a)タンパク質接着剤(1)と水(2)を混合することにより結合剤成分(3)を製造する工程、
b)天然繊維(4)並びに添加剤成分(5)を結合剤成分(3)と撹拌機、好ましくは遊星型撹拌機において混合する工程、及び
c)吸湿性無機材(7)を混和する工程
を含む前記方法。
A method for producing a degradable material according to any one of claims 1 to 10,
Next Step a) A step of producing a binder component (3) by mixing the protein adhesive (1) and water (2),
b) mixing natural fiber (4) and additive component (5) with binder component (3) in a stirrer, preferably a planetary stirrer; and c) mixing a hygroscopic inorganic material (7). Including said method.
前記吸湿性無機材(7)の混和前に、得られた混合物を乾燥させ、加工して粉末にし、前記吸湿性無機材(7)の添加によって中間生成物(8)を獲得し、前記中間生成物にその使用直前に、結合剤成分の製造に使用する水(2)の量の25〜200質量%に相応する量で水(9)を混入することを特徴とする請求項15記載の方法。   Before mixing the hygroscopic inorganic material (7), the resulting mixture is dried and processed into a powder, and the intermediate product (8) is obtained by adding the hygroscopic inorganic material (7). 16. The product according to claim 15, characterized in that immediately before its use, water (9) is mixed in an amount corresponding to 25-200% by weight of the amount of water (2) used for the production of the binder component. Method.
JP2015504830A 2012-04-13 2013-04-15 Degradable materials derived from biological components Active JP6214624B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CH00509/12A CH706380A1 (en) 2012-04-13 2012-04-13 A degradable material from biological components.
CH509/12 2012-04-13
PCT/CH2013/000060 WO2013152448A1 (en) 2012-04-13 2013-04-15 Biodegradable material made of biological components

Publications (2)

Publication Number Publication Date
JP2015520776A true JP2015520776A (en) 2015-07-23
JP6214624B2 JP6214624B2 (en) 2017-10-18

Family

ID=48226906

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015504830A Active JP6214624B2 (en) 2012-04-13 2013-04-15 Degradable materials derived from biological components

Country Status (7)

Country Link
US (1) US10179856B2 (en)
EP (1) EP2836558B1 (en)
JP (1) JP6214624B2 (en)
KR (1) KR102017363B1 (en)
CN (1) CN104364317B (en)
CH (1) CH706380A1 (en)
WO (1) WO2013152448A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019049941A1 (en) * 2017-09-07 2019-03-14 国立大学法人山形大学 Foodstuff three-dimensionally fabricated by combining block-form foods, and method for producing said foodstuff
JP2023506808A (en) * 2019-12-20 2023-02-20 アルケマ フランス Using proteins in 3D printing

Families Citing this family (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011116656B3 (en) * 2011-10-21 2013-01-17 Daimler Ag Compressed gas tank and manufacturing process for selbigen
CH706380A1 (en) * 2012-04-13 2013-10-15 Fluid Solids Ag C O Studio Beat Karrer A degradable material from biological components.
US10676219B2 (en) * 2016-10-01 2020-06-09 Shay C. Colson Printing packaging in expanded material
CN103665446A (en) * 2013-11-29 2014-03-26 南宁市日建塑料包装有限责任公司 Biodegradable plastic preparation method
CN104804385B (en) * 2014-01-23 2018-08-21 连甲有限公司 A kind of manufacturing method of biodegradable plastics master batch and application
CA2943965C (en) 2014-03-25 2021-08-24 Biobots, Inc. Methods, devices, and systems for the fabrication of materials and tissues utilizing electromagnetic radiation
DE102014016278B4 (en) * 2014-11-05 2016-11-03 Andreas Einsiedel Methods and apparatus for the production of a burial and their use
FR3029925B1 (en) * 2014-12-15 2017-01-13 Univ Picardie PROCESS FOR PREPARING A POLYMERIC MATERIAL BASED ON PLANT MATERIAL
DE102015217690A1 (en) * 2015-09-16 2017-03-16 Brose Fahrzeugteile GmbH & Co. Kommanditgesellschaft, Würzburg Curable composition
EP3386734B1 (en) 2015-12-11 2021-11-10 Massachusetts Institute Of Technology Methods for deposition-based three-dimensional printing
CN105504355B (en) * 2015-12-17 2017-12-08 哈尔滨工业大学 It is a kind of using beet pulp as packaging material of matrix and preparation method thereof
LT3455184T (en) * 2016-05-13 2022-02-10 Rockwool International A/S Mineral wool product
DE102016113423A1 (en) 2016-07-20 2018-01-25 Technische Universität Darmstadt Moldable fibrous material for the production of molded parts
CN106280523B (en) * 2016-08-29 2018-06-01 中山市美耐包装材料有限公司 A kind of preparation method of green composite buffering packaging material
DE102016119365A1 (en) * 2016-10-11 2018-04-12 BigRep GmbH Modular formwork system for the production of concrete elements
EP3532533A2 (en) 2016-10-28 2019-09-04 Cambond Limited Bio-composite and bioplastic materials and methods of use
CN106860920A (en) * 2017-02-20 2017-06-20 吉林大学 PLA coronary artery bracket preparation method
RU2019140600A (en) 2017-05-11 2021-06-11 Роквул Интернэшнл А/С METHOD FOR PRODUCING SUBSTRATE FOR CULTIVATION OF PLANTS
US20190070778A1 (en) * 2017-08-15 2019-03-07 Cincinnati Incorporated Additive manufacturing systems and process automation
EP4389277A3 (en) * 2017-10-18 2024-10-09 Biotage AB Sample clean up device and method of using it
EP3681697B1 (en) * 2017-10-25 2023-08-16 Hewlett-Packard Development Company, L.P. Thermal supports for 3d features formed from particles
DE102018210048B4 (en) 2018-06-20 2023-11-16 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. 3D printer, method for 3D printing a biological material and biological material produced via the method
US11998654B2 (en) 2018-07-12 2024-06-04 Bard Shannon Limited Securing implants and medical devices
CA3039179C (en) * 2019-03-29 2022-03-22 Aecopaq Inc. Biodegradable food articles and methods of producing same
CN110144064B (en) * 2019-05-28 2021-08-13 广东工业大学 Bio-based reinforcing material, bio-based composite material and preparation method thereof
US10759697B1 (en) 2019-06-11 2020-09-01 MSB Global, Inc. Curable formulations for structural and non-structural applications
AT522905B1 (en) * 2019-09-12 2022-11-15 Waxell Gmbh casting material
KR102143930B1 (en) * 2019-09-30 2020-08-12 무림피앤피 주식회사 Master batch, resin composition and product comprising the same
US11297814B2 (en) 2019-10-29 2022-04-12 Jason Ramsey Recirculating baitfish bucket
EP3816251A1 (en) * 2019-10-29 2021-05-05 Evertree Composition comprising ground plant seed, protein isolate, starch or a mixture thereof, metal oxide and plasticizer
LU101487B1 (en) * 2019-11-19 2021-05-19 Sestec Polska Sp Z O O Binding agent for cellulose containing materials and the product containing it
WO2021115636A1 (en) * 2019-12-13 2021-06-17 carbonauten GmbH Carbon as filler for a carrier matrix
US11779502B2 (en) * 2020-01-10 2023-10-10 Les Espaces Memoria Inc. Powdered composition, a pourable, water-containing, uncured biodegradable composition, a cured biodegradable article, preparation methods, and uses thereof
US11723401B2 (en) * 2020-02-10 2023-08-15 Acetate International, Llc Degradable cellulose ester
JP6750824B1 (en) * 2020-03-19 2020-09-02 正雄 王 Composition of biodegradable plant fiber raw material grain and method for producing the same
EP4175821A1 (en) * 2020-07-03 2023-05-10 Woodwelding AG Manufacturing an assembly of a first and a second object
JP2022047661A (en) * 2020-09-14 2022-03-25 セイコーエプソン株式会社 Composite, molding, and production method of molding
CN112194802B (en) * 2020-09-21 2021-11-19 中国农业大学 Preparation of biodegradable 3D printing gel, product and application thereof
JP2022052117A (en) * 2020-09-23 2022-04-04 セイコーエプソン株式会社 Fiber structure and production apparatus of fiber structure
CN112372912B (en) * 2020-11-02 2023-01-06 北京服装学院 Forming method for converting fibrilia fragments into usable material, curing agent and method
WO2022271496A1 (en) 2021-06-23 2022-12-29 Loliware Inc. Bio-based, biodegradable compositions and articles made therefrom
DE102021003663A1 (en) * 2021-07-06 2023-01-12 Youyang Song Thermoplastic composition and method of making same
AT525545B1 (en) * 2021-10-27 2023-05-15 Breitenberger Georg METHOD AND DEVICE FOR THE MANUFACTURE OF MOLDED COMPONENTS
EP4177297A1 (en) 2021-11-03 2023-05-10 Sevda Sali-Matuszok An ecological biodegradable packaging material from aloe vera reinforced bio-plastics and methods of using the same
CN114343085A (en) * 2022-01-06 2022-04-15 中国科学院海洋研究所 Aquaculture nutritional supplement and preparation method thereof
NL2031786B1 (en) * 2022-05-05 2023-11-14 Okos Diagnostics B V Biodegradable and 3D printable lateral flow assay device
CN116023794A (en) * 2022-09-14 2023-04-28 于博雅 Degradable material, preparation method and application
CN116622246A (en) * 2023-06-05 2023-08-22 广东工业大学 Degradable cottonseed protein seedling raising container and preparation method thereof
CN118079079B (en) * 2024-04-26 2024-06-18 成都医学院 Lignin-based antimicrobial and adhesion-enhancing hydrogel dressing and method of making same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE354183C (en) * 1921-06-21 1922-06-03 Gutschow & Co G M B H Equipment on writing calculating machines to split the printing unit
DE461775C (en) * 1925-03-26 1928-06-27 Hans Brandt Process for the production of a wood substitute compound
WO2004029135A2 (en) * 2002-09-26 2004-04-08 K.U. Leuven Research And Development Gluten biopolymers
WO2009079579A1 (en) * 2007-12-17 2009-06-25 E2E Materials, Inc. High-strength, environmentally friendly corrugated boards

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE334183C (en) * 1917-06-01 1921-03-10 Rudolf Kukula Dr Process for the production of boards in pencil manufacture
US5360586A (en) 1992-11-06 1994-11-01 Danny R. Wyatt Biodegradable cellulosic material and process for making such material
US5589518A (en) * 1994-02-09 1996-12-31 Novamont S.P.A. Biodegradable foamed articles and process for the preparation thereof
WO1998006785A1 (en) 1996-08-12 1998-02-19 Jakob Silbiger Biodegradable composition
US6010596A (en) * 1996-12-20 2000-01-04 United States Gypsum Company Gypsum wood fiber product having improved water resistance
ES2215245T5 (en) 1997-12-05 2010-04-27 Air Products And Chemicals, Inc. MULTI-USE, MULTI-TRANSFER AND MULTI-POSITION PROTECTION GAS FOR ARC WELDING.
GB0101630D0 (en) 2001-01-23 2001-03-07 Amylum Europ Nv Method for preparing composite materials containing natural binders
KR20030018151A (en) * 2001-08-27 2003-03-06 에코니아 주식회사 Composion for producing a biodegradable plastic goods and for producing a plastic goods using the same
US8382888B2 (en) * 2003-08-27 2013-02-26 Biosphere Industries, Llc Composition for use in edible biodegradable articles and method of use
US20060135668A1 (en) * 2004-12-21 2006-06-22 Hayes Richard A Polyesters containing natural mineral materials, processes for producing such polyesters, and shaped articles produced therefrom
CN1315401C (en) * 2005-01-11 2007-05-16 山东师范大学 Preparation for lipoid frame particle
ITMI20050452A1 (en) * 2005-03-18 2006-09-19 Novamont Spa ALYPATIC-AROMATIC BIODEGRADABLE POLYESTER
EP2211602B1 (en) * 2007-11-08 2021-02-03 University of Maine System Board of Trustees Lightweight composite article with controlled biodegradation
PL2090621T3 (en) * 2008-02-18 2010-06-30 Preform Gmbh Sound absorbing foam system
CN101463137B (en) * 2009-01-16 2011-10-26 四川大学 Method for preparing natural polymer blended membrane with ion liquid as solvent
CN102382471A (en) * 2010-08-31 2012-03-21 山东万得福实业集团有限公司 Prescription of biodegradable soybean protein thermoplastic material
CN101974230B (en) * 2010-09-28 2012-08-29 郑州大学 Sisal hemp microfiber/ gelatin composite material
CN102031005B (en) 2010-11-30 2012-06-13 宁波木林森纤维科技有限公司 Plant fiber material composite and preparation method of plant fiber product
CH706380A1 (en) * 2012-04-13 2013-10-15 Fluid Solids Ag C O Studio Beat Karrer A degradable material from biological components.

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE354183C (en) * 1921-06-21 1922-06-03 Gutschow & Co G M B H Equipment on writing calculating machines to split the printing unit
DE461775C (en) * 1925-03-26 1928-06-27 Hans Brandt Process for the production of a wood substitute compound
WO2004029135A2 (en) * 2002-09-26 2004-04-08 K.U. Leuven Research And Development Gluten biopolymers
WO2009079579A1 (en) * 2007-12-17 2009-06-25 E2E Materials, Inc. High-strength, environmentally friendly corrugated boards

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019049941A1 (en) * 2017-09-07 2019-03-14 国立大学法人山形大学 Foodstuff three-dimensionally fabricated by combining block-form foods, and method for producing said foodstuff
JP2023506808A (en) * 2019-12-20 2023-02-20 アルケマ フランス Using proteins in 3D printing

Also Published As

Publication number Publication date
CN104364317B (en) 2018-04-17
US10179856B2 (en) 2019-01-15
KR20140145153A (en) 2014-12-22
CN104364317A (en) 2015-02-18
US20150048554A1 (en) 2015-02-19
EP2836558A1 (en) 2015-02-18
KR102017363B1 (en) 2019-10-21
WO2013152448A1 (en) 2013-10-17
CH706380A1 (en) 2013-10-15
JP6214624B2 (en) 2017-10-18
EP2836558B1 (en) 2016-05-18

Similar Documents

Publication Publication Date Title
JP6214624B2 (en) Degradable materials derived from biological components
US6379446B1 (en) Methods for dispersing fibers within aqueous compositions
JP4302318B2 (en) Biodegradable thermoplastic composition based on protein and starch
JP5395496B2 (en) Method for producing cellulose fiber-containing thermoplastic resin composition
DE69805848T2 (en) BIODEGRADABLE MOLDED BODIES
JP2001509526A (en) Thermoplastic blends based on biopolymers for producing shaped biodegradable articles
JP2005506413A (en) Plastic-containing moldings reinforced with natural fibers
JPH08506386A (en) Method for separating cellulose-based fibers from each other in water and molding composition for plastic forming of cellulose-containing fiber products
KR20100018504A (en) Polymer composite material, apparatus for producing the same and method of producing the same
CN108864570A (en) A kind of novel environment friendly Wood plastic wall board and preparation method thereof
JP2001302835A (en) Biodegradable foam and method for producing the same
CN102206406A (en) Method for preparing transparent heat-resistance polylactic acid modification material
CN105694757A (en) Preparation method of biological nano glue
JP2013531112A (en) Process for producing a homogeneous biodegradable mixture for shaped bodies
Datta Starch as a biopolymer in construction and civil engineering
JP2005029603A (en) Foamed molded article and method for producing the same
JP5179266B2 (en) Fiber-containing additive
KR20020060135A (en) Manufacturing Method of High Contented Biodegra dable Steam Exploded Biomass Block·Graft Copolymers Matrix Compound
KR101336098B1 (en) Biodegradable products using natural ingredients cellulose forming method and Biodegradable products by same the methods
JP2009197044A (en) Method for producing cellulose fiber-containing thermoplastic resin composition
BR102018014228A2 (en) composites of organic origin
FR2935375A1 (en) METHOD FOR MANUFACTURING A BINDER, PARTICULARLY FOR THE PREPARATION AND / OR COATING OF AGGREGATES OR ALTERNATING INTO THE COMPOSITION OF MATRIXES FOR THE PRODUCTION OF BIOCOMPOSITES
EP1500683A1 (en) Method for making a biodegradable moulding
CN104744907A (en) Polylactic acid-beta-thujaplicin-bamboo fiber composite material and preparation method thereof
KR101327510B1 (en) Manufacturing method for artificial structures using recycling plastic and artificial structures

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170306

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20170510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170821

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170919

R150 Certificate of patent or registration of utility model

Ref document number: 6214624

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250