JP2015147953A - Film deposition method - Google Patents

Film deposition method Download PDF

Info

Publication number
JP2015147953A
JP2015147953A JP2014019831A JP2014019831A JP2015147953A JP 2015147953 A JP2015147953 A JP 2015147953A JP 2014019831 A JP2014019831 A JP 2014019831A JP 2014019831 A JP2014019831 A JP 2014019831A JP 2015147953 A JP2015147953 A JP 2015147953A
Authority
JP
Japan
Prior art keywords
target
substrate
targets
power
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014019831A
Other languages
Japanese (ja)
Other versions
JP6251588B2 (en
Inventor
大士 小林
Hiroshi Kobayasi
大士 小林
応樹 武井
Masaki Takei
応樹 武井
辰徳 磯部
Tatsunori Isobe
辰徳 磯部
新井 真
Makoto Arai
新井  真
清田 淳也
Junya Kiyota
淳也 清田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2014019831A priority Critical patent/JP6251588B2/en
Priority to CN201510033778.7A priority patent/CN104818458B/en
Priority to KR1020150014067A priority patent/KR102163937B1/en
Publication of JP2015147953A publication Critical patent/JP2015147953A/en
Application granted granted Critical
Publication of JP6251588B2 publication Critical patent/JP6251588B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
    • H01L21/2855Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table by physical means, e.g. sputtering, evaporation

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a film deposition method that can make the target life of each target substantially uniform and has superior mass-productivity while having a function of depositing a film with good in-substrate-plane uniformity in film thickness distribution and film quality distribution.SOLUTION: In processing chambers 11a, 11b, targets 31a-31l which are as many as each other are arranged successively at regular intervals in a movement direction in which the process chambers are provided consecutively, and a substrate is transferred and stopped at a position corresponding to each target in each processing chamber so as to have a thin film laminated. The substrate is stopped at such different positions that regions, opposed to the respective targets, on a substrate surface shift in the moving direction between the processing chambers. Electric power is so fed that steady state electric power is applied to the respective targets except the targets positioned at front and rear ends in the moving direction, and alternate low electric power lower than the steady state electric power and high electric power higher than the steady state electric power area applied to the targets positioned at the front and rear ends in the moving direction by turns each time the substrate to have a film deposited thereon changes.

Description

本発明は、成膜方法に関し、より詳しくは、大面積のガラス等の処理基板表面にスパッタリング法により所定の薄膜や積層膜を成膜するための成膜方法に関する。   The present invention relates to a film forming method, and more particularly to a film forming method for forming a predetermined thin film or laminated film on a surface of a processing substrate such as glass having a large area by sputtering.

ガラス等の処理基板表面に所定の薄膜を成膜する方法の一つにスパッタリング法を用いたものがある。この成膜方法では、処理室内に形成したプラズマ雰囲気中の希ガスのイオンを処理基板表面に成膜しようする膜の組成に応じて作製したターゲットに向けて加速させて衝撃させ、ターゲットからのスパッタ粒子をターゲットに静止対向した処理基板に向かって飛散させて処理基板表面に成膜するものであり、近年では、FPD製造用のガラス基板のように面積の大きい処理基板に対する成膜にも広く利用されている。   One of the methods for forming a predetermined thin film on the surface of a processing substrate such as glass is one using a sputtering method. In this film forming method, ions of a rare gas in a plasma atmosphere formed in a processing chamber are accelerated and bombarded toward a target prepared according to the composition of the film to be formed on the surface of the processing substrate, and sputter from the target. Particles are scattered toward the processing substrate that is stationary facing the target to form a film on the surface of the processing substrate. In recent years, it is widely used for film formation on a processing substrate with a large area, such as a glass substrate for FPD manufacturing. Has been.

上記成膜を行うスパッタリング装置として、処理室内で処理基板に対向させて、同一形状のターゲットの複数枚を等間隔で並設し、各ターゲットに電力投入してスパッタリングによる成膜中、各ターゲットを一体にかつ処理基板に対し平行に一定速度で往復動させるものが例えば特許文献1で知られている。ここで、複数枚のターゲットを所定間隔で並設したものでは、各ターゲット相互間の領域からはスパッタ粒子が放出されない。このため、処理基板表面での膜厚分布や反応性スパッタリングの際の膜質分布が波打つように(例えば膜厚分布の場合、同一の周期で膜厚の厚い部分と薄い部分とが繰返すように)不均一になることが知られている。上記特許文献1では、ターゲットの並設方向を移動方向とし、成膜中、処理基板に対して平行に各ターゲットを一体に相対往復動させてスパッタ粒子が放出されない領域を変えることで、上記膜厚分布や膜質分布の不均一を改善している。   As a sputtering apparatus for performing the above film formation, a plurality of targets having the same shape are arranged in parallel at equal intervals so as to face a processing substrate in a processing chamber, and each target is turned on during sputtering film formation by applying power to each target. For example, Japanese Patent Application Laid-Open No. H10-228707 discloses a method of reciprocating at a constant speed integrally with a processing substrate. Here, in the case where a plurality of targets are arranged in parallel at a predetermined interval, sputtered particles are not emitted from the region between the targets. For this reason, the film thickness distribution on the processing substrate surface and the film quality distribution during the reactive sputtering are undulated (for example, in the case of the film thickness distribution, the thick and thin portions are repeated at the same cycle). It is known to be non-uniform. In the above-mentioned Patent Document 1, the direction in which the targets are arranged side by side is set as the moving direction, and during film formation, the target is reciprocally moved integrally and reciprocally in parallel to change the region where the sputtered particles are not emitted. The uneven distribution of thickness and film quality is improved.

他方で、特許文献2には、複数の処理室にて同一または異なる薄膜を積層する場合、処理室の連設方向を移動方向とし、各処理室内に同数かつ同一形状のターゲットを等間隔で夫々並設しておき、処理室相互の間で処理基板表面のうち各ターゲットと対向する領域が基板移送方向で相互にずれるように処理基板の停止位置を変えることで、上記膜厚分布や膜質分布の不均一を改善している。   On the other hand, in Patent Document 2, when the same or different thin films are stacked in a plurality of processing chambers, the continuous direction of the processing chambers is set as a moving direction, and the same number and the same shape of targets in each processing chamber are equally spaced. The above-mentioned film thickness distribution and film quality distribution can be obtained by changing the stop position of the processing substrate so that the regions facing each target among the processing substrate surfaces are shifted in the substrate transfer direction between the processing chambers. The non-uniformity is improved.

ところで、上記各特許文献記載の成膜方法では、各ターゲットを並設した領域の移動方向の全長が処理基板の移動方向の長さより十分に大きくなるように(例えば、各ターゲットと処理基板とを同心に配置したとき、処理基板の移動方向両端から1枚分のターゲットが夫々張り出すように)、並設すべきターゲットの枚数を設定すれば、上記膜厚分布や膜質分布の不均一を効果的に改善できる。然し、これでは、使用すべきターゲットの枚数が増加してスパッタ装置が大型化するだけでなく、コストアップも招く。   By the way, in the film forming method described in each of the above patent documents, the total length in the moving direction of the region where the targets are arranged in parallel is sufficiently larger than the length in the moving direction of the processing substrate (for example, each target and the processing substrate are combined). If the number of targets to be arranged in parallel is set, so that the target for one sheet protrudes from both ends in the moving direction of the processing substrate when arranged concentrically, the above-mentioned non-uniformity in film thickness distribution and film quality distribution is effective. Can be improved. However, this not only increases the number of targets to be used and increases the size of the sputtering apparatus, but also increases the cost.

そこで、各ターゲットを並設した領域の移動方向の全長を処理基板の移動方向の長さと同等に設定することが考えられるものの、これでは、移動方向前後の両端において基板の膜厚が局所的に薄くなることが判明した。なお、「同等」といった場合、各ターゲットと処理基板とを同心に配置したとき、処理基板の移動方向両端から1枚分のターゲットの長さより短い長さで、好ましくは、ターゲットの移動方向の長さの半分程度の長さで移動方向前後の両端のターゲットが夫々張り出す場合をいう。この場合、例えば、移動方向前後端に夫々位置する両ターゲットへの投入電力を、その他のものと比較して高くしてスパッタリングレートを増加させれば、膜厚分布の均一性等が向上できることの知見を得た。然し、移動方向前後端に夫々位置する両ターゲットのスパッタリングによる侵食量がその他のものと比較して多くなり、ターゲットライフが極端に短くなって量産性が損なわれるという問題がある。   Therefore, although it is conceivable to set the total length in the movement direction of the region in which the targets are arranged side by side to be equal to the length in the movement direction of the processing substrate, the film thickness of the substrate is locally increased at both ends before and after the movement direction. It turned out to be thinner. In the case of “equivalent”, when each target and the processing substrate are arranged concentrically, the length is shorter than the length of one target from both ends of the processing substrate in the moving direction, preferably the length in the moving direction of the target. In this case, the targets on both ends before and after the moving direction protrude about half the length. In this case, for example, if the input power to both targets located at the front and rear ends in the moving direction is made higher than the others and the sputtering rate is increased, the uniformity of the film thickness distribution can be improved. Obtained knowledge. However, there is a problem that the amount of erosion due to sputtering of both targets positioned at the front and rear ends in the moving direction is larger than that of the other targets, the target life becomes extremely short, and mass productivity is impaired.

特開2004−346388号公報JP 2004-346388 A 特開2012−184511号公報JP 2012-184511 A

そこで、本発明は、以上の点に鑑み、各ターゲットを並設した領域の移動方向の全長を処理基板の移動方向の長さと同等に設定しても、膜厚分布や膜質分布の基板面内均一性よく成膜できるという機能を有しながら、各ターゲットのターゲットライフを略均等にできて量産性に優れた成膜方法を提供することをその課題とするものである。   Therefore, in view of the above points, the present invention provides a film thickness distribution and a film quality distribution in the substrate plane even if the total length in the moving direction of the region where the targets are arranged in parallel is set equal to the length in the moving direction of the processing substrate. It is an object of the present invention to provide a film forming method that has a function of forming a film with high uniformity and that can substantially equalize the target life of each target and has excellent mass productivity.

上記課題を解決するために、一方向に連設した複数の処理室内に、処理室の連設方向を移動方向とし、移動方向に沿って同数枚のターゲットを等間隔で夫々並設し、各処理室内で各ターゲットに対向した位置に処理基板を移送して停止し、各ターゲットに静止対向した処理基板の表面に対して、当該処理基板が存する処理室内の各ターゲットに電力投入して各ターゲットをスパッタリングし、各処理室を通して同一または異なる薄膜を積層する本発明の成膜方法は、連続して薄膜を形成する各処理室相互の間で処理基板表面のうち各ターゲットと対向する領域が移動方向で互いにずれるように処理基板の停止位置を変え、移動方向前後端に夫々位置するターゲットを除く各ターゲットに投入する電力を定常電力とし、移動方向前後端に夫々位置するターゲットに、成膜すべき処理基板がかわる毎に定常電力より低い低電力と定常電力より高い高電力とを交互に切りかえて、かつ、両ターゲットへの投入電力を互いにかえて電力投入することを特徴とする。   In order to solve the above-mentioned problem, in a plurality of processing chambers arranged in one direction, the continuous direction of the processing chambers is set as the moving direction, and the same number of targets are arranged in parallel along the moving direction, respectively. The processing substrate is transferred to a position facing each target in the processing chamber and stopped, and power is supplied to each target in the processing chamber where the processing substrate exists with respect to the surface of the processing substrate stationary facing each target. In the film forming method of the present invention, in which the same or different thin films are stacked through each processing chamber, the region of the processing substrate surface facing each target moves between the processing chambers in which the thin film is continuously formed. Change the stop position of the processing substrate so that they deviate from each other in the direction, set the power to be applied to each target except the targets located at the front and rear ends in the moving direction as steady power, and position them at the front and rear ends in the moving direction, respectively. Each time the target substrate to be deposited changes, a low power lower than the steady power and a high power higher than the steady power are switched alternately, and the power input to both targets is switched on. It is characterized by.

これによれば、2つの処理室にて同一の薄膜を積層する場合を例に説明すると、一方の処理室にて第1の処理基板表面に一の薄膜を成膜するとき、移動方向後端側に位置するターゲットへの投入電力を高電力(定常電力の1.01〜1.50倍の範囲)に設定してスパッタレートを高めて成膜すると共に、移動方向前端側に位置するターゲットへの投入電力を低電力(定常電力の1/1.01〜1/1.50倍の範囲)に設定してスパッタレートを低くして成膜する。この状態では、各ターゲット相互の間の領域からスパッタ粒子が放出されないため、一の薄膜は、同一の周期で膜厚の厚い部分と薄い部分とが繰返すように不均一になっていると共に、移動方向後端側に位置する処理基板の部分は、その他の部分に比べて膜厚が厚くなり、移動方向前端側に位置する処理基板の部分は、その他の部分に比べて膜厚が薄くなっている。   According to this, the case where the same thin film is laminated in two processing chambers will be described as an example. When one thin film is formed on the surface of the first processing substrate in one processing chamber, the rear end in the movement direction The power input to the target located on the side is set to a high power (a range of 1.01 to 1.50 times the steady power) to increase the sputtering rate, and the target is located on the front end side in the moving direction. Is set to a low power (in a range of 1 / 1.01 to 1 / 1.50 times the steady power) to form a film at a low sputtering rate. In this state, since sputtered particles are not emitted from the region between the targets, one thin film is non-uniform so that a thick part and a thin part repeat in the same cycle and move. The portion of the processing substrate located on the rear end side in the direction is thicker than the other portions, and the portion of the processing substrate located on the front end side in the moving direction is thinner than the other portions. Yes.

次に、他方の処理室にて処理基板の停止位置をかえて他の薄膜を積層するときに、移動方向後端側に位置するターゲットへの投入電力を低電力に設定すると共に、移動方向前端側に位置するターゲットへの投入電力を高電力に設定して成膜する。これにより、両処理室内で略同一の膜厚で他の薄膜を積層したときに膜厚の厚い部分と薄い部分とが入れ替わると共に、移動方向前後において膜厚の厚い部分と薄い部分とが入れ替わることで、積層膜としての膜厚が処理基板全面で略均一になり、その結果、処理基板表面での膜厚分布や反応性スパッタリングの際の膜質分布が波打つように不均一になることを防止できる。   Next, when stacking other thin films by changing the stop position of the processing substrate in the other processing chamber, the power input to the target located on the rear end side in the moving direction is set to low power and the front end in the moving direction The film is formed by setting the input power to the target located on the side to high power. As a result, when another thin film is laminated with substantially the same film thickness in both processing chambers, the thick part and the thin part are interchanged, and the thick part and the thin part are interchanged before and after the moving direction. Therefore, the film thickness as a laminated film becomes substantially uniform over the entire surface of the processing substrate, and as a result, the film thickness distribution on the surface of the processing substrate and the film quality distribution during reactive sputtering can be prevented from becoming uneven. .

次に、第2の処理基板表面に積層膜を成膜する場合には、一方の処理室にて一の薄膜を成膜するときに移動方向後端側に位置するターゲットへの投入電力を低電力に設定すると共に、移動方向前端側に位置するターゲットへの投入電力を高電力に設定する。そして、他方の処理室にて他の薄膜を成膜するときに、移動方向後端側に位置するターゲットへの投入電力を高電力に設定すると共に、移動方向前端側に位置するターゲットへの投入電力を低電力に設定する。これにより、移動方向両端に位置するターゲットのスパッタリングによる侵食量を、その他のターゲットの侵食量を略均一にできる。このように本発明は、各ターゲットを並設した領域の移動方向の全長を処理基板の移動方向の長さと同等に設定しても、膜厚分布や膜質分布の基板面内均一性よく成膜できるという機能を有しながら、各ターゲットのターゲットライフを略均等にできて量産性に優れたものとなる。   Next, when forming a laminated film on the surface of the second processing substrate, the power input to the target located on the rear end side in the movement direction is reduced when forming one thin film in one processing chamber. While setting to electric power, the electric power input to the target located in the moving direction front end side is set to high electric power. Then, when depositing another thin film in the other processing chamber, the power applied to the target located on the rear end side in the moving direction is set to a high power and the power supplied to the target located on the front end side in the moving direction is set. Set power to low power. Thereby, the erosion amount by sputtering of the targets located at both ends in the moving direction can be made substantially uniform with the erosion amounts of the other targets. As described above, according to the present invention, even when the total length in the moving direction of the region where the targets are arranged side by side is set to be equal to the length in the moving direction of the processing substrate, the film thickness distribution and the film quality distribution are formed with good uniformity in the substrate surface. While having the function of being able to do so, the target life of each target can be made substantially uniform and the mass productivity is excellent.

また、上記課題を解決するために、処理室内に複数枚のターゲットを所定間隔を存して並設し、これらターゲットの並設方向を移動方向とし、各ターゲットと処理基板とを対向配置し、各ターゲットに対する処理基板の位置が移動方向でずれるように各ターゲットと処理基板とを相対往復動し、各ターゲットに電力投入して各ターゲットをスパッタリングし、処理基板の各ターゲットとの対向面に所定の薄膜を成膜する本発明の成膜方法は、移動方向前後端に夫々位置するターゲットを除く各ターゲットに投入する電力を定常電力とし、成膜中、移動方向前後端に夫々位置するターゲットに、各ターゲットに対する処理基板の位置に応じて定常電力より低い低電力と定常電力より高い高電力とを交互に切りかえて、かつ、両ターゲットへの投入電力を互いにかえて電力投入することを特徴とする。   In order to solve the above problems, a plurality of targets are arranged in parallel in the processing chamber at a predetermined interval, the parallel direction of these targets is the moving direction, and each target and the processing substrate are arranged to face each other. Relative reciprocation of each target and processing substrate is performed so that the position of the processing substrate with respect to each target is shifted in the moving direction, power is applied to each target, each target is sputtered, and a predetermined surface is provided on the surface of each processing substrate facing each target. In the film forming method of the present invention for forming a thin film, the power to be applied to each target except the targets positioned at the front and rear ends in the moving direction is set as a steady power, and the targets positioned at the front and rear ends in the moving direction are formed during the film formation. Depending on the position of the processing substrate with respect to each target, a low power lower than the steady power and a high power higher than the steady power are alternately switched, and the power is applied to both targets. Characterized by power-on by changing the power to each other.

これによれば、単一の処理室内で並設した各ターゲットと処理基板とを相対移動し、薄膜を成膜する場合に、上記同様、各ターゲットを並設した領域の移動方向の全長を処理基板の移動方向の長さと同等に設定しても、膜厚分布や膜質分布の基板面内均一性よく成膜できるという機能を有しながら、各ターゲットの寿命を略均等にできて量産性の優れたものとなる。ここで、上記「相対往復動」には、各ターゲットと処理基板とを連続して相対往復動させながら成膜する場合と、各ターゲットと処理基板との相対往復動の折り返し点において、一旦相対往復動を停止して各ターゲットと処理基板とを所定時間だけ静止対向し、成膜する場合とが含まれる。   According to this, when the target and the processing substrate arranged in parallel in a single processing chamber are relatively moved to form a thin film, the entire length in the moving direction of the region in which the targets are arranged in the same manner as described above is processed. Even if it is set equal to the length in the direction of movement of the substrate, it has the function of being able to form a film with good uniformity of film thickness distribution and film quality distribution within the surface of the substrate, while the life of each target can be made substantially uniform and mass-productive. It will be excellent. Here, in the “relative reciprocating motion”, when the film is formed while continuously reciprocating each target and the processing substrate, and once at the turning point of the relative reciprocating motion between each target and the processing substrate, This includes a case where the reciprocation is stopped and each target and the processing substrate are stationaryly opposed for a predetermined time to form a film.

なお、本発明においては、各ターゲットの侵食領域をその全面に亘って略均等に侵食するために、前記各ターゲットから前記基板に向かう方向を上とし、各ターゲットの上方にトンネル状の磁束を夫々形成し、各磁束を基板移送方向または移動方向に所定の速度で往復動することが好ましい。   In the present invention, in order to erode the erosion area of each target almost uniformly over the entire surface, the direction from each target to the substrate is the top, and a tunnel-like magnetic flux is respectively provided above each target. It is preferable to form and reciprocate each magnetic flux at a predetermined speed in the substrate transfer direction or movement direction.

本発明の第1実施形態の成膜方法を実施することができるスパッタリング装置の模式断面図。The schematic cross section of the sputtering device which can implement the film-forming method of a 1st embodiment of the present invention. 各処理室内でのマスクプレートと各ターゲットとの位置関係を説明する図。The figure explaining the positional relationship between the mask plate and each target in each processing chamber. 従来法にて成膜したときの基板の膜厚分布を説明する図。The figure explaining the film thickness distribution of the board | substrate when forming into a film by the conventional method. (a)〜(c)は、第1実施形態での成膜の電力制御と膜厚分布の関係を説明する図。(A)-(c) is a figure explaining the relationship between the electric power control of the film-forming in 1st Embodiment, and film thickness distribution. 本発明の第2実施形態の成膜方法を実施することができるスパッタリング装置の模式断面図。The schematic cross section of the sputtering device which can enforce the film-forming method of 2nd Embodiment of this invention. (a)及び(b)は、基板位置と各ターゲットへの投入電力との関係を説明する図。(A) And (b) is a figure explaining the relationship between a board | substrate position and the input electric power to each target.

以下、図面を参照して、処理基板を矩形のガラス基板(以下、「基板S」という)とし、この基板Sの一方の面に同一の薄膜を二層積層する場合を例に本発明の第1実施形態の成膜方法を説明する。以下においては、各ターゲット31a〜31lから基板Sに向かう方向を上とし、また、基板Sは図1中、左から右に向かって移動するものとしてこれを移動方向といい、これらを基準に上、下、左、右、前、後といった方向を示す用語を用いるものとする。   Hereinafter, referring to the drawings, the processing substrate is a rectangular glass substrate (hereinafter referred to as “substrate S”), and the same thin film is laminated on one surface of the substrate S as an example. A film forming method according to an embodiment will be described. In the following, the direction from each of the targets 31a to 31l toward the substrate S is assumed to be upward, and the substrate S is assumed to move from left to right in FIG. , Down, left, right, front, back direction terms are used.

図1及び図2を参照して、SMは、第1実施形態の成膜方法を実施することができるマグネトロン方式のスパッタリング装置(以下、「スパッタ装置」という)である。スパッタ装置SMは、図外の真空ポンプを介して所定の真空度に保持できる真空チャンバ11を有する。真空チャンバ11の中央部には仕切板12が設けられ、仕切板12により真空チャンバ11内に相互に隔絶状態で連設される略同容積の2個の処理室11a,11bが画成される。真空チャンバ11の上部には、基板移送手段2が設けられている。基板移送手段2は、基板Sをその下面(成膜面)を開放して保持するキャリア21と、キャリア21を各処理室11a,11bに夫々並設した後述の各ターゲット31a〜31lに対向した位置に移送自在な図外の駆動ローラ(駆動手段)とを備える。なお、基板移送手段2としては公知のものを利用できるため、ここでは詳細な説明を省略する。 Referring to FIGS. 1 and 2, SM 1 is a magnetron type sputtering apparatus (hereinafter referred to as “sputtering apparatus”) capable of performing the film forming method of the first embodiment. Sputtering apparatus SM 1 includes a vacuum chamber 11 that can be held in a predetermined vacuum degree through the non-illustrated vacuum pump. A partition plate 12 is provided in the central portion of the vacuum chamber 11, and two processing chambers 11 a and 11 b having substantially the same volume are formed by the partition plate 12 so as to be connected to each other in a vacuum state in the vacuum chamber 11. . A substrate transfer means 2 is provided in the upper part of the vacuum chamber 11. The substrate transfer means 2 is opposed to a carrier 21 for holding the substrate S with its lower surface (film formation surface) open, and targets 31a to 31l described later in which the carrier 21 is arranged in parallel in each of the processing chambers 11a and 11b. And a drive roller (drive means) (not shown) that can be moved to a position. In addition, since a well-known thing can be utilized as the board | substrate transfer means 2, detailed description is abbreviate | omitted here.

各処理室11a,11bには、基板移送手段2とターゲット31a〜31lとの間に位置してマスクプレート13が夫々設けられている。各マスクプレート13には、基板Sが各ターゲット31a〜31lを臨む平面視矩形の開口13a,13bが形成され、基板Sの成膜範囲を制限すると共に、キャリア21の表面などにスパッタ粒子が付着することを防止する役割を果たす。各処理室11a,11bの下側には、同一構造のカソード電極Cが夫々設けられている。   In each of the processing chambers 11a and 11b, a mask plate 13 is provided between the substrate transfer means 2 and the targets 31a to 31l. Each mask plate 13 is formed with rectangular openings 13a and 13b in plan view in which the substrate S faces each of the targets 31a to 31l. The film formation range of the substrate S is limited, and sputter particles adhere to the surface of the carrier 21 and the like. It plays a role to prevent you from doing. A cathode electrode C having the same structure is provided below each processing chamber 11a, 11b.

カソード電極Cは、基板Sに平行な同一平面内で移動方向に等間隔で並設される12枚のターゲット31a〜31lを有する。各ターゲット31a〜31lは、Al、Ti、MoやITOなど、基板S表面に形成しようとする薄膜の組成に応じて公知の方法で作製され、例えば略直方体(平面視矩形)に形成されている。そして、ターゲット31a〜31lを並設した領域の移動方向の全長L1を基板Sの移動方向の長さL2と同等となるように、各ターゲット31a〜31lの平面視形状の寸法や各ターゲット31a〜31l相互の間の隙間が設定されている(図2参照)。即ち、各ターゲット31a〜31lと基板Sとの間の上下方向の距離等を考慮して、各ターゲット31a〜31lと基板Sとを同心に配置したとき、基板Sの移動方向両端から、ターゲットの移動方向の長さL3の半分以下の範囲で両端のターゲット31a,31lが夫々張り出すように適宜設定される。各ターゲット31a〜31lの直交する方向は、基板Sの端部から夫々延出するように各ターゲット31a〜31lの長さが設定される。また、各ターゲット31a〜31lは、スパッタリングによる成膜中、ターゲット31a〜31lを冷却するバッキングプレート32に、インジウムやスズなどのボンディング材(図示せず)を介して接合されている。   The cathode electrode C has twelve targets 31a to 31l arranged in parallel in the moving direction in the same plane parallel to the substrate S at equal intervals. Each of the targets 31a to 31l is manufactured by a known method according to the composition of a thin film to be formed on the surface of the substrate S, such as Al, Ti, Mo, or ITO, and is formed in, for example, a substantially rectangular parallelepiped (planar view rectangle). . And the dimension of the planar view shape of each target 31a-31l and each target 31a- so that the full length L1 of the moving direction of the area | region where the targets 31a-31l were arranged in parallel is equivalent to the length L2 of the moving direction of the board | substrate S. A gap between 31l is set (see FIG. 2). That is, when the targets 31a to 31l and the substrate S are arranged concentrically in consideration of the vertical distance between the targets 31a to 31l and the substrate S, the targets of the target are moved from both ends in the moving direction of the substrate S. It is appropriately set so that the targets 31a and 31l at both ends protrude in a range of half or less of the length L3 in the moving direction. The lengths of the targets 31a to 31l are set so that the directions of the targets 31a to 31l orthogonally extend from the end of the substrate S, respectively. Each of the targets 31a to 31l is joined to a backing plate 32 that cools the targets 31a to 31l via a bonding material (not shown) such as indium or tin during film formation by sputtering.

各ターゲット31a〜31lは単一の支持板33で夫々支持され、支持板33には、ターゲット31a〜31lの周囲をそれぞれ囲うシールド板34が立設され、シールド板34が成膜時にアノードとしての役割を果たすと共に、プラズマのターゲット31a〜31lの下方への回り込みを防止する。各ターゲット31a〜31lは、真空チャンバ11外に配置されるDC電源(スパッタ電源)35に夫々接続され、各ターゲット31a〜31lに負の電位を持った所定電力が夫々投入できるようになっている。   Each target 31a to 31l is supported by a single support plate 33, and a shield plate 34 is provided on the support plate 33 so as to surround each of the targets 31a to 31l. The shield plate 34 serves as an anode during film formation. It plays a role and prevents the plasma targets 31a to 31l from wrapping downward. Each of the targets 31a to 31l is connected to a DC power source (sputtering power source) 35 disposed outside the vacuum chamber 11, so that a predetermined power having a negative potential can be applied to each of the targets 31a to 31l. .

また、カソード電極Cは、各ターゲット31a〜31lの下方に夫々位置させて配置した磁石ユニット4を有する。各磁石ユニット4は、各ターゲット31a〜31lに平行に設けられた支持板41を有する。支持板41は、各ターゲット31a〜31lの移動方向の長さL3より小さく、移動方向に直交する方向で、ターゲット31a〜31lの端部から夫々延出するように設定され、磁石の吸着力を増幅する磁性材料製である。支持板41には、その中央部で線状に配置される中央磁石42と、支持板41の外周に沿って配置される周辺磁石43とが上側の極性をかえて設けられる。この場合、中央磁石42の同磁化に換算したときの体積は、例えば周辺磁石43の同磁化に換算したときの体積の和(周辺磁石:中心磁石:周辺磁石=1:2:1)に等しくなるように設計され、各ターゲット31a〜31lの上方に、釣り合った閉ループのトンネル状の磁束が形成されるようになっている。   Moreover, the cathode electrode C has the magnet unit 4 arrange | positioned and arrange | positioned under each target 31a-31l, respectively. Each magnet unit 4 has a support plate 41 provided in parallel with each of the targets 31a to 31l. The support plate 41 is set to be smaller than the length L3 in the moving direction of each of the targets 31a to 31l and to extend from the end of each of the targets 31a to 31l in a direction orthogonal to the moving direction. Made of magnetic material to be amplified. The support plate 41 is provided with a central magnet 42 that is linearly disposed at the center thereof and a peripheral magnet 43 that is disposed along the outer periphery of the support plate 41 with an upper polarity. In this case, the volume when converted to the same magnetization of the central magnet 42 is, for example, equal to the sum of the volumes when converted to the same magnetization of the peripheral magnet 43 (peripheral magnet: center magnet: peripheral magnet = 1: 2: 1). A balanced closed-loop tunnel-shaped magnetic flux is formed above each of the targets 31a to 31l.

各磁石ユニット4は、モータやエアーシリンダ等の駆動手段5a、5bの駆動軸51に夫々一体に連結され、ターゲット31a〜31lの移動方向に沿う2箇所の位置の間で平行かつ等速で一体に往復動できるようにしている。これにより、スパッタレートが高くなる磁束の位置をかえて各ターゲット31a〜31lの全面に亘って均等に侵食領域が得られる。   Each magnet unit 4 is integrally connected to a drive shaft 51 of a drive means 5a, 5b such as a motor or an air cylinder, and is integrated in parallel and at a constant speed between two positions along the moving direction of the targets 31a to 31l. To reciprocate. As a result, the erosion region is obtained evenly over the entire surface of each of the targets 31a to 31l by changing the position of the magnetic flux at which the sputtering rate increases.

真空チャンバ11には、Ar等の希ガスからなるスパッタガスを処理室11a,11bに夫々導入するガス導入手段6a,6bが設けられている。ガス導入手段6a,6bは、例えば真空チャンバ11の側壁に取付けられたガス管61を有し、ガス管61は、マスフローコントローラ62を介してガス源63に連通している。反応性スパッタリングにより基板S表面に所定の薄膜を形成する場合には、酸素や窒素などの反応性ガスを処理室11a,11bに夫々導入する他のガス導入手段が設けられる。そして、スパッタ装置SMは、マイクロコンピュータやシーケンサ等を備えた図示省略の制御手段を有し、各スパッタ電源35、マスフローコントローラや真空排気手段の稼働が統括制御される。以下に、上記スパッタリング装置SMを用いた第1実施形態の成膜方法を説明する。 The vacuum chamber 11 is provided with gas introduction means 6a and 6b for introducing a sputtering gas made of a rare gas such as Ar into the processing chambers 11a and 11b, respectively. The gas introduction means 6 a and 6 b have, for example, a gas pipe 61 attached to the side wall of the vacuum chamber 11, and the gas pipe 61 communicates with a gas source 63 via a mass flow controller 62. When a predetermined thin film is formed on the surface of the substrate S by reactive sputtering, other gas introduction means for introducing a reactive gas such as oxygen or nitrogen into the processing chambers 11a and 11b is provided. Then, the sputtering device SM 1 has a control unit (not shown) having a microcomputer, a programmable controller or the like, the sputter power supply 35, operation of the mass flow controller and the vacuum evacuation means are integrally controlled. The following describes a method of forming the first embodiment using the aforementioned sputtering apparatus SM 1.

基板Sをキャリア21にセットし、一方の処理室11aのターゲット31a〜31lと対向した位置に移送する。処理室11aが所定圧力(例えば、10−5Pa)まで真空引きされると、ガス導入手段6aを介してスパッタガスや反応ガスを導入し、各ターゲット31a〜31lに対しDC電源35から夫々同一の所定電力(例えば、50KW)を投入する。これにより、基板Sと各ターゲット31a〜31lとの間の空間にプラズマが形成され、プラズマ中のスパッタガスのイオンを各ターゲット31a〜31lに向けて加速させて衝撃させ、スパッタ粒子(ターゲット原子)が基板Sに向かって飛散されて基板S表面に一の薄膜が形成される。 The substrate S is set on the carrier 21 and transferred to a position facing the targets 31a to 31l in one processing chamber 11a. When the processing chamber 11a is evacuated to a predetermined pressure (for example, 10 −5 Pa), a sputtering gas and a reactive gas are introduced through the gas introduction means 6a, and each target 31a to 31l is identical from the DC power source 35. Of predetermined power (for example, 50 kW). Thereby, plasma is formed in the space between the substrate S and each of the targets 31a to 31l, and ions of the sputtering gas in the plasma are accelerated and bombarded toward the targets 31a to 31l to sputter particles (target atoms). Are scattered toward the substrate S to form one thin film on the surface of the substrate S.

ここで、上記の如く、スパッタ装置SMにて成膜する場合、各ターゲット31a〜31l相互の間のシールド板34が存する領域R1からスパッタ粒子は放出されない。このため、ターゲット31a〜31lの並設領域TEに対して基板Sが同心に位置していると、成膜した一の薄膜は、図3に示すように、当該基板S移動方向に沿う膜厚分布をみると、波打つように、つまり、同一の周期で膜厚の厚い部分と薄い部分とが繰返すように不均一になると共に、移動方向前後端側に位置する基板Sの両端部分は、その他の部分に比べて膜厚が極端に薄くなる(図3の点線で囲う部分)。 Here, as described above, when forming by sputtering device SM 1, sputtered particles from the region R1 where the shield plate 34 between each target 31a~31l mutual resides is not released. For this reason, when the substrate S is located concentrically with respect to the juxtaposed region TE of the targets 31a to 31l, the formed thin film has a film thickness along the moving direction of the substrate S as shown in FIG. Looking at the distribution, it becomes non-uniform so that it undulates, that is, a thick portion and a thin portion repeat in the same cycle, and both end portions of the substrate S located on the front and rear end sides in the moving direction are other The film thickness becomes extremely thin compared with the part (the part surrounded by the dotted line in FIG. 3).

第1実施形態では、各処理室11a,11bの間で、基板S表面のうち各ターゲット31a〜31l相互の間の領域R1と対向する箇所が、移動方向前後にずれるように各処理室11a,11bでの基板Sの停止位置を変えている。具体的には、図2に示すように、一の処理室11a内のマスクプレート13の開口13aと、他の処理室11bマスクプレート13の開口13bとを移動方向で相互にずれるように形成し、各処理室11a,11bでターゲット31a〜31lと対向した位置に移送されてくる基板Sの停止位置を定める基準としている。そして、基板Sがマスクプレート13の各開口13a,13bを臨む位置(基板Sと、開口13aまたは開口13bとが上下方向で一致する位置)にキャリア21が移動されたとき、これを検出するポジションセンサ等の検知手段8を真空チャンバ11に設け、基板Sを複数の処理室11a,11bを移送する際に、膜厚の厚い部分と薄い部分とが入れ替わるように各処理室11a,11bで基板Sを精度よく位置決めできるようにしている。   In the first embodiment, between the processing chambers 11a and 11b, the processing chambers 11a and 11b are arranged such that a portion of the surface of the substrate S facing the region R1 between the targets 31a to 31l is displaced forward and backward in the moving direction. The stop position of the substrate S at 11b is changed. Specifically, as shown in FIG. 2, the opening 13a of the mask plate 13 in one processing chamber 11a and the opening 13b of the other processing chamber 11b mask plate 13 are formed so as to be shifted from each other in the moving direction. In addition, this is used as a reference for determining the stop position of the substrate S transferred to the positions facing the targets 31a to 31l in the processing chambers 11a and 11b. Then, when the carrier 21 is moved to a position where the substrate S faces each opening 13a, 13b of the mask plate 13 (a position where the substrate S and the opening 13a or the opening 13b coincide with each other in the vertical direction), a position for detecting the carrier 21 is moved. When the detection means 8 such as a sensor is provided in the vacuum chamber 11 and the substrate S is transferred to the plurality of processing chambers 11a and 11b, the substrate is moved in the processing chambers 11a and 11b so that the thick portion and the thin portion are switched. S is positioned accurately.

これに併せて、図4に示すように、移動方向前後端に夫々位置する二枚のターゲット31a、31lを除く各ターゲット31b〜31kにスパッタ電源35から投入する電力を定常電力(例えば、50kW)とし、制御手段は、上記二枚のターゲット31a,31lに、成膜すべき基板Sがかわる毎に定常電力より低い低電力と定常電力より高い高電力とを交互に切りかえて、かつ、両ターゲット31a,31lへの投入電力を互いにかえて電力投入するように上記二枚のターゲット31a,31lに対応するスパッタ電源35を制御するようにした。即ち、図4(a)に示すように、移動方向後側に位置する一方の処理室11aにて第1の基板S表面に一の薄膜を成膜するとき、移動方向後端側に位置するターゲット31aへの投入電力を高電力(定常電力の1.01〜1.50倍の範囲)に設定してスパッタレートを高めて成膜すると共に、移動方向前端側に位置するターゲット31lへの投入電力を低電力(定常電力の 1/1.01 〜 1/1.50倍の範囲)を設定してスパッタレートを低くして成膜する。この状態では、上述したように一の薄膜TFは、同一の周期で膜厚の厚い部分と薄い部分とが繰返すように不均一になっていると共に、移動方向後端側に位置する基板Sの部分は、その他の部分に比べて膜厚が厚くなり、移動方向前端側に位置する基板Sの部分は、その他の部分に比べて膜厚が薄くなっている(図4(b)参照)。 At the same time, as shown in FIG. 4, the power supplied from the sputtering power source 35 to each of the targets 31b to 31k excluding the two targets 31a and 31l positioned at the front and rear ends in the moving direction is a steady power (for example, 50 kW). The control means alternately switches the two targets 31a and 31l between a low power lower than the steady power and a high power higher than the steady power every time the substrate S to be deposited is changed, The sputter power supply 35 corresponding to the two targets 31a and 31l is controlled so that the power supplied to 31a and 31l is switched to each other. That is, as shown in FIG. 4A, when one thin film is formed on the surface of the first substrate S in one processing chamber 11a located on the rear side in the movement direction, it is located on the rear end side in the movement direction. The power applied to the target 31a is set to a high power (a range of 1.01 to 1.50 times the steady power) to increase the sputtering rate, and the film is deposited, and the power is applied to the target 31l located on the front end side in the moving direction. The power is set to a low power (1 / 1.01 to 1 / 1.50 times the steady power) to form a film at a low sputtering rate. In this state, as described above, one thin film TF 1 is non-uniform so that a thick portion and a thin portion are repeated in the same cycle, and the substrate S positioned on the rear end side in the movement direction. The thickness of the portion is larger than that of the other portions, and the thickness of the portion of the substrate S located on the front end side in the movement direction is thinner than that of the other portions (see FIG. 4B). .

次に、移動方向前側に位置する他方の処理室11bにて基板Sの停止位置をかえて他の薄膜TFを積層するときに、移動方向後端側に位置するターゲット31aへの投入電力を低電力に設定すると共に、移動方向前端側に位置するターゲット31lへの投入電力を高電力に設定して成膜する。これにより、両処理室11a,11b内で略同一の膜厚で他の薄膜を積層したときに膜厚の厚い部分と薄い部分とが入れ替わると共に、移動方向前後において膜厚の厚い部分と薄い部分とが入れ替わることで、積層膜LFとしての膜厚が基板全面で略均一になり(図4(b)参照)、その結果、基板表面での膜厚分布や反応性スパッタリング時の膜質分布が波打つように不均一になることを防止できる。 Next, when another thin film TF 2 is stacked in the other processing chamber 11b located on the front side in the movement direction, the stop position of the substrate S is changed, and the input power to the target 31a located on the rear end side in the movement direction is changed. The film is formed while setting the power to low and setting the power applied to the target 31l located on the front end side in the moving direction to high power. As a result, when another thin film is laminated with substantially the same film thickness in both processing chambers 11a and 11b, the thick part and the thin part are interchanged, and the thick part and the thin part before and after the moving direction. And the film thickness as the laminated film LF becomes substantially uniform over the entire surface of the substrate (see FIG. 4B), and as a result, the film thickness distribution on the substrate surface and the film quality distribution during reactive sputtering undulate. Can be prevented from becoming uneven.

次に、図外の第2の基板S表面に積層膜を成膜する場合には、図4(c)に示すように、一方の処理室11aにて一の薄膜TFを成膜するときに移動方向後端側に位置するターゲット31aへの投入電力を低電力に設定すると共に、移動方向前端側に位置するターゲット31lへの投入電力を高電力に設定する。そして、他方の処理室11bにて他の薄膜TFを成膜するときに、移動方向後端側に位置するターゲット31aへの投入電力を高電力に設定すると共に、移動方向前端側に位置するターゲット31lへの投入電力を低電力に設定する。これにより、移動方向両端に位置するターゲット31a、31lのスパッタリングによる侵食量と、その他のターゲット31b〜31kの侵食量とを略均一にできる。 Next, when forming the laminated film on the second surface of the substrate S out of the figure, as shown in FIG. 4 (c), when forming one of the thin film TF 1 at one of the processing chamber 11a The input power to the target 31a located on the rear end side in the movement direction is set to low power, and the input power to the target 31l located on the front end side in the movement direction is set to high power. Then, when forming the other film TF 2 at the other of the processing chamber 11b, and charge power to the target 31a located in the moving direction rear end side and sets the high-power, located in the moving direction of the front side The input power to the target 31l is set to low power. Thereby, the amount of erosion by sputtering of the targets 31a and 31l located at both ends in the moving direction and the amount of erosion of the other targets 31b to 31k can be made substantially uniform.

以上の第1実施形態によれば、ターゲット31a〜31lを並設した領域の移動方向の全長L1を基板Sの移動方向の長さL2と同等に設定しても、膜厚分布や膜質分布の基板面内均一性よく成膜できるという機能を有しながら、各ターゲット31a〜31lのターゲットライフを略均等にできて量産性に優れたものとなる。尚、奇数の処理室を設け、基板表面に例えば三層膜を形成する場合、ターゲット相互間の領域と対向する基板Sの箇所が1/3ずつ各処理室で相互にずれるように各処理室内で基板を停止させればよい。   According to the first embodiment described above, even if the total length L1 in the movement direction of the region where the targets 31a to 31l are arranged side by side is set equal to the length L2 in the movement direction of the substrate S, the film thickness distribution and the film quality distribution The target life of each of the targets 31a to 31l can be made substantially uniform and has excellent mass productivity while having the function of being able to form a film with good uniformity within the substrate surface. In the case where an odd number of processing chambers are provided and, for example, a three-layer film is formed on the substrate surface, each processing chamber is arranged such that the location of the substrate S facing the region between the targets is shifted by one third in each processing chamber. The substrate may be stopped at

以上の効果を確認するために、図1に示すスパッタ装置SMを用い、スパッタリングにより基板SにAl膜を2層積層した。各処理室11a,11b内のターゲット31a〜31lとして、99.99%のAlを用い、200mm×2650mm×厚さ16mmの平面視略長方形に成形し、バッキングプレート32に接合し、各ターゲット31a〜31l相互の中心間距離が230mm(各ターゲット31a〜31lの移動方向端部間の距離が30mm)になるように支持板33上に配置した。基板Sは2200mm×2500mmのガラス基板とし、ターゲット31a〜31lと基板Sとの間の距離を180mmに設定した。また、一の処理室11aでは、基板Sの移動方向後辺が、移動方向後端側に位置するターゲット31aの後辺の略直上に位置するように基板Sを停止させ、他の処理室11bでは、基板移送方向に115mm移動させた位置に基板Sを停止させた。 In order to confirm the effect described above, using a sputtering apparatus SM 1 shown in FIG. 1, a laminate of Al film two layers on the substrate S by sputtering. As the targets 31a to 31l in the processing chambers 11a and 11b, 99.99% Al is used, formed into a substantially rectangular shape in a plan view of 200 mm × 2650 mm × thickness 16 mm, joined to the backing plate 32, and each of the targets 31a to 31l. The distance between the centers of 31 l is set to 230 mm (the distance between the moving direction ends of the targets 31 a to 31 l is 30 mm) on the support plate 33. The substrate S was a glass substrate of 2200 mm × 2500 mm, and the distance between the targets 31 a to 31 l and the substrate S was set to 180 mm. Further, in one processing chamber 11a, the substrate S is stopped so that the rear side in the movement direction of the substrate S is located almost immediately above the rear side of the target 31a located on the rear end side in the movement direction, and the other processing chamber 11b. Then, the substrate S was stopped at a position moved 115 mm in the substrate transfer direction.

スパッタリング条件として、真空引きされる処理室11a,11b内の圧力が0.5Paに保持されるように、マスフローコントローラを制御してArを処理室11a,11bに夫々導入し、基板S温度を120℃に設定した。そして、各処理室11a,11bで、移動方向前後端に夫々位置する二枚のターゲット31a,31lを除く各ターゲット31b〜31kにスパッタ電源35から投入する定常電力を50kW、高電力を60kW(1.2倍)、低電力を45kW(0.9倍)とし、15秒間スパッタリングして、基板S表面に150nmの膜厚で2層のAl膜を積層し、300nmのAl膜を得た。   As sputtering conditions, Ar is introduced into the processing chambers 11a and 11b by controlling the mass flow controller so that the pressure in the vacuumed processing chambers 11a and 11b is maintained at 0.5 Pa, and the substrate S temperature is set to 120. Set to ° C. In each of the processing chambers 11a and 11b, the steady power supplied from the sputtering power source 35 to the targets 31b to 31k excluding the two targets 31a and 31l positioned at the front and rear ends in the moving direction is 50 kW, and the high power is 60 kW (1 .2 times) and low power of 45 kW (0.9 times), sputtering was performed for 15 seconds, and two Al films having a thickness of 150 nm were stacked on the surface of the substrate S to obtain a 300 nm Al film.

以上の実験によれば、基板Sの移動方向に沿う膜厚分布は±9.4%であった。別実験として、低電力を40kWとし、その他の条件は変えずに成膜したところ、基板Sの移動方向に沿う膜厚分布は±10.9%であった。なお、複数枚の基板Sに対し成膜を行い、各ターゲット31a〜31lの侵食量を確認したところ、ターゲット31a〜31lの全てが略均等に侵食されていることが確認できた。   According to the above experiment, the film thickness distribution along the moving direction of the substrate S was ± 9.4%. As another experiment, when the film was formed without changing other conditions with a low power of 40 kW, the film thickness distribution along the moving direction of the substrate S was ± 10.9%. In addition, when film-forming was performed with respect to the several board | substrate S and the amount of erosion of each target 31a-31l was confirmed, it has confirmed that all of the targets 31a-31l were eroded substantially equally.

次に、第2実施形態の成膜方法を説明する。図5を参照して、SMは、単一の処理室110にて第2実施形態の成膜方法を実施することができるマグネトロン方式のスパッタ装置である。以下においては、第1実施形態で説明したスパッタ装置SMと同一の部品等については同一の符号を用いるものとし、その詳細な説明は省略する。 Next, the film forming method of the second embodiment will be described. Referring to FIG. 5, SM 2 is a magnetron type sputtering apparatus capable of performing the film forming method of the second embodiment in a single processing chamber 110. In the following, it is used for the same parts and the like and a sputtering device SM 1 described in the first embodiment and are identified by the same reference numerals, and detailed description thereof will be omitted.

スパッタ装置SMは、単一の処理室110を画成する真空チャンバ10を有する。処理室110の上部には基板移送手段2が設けられ、その下部にはカソード電極Cが設けられている。この場合、基板移送手段2の駆動手段を制御により、移動方向に沿ってターゲット31a〜31lに平行に一定の間隔Dかつ所定速度(例えば、1〜110mm/s)で基板Sがセットされたキャリア21を往復動させるようにしている。以下に、図6を参照して上記スパッタ装置SMを用いた第2実施形態の成膜方法を説明する。 The sputtering apparatus SM 2 has a vacuum chamber 10 that defines a single processing chamber 110. The substrate transfer means 2 is provided in the upper part of the processing chamber 110, and the cathode electrode C is provided in the lower part thereof. In this case, the carrier on which the substrate S is set at a predetermined interval D and a predetermined speed (for example, 1-110 mm / s) parallel to the targets 31a to 31l along the moving direction by controlling the driving means of the substrate transfer means 2. 21 is reciprocated. The following describes a method of forming the second embodiment using the sputtering apparatus SM 2 with reference to FIG.

第1の基板Sをキャリア21にセットし、処理室110のターゲット31a〜31lと対向した位置に移送する。この場合、基板Sの移動方向後辺が、移動方向後端側に位置するターゲット31aの後辺の略直上に位置するように位置決めされる(図5中、P1の位置)。そして、処理室110が所定圧力(例えば、10−5Pa)まで真空引きされると、ガス導入手段6aを介してスパッタガスや反応ガスを導入し、各ターゲット31a〜31lに対してDC電源35から夫々所定電力を投入すると共に、キャリア21(ひいては基板S)を移動方向前方に向かって往動させる。 The first substrate S is set on the carrier 21 and transferred to a position facing the targets 31 a to 31 l in the processing chamber 110. In this case, the substrate S is positioned so that the rear side in the moving direction of the substrate S is located almost immediately above the rear side of the target 31a located on the rear end side in the moving direction (position P1 in FIG. 5). When the processing chamber 110 is evacuated to a predetermined pressure (for example, 10 −5 Pa), a sputtering gas or a reactive gas is introduced through the gas introduction unit 6a, and the DC power source 35 is supplied to each of the targets 31a to 31l. Then, a predetermined electric power is supplied to the carrier 21 and the carrier 21 (and consequently the substrate S) is moved forward in the moving direction.

この場合、移動方向前後端に夫々位置する二枚のターゲット31a、31lを除く各ターゲット31b〜31gにスパッタ電源35から投入する電力を定常電力(例えば、50KW)とし、制御手段は、上記二枚のターゲット31a,31lに、基板Sの位置に応じて、定常電力より低い低電力と定常電力より高い高電力とを交互に切りかえて、かつ、両ターゲットへの投入電力を互いにかえて電力投入するように上記二枚のターゲット31a,31lに対応するスパッタ電源35を制御するようにした。即ち、成膜開始当初、図6(a)に示すように、移動方向後端側に位置するターゲット31aへの投入電力を低電力(定常電力の1/1.01〜1/1.50倍の範囲)に設定してスパッタレートを低くして成膜すると共に、移動方向前端側に位置するターゲット31lへの投入電力を高電力(定常電力の1.01〜1.50倍の範囲)に設定してスパッタレートを高くして成膜する。   In this case, the power supplied from the sputtering power source 35 to each of the targets 31b to 31g excluding the two targets 31a and 31l respectively positioned at the front and rear ends in the movement direction is a steady power (for example, 50 kW). In accordance with the position of the substrate S, a low power lower than the steady power and a high power higher than the steady power are alternately switched, and the power input to both targets is switched between the targets 31a and 31l. Thus, the sputtering power source 35 corresponding to the two targets 31a and 31l is controlled. That is, at the beginning of film formation, as shown in FIG. 6A, the input power to the target 31a located on the rear end side in the movement direction is set to low power (1 / 1.01 to 1 / 1.50 times the steady power). To the target 31l located on the front end side in the moving direction with a high power (range of 1.01 to 1.50 times the steady power). Set to increase the sputtering rate and form a film.

キャリア21が折り返し点P2に到達した後、当該キャリア21が復動を開始すると、図6(b)に示すように、移動方向後端側(図5中、左側)に位置するターゲット31aへの投入電力を高電力に切りかえると共に、移動方向前端側(図5中、右側)に位置するターゲット31lへの投入電力を低電力に切りかえる。基板Sに対して成膜する間、この操作を繰り返す。これにより、ターゲット31a〜31lを並設した領域の移動方向の全長L1を基板Sの移動方向の長さL2と同等に設定しても、基板S表面での膜厚分布や反応性スパッタリングの際の膜質分布が波打つように不均一になることを防止できる。しかも、移動方向両端に位置するターゲット31a,31lのスパッタリングによる侵食量をその他のターゲット31b〜31kの侵食量を略均一にできる。なお、移動方向両端側のターゲット31a,31lへの投入電力を高電力または低電力に設定するとき、両者を同一の電力に設定する必要はなく、ターゲットの侵食量等を考慮して適宜設定することができる。   When the carrier 21 starts moving backward after the carrier 21 has reached the turning point P2, as shown in FIG. 6B, the carrier 21 moves toward the target 31a located on the rear end side (left side in FIG. 5). The input power is switched to high power, and the power input to the target 31l located on the front end side in the movement direction (right side in FIG. 5) is switched to low power. This operation is repeated while the film is formed on the substrate S. Thereby, even when the total length L1 in the moving direction of the region where the targets 31a to 31l are arranged side by side is set equal to the length L2 in the moving direction of the substrate S, the film thickness distribution on the surface of the substrate S and the reactive sputtering It is possible to prevent the film quality distribution of the film from becoming non-uniform so as to wave. Moreover, the amount of erosion caused by sputtering of the targets 31a and 31l located at both ends in the moving direction can be made substantially equal to the amount of erosion of the other targets 31b to 31k. Note that when the input power to the targets 31a and 31l at both ends in the moving direction is set to high power or low power, it is not necessary to set both to the same power, and is set appropriately in consideration of the amount of erosion of the target. be able to.

以上、本発明の実施形態について説明したが、本発明は上記のものに限定されるものではない。上記第1及び第2の各実施形態では、スパッタ電源としてDC電源35を用いているが、これに限定されるものではなく、並設した各ターゲット31a〜31lのうち、隣合う2個のターゲットを対とし、一対のターゲット31a〜31lに、スパッタ電源としての交流電源から所定の周波数(1〜400KHz)で交流電力を投入するようにしてもよい。なお、移動方向前後端に夫々位置するターゲットとは、両端の二枚のターゲット31a、31lをいうが、上記例の場合には、移動方向両端に夫々位置する一対のターゲット(31a、31bと、31k、31l)が移動方向前後端に夫々位置するターゲットとなる。また、並設した各ターゲットのうち移動方向前後端に夫々位置する二枚のターゲット31a,31lに、成膜すべき基板Sがかわる毎に定常電力より低い低電力と定常電力より高い高電力とを交互に切りかえて投入するとき、上記第1及び第2の各実施形態で説明した電力投入と逆となるように投入電力を制御しても、上記と同様の効果を得ることができる。   As mentioned above, although embodiment of this invention was described, this invention is not limited to said thing. In each of the first and second embodiments, the DC power source 35 is used as the sputtering power source. However, the present invention is not limited to this, and two adjacent targets among the targets 31a to 31l arranged side by side. And a pair of targets 31a to 31l may be supplied with AC power at a predetermined frequency (1 to 400 KHz) from an AC power source as a sputtering power source. The targets positioned at the front and rear ends in the moving direction refer to the two targets 31a and 31l at both ends. In the above example, a pair of targets (31a and 31b, respectively) positioned at both ends in the moving direction, 31k and 31l) are targets located at the front and rear ends in the movement direction, respectively. In addition, a low power lower than the steady power and a high power higher than the steady power each time the substrate S to be deposited is changed to the two targets 31a and 31l respectively positioned at the front and rear ends in the movement direction among the targets arranged in parallel. When the power is alternately switched on, the same effect as described above can be obtained even if the input power is controlled so as to be opposite to the power input described in the first and second embodiments.

また、上記第2実施形態では、ターゲット31a〜31lの並設領域に対して基板Sを移動させるものを例に説明したが、これに限定されるものではなく、例えば、図5中に二点鎖線で示すように、ターゲット31a〜31lを支持する支持板33の一側に、駆動手段としてのモータ71の出力軸72を接続し、成膜中、ターゲット31a〜31lを移動方向に沿う2点間で基板Sに対して平行かつ等速で一体に往復動するようにしてもよく、また、ターゲット31a〜31lと基板Sとの両者を往復動させることもできる。   Moreover, although the said 2nd Embodiment demonstrated as an example what moved the board | substrate S with respect to the juxtaposed area | region of the targets 31a-31l, it is not limited to this, For example, two points in FIG. As shown by a chain line, an output shaft 72 of a motor 71 as a driving unit is connected to one side of a support plate 33 that supports the targets 31a to 31l, and the targets 31a to 31l are moved along the moving direction during film formation. The target 31a to 31l and the substrate S can be reciprocated between them in parallel with the substrate S at a constant speed.

また、上記第2実施形態では、各ターゲット31a〜31lと基板Sとを連続して相対往復動させながら成膜する場合を例に説明しているが、各ターゲット31a〜31lと基板Sとの相対往復動の折り返し点P1,P2において、一旦相対往復動を停止して各ターゲット31a〜31lと基板Sとを所定時間だけ静止対向し、成膜する場合にも本発明は適用することができる。即ち、基板Sが往復動の折返し位置P1,P2に到達したとき、基板移送手段2の駆動手段を制御して、基板Sが所定時間(例えば60秒以内)停止するようにしてもよい。これにより、ターゲット種、即ち、各ターゲットのスパッタリング時の飛散分布に基づく基板Sに向かうスパッタ粒子の量に応じて、各折返し点P1,P2での基板Sの停止時間を適宜設定するだけで、基板S表面に形成した薄膜に微小に波打つ膜厚分布や膜質分布が生じることをより一層抑制できる。このとき、磁石組立体4を少なくとも一往復動させることが好ましく、また、波打つ膜厚分布や膜質分布の発生が抑制される制御の自由度を高めるために、基板Sが一方の折返し位置P1(またはP2)から他方P2(またはP1)に向かって移動するとき、ターゲット31a〜31lへの電力投入を停止し、基板Sが停止している場合にだけ薄膜形成するようにしてもよい。   In the second embodiment, the case where films are formed while the targets 31a to 31l and the substrate S are continuously reciprocated relative to each other has been described as an example. The present invention can also be applied to the case where film formation is performed by temporarily stopping the relative reciprocation at the turn-back points P1 and P2 of the relative reciprocation so that the targets 31a to 31l and the substrate S face each other for a predetermined time. . That is, when the substrate S reaches the turn-back positions P1, P2 of the reciprocating motion, the driving unit of the substrate transfer unit 2 may be controlled so that the substrate S stops for a predetermined time (for example, within 60 seconds). Thereby, according to the amount of sputtered particles directed to the substrate S based on the target species, that is, the scattering distribution at the time of sputtering of each target, by simply setting the stop time of the substrate S at each turning point P1, P2, It is possible to further suppress the occurrence of a film thickness distribution or a film quality distribution that slightly undulates in the thin film formed on the surface of the substrate S. At this time, it is preferable that the magnet assembly 4 is reciprocated at least once, and in order to increase the degree of freedom of control in which the generation of the undulating film thickness distribution and film quality distribution is suppressed, the substrate S is moved to one folding position P1 ( Alternatively, when moving from P2) toward the other P2 (or P1), the power supply to the targets 31a to 31l is stopped, and the thin film may be formed only when the substrate S is stopped.

SM,SM…スパッタ装置、11a,11b,110…処理室、2…基板移送手段、21…キャリア、31a〜31l…ターゲット、35…スパッタ電源、6a、6b…ガス導入手段、S…基板、TE…ターゲット並設領域。 SM 1, SM 2 ... sputtering apparatus, 11a, 11b, 110 ... treatment chamber, 2 ... substrate transfer means, 21 ... carrier, 31A~31l ... target, 35 ... sputtering power source, 6a, 6b ... gas introducing means, S ... substrate , TE: Target parallel area.

Claims (3)

一方向に連設した複数の処理室内に、処理室の連設方向を移動方向とし、移動方向に沿って同数枚のターゲットを等間隔で夫々並設し、各処理室内で各ターゲットに対向した位置に処理基板を移送して停止し、各ターゲットに静止対向した処理基板の表面に対して、当該処理基板が存する処理室内の各ターゲットに電力投入して各ターゲットをスパッタリングし、各処理室を通して同一または異なる薄膜を積層する成膜方法であって、
連続して薄膜を形成する各処理室相互の間で処理基板表面のうち各ターゲットと対向する領域が移動方向で互いにずれるように処理基板の停止位置を変えるものにおいて、
移動方向前後端に夫々位置するターゲットを除く各ターゲットに投入する電力を定常電力とし、移動方向前後端に夫々位置するターゲットに、成膜すべき処理基板がかわる毎に定常電力より低い低電力と定常電力より高い高電力とを交互に切りかえて、かつ、両ターゲットへの投入電力を互いにかえて電力投入することを特徴とする成膜方法。
In a plurality of processing chambers arranged in one direction, the continuous direction of the processing chambers is set as the movement direction, and the same number of targets are arranged in parallel along the movement direction at equal intervals, and each target is opposed to each target. The processing substrate is transferred to a position and stopped, and the target is sputtered by applying power to each target in the processing chamber where the processing substrate exists with respect to the surface of the processing substrate stationaryly facing each target. A method for depositing the same or different thin films,
In what changes the stop position of the processing substrate so that the regions facing each target among the processing substrate surfaces between the processing chambers that continuously form a thin film are displaced from each other in the movement direction,
The power input to each target excluding the targets located at the front and rear ends in the moving direction is set as the steady power, and the target power located at the front and rear ends in the moving direction is changed to a low power lower than the steady power every time the processing substrate to be deposited is changed. A film forming method, wherein high power higher than steady power is alternately switched and power input to both targets is switched to each other.
処理室内に複数枚のターゲットを所定間隔を存して並設し、これらターゲットの並設方向を移動方向とし、各ターゲットと処理基板とを対向配置し、各ターゲットに対する処理基板の位置が移動方向でずれるように各ターゲットと処理基板とを相対往復動し、各ターゲットに電力投入して各ターゲットをスパッタリングし、処理基板の各ターゲットとの対向面に所定の薄膜を成膜する成膜方法において、
移動方向前後端に夫々位置するターゲットを除く各ターゲットに投入する電力を定常電力とし、成膜中、移動方向前後端に夫々位置するターゲットに、各ターゲットに対する処理基板の位置に応じて定常電力より低い低電力と定常電力より高い高電力とを交互に切りかえて、かつ、両ターゲットへの投入電力を互いにかえて電力投入することを特徴とする成膜方法。
A plurality of targets are arranged in parallel in the processing chamber at a predetermined interval, the direction in which these targets are arranged is set as the moving direction, each target and the processing substrate are arranged to face each other, and the position of the processing substrate relative to each target is the moving direction. In a film forming method, each target and the processing substrate are reciprocated relative to each other so as to be displaced by each other, power is applied to each target, each target is sputtered, and a predetermined thin film is formed on the surface of the processing substrate facing each target. ,
The power input to each target excluding the targets located at the front and rear ends in the moving direction is set as the steady power, and during film formation, the targets located at the front and rear ends in the moving direction are subjected to the steady power according to the position of the processing substrate with respect to each target. A film-forming method characterized by alternately switching between a low low power and a high power higher than a steady power, and switching the powers applied to both targets to each other.
前記各ターゲットから前記基板に向かう方向を上とし、各ターゲットの上方にトンネル状の磁束を夫々形成し、各磁束を基板移送方向または移動方向に所定の速度で往復動することを特徴とする請求項1または請求項2記載の成膜方法。

The direction from the target to the substrate is upward, a tunnel-like magnetic flux is formed above each target, and the magnetic flux reciprocates at a predetermined speed in the substrate transfer direction or movement direction. The film forming method according to claim 1 or 2.

JP2014019831A 2014-02-04 2014-02-04 Deposition method Active JP6251588B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2014019831A JP6251588B2 (en) 2014-02-04 2014-02-04 Deposition method
CN201510033778.7A CN104818458B (en) 2014-02-04 2015-01-23 Film build method
KR1020150014067A KR102163937B1 (en) 2014-02-04 2015-01-29 Film formation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014019831A JP6251588B2 (en) 2014-02-04 2014-02-04 Deposition method

Publications (2)

Publication Number Publication Date
JP2015147953A true JP2015147953A (en) 2015-08-20
JP6251588B2 JP6251588B2 (en) 2017-12-20

Family

ID=53728935

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014019831A Active JP6251588B2 (en) 2014-02-04 2014-02-04 Deposition method

Country Status (3)

Country Link
JP (1) JP6251588B2 (en)
KR (1) KR102163937B1 (en)
CN (1) CN104818458B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017133065A (en) * 2016-01-27 2017-08-03 株式会社アルバック Film deposition method
WO2019004351A1 (en) * 2017-06-28 2019-01-03 株式会社アルバック Sputtering device
CN111041441A (en) * 2019-12-28 2020-04-21 中国科学院长春光学精密机械与物理研究所 Uniform coating method, coating equipment and computer-readable storage medium

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109468600B (en) * 2018-12-25 2021-03-05 合肥鑫晟光电科技有限公司 Sputtering system and deposition method
KR102670105B1 (en) * 2021-03-18 2024-05-28 주식회사 에이치앤이루자 Sputtering Method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0463267A (en) * 1990-07-02 1992-02-28 Hitachi Ltd Sputtering device and film formation using same
JPH10152772A (en) * 1996-11-22 1998-06-09 Matsushita Electric Ind Co Ltd Sputtering method and apparatus therefor
WO2008050618A1 (en) * 2006-10-24 2008-05-02 Ulvac, Inc. Thin film forming method and thin film forming device
WO2008108185A1 (en) * 2007-03-01 2008-09-12 Ulvac, Inc. Thin film forming method, and thin film forming apparatus

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4246547B2 (en) * 2003-05-23 2009-04-02 株式会社アルバック Sputtering apparatus and sputtering method
JP4707693B2 (en) * 2007-05-01 2011-06-22 株式会社アルバック Sputtering apparatus and sputtering method
CN102312206B (en) * 2010-06-29 2015-07-15 株式会社爱发科 Sputtering method
KR101794586B1 (en) * 2011-05-23 2017-11-08 삼성디스플레이 주식회사 Separated target apparatus for sputtering and sputtering method using the same
KR20120130518A (en) * 2011-05-23 2012-12-03 삼성디스플레이 주식회사 Separated target apparatus for sputtering and sputtering method using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0463267A (en) * 1990-07-02 1992-02-28 Hitachi Ltd Sputtering device and film formation using same
JPH10152772A (en) * 1996-11-22 1998-06-09 Matsushita Electric Ind Co Ltd Sputtering method and apparatus therefor
WO2008050618A1 (en) * 2006-10-24 2008-05-02 Ulvac, Inc. Thin film forming method and thin film forming device
WO2008108185A1 (en) * 2007-03-01 2008-09-12 Ulvac, Inc. Thin film forming method, and thin film forming apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017133065A (en) * 2016-01-27 2017-08-03 株式会社アルバック Film deposition method
WO2019004351A1 (en) * 2017-06-28 2019-01-03 株式会社アルバック Sputtering device
JPWO2019004351A1 (en) * 2017-06-28 2019-06-27 株式会社アルバック Sputtering equipment
US11473188B2 (en) 2017-06-28 2022-10-18 Ulvac, Inc. Sputtering apparatus
CN111041441A (en) * 2019-12-28 2020-04-21 中国科学院长春光学精密机械与物理研究所 Uniform coating method, coating equipment and computer-readable storage medium

Also Published As

Publication number Publication date
JP6251588B2 (en) 2017-12-20
KR102163937B1 (en) 2020-10-12
CN104818458A (en) 2015-08-05
CN104818458B (en) 2019-03-05
KR20150091996A (en) 2015-08-12

Similar Documents

Publication Publication Date Title
TWI470099B (en) Film forming method and thin film forming apparatus
KR101083443B1 (en) Thin film forming method, and thin film forming apparatus
KR101747291B1 (en) Sputtering method
JP6251588B2 (en) Deposition method
WO2009093598A1 (en) Sputtering film forming method and sputtering film forming apparatus
JP2014532813A (en) Line scanning sputtering system and line scanning sputtering method
US9469897B2 (en) Thin film forming apparatus and thin film forming method
KR101135389B1 (en) Sputtering method and sputtering apparatus
JP6588351B2 (en) Deposition method
TWI724435B (en) Sputtering method and sputtering apparatus
JP7256645B2 (en) Sputtering apparatus and film forming method
JP7219140B2 (en) Deposition method
JP7242293B2 (en) Film forming apparatus, film forming method, and electronic device manufacturing method
TW202000962A (en) Method of forming film and film formation apparatus
JP5965686B2 (en) Sputtering equipment
JP2007131895A (en) Magnetron sputtering electrode, and sputtering apparatus provided with magnetron sputtering electrode
JP2020204067A (en) Sputtering apparatus and film deposition method
JP2020143356A (en) Sputtering apparatus and sputtering method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171127

R150 Certificate of patent or registration of utility model

Ref document number: 6251588

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250