JP2015098573A - High crystal polyimide fine particle and method for producing the same - Google Patents
High crystal polyimide fine particle and method for producing the same Download PDFInfo
- Publication number
- JP2015098573A JP2015098573A JP2014088964A JP2014088964A JP2015098573A JP 2015098573 A JP2015098573 A JP 2015098573A JP 2014088964 A JP2014088964 A JP 2014088964A JP 2014088964 A JP2014088964 A JP 2014088964A JP 2015098573 A JP2015098573 A JP 2015098573A
- Authority
- JP
- Japan
- Prior art keywords
- polyimide
- fine particles
- crystal
- aqueous solution
- highly crystalline
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
Abstract
Description
本発明は、高結晶ポリイミド微粒子およびその製造方法に関する。 The present invention relates to highly crystalline polyimide fine particles and a method for producing the same.
ポリイミドを微粒子化した材料は、ポリイミドのその優れた耐熱性、耐摩耗性、耐薬品、電気絶縁性、機械的特性等の特性と、その形状とを組み合わせることにより、画像形成用の粉末トナーの添加剤や、スクリーン印刷性を向上させる添加剤、炭素質微粒子の前駆体等、様々な用途で利用されている。 The material in which polyimide is made into fine particles combines the characteristics of polyimide with its excellent heat resistance, wear resistance, chemical resistance, electrical insulation, mechanical properties, etc., and the shape of the powder toner for image formation. It is used in various applications such as additives, additives that improve screen printability, and precursors of carbonaceous fine particles.
一方、近年、非線形光学材料、導電材料、熱伝導材料等の高機能化を指向した高分子結晶に関する研究が行われており、ポリイミド微粒子においても、さらなる利用範囲を拡大する上で、より高度な結晶性、高次構造の制御が求められている。 On the other hand, in recent years, research has been conducted on polymer crystals aimed at high functionality such as non-linear optical materials, conductive materials, heat conductive materials, and the like. Control of crystallinity and higher order structure is required.
ここで、これら、ポリイミド微粒子を製造する方法としては、これまでいくつかの方法が提案されており、例えば、テトラカルボン酸二無水物とジアミンとをジメチルホルムアミド等の溶媒中で反応させ、ポリイミドの前駆体であるポリアミド酸のワニスを調製した後、このワニスからポリアミド酸微粒子を沈澱法により調製し、その後該ポリアミド酸微粒子をイミド化することにより粒子形状や粒度分布の制御されたポリイミド微粒子を製造する方法が提案されている(特許文献1)。 Here, as a method for producing these polyimide fine particles, several methods have been proposed so far, for example, by reacting tetracarboxylic dianhydride and diamine in a solvent such as dimethylformamide, After preparing the precursor polyamic acid varnish, the polyamic acid fine particles are prepared from this varnish by the precipitation method, and then the polyamic acid fine particles are imidized to produce polyimide fine particles whose particle shape and particle size distribution are controlled. A method to do this has been proposed (Patent Document 1).
また、良溶媒中に溶解したポリアミド酸溶液を調製後、該ポリアミド酸溶液を加圧下100〜400℃の温度で加熱処理を行い、イミド化させることで溶媒中に高い結晶性を有するポリイミド微粒子を沈殿させる方法も提案されている(特許文献2)。 In addition, after preparing a polyamic acid solution dissolved in a good solvent, the polyamic acid solution is subjected to heat treatment at a temperature of 100 to 400 ° C. under pressure to imidize polyimide fine particles having high crystallinity in the solvent. A method for precipitation is also proposed (Patent Document 2).
また、他の先行技術としては、高重合度のポリイミドに変換しうるポリイミド前駆体よりなる微粒子、および該ポリイミド前駆体微粒子の製造方法として、生成するポリイミド前駆体の貧溶媒中で、芳香族ジアミンと3,3‘,4,4’−ビフェニルテトラカルボン酸を混合して、全芳香族ポリイミド前駆体微粒子を得る方法が提案されている(特許文献3)。 In addition, as other prior art, fine particles made of a polyimide precursor that can be converted into a polyimide having a high degree of polymerization, and as a method for producing the polyimide precursor fine particles, an aromatic diamine is used in a poor solvent for the polyimide precursor to be produced. And 3,3 ′, 4,4′-biphenyltetracarboxylic acid are mixed to obtain fully aromatic polyimide precursor fine particles (Patent Document 3).
更に、他の先行技術としては、ピロメリット酸無水物とp−フェニレンジアミンとを、該モノマーは溶解し、オリゴマーは溶解しないような流動パラフィン等の溶媒中で、高温下反応させ、高い結晶性のポリイミド微粒子を調製する方法が提案されている(非特許文献1)。 Furthermore, as another prior art, pyromellitic anhydride and p-phenylenediamine are reacted at a high temperature in a solvent such as liquid paraffin in which the monomer is dissolved but the oligomer is not dissolved, and high crystallinity is obtained. A method of preparing polyimide fine particles has been proposed (Non-patent Document 1).
このように、従来技術としてポリイミド微粒子、及びそれらの製造技術に関する種々の提案がなされているが、従来法で得られるポリイミド微粒子の形状は、球状のものが大半である他、そのほとんどが形態、結晶性、結晶配向性といった高次構造の制御が困難である。また、一部、非特許文献1のように高次構造の制御を達成されている例はあるものの、完全に単一の形態のみを調製するに至っておらず、実用性は乏しい。加えて、従来法では、その製造過程で有機溶媒が多量に利用されており、環境負荷も大きい。 Thus, various proposals regarding polyimide fine particles and their production techniques have been made as conventional techniques, but the shape of polyimide fine particles obtained by conventional methods is mostly spherical, and most of them are in the form of It is difficult to control higher order structures such as crystallinity and crystal orientation. Moreover, although there is an example in which the control of the higher-order structure is achieved partially as in Non-Patent Document 1, only a single form has not been completely prepared and practicality is poor. In addition, in the conventional method, a large amount of organic solvent is used in the production process, and the environmental load is large.
本発明は上記従来の課題を解決するためになされたものであり、その第一の目的は、形態や粒子サイズはもちろん、結晶性および結晶の配向性の制御されたポリイミド微粒子を提供することである。また、第二の目的として、該ポリイミド微粒子の調製において、水または水系の溶媒を使用することで、安価且つ環境への負荷の小さな製造方法を提供することにある。 The present invention has been made in order to solve the above-described conventional problems, and a first object of the present invention is to provide polyimide fine particles in which crystallinity and crystal orientation are controlled as well as morphology and particle size. is there. A second object is to provide a manufacturing method that is inexpensive and has a low environmental impact by using water or an aqueous solvent in the preparation of the polyimide fine particles.
本発明者らは、形態やサイズ、またその結晶性や結晶配向性を制御されたポリイミド微粒子を開発すべく、鋭意研究を重ねた結果、本発明を完成するに至った。 The inventors of the present invention have completed the present invention as a result of intensive studies in order to develop polyimide fine particles whose shape and size, crystallinity and crystal orientation are controlled.
即ち、本発明は、以下の構成からなることを特徴とする。 That is, the present invention is characterized by having the following configuration.
〔1〕 下記式(1)で示されるポリイミドであって、高い結晶性の板状結晶であることを特徴とする高結晶性ポリイミド微粒子。
〔3〕 前記板状結晶の厚み方向にポリイミドの分子鎖が配向した前記〔1〕又は前記〔2〕記載の高結晶性ポリイミド微粒子。
〔4〕 前記板状結晶が傾斜した状態で重なった集合体であることを特徴とする前記〔1〕〜〔3〕のいずれかに記載の高結晶性ポリイミド微粒子
〔5〕 前記ポリイミドが、ポリ(p−フェニレンピロメリットイミド)であることを特徴とする前記〔1〕〜〔4〕のいずれかに記載の高結晶性ポリイミド微粒子。
〔6〕 下記式(2)の芳香族テトラカルボン酸の水溶液または水系の溶液および下記式(3)の芳香族ジアミンの水溶液または水系の溶液を混合して得られるモノマー塩結晶を、常圧下、固相重合させることを特徴とする高結晶性ポリイミド微粒子の製造方法。
[4] The highly crystalline polyimide fine particles according to any one of [1] to [3], wherein the plate-like crystals overlap each other in an inclined state. The highly crystalline polyimide fine particles according to any one of [1] to [4], which are (p-phenylenepyromellitimide).
[6] A monomer salt crystal obtained by mixing an aqueous solution or an aqueous solution of an aromatic tetracarboxylic acid represented by the following formula (2) and an aqueous solution or an aqueous solution of an aromatic diamine represented by the following formula (3) under normal pressure: A method for producing highly crystalline polyimide fine particles, characterized by solid-phase polymerization.
本発明により得られるポリイミド微粒子は、結晶性が非常に高いため、高い力学強度やガスバリア性、熱伝導性等の性能を有することが期待される。特に、該板状結晶は、結晶性が高いだけでなく、ポリイミドの分子鎖が板状結晶の厚み方向に配向してなるため、熱伝導性がこの分子鎖方向、つまり板状結晶の厚み方向に高い特徴を有しており、既存の熱伝導性フィラーでは達成しがたい熱伝導性異方性を有することが期待される。また、板状結晶や該板状結晶が集合した板状結晶集合体(以下、総称して「板状結晶」という場合がある。)であることにより、射出成型等の成形体中で流動方向に選択的に配向することが可能なため、樹脂中に混ぜた際のフィラーは、より効果的に上記特性を発現することが期待される。 The polyimide fine particles obtained by the present invention are expected to have high mechanical strength, gas barrier properties, thermal conductivity, and the like because of their very high crystallinity. In particular, the plate-like crystal not only has high crystallinity but also the molecular chain of polyimide is oriented in the thickness direction of the plate-like crystal, so that the thermal conductivity is in the direction of this molecular chain, that is, the thickness direction of the plate-like crystal. It is expected to have thermal conductivity anisotropy that cannot be achieved with existing thermal conductive fillers. Further, since it is a plate-like crystal or a plate-like crystal aggregate in which the plate-like crystals are aggregated (hereinafter, sometimes collectively referred to as “plate-like crystal”), the flow direction in a molded body such as injection molding. Therefore, the filler when mixed in the resin is expected to exhibit the above characteristics more effectively.
また、該板状結晶の配向方向と結晶性、および形態的特徴から、炭素材料前駆体として用いた場合、これまでは困難であった配向構造を有するグラファイトシートの製造、つまりシートの厚み方向にグラファイト構造が発達したグラファイトシートの製造が可能となる。また、ポリイミド微粒子製造において、溶媒として水または水系の溶媒が利用されることから、ポリイミド微粒子製造にかかるコストおよび環境負荷を大幅に低減可能である。 Further, from the orientation direction, crystallinity, and morphological characteristics of the plate-like crystal, when used as a carbon material precursor, it is difficult to produce a graphite sheet having an orientation structure, that is, in the thickness direction of the sheet. It is possible to produce a graphite sheet having a developed graphite structure. Further, since water or an aqueous solvent is used as a solvent in the production of polyimide fine particles, the cost and environmental burden required for the production of polyimide fine particles can be greatly reduced.
ポリイミド微粒子
本発明により得られるポリイミド微粒子は、板状結晶およびその板状結晶の集合体である。板状結晶の面方向の長さ(L)は、1〜100μmであり、厚み(D)は0.05〜20μmであり、板状結晶の集合体である場合は、一辺の大きさが通常50〜1000μm程度である。また、該ポリイミド微粒子は、X線回折測定において非晶性のピークがほとんどみられないことを特徴とする高結晶性ポリイミド微粒子である。また、該ポリイミド微粒子は、前記厚み方向にポリイミドの分子鎖が配向して並んでいる高結晶性ポリイミド微粒子である。尚、ポリイミドの分子鎖が厚み方向に並んでいるということは、得られた高結晶性ポリイミド微粒子の特定の面の超薄切片を切り出し、電子線回折像を撮り、解析することにより確認可能である他、特定の方向に配列した板状結晶の面方向に対し、平行および垂直な方向からのX線回折測定を行うことで確認可能である。また、板状結晶の集合体は、板状のポリイミド微粒子が傾斜して積層することで、形成されていることを特徴とする。
Polyimide fine particles The polyimide fine particles obtained by the present invention are plate crystals and aggregates of the plate crystals. The length (L) in the plane direction of the plate crystal is 1 to 100 μm, the thickness (D) is 0.05 to 20 μm, and in the case of an aggregate of plate crystals, the size of one side is usually It is about 50-1000 micrometers. The polyimide fine particles are highly crystalline polyimide fine particles characterized in that almost no amorphous peak is observed in X-ray diffraction measurement. The polyimide fine particles are highly crystalline polyimide fine particles in which molecular chains of polyimide are aligned and aligned in the thickness direction. The fact that the molecular chains of polyimide are aligned in the thickness direction can be confirmed by cutting out an ultrathin section of a specific surface of the obtained highly crystalline polyimide fine particles, taking an electron diffraction pattern, and analyzing it. In addition, it can be confirmed by performing X-ray diffraction measurement from directions parallel and perpendicular to the plane direction of the plate crystals arranged in a specific direction. Further, the aggregate of plate crystals is formed by laminating and laminating plate-like polyimide fine particles.
ポリイミド微粒子の製造方法
本発明の製造方法は、下記式(2)および(3)で表される芳香族テトラカルボン酸と芳香族ジアミンの水溶液または水系の溶液を混合して得られるモノマー塩結晶を、常圧下、固相重合させることを特徴とするポリイミド結晶の製造方法であって、
(b)得られたポリイミド前駆体を常圧下、固相重合する第二工程、
を含むことを特徴とする。
Production method of polyimide fine particles The production method of the present invention comprises monomer salt crystals obtained by mixing an aqueous solution or an aqueous solution of an aromatic tetracarboxylic acid and an aromatic diamine represented by the following formulas (2) and (3). , A method for producing a polyimide crystal characterized by solid-phase polymerization under normal pressure,
It is characterized by including.
第一工程
芳香族テトラカルボン酸は、水溶性もしくは水系溶媒に可溶であれば特に制限されず、一般的なものが利用できる。例えば、ピロメリット酸、1,4,5,8−ナフタレンテトラカルボン酸、2,3,6,7− ナフタレンテトラカルボン酸、3,3’,4,4’−ビフェニルテトラカルボン酸、3,3’,4,4’−ベンゾフェノンテトラカルボン酸、3,3’,4,4’−ジフェニルスルホンテトラカルボン酸などが挙げられる。これらは、1種または2種以上を用いることができる。本発明では、生成するモノマー塩の結晶性の観点より、特にピロメリット酸が好ましく、芳香族テトラカルボン酸としては1種に限定することが好ましい。
The first step aromatic tetracarboxylic acid is not particularly limited as long as it is water-soluble or soluble in an aqueous solvent, and a general one can be used. For example, pyromellitic acid, 1,4,5,8-naphthalenetetracarboxylic acid, 2,3,6,7-naphthalenetetracarboxylic acid, 3,3 ′, 4,4′-biphenyltetracarboxylic acid, 3,3 Examples include '4,4'-benzophenone tetracarboxylic acid, 3,3', 4,4'-diphenylsulfone tetracarboxylic acid, and the like. These can use 1 type (s) or 2 or more types. In the present invention, pyromellitic acid is particularly preferable from the viewpoint of the crystallinity of the monomer salt to be produced, and the aromatic tetracarboxylic acid is preferably limited to one type.
芳香族ジアミンは、水溶性もしくは水系溶媒に可溶であれば特に制限されず、一般的なものが利用できる。例えば、p−フェニレンジアミン、m−フェニレンジアミン、4−4’−ジアミノジフェニルエーテル、4−4’−ジアミノジフェニルメタン、4−4’−ジアミノジフェニルスルフィド、4−4’ジアミノジフェニルスルホン、4−4’−ジアミノジフェニルエーテル、4−4’−ジアミノベンゾフェノン等が挙げられる。これらは、単独または二種以上の混合物で用いることができる。本発明では、生成するモノマー塩の結晶性の観点より、p−フェニレンジアミンが好ましく、芳香族ジアミンとしては1種に限定することが好ましい。 The aromatic diamine is not particularly limited as long as it is water-soluble or soluble in an aqueous solvent, and a general one can be used. For example, p-phenylenediamine, m-phenylenediamine, 4-4′-diaminodiphenyl ether, 4-4′-diaminodiphenylmethane, 4-4′-diaminodiphenylsulfide, 4-4′diaminodiphenylsulfone, 4-4′- Examples include diaminodiphenyl ether and 4-4′-diaminobenzophenone. These can be used alone or in a mixture of two or more. In the present invention, p-phenylenediamine is preferred from the viewpoint of crystallinity of the monomer salt to be produced, and the aromatic diamine is preferably limited to one kind.
水系溶媒は、水と水溶性の溶媒からなる溶液であれば特に限定されず、水溶性の溶媒については一般的なものが利用できる。例えば、メタノール、エタノールなどのアルコール類、ジエチレングリコール、グリセリンなどの多価アルコール類、N−メチルピロリドンなどのピロリドン系溶媒、アセトンなどのケトン系溶媒が挙げられる。これらは、単独または二種以上の混合物で用いることができる。また、水と水溶性溶媒の混合比は水が0.1〜99.9wt%であり、環境負荷低減の観点からは、好ましくは20〜99.9wt%、より好ましくは50〜99.9wt%である。 The aqueous solvent is not particularly limited as long as it is a solution composed of water and a water-soluble solvent, and general water-soluble solvents can be used. Examples thereof include alcohols such as methanol and ethanol, polyhydric alcohols such as diethylene glycol and glycerin, pyrrolidone solvents such as N-methylpyrrolidone, and ketone solvents such as acetone. These can be used alone or in a mixture of two or more. The mixing ratio of water and the water-soluble solvent is 0.1 to 99.9 wt% for water, and preferably 20 to 99.9 wt%, more preferably 50 to 99.9 wt% from the viewpoint of reducing the environmental load. It is.
芳香族テトラカルボン酸と芳香族ジアミンの水溶液もしくは水系の溶液から、ポリイミド前駆体であるモノマー塩を生成する条件は、所定のポリイミド前駆体が生成される限りどのような条件・態様であっても良いが、最終的に得られるポリイミド微粒子の形態、サイズは、本モノマー塩の形態、サイズで決定されるため、目的に応じ、適宜条件、手法を調整する必要がある。 The conditions for producing a monomer salt that is a polyimide precursor from an aqueous solution or an aqueous solution of an aromatic tetracarboxylic acid and an aromatic diamine may be any condition / mode as long as a predetermined polyimide precursor is produced. Although the form and size of the finally obtained polyimide fine particles are determined by the form and size of the present monomer salt, it is necessary to appropriately adjust the conditions and methods according to the purpose.
モノマー塩を調整する手法としては、例えば、芳香族テトラカルボン酸の水溶液へ、芳香族ジアミンを固体で添加、溶解し、モノマー塩結晶を得る方法、また芳香族テトラカルボン酸の水溶液と芳香族ジアミンの水溶液を混合し、モノマー塩結晶を得る方法などが挙げられるが、この限りでない。 As a method for adjusting the monomer salt, for example, a method of adding and dissolving an aromatic diamine as a solid in an aqueous solution of an aromatic tetracarboxylic acid to obtain a monomer salt crystal, or an aqueous solution of an aromatic tetracarboxylic acid and an aromatic diamine However, this is not a limitation.
モノマー塩の形態、サイズを制御する上では、特に芳香族テトラカルボン酸、芳香族ジアミン等の原料水溶液の混合方法や混合する際の濃度が重要なファクターであり、原料濃度が高いほど、また原料を混合する速度が早いほど、得られるモノマー塩結晶のサイズは大きくなる。例えば、芳香族テトラカルボン酸の水溶液または水系の溶液と芳香族ジアミンの水溶液または水系の溶液を混合する方法において、原料濃度が30mmol/L以上の濃度においては、生成するモノマー塩の板状結晶が集合した大きなモノマー塩結晶を形成する一方、30mmol/L未満の濃度においては、単一の板状結晶が得られる。また、芳香族テトラカルボン酸の水溶液中へ強撹拌下、等当量の芳香族ジアミンが溶解した水溶液を全量、一度に添加、混合し、モノマー塩を得た場合は、厚みが1〜10μmで、且つ結晶の面内方向に50〜1000μm程度の大きなモノマー塩結晶が得られる一方、芳香族テトラカルボン酸の水溶液へ撹拌下、等当量の芳香族ジアミンが溶解した水溶液をゆっくりと滴下、混合を行った場合には、厚みが0.1〜3μmで、且つ結晶の面内方向に3〜10μm程度の小さなモノマー塩結晶得られる。 In controlling the form and size of the monomer salt, the mixing method of the raw material aqueous solution such as aromatic tetracarboxylic acid and aromatic diamine and the concentration at the time of mixing are important factors. The higher the raw material concentration, the more the raw material. The faster the mixing speed, the larger the size of the monomer salt crystals obtained. For example, in a method of mixing an aqueous solution of an aromatic tetracarboxylic acid or an aqueous solution and an aqueous solution or an aqueous solution of an aromatic diamine, when the raw material concentration is 30 mmol / L or more, the resulting salt crystals of the monomer salt are formed. While forming large monomer salt crystals, single plate crystals are obtained at concentrations below 30 mmol / L. In addition, when the monomer salt is obtained by adding and mixing the whole amount of an aqueous solution in which an equivalent equivalent aromatic diamine is dissolved into the aqueous solution of the aromatic tetracarboxylic acid under strong stirring, the thickness is 1 to 10 μm, While large monomer salt crystals of about 50 to 1000 μm are obtained in the in-plane direction of the crystal, an aqueous solution in which an equivalent equivalent of aromatic diamine is dissolved is slowly added dropwise to an aqueous solution of aromatic tetracarboxylic acid while stirring. In this case, a small monomer salt crystal having a thickness of 0.1 to 3 μm and about 3 to 10 μm in the in-plane direction of the crystal is obtained.
得られたモノマー塩結晶を濾過および遠心分離等の分離方法により液中から回収し、その後、乾燥を行う事で、ポリイミド前駆体が得られる。この際、乾燥温度は表面に付着した水や水系溶媒による再溶解や、重合の進行を阻止する上で、20〜170℃、好ましくは、30〜140℃、より好ましくは50〜100℃の乾燥条件にて乾燥することが好ましい。 The obtained monomer salt crystals are recovered from the liquid by a separation method such as filtration and centrifugation, and then dried to obtain a polyimide precursor. At this time, the drying temperature is 20 to 170 ° C., preferably 30 to 140 ° C., more preferably 50 to 100 ° C., in order to prevent re-dissolution by water or an aqueous solvent attached to the surface and the progress of polymerization. It is preferable to dry under conditions.
第二工程
第二工程では、第一工程で得られたポリイミド前駆体の固相重合を行う。本発明における固相重合は、ポリイミド前駆体からそのまま形態変化を伴うことなく、高結晶性のポリイミド微粒子が得られる限りは特に制限されないが、本発明では、生産性の観点より常圧下、200℃〜400℃まで適宜加熱を行うことにより重合を実施することが好ましい。
In the second step, the second step, solid phase polymerization of the polyimide precursor obtained in the first step is performed. The solid phase polymerization in the present invention is not particularly limited as long as highly crystalline polyimide fine particles can be obtained without changing the form as it is from the polyimide precursor, but in the present invention, from the viewpoint of productivity, at 200 ° C. under normal pressure. It is preferable to carry out the polymerization by appropriately heating up to ˜400 ° C.
上記方法は、例えばポリイミド前駆体をガラス容器中に入れ、不活性ガスの流通下、通常200℃〜250℃、好ましくは210℃〜230℃程度の温度で2時間程度加熱脱水後、240〜400℃の間で適宜昇温し、イミド化処理を実施すれば良い。この加熱により、水が発生するため、第二工程では水を反応系外に除去しながら反応を実施することが好ましい。 In the above method, for example, a polyimide precursor is placed in a glass container, and heated and dehydrated at a temperature of about 200 ° C. to 250 ° C., preferably about 210 ° C. to 230 ° C. for about 2 hours under an inert gas flow, and then 240 to 400 What is necessary is just to heat up suitably between degrees C and to implement an imidation process. Since water is generated by this heating, it is preferable to carry out the reaction while removing water from the reaction system in the second step.
本発明では、上記の方法を用いることによって、板状のモノマー塩結晶を調製することができ、それをポリイミド前駆体として固相重合することによって、粒子の形態の変化を抑制し、モノマー塩の形態的特徴を維持したまま、高い結晶性を有する板状のポリイミド結晶微粒子が得られる。また、本発明では、ポリイミド前駆体を生成する条件を制御することにより、結晶形態、サイズの異なるポリイミド結晶微粒子が得ることが可能である。具体的には、本発明により得られるポリイミド結晶微粒子のサイズは、独立した板状結晶の場合、面方向の長さ(L)が、1〜100μmであり、厚み(D)が0.05〜20μmでり、プレート状の集合体である場合は、一辺の大きさが通常50〜1000μm程度である。 In the present invention, a plate-like monomer salt crystal can be prepared by using the above-described method, and the change in the form of the particles is suppressed by solid-phase polymerization as a polyimide precursor. Plate-like polyimide crystal fine particles having high crystallinity can be obtained while maintaining the morphological characteristics. In the present invention, it is possible to obtain polyimide crystal fine particles having different crystal forms and sizes by controlling the conditions for generating the polyimide precursor. Specifically, the size of the polyimide crystal fine particles obtained by the present invention is such that, in the case of an independent plate crystal, the length (L) in the plane direction is 1 to 100 μm and the thickness (D) is 0.05 to In the case of a plate-like aggregate, the size of one side is usually about 50 to 1000 μm.
以下、実施例によって本発明を具体的に説明するが、本発明はこれら実施例によって限定されるものではない。 EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, this invention is not limited by these Examples.
[製造例1]
3.4mmolのピロメリット酸(以下PMA)を溶解した水溶液150g中へ、等当量のパラフェニレンジアミン(以下PPDA)を溶解した水溶液100gを撹拌下、一気に添加、混合したところ、該水溶液中へ白色の沈殿が生じた。本スラリーを濾過し、白色の結晶を回収したところ、その収率は94.7wt%であった。得られた白色結晶のFT-IR測定結果からは、2500〜3500cm−1にかけてブロードな塩由来の特性吸収体が観測され、PMAとPPDAからなるモノマー塩(以下PMA−PPDA−1)であることが確認された。また、得られた白色結晶の走査型電子顕微鏡観察結果より、長さ20〜40μm、中心の幅が5〜7μm、厚み0.5〜2μmの先細りした板状の結晶であることが確認された(図1)。
[Production Example 1]
When 150 g of an aqueous solution in which an equivalent amount of paraphenylenediamine (hereinafter referred to as PPDA) was dissolved in 150 g of an aqueous solution in which 3.4 mmol of pyromellitic acid (hereinafter referred to as PMA) was dissolved, it was added and mixed all at once. Precipitation occurred. The slurry was filtered to collect white crystals. The yield was 94.7 wt%. From the FT-IR measurement result of the obtained white crystals, a broad salt-derived characteristic absorber is observed from 2500 to 3500 cm-1, and it is a monomer salt consisting of PMA and PPDA (hereinafter PMA-PPDA-1). Was confirmed. Further, from the observation result of the obtained white crystal with a scanning electron microscope, it was confirmed that the white crystal was a tapered plate-like crystal having a length of 20 to 40 μm, a center width of 5 to 7 μm, and a thickness of 0.5 to 2 μm. (FIG. 1).
[製造例2]
3.4mmolのPMAを溶解した水溶液150g中へ、等当量のPPDAを溶解した水溶液100gを撹拌下、滴下速度10ml/minで滴下した他は、製造例1と同様の方法にて白色結晶を得た。得られた白色結晶は製造例1と同様にFT−IR測定結果より、PMAとPPDAからなるモノマー塩(以下PMA−PPDA−2)であることが確認された。また、得られた白色結晶の走査型電子顕微鏡観察結果より、幅2〜10μm、長さ2〜10μm、厚み0.3〜2μmの菱形の板状結晶であることが確認された(図2)
[Production Example 2]
White crystals were obtained in the same manner as in Production Example 1 except that 100 g of an aqueous solution in which an equivalent equivalent of PPDA was dissolved was dropped into 150 g of an aqueous solution in which 3.4 mmol of PMA had been dissolved at a dropping rate of 10 ml / min. It was. The obtained white crystals were confirmed to be a monomer salt composed of PMA and PPDA (hereinafter referred to as PMA-PPDA-2) from the FT-IR measurement results as in Production Example 1. Further, from the observation result of the obtained white crystal with a scanning electron microscope, it was confirmed that it was a rhomboid plate-like crystal having a width of 2 to 10 μm, a length of 2 to 10 μm, and a thickness of 0.3 to 2 μm (FIG. 2).
[製造例3]
34mmolのPMAを溶解した水溶液150g中へ、等当量のPPDAを溶解した水溶液100gを撹拌下、一気に添加、混合した他は製造例1と同様の方法にて白色結晶を得た。得られた白色結晶は製造例1と同様にFT−IR測定結果より、PMAとPPDAからなるモノマー塩(以下PMA−PPDA−3)であることが確認された。また、得られた白色結晶の走査型電子顕微鏡観察結果より、板状結晶が集合した中心の幅20〜50μm、長さ130〜300μm、厚み1〜10μmの先細りした板状結晶の結晶であることが確認され(図3)、そのプレート表面を拡大し、観察を行ったところ、板状結晶が傾斜して積層した集合体であることが確認された(図4)。
[Production Example 3]
White crystals were obtained in the same manner as in Production Example 1, except that 100 g of an aqueous solution in which an equivalent equivalent of PPDA was dissolved was added and mixed all at once with stirring into 150 g of an aqueous solution in which 34 mmol of PMA had been dissolved. The obtained white crystals were confirmed to be a monomer salt composed of PMA and PPDA (hereinafter referred to as PMA-PPDA-3) from the FT-IR measurement results as in Production Example 1. Further, from the observation result of the obtained white crystal with a scanning electron microscope, it is a crystal of a tapered plate crystal having a center width of 20 to 50 μm, a length of 130 to 300 μm, and a thickness of 1 to 10 μm. (FIG. 3). When the surface of the plate was enlarged and observed, it was confirmed that it was an aggregate in which plate crystals were inclined and stacked (FIG. 4).
[製造例4]
80℃に加温した3.9mmolのPMAを溶解した水溶液100g中へ、等当量の4−4’−ジアミノジフェニルエーテル(以下ODA)を溶解したエタノール40gを添加、混合した後、室温にて一晩静置したところ、白色の結晶が多量に析出した。本結晶を含む溶液を濾過し、白色の結晶を回収したところ、その収率は92.8wt%であった。得られた白色結晶のFT‐IR測定結果からは、2500〜3500cm−1にかけてブロードな塩由来の特性吸収体が観測され、PMAとODAからなるモノマー塩(以下PMA−ODA−1)であることが確認された。また、得られた白色結晶の走査型電子顕微鏡観察結果より、長さ20〜100μm、幅が5〜30μm、厚み0.5〜3μmの板状結晶であることが確認された(図5)。
[Production Example 4]
To 100 g of an aqueous solution in which 3.9 mmol of PMA was heated to 80 ° C., 40 g of ethanol in which 4 equivalents of 4-4′-diaminodiphenyl ether (ODA) was dissolved was added and mixed, and then at room temperature overnight. When allowed to stand, a large amount of white crystals precipitated. The solution containing the crystals was filtered to collect white crystals. The yield was 92.8 wt%. From the result of FT-IR measurement of the obtained white crystals, a broad salt-derived characteristic absorber is observed from 2500 to 3500 cm-1, and it is a monomer salt composed of PMA and ODA (hereinafter PMA-ODA-1). Was confirmed. Moreover, it was confirmed from the scanning electron microscope observation result of the obtained white crystal that it is a plate crystal having a length of 20 to 100 μm, a width of 5 to 30 μm, and a thickness of 0.5 to 3 μm (FIG. 5).
[実施例1]
製造例1にて得られたPMA−PPDA−1を、220℃で2h反応を行った後、400℃まで順次昇温を行うことで、茶色の結晶を得た。得られた結晶のFT−IR測定を実施したところ1780cm−1および1720cm−1にイミド基の特性吸収体が観測され、ポリイミドであることが確認された。本ポリイミド結晶を走査型電子顕微鏡にて観察を行ったところ、中心の幅5〜7μm、長さ20〜40μm、厚み0.5〜2μmの先細りした板状の結晶であり、製造例1のPMA−PPDA−1と同様の形態であることが確認された(図6)。また、本結晶の粉末X線回折測定を行ったところ、非晶由来のハローは検出されず、非常に高い結晶性を示すことが分かった(図7)。また、得られた板状結晶の厚み方向の薄片を集束イオン加工装置により切り出し、透過型電子線回折測定を行った結果から、本板状結晶の厚み方向にポリイミド分子が高度に配向していることが確認された(図8)。
[Example 1]
The PMA-PPDA-1 obtained in Production Example 1 was reacted at 220 ° C. for 2 h, and then heated to 400 ° C. to obtain brown crystals. When FT-IR measurement of the obtained crystal was carried out, characteristic absorbers of imide groups were observed at 1780 cm −1 and 1720 cm −1, and it was confirmed to be polyimide. When this polyimide crystal was observed with a scanning electron microscope, it was a tapered plate-like crystal having a center width of 5 to 7 μm, a length of 20 to 40 μm, and a thickness of 0.5 to 2 μm. -It was confirmed that it was the same form as PPDA-1 (FIG. 6). Moreover, when the powder X-ray-diffraction measurement of this crystal was performed, it turned out that the amorphous | non-crystalline origin halo is not detected but shows very high crystallinity (FIG. 7). Moreover, from the result of cutting out the thin slice in the thickness direction of the obtained plate crystal with a focused ion processing apparatus and performing transmission electron diffraction measurement, polyimide molecules are highly oriented in the thickness direction of the plate crystal. This was confirmed (FIG. 8).
[実施例2]
製造例2にて得られたPMA−PPDA−2を用いた他、実施例1と同様の方法にて茶色の結晶を得た。得られた結晶のFT−IR測定を実施したところ1780cm−1および1720cm−1にイミド基の特性吸収体が観測され、ポリイミドであることが確認された。本ポリイミド結晶は、幅2〜10μm、長さ方向2〜10μm、厚み0.3〜2μmの菱形の板状結晶であり、製造例2のPMA−PPDA−2と同様の形態であることが確認された(図9)。また、本結晶の粉末X線回折測定を行ったところ、非晶由来のハローは検出されず、非常に高い結晶性を示すことが分かった(図10)。
[Example 2]
Brown crystals were obtained in the same manner as in Example 1 except that PMA-PPDA-2 obtained in Production Example 2 was used. When FT-IR measurement of the obtained crystal was carried out, characteristic absorbers of imide groups were observed at 1780 cm −1 and 1720 cm −1, and it was confirmed to be polyimide. This polyimide crystal is a rhomboid plate-like crystal having a width of 2 to 10 μm, a length direction of 2 to 10 μm, and a thickness of 0.3 to 2 μm, and is confirmed to have the same form as PMA-PPDA-2 in Production Example 2. (FIG. 9). Moreover, when the powder X-ray-diffraction measurement of this crystal | crystallization was performed, it turned out that the amorphous | non-crystalline origin halo is not detected but shows very high crystallinity (FIG. 10).
[実施例3]
製造例3にて得られたPMA−PPDA−3を用いた他、実施例1と同様の方法にて茶色の結晶を得た。得られた結晶のFT−IR測定を実施したところ1780cm−1および1720cm−1にイミド基の特性吸収体が観測され、ポリイミドであることが確認された。本ポリイミド結晶は、板状結晶が集合した中心の幅20〜50μm、長さ130〜300μm、厚み1〜10μmの先細りした板状結晶の結晶であることが確認された(図11)他、そのプレート表面を拡大し、観察を行ったところ、板状結晶が傾斜して積層した集合体であることが確認され(図12)、製造例3のPMA−PPDA−3と同様の形態であることが確認された。また、本結晶の粉末X線回折測定を行ったところ、非晶由来のハローは検出されず、非常に高い結晶性を示すことが分かった。
[Example 3]
Brown crystals were obtained in the same manner as in Example 1 except that PMA-PPDA-3 obtained in Production Example 3 was used. When FT-IR measurement of the obtained crystal was carried out, characteristic absorbers of imide groups were observed at 1780 cm −1 and 1720 cm −1, and it was confirmed to be polyimide. This polyimide crystal was confirmed to be a tapered plate crystal having a central width of 20 to 50 μm, a length of 130 to 300 μm, and a thickness of 1 to 10 μm (FIG. 11). When the plate surface was enlarged and observed, it was confirmed that it was an aggregate in which plate crystals were inclined and laminated (FIG. 12), and it was the same form as PMA-PPDA-3 in Production Example 3 Was confirmed. Moreover, when the powder X-ray diffraction measurement of this crystal was performed, it turned out that the amorphous | non-crystalline origin halo is not detected but shows very high crystallinity.
[実施例4]
製造例4にて得られたPMA−ODA−1を、180℃で1h反応を行った後、320℃へ昇温し、2時間重合を行うことで、茶色の結晶を得た。得られた結晶のFT−IR測定を実施したところ1780cm−1および1720cm−1にイミド基の特性吸収体が観測され、ポリイミドであることが確認された。本ポリイミド結晶を走査型電子顕微鏡にて観察を行ったところ、幅5〜30μm、長さ20〜100μm、厚み0.5〜3μmの板状結晶であり、製造例4のPMA−ODA−1と同様の形態であることが確認された(図13)。また、本結晶の粉末X線回折測定を行ったところ、非晶由来のハローは検出されず、非常に高い結晶性を示すことが分かった(図14)。
[Example 4]
PMA-ODA-1 obtained in Production Example 4 was reacted at 180 ° C. for 1 h, then heated to 320 ° C. and polymerized for 2 hours to obtain brown crystals. When FT-IR measurement of the obtained crystal was carried out, characteristic absorbers of imide groups were observed at 1780 cm −1 and 1720 cm −1, and it was confirmed to be polyimide. When this polyimide crystal was observed with a scanning electron microscope, it was a plate-like crystal having a width of 5 to 30 μm, a length of 20 to 100 μm, and a thickness of 0.5 to 3 μm, and PMA-ODA-1 in Production Example 4 It was confirmed that it was the same form (FIG. 13). Moreover, when the powder X-ray-diffraction measurement of this crystal | crystallization was performed, it turned out that the amorphous | non-crystalline origin halo is not detected but shows very high crystallinity (FIG. 14).
本発明により得られるポリイミド微粒子は、その高い結晶性により、力学強度を向上させるためのフィラーとしての利用ができるほか、その形態的な特徴により、ガスバリア性等を向上させるフィラーや、熱伝導フィラーとしての応用が期待できる。また、その結晶性、分子鎖の配向性、板状結晶というその形態的特徴により、炭素材料前駆体として用いた場合、これまでは困難であった配向構造を有するグラファイトシートの製造が可能となる。
The polyimide fine particles obtained by the present invention can be used as a filler for improving the mechanical strength due to its high crystallinity, and as a filler for improving gas barrier properties and the like as a heat conductive filler due to its morphological characteristics. The application of can be expected. Also, due to its crystallinity, molecular chain orientation, and its morphological characteristics of plate crystals, it becomes possible to produce a graphite sheet having an orientation structure that has been difficult until now when used as a carbon material precursor. .
Claims (7)
The highly crystalline polyimide according to claim 6, wherein the aromatic tetracarboxylic acid of the formula (2) is pyromellitic acid, and the aromatic diamine of the formula (3) is p-phenylenediamine. A method for producing fine particles.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014088964A JP2015098573A (en) | 2013-10-18 | 2014-04-23 | High crystal polyimide fine particle and method for producing the same |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013216897 | 2013-10-18 | ||
JP2013216897 | 2013-10-18 | ||
JP2014088964A JP2015098573A (en) | 2013-10-18 | 2014-04-23 | High crystal polyimide fine particle and method for producing the same |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2015098573A true JP2015098573A (en) | 2015-05-28 |
Family
ID=53375415
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014088964A Pending JP2015098573A (en) | 2013-10-18 | 2014-04-23 | High crystal polyimide fine particle and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2015098573A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017081780A (en) * | 2015-10-28 | 2017-05-18 | 株式会社Kri | Porous carbon and manufacturing method of the same |
JP2018514635A (en) * | 2015-05-13 | 2018-06-07 | テクニシェ ウニベルシテート ウィーン | Method for preparing polyimide |
JP2019006939A (en) * | 2017-06-28 | 2019-01-17 | 株式会社Kri | Thermal conductive sheet-like resin composition and laminate sheet |
KR20240095156A (en) | 2021-11-02 | 2024-06-25 | 도레이 카부시키가이샤 | Method for producing polyimide, polyimide, polyimide resin composition, and cured product thereof |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012092262A (en) * | 2010-10-28 | 2012-05-17 | Mitsubishi Gas Chemical Co Inc | Method for producing crystalline polyimide |
-
2014
- 2014-04-23 JP JP2014088964A patent/JP2015098573A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012092262A (en) * | 2010-10-28 | 2012-05-17 | Mitsubishi Gas Chemical Co Inc | Method for producing crystalline polyimide |
Non-Patent Citations (12)
Title |
---|
今井淑夫: "ポリイミド合成の最近の進歩", 繊維学会誌, vol. 50, no. 3, JPN6017049597, 1994, pages 85 - 3, ISSN: 0003897911 * |
庄錦煌 外: "重合過程におけるゲル化現象を利用したポリイミドの分子鎖配向制御", 繊維学会予稿集, vol. 58, no. 1, JPN6018040157, 2003, pages 65, ISSN: 0003897916 * |
木村邦生 外: "重合過程におけるゲル化現象を利用したポリイミドの分子鎖配向制御", 高分子学会予稿集, vol. 52, no. 12, JPN6018040155, 2003, pages 3460 - 3461, ISSN: 0003897915 * |
木村邦生: "重合相変化を利用したポリイミドの構造制御", 高分子学会予稿集, vol. 55, no. 1, JPN6017049592, 2006, pages 76 - 78, ISSN: 0004026014 * |
若林完爾 外: "ポリ(p‐フェニレンピロメリットイミド)の高結晶性微粒子の調製", 高分子学会予稿集, vol. 57, no. 1, JPN6017049590, 2008, pages 269, ISSN: 0004026012 * |
若林完爾 外: "結晶性高分子フィラーを利用した樹脂複合体に関する研究", 成形加工'13, JPN6018040152, 2013, pages 187 - 188, ISSN: 0003897913 * |
若林完爾 外: "重合結晶化を利用したポリイミドの非等モル環境での調製", 高分子学会予稿集, vol. 55, no. 1, JPN6017049595, 2006, pages 281, ISSN: 0004026016 * |
若林完爾 外: "重合結晶化を利用した芳香族ポリイミド材料の開発", 高分子学会予稿集, vol. 57, no. 2, JPN6018040149, 2008, pages 3599 - 3600, ISSN: 0003897912 * |
若林完爾 外: "重合誘起型オリゴマー相分離を利用したポリイミドの高次構造制御", 高分子学会予稿集, vol. 52, no. 4, JPN6017049600, 2003, pages 803, ISSN: 0004026013 * |
若林完爾 外: "重合誘起型オリゴマー相分離を経由した芳香族ポリイミドのモルホルジー制御", 高分子学会予稿集(CD-ROM), vol. 54, no. 1, JPN6018040153, 2005, pages 599, ISSN: 0003897914 * |
若林完爾 外: "重合誘起型オリゴマー相分離法により調製したポリイミドの固相重合挙動", 高分子学会予稿集, vol. 54, no. 2, JPN6017049593, 2005, pages 2555, ISSN: 0004026015 * |
荘所大策 外: "固相重合による高結晶性ポリ(p‐フェニレンピロメリットイミド)微粒子の創製", ポリマー材料フォーラム講演予稿集, vol. 22, JPN6017049599, 13 November 2013 (2013-11-13), pages 110, ISSN: 0003710420 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018514635A (en) * | 2015-05-13 | 2018-06-07 | テクニシェ ウニベルシテート ウィーン | Method for preparing polyimide |
JP6994946B2 (en) | 2015-05-13 | 2022-01-14 | テクニシェ ウニベルシテート ウィーン | How to prepare polyimide |
JP2017081780A (en) * | 2015-10-28 | 2017-05-18 | 株式会社Kri | Porous carbon and manufacturing method of the same |
JP2019006939A (en) * | 2017-06-28 | 2019-01-17 | 株式会社Kri | Thermal conductive sheet-like resin composition and laminate sheet |
KR20240095156A (en) | 2021-11-02 | 2024-06-25 | 도레이 카부시키가이샤 | Method for producing polyimide, polyimide, polyimide resin composition, and cured product thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Li et al. | Effect of adjustable molecular chain structure and pure silica zeolite nanoparticles on thermal, mechanical, dielectric, UV-shielding and hydrophobic properties of fluorinated copolyimide composites | |
Lu et al. | Preparation and properties of in situ amino-functionalized graphene oxide/polyimide composite films | |
TWI548679B (en) | Polyimide and polyimide film comprising the same | |
CN106987019B (en) | Polyimide aerogel crosslinked by surface functionalized nanoparticles and preparation method thereof | |
JP6156363B2 (en) | Fine carbon dispersion composition and polyimide-fine carbon composite using the same | |
Han et al. | Using a novel rigid-fluoride polymer to control the interfacial thickness of graphene and tailor the dielectric behavior of poly (vinylidene fluoride–trifluoroethylene–chlorotrifluoroethylene) nanocomposites | |
JP2015098573A (en) | High crystal polyimide fine particle and method for producing the same | |
Chen et al. | In situ random co-polycondensation for preparation of reduced graphene oxide/polyimide nanocomposites with amino-modified and chemically reduced graphene oxide | |
Wu et al. | Enhanced the performance of graphene oxide/polyimide hybrid membrane for CO2 separation by surface modification of graphene oxide using polyethylene glycol | |
Mallakpour et al. | Dispersion of surface-modified nano-Fe 3 O 4 with poly (vinyl alcohol) in chiral poly (amide-imide) bearing pyromellitoyl-bis-l-phenylalanine segments | |
Sun et al. | Intramolecular cyclization-induced crystallization-driven self-assembly of an amorphous poly (amic acid) | |
Zhao et al. | Effects of functionalized graphenes on the isothermal crystallization of poly (L-lactide) nanocomposites | |
Wang et al. | Preparation and properties of nylon 6/sulfonated graphene composites by an in situ polymerization process | |
Chen et al. | Effects of graphene oxide size on curing kinetics of epoxy resin | |
Xiao et al. | Grafting polymerization of single‐handed helical poly (phenyl isocyanide) s on graphene oxide and their application in enantioselective separation | |
JP2950489B2 (en) | Highly crystalline polyimide powder and method for producing the same | |
Li et al. | In situ solution polymerization for preparation of MDI-modified graphene/hyperbranched poly (ether imide) nanocomposites and their properties | |
KR20200061229A (en) | Sulfur doping reduced graphene oxide, preparing method thereof and polyimide nanocomposite including the same | |
Xue et al. | Impact of modification of carbon black on morphology and performance of polyimide/carbon black hybrid composites | |
Wu et al. | Synthesis, characterization, and properties of poly (arylene ether nitrile) with high crystallinity and high molecular weight | |
Mallakpour et al. | The nanocomposites of zinc oxide/L‐amino acid‐based chiral poly (ester‐imide) via an ultrasonic route: Synthesis, characterization, and thermal properties | |
Yan et al. | Preparation of hierarchical polyimide hollow spheres via a gas bubble templated transimidization induced crystallization process | |
Ahmadizadegan et al. | Preparation and application of novel bionanocomposite green membranes for gas separation | |
Hu et al. | Nanoparticle dispersion and glass transition behavior of polyimide-grafted silica nanocomposites | |
Dinari et al. | Thermal and morphological properties of nanocomposite materials based on graphene oxide and L-leucine containing poly (benzimidazole-amide) prepared by ultrasonic irradiation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20170310 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20171218 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20180123 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20180309 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20180523 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20181106 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20190528 |