JP2015022028A - Imaging device - Google Patents

Imaging device Download PDF

Info

Publication number
JP2015022028A
JP2015022028A JP2013147923A JP2013147923A JP2015022028A JP 2015022028 A JP2015022028 A JP 2015022028A JP 2013147923 A JP2013147923 A JP 2013147923A JP 2013147923 A JP2013147923 A JP 2013147923A JP 2015022028 A JP2015022028 A JP 2015022028A
Authority
JP
Japan
Prior art keywords
signal
pixel
focus detection
image
imaging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2013147923A
Other languages
Japanese (ja)
Inventor
西尾 彰宏
Teruhiro Nishio
彰宏 西尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2013147923A priority Critical patent/JP2015022028A/en
Publication of JP2015022028A publication Critical patent/JP2015022028A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Focusing (AREA)
  • Automatic Focus Adjustment (AREA)
  • Studio Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To facilitate processing of amending a signal of a focus detection pixel serving as a defect pixel to a signal for generating an image, while giving a light-shield shape of a focus detection pixel a degree of freedom.SOLUTION: An imaging device comprises: an image pickup element that has an imaging pixel in which an aperture of a pixel is not shielded, and a focus detection pixel in which one part of the aperture of the pixel is shielded; a signal generation part that generates a first signal of a signal serving as the focus detection pixel, and a second signal serving as a signal subtracting the signal of the focus detection pixel from a signal of the imaging pixel; a selection part that selects any of the first signal and the second signal generated by the signal generation part for use in a focus detection; and a focus detection part that performs the focus detection in a phase difference detection method, using one signal of the first signal and the second signal selected by the selection part.

Description

本発明は、撮像装置におけるオートフォーカス技術に関するものである。   The present invention relates to an autofocus technique in an imaging apparatus.

近年、静止画や動画の撮影時には、撮像素子に結像した被写体像をリアルタイムに観察しながら撮影を行うような所謂ライブビュー撮影の様式が一般化しつつある。従来、ライブビュー撮影中に自動焦点検出を行なうための方式として、撮像用画素で光電変換を行った被写体像のコントラスト変化を検出して合焦状態を判断するコントラスト評価式の焦点検出方式がある。   In recent years, when shooting a still image or a moving image, a so-called live view shooting mode in which shooting is performed while observing a subject image formed on an image sensor in real time is becoming common. 2. Description of the Related Art Conventionally, as a method for performing automatic focus detection during live view shooting, there is a contrast evaluation type focus detection method that detects a change in contrast of a subject image that has been subjected to photoelectric conversion by an imaging pixel and determines an in-focus state. .

一方、撮像素子面上での位相差検出方式を用いることで素早いフォーカスレンズ駆動を行う方法が、例えば特許文献1で提案されている。また特許文献2においては、遮光を行ったため欠損画素となり補正処理が必要となるような焦点検出用画素の個数を減らす提案がなされている。具体的には、位相差検出を行うための一対の焦点検出用画素の他方を、撮像用画素の信号から一方の焦点検出用画素の信号を差し引いた差分を用いて仮想的な焦点検出用画素とする方法が提案されている。   On the other hand, for example, Patent Document 1 proposes a method of quickly driving a focus lens by using a phase difference detection method on the image sensor surface. In Patent Document 2, there is a proposal to reduce the number of focus detection pixels that have been subjected to light shielding and become defective pixels and need correction processing. Specifically, a virtual focus detection pixel is obtained by using the difference obtained by subtracting the signal of one focus detection pixel from the signal of the imaging pixel for the other of the pair of focus detection pixels for performing phase difference detection. A method has been proposed.

特開2004−191629号公報JP 2004-191629 A 特許第4797606号公報Japanese Patent No. 4797606

しかしながら、特許文献2においては、位相差検出を行うための一対の焦点検出用画素のうち一方だけに遮光部材を有した焦点検出用画素の信号を用いる。そのため、焦点検出精度向上のために一対の焦点検出信号がなるべく対称となるようにするには、焦点検出用画素中の遮光部材は実質的に光電変換部に入射する光線範囲を半分にするような遮光形状に限定されるものであった。   However, in Patent Document 2, a signal of a focus detection pixel having a light shielding member in only one of a pair of focus detection pixels for performing phase difference detection is used. Therefore, in order to make the pair of focus detection signals as symmetrical as possible in order to improve the focus detection accuracy, the light shielding member in the focus detection pixel substantially halves the light beam range incident on the photoelectric conversion unit. The light shielding shape is limited.

本発明は上述した課題に鑑みてなされたものであり、その目的は、焦点検出用画素の遮光形状に自由度を与えつつ、欠損画素となる焦点検出用画素の信号を画像生成のための信号に補正する処理を容易にすることである。   The present invention has been made in view of the above-described problems, and an object of the present invention is to provide a signal for generating an image of a focus detection pixel signal serving as a defective pixel while giving a degree of freedom to a light shielding shape of the focus detection pixel. It is to facilitate the correction process.

本発明に係わる撮像装置は、画素の開口が遮光されていない撮像用画素と、画素の開口の一部が遮光された焦点検出用画素とを有する撮像素子と、前記焦点検出用画素の信号である第1の信号と、前記撮像用画素の信号から前記焦点検出用画素の信号を差し引いた信号である第2の信号とを生成する信号生成手段と、前記信号生成手段により生成された前記第1の信号と前記第2の信号のどちらを焦点検出に用いるかを選択する選択手段と、前記選択手段により選択された、前記第1の信号と前記第2の信号のうちの一方の信号を用いて位相差検出方式の焦点検出を行う焦点検出手段と、を備えることを特徴とする。   An image pickup apparatus according to the present invention includes an image pickup element having an image pickup pixel in which a pixel opening is not shielded, a focus detection pixel in which a part of the pixel opening is shielded, and a signal from the focus detection pixel. A signal generation unit that generates a first signal and a second signal that is a signal obtained by subtracting the signal of the focus detection pixel from the signal of the imaging pixel; and the first signal generated by the signal generation unit. A selection means for selecting which one of the first signal and the second signal is used for focus detection; and one of the first signal and the second signal selected by the selection means. And a focus detection unit that performs focus detection using a phase difference detection method.

本発明によれば、焦点検出用画素の遮光形状に自由度を与えつつ、欠損画素となる焦点検出用画素の信号を画像生成のための信号に補正する処理を容易にすることが可能となる。   ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to make easy the process which correct | amends the signal of the focus detection pixel used as a defect pixel to the signal for image generation, giving a freedom degree to the light shielding shape of the focus detection pixel. .

本発明の撮像装置の一実施形態であるカメラの構成を示す図。1 is a diagram illustrating a configuration of a camera that is an embodiment of an imaging apparatus of the present invention. 撮像素子の画素配列の一例を示す図。FIG. 3 is a diagram illustrating an example of a pixel array of an image sensor. 図2の撮像素子中の撮像用画素、焦点検出用画素、仮想焦点検出用画素の開口形状を示した図。The figure which showed the opening shape of the pixel for an imaging in the image sensor of FIG. 2, a focus detection pixel, and a virtual focus detection pixel. 図3に対応した画素における光電変換部へ導光される光線範囲をそれぞれ示した図。The figure which each showed the light beam range guided to the photoelectric conversion part in the pixel corresponding to FIG. 図3及び図4の各画素における瞳強度分布関係を示したグラフ。The graph which showed the pupil intensity distribution relationship in each pixel of FIG.3 and FIG.4. 図2の撮像素子中の撮像用画素、図3(b)の画素と対になる焦点検出用画素、図3(c)と対になる仮想焦点検出用画素の開口形状を示した図。The figure which showed the opening shape of the pixel for an imaging in the image pick-up element of FIG. 2, the pixel for a focus detection paired with the pixel of FIG.3 (b), and the virtual focus detection pixel paired with FIG.3 (c). 図6に対応した画素における光電変換部へ導光される光線範囲をそれぞれ示した図。The figure which each showed the light beam range guided to the photoelectric conversion part in the pixel corresponding to FIG. 図6及び図7の各画素における瞳強度分布関係を示したグラフ。The graph which showed the pupil intensity distribution relationship in each pixel of FIG.6 and FIG.7. 一対の焦点検出用画素の像信号関係を示した図。The figure which showed the image signal relationship of a pair of focus detection pixel. 欠損画素補正を行うための参照画素を示した図。The figure which showed the reference pixel for performing a defect pixel correction | amendment. 本発明の一実施形態における焦点検出作動の流れを示す図。The figure which shows the flow of the focus detection operation | movement in one Embodiment of this invention.

以下、本発明の一実施形態について、添付図面を参照して詳細に説明する。図1は本発明の撮像装置の一実施形態であるカメラの構成を示す図である。図1は、撮像素子を有したカメラ本体と撮影光学系が一体となったコンパクトタイプのデジタルカメラを示しており、動画及び静止画が記録可能なものである。   Hereinafter, an embodiment of the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 is a diagram showing a configuration of a camera which is an embodiment of an imaging apparatus of the present invention. FIG. 1 shows a compact digital camera in which a camera body having an image sensor and a photographing optical system are integrated, and can record moving images and still images.

図1において、101は撮影光学系を示している。102は撮影光学系(結像光学系)の先端に配置された第1レンズ群で、光軸方向に移動可能に保持される。103は絞りで、その開口径を調節することで撮影時の光量調節を行うほか、静止画撮影時には露光秒時調節用シャッタとしても機能する。104は第2レンズ群である。そして絞り103及び第2レンズ群104は一体となって光軸方向に駆動され、第1レンズ群102の移動動作との連動により、変倍作用(ズーム機能)をなす。105は第3レンズ群で、光軸方向の移動により、焦点調節を行なう。106は光学的ローパスフィルタで、撮影画像の偽色やモアレを軽減するための光学素子である。   In FIG. 1, reference numeral 101 denotes a photographing optical system. Reference numeral 102 denotes a first lens group disposed at the tip of the photographing optical system (imaging optical system), which is held movably in the optical axis direction. Reference numeral 103 denotes an aperture, which adjusts the light amount at the time of shooting by adjusting the aperture diameter, and also functions as an exposure time adjustment shutter at the time of still image shooting. Reference numeral 104 denotes a second lens group. The diaphragm 103 and the second lens group 104 are integrally driven in the optical axis direction, and perform a zooming function (zoom function) in conjunction with the moving operation of the first lens group 102. Reference numeral 105 denotes a third lens group that performs focus adjustment by movement in the optical axis direction. Reference numeral 106 denotes an optical low-pass filter, which is an optical element for reducing false colors and moire in a captured image.

107はC−MOSセンサとその周辺回路で構成された撮像素子である。撮像素子107には、横方向にM画素、縦方向にN画素の受光ピクセルが正方配置され、ベイヤー配列の原色カラーモザイクフィルタがオンチップで形成された、2次元単板カラーセンサが用いられる。   Reference numeral 107 denotes an image sensor composed of a C-MOS sensor and its peripheral circuits. The image sensor 107 is a two-dimensional single-plate color sensor in which M pixels in the horizontal direction and N pixels in the vertical direction are squarely arranged, and a primary color mosaic filter in a Bayer array is formed on-chip.

111はズームアクチュエータで、不図示のカム筒を手動もしくはアクチュエータで回動することにより、第1レンズ群102ないし第3レンズ群105を光軸方向に駆動し、変倍操作を行なう。112は絞りアクチュエータで、絞り103の開口径を制御して撮影光量を調節すると共に、静止画撮影時の露光時間制御を行なう。113はフォーカスアクチュエータで、第3レンズ群105を光軸方向に駆動して焦点調節を行なう。   Reference numeral 111 denotes a zoom actuator, which rotates a cam cylinder (not shown) manually or by an actuator, thereby driving the first lens group 102 to the third lens group 105 in the optical axis direction to perform a zooming operation. Reference numeral 112 denotes a diaphragm actuator that controls the aperture diameter of the diaphragm 103 to adjust the amount of photographing light and controls the exposure time during still image photographing. A focus actuator 113 drives the third lens group 105 in the optical axis direction to adjust the focus.

121はCPUで、カメラ本体の種々の制御を司るために、演算部、ROM、RAM、A/Dコンバータ、D/Aコンバータ、通信インターフェイス等を有する。そしてROMに記憶された所定のプログラムに基づいて、カメラが有する各種手段を駆動し、AF、撮影、画像処理、記録等の一連の動作を実行する。   Reference numeral 121 denotes a CPU, which has a calculation unit, ROM, RAM, A / D converter, D / A converter, communication interface, and the like to control various controls of the camera body. Based on a predetermined program stored in the ROM, various means included in the camera are driven, and a series of operations such as AF, photographing, image processing, and recording are executed.

122は撮像素子駆動部で、撮像素子107の撮像動作を制御するとともに、取得した画像信号をA/D変換してCPU121に送信する。123は画像処理部で、撮像素子107が取得した画像のγ変換、カラー補間、画像圧縮等の処理を行なう。また欠損画素により画像に不具合が生じた時には、欠損画素補正部124により画像補正処理を行って画像を修正する。   Reference numeral 122 denotes an image sensor driving unit that controls the imaging operation of the image sensor 107 and A / D-converts the acquired image signal and transmits it to the CPU 121. An image processing unit 123 performs processes such as γ conversion, color interpolation, and image compression of the image acquired by the image sensor 107. When a defect occurs in the image due to the defective pixel, the defective pixel correction unit 124 performs image correction processing to correct the image.

125は焦点検出用画素抽出部で、撮像素子駆動部122により抽出された撮像用画素の信号中に存在する位相差を検出する方式(位相差検出方式)の焦点検出に用いられる画素信号を抽出する手段である。126は仮想焦点検出用画素生成部で、焦点検出用画素抽出部125にて抽出された焦点検出に用いられる画素信号と他の画素信号から仮想的な焦点検出用の画素信号を生成させる(信号生成)。   Reference numeral 125 denotes a focus detection pixel extraction unit that extracts a pixel signal used for focus detection in a method of detecting a phase difference (phase difference detection method) in an image pickup pixel signal extracted by the image pickup device driving unit 122. It is means to do. A virtual focus detection pixel generation unit 126 generates a virtual focus detection pixel signal from the pixel signal used for focus detection extracted by the focus detection pixel extraction unit 125 and other pixel signals (signals). Generation).

127は焦点検出信号選択部であり、焦点検出用画素抽出部125で得られた焦点検出用画素か仮想焦点検出用画素生成部126で得られる仮想的焦点検出用画素のどちらの画素の信号を用いるかを選択する手段である。128は焦点検出部であり、選択された焦点検出用の画素信号を用いて位相差方式の焦点検出を行って合焦状態からのデフォーカス情報を算出する。なお、以上の焦点検出に関わる箇所については後に詳細に説明する。   Reference numeral 127 denotes a focus detection signal selection unit, which is a signal of either the focus detection pixel obtained by the focus detection pixel extraction unit 125 or the virtual focus detection pixel obtained by the virtual focus detection pixel generation unit 126. It is a means for selecting whether to use. A focus detection unit 128 performs phase difference type focus detection using the selected focus detection pixel signal and calculates defocus information from the focused state. Note that the portions related to the focus detection described above will be described in detail later.

131はフォーカス駆動部で、焦点検出部128のデフォーカス情報に基づいてフォーカスアクチュエータ113を駆動制御し、第3レンズ群105を光軸方向に駆動して焦点調節を行なう。132は絞り駆動部で、絞りアクチュエータ112を駆動制御して絞り103の開口を制御する。133はズーム駆動部で、撮影者のズーム操作に応じてズームアクチュエータ111を駆動する。   A focus driving unit 131 controls the focus actuator 113 based on the defocus information of the focus detection unit 128, and drives the third lens group 105 in the optical axis direction to perform focus adjustment. Reference numeral 132 denotes an aperture driving unit that controls the aperture of the aperture 103 by drivingly controlling the aperture actuator 112. Reference numeral 133 denotes a zoom drive unit that drives the zoom actuator 111 in accordance with the zoom operation of the photographer.

141はLCD等の表示装置で、カメラの撮影モードに関する情報、撮影時のプレビュー画像と撮影後の確認用画像、焦点検出時の合焦状態表示画像、カメラの姿勢情報等を表示する。142は操作スイッチ群で、電源スイッチ、撮影開始スイッチ、ズーム操作スイッチ、撮影モード選択スイッチ等で構成される。143は着脱可能なフラッシュメモリで、撮影済み画像を記録する。   Reference numeral 141 denotes a display device such as an LCD, which displays information related to the shooting mode of the camera, a preview image at the time of shooting and a confirmation image after shooting, a focus state display image at the time of focus detection, camera posture information, and the like. A group of operation switches 142 includes a power switch, a shooting start switch, a zoom operation switch, a shooting mode selection switch, and the like. Reference numeral 143 denotes a detachable flash memory that records a photographed image.

図2は、本実施形態における撮像素子の画素配列の一例を示した図である。図2は、2次元C−MOSエリアセンサの縦(Y方向)12行と横(X方向)14列の範囲を、撮影光学系側から観察した状態を示している。カラーフィルタはベイヤー配列が適用され、奇数行の画素には、左から順に緑(Green)と赤(Red)のカラーフィルタが交互に設けられる。また、偶数行の画素には、左から順に青(Blue)と緑(Green)のカラーフィルタが交互に設けられる。図2中ではGreen、Red、Blueのカラーフィルタ配置を略してG、R、Bと記している。   FIG. 2 is a diagram illustrating an example of a pixel array of the image sensor according to the present embodiment. FIG. 2 shows a state in which a range of 12 rows in the vertical direction (Y direction) and 14 columns in the horizontal direction (X direction) of the two-dimensional C-MOS area sensor is observed from the photographing optical system side. A Bayer arrangement is applied to the color filters, and green (Red) and red (Red) color filters are alternately provided in order from the left on pixels in odd rows. In addition, blue (Blue) and green (Green) color filters are alternately provided in order from the left in the pixels in even rows. In FIG. 2, the color filter arrangement of Green, Red, and Blue is abbreviated as G, R, and B.

201〜205等の円はオンチップマイクロレンズを表わす。オンチップマイクロレンズの内側に配置された複数の矩形はそれぞれ光電変換部(受光部)である。また、図中で黒くハッチングされた部分は画素内で遮光を行っている部分である。以下の説明において、分割された複数の光電変換部を連結した形状を連結形状、連結形状の中心を連結中心と称する。   Circles such as 201-205 represent on-chip microlenses. Each of the plurality of rectangles arranged inside the on-chip microlens is a photoelectric conversion unit (light receiving unit). In addition, the black hatched portion in the figure is a portion that is shielded from light within the pixel. In the following description, a shape in which a plurality of divided photoelectric conversion units are connected is referred to as a connection shape, and the center of the connection shape is referred to as a connection center.

201は第1の画素群であり以後は一般画素と呼称する、第1の画素群の出力は記録用画像の生成に利用される。ここで記録用画像とは、JPEG等のフォーマットで規定された静止画画像のほかに、動画も該当するものである。また図中の202〜205は第2の画素群である。   Reference numeral 201 denotes a first pixel group, which is hereinafter referred to as a general pixel, and the output of the first pixel group is used to generate a recording image. Here, the image for recording corresponds to a moving image in addition to a still image defined in a format such as JPEG. Reference numerals 202 to 205 in the figure denote a second pixel group.

第2の画素群については後で詳しく述べるが、第2の画素群の画素である画素202と203または画素204と205の一対の画素で光電変換された画素信号を、位相差方式の焦点検出に利用する。または画素201の画素信号から上記の画素の画素信号を差し引いた差分信号を位相差方式の焦点検出に利用する。なお、第2の画素群の画素信号は、出力信号に対し修正処理を行うことで記録用画像信号として利用することが可能である。   Although the second pixel group will be described in detail later, a pixel signal photoelectrically converted by a pair of pixels of the pixels 202 and 203 or the pixels 204 and 205 which are pixels of the second pixel group is used to detect a focus using a phase difference method. To use. Alternatively, a difference signal obtained by subtracting the pixel signal of the pixel from the pixel signal of the pixel 201 is used for focus detection by the phase difference method. The pixel signal of the second pixel group can be used as a recording image signal by performing correction processing on the output signal.

ここで画素202、203と画素204、205は直交方向の被写体像(縦縞及び横縞パターン)をそれぞれ検出するものである。図の画素配列方向においては、画素202と203の一対の画素は水平方向(図中X方向に走査して縦縞パターンの検出)の被写体像信号を検出する。また、画素204と205の一対の画素は垂直方向(図中Y方向に走査して横縞パターンの検出)の被写体像信号を検出する。そしてそれらの差分信号から位相差を求めて焦点検出を行う。そして画素202〜205の画素群は隣接した一般画素群201との出力信号の差分信号を用いても焦点検出が行えるものである。   Here, the pixels 202 and 203 and the pixels 204 and 205 detect subject images (vertical stripes and horizontal stripe patterns) in orthogonal directions, respectively. In the pixel arrangement direction in the figure, the pair of pixels 202 and 203 detect a subject image signal in the horizontal direction (scanning in the X direction in the figure to detect a vertical stripe pattern). A pair of pixels 204 and 205 detects a subject image signal in the vertical direction (scanning in the Y direction in the figure to detect a horizontal stripe pattern). Then, a phase difference is obtained from these difference signals to perform focus detection. The pixel groups of the pixels 202 to 205 can perform focus detection using a difference signal of an output signal from the adjacent general pixel group 201.

その説明を図3〜図5を用いて行う。図3は、前述した本実施形態の第1の形状の画素(撮像用画素)201と、撮像素子内に遮光部材を配した第2の形状の画素(焦点検出用画素)202と、それらの画素から生成される仮想的な焦点検出用の画素211を示した図である。そして図4は、本実施形態の画素の断面を簡略に示した図である。   This will be described with reference to FIGS. FIG. 3 illustrates the first shape pixel (imaging pixel) 201 of the present embodiment, the second shape pixel (focus detection pixel) 202 in which a light shielding member is arranged in the image sensor, It is the figure which showed the pixel 211 for the virtual focus detection produced | generated from a pixel. FIG. 4 is a diagram simply showing a cross section of the pixel of this embodiment.

図4(a)は第1の形状の画素201の断面に相当するものであり、図3(a)の様に光電変換部221に対し遮光部材は設けていないものである。図4(b)は光電変換部への導光経路の一部に遮光部材405を配置して、撮影光学系の射出瞳からの入射光線範囲を規制した第2の形状の画素202の断面に相当するものである。そして、この例では、図4(b)の画素は、遮光部材405によって光電変換部の開口形状が光電変換部221の約3/4の面積に設定されている。   FIG. 4A corresponds to a cross section of the pixel 201 having the first shape, and a light shielding member is not provided for the photoelectric conversion unit 221 as illustrated in FIG. FIG. 4B shows a cross section of the pixel 202 having the second shape in which the light shielding member 405 is arranged in a part of the light guide path to the photoelectric conversion unit and the range of the incident light from the exit pupil of the photographing optical system is regulated. It is equivalent. In this example, in the pixel in FIG. 4B, the opening shape of the photoelectric conversion unit is set to about 3/4 of the area of the photoelectric conversion unit 221 by the light shielding member 405.

そして、図4(c)は図4(a)及び図4(b)で示した構成の画素から生成される仮想的な焦点検出用画素の断面構造を示す。ここでは単純に図3(a)の開口形状221から図3(b)の開口形状222を差し引いた差分として、開口形状221に対して仮想的に約1/4の面積の開口形状223が生成される。   FIG. 4C shows a cross-sectional structure of a virtual focus detection pixel generated from the pixel having the configuration shown in FIGS. 4A and 4B. Here, as the difference obtained by simply subtracting the opening shape 222 of FIG. 3B from the opening shape 221 of FIG. 3A, an opening shape 223 having an area of approximately ¼ of the opening shape 221 is generated. Is done.

次に上記の光電変換部の開口形状の変化によって撮影光学系の射出瞳から光電変換部に入射して画像信号となる信号強度の変化の様子を図4と図5を用いて説明する。   Next, a change in the signal intensity that is input to the photoelectric conversion unit from the exit pupil of the photographing optical system and becomes an image signal due to the change in the aperture shape of the photoelectric conversion unit will be described with reference to FIGS.

ここで、図4中で示している平面401〜403は撮影光学系の射出瞳位置に配置された平面であると考えることにする。すると図4(a)中の平面401から射出される光線は、図2で示した一般画素201に入射して光電変換部221に照射される。そして、光電変換部221にて光電変換作用を行うことになるが、以下では、その時の光線入射角度と光電変換強度の関係を瞳強度分布と呼び、平面401のように光線を照射する平面範囲を瞳強度分布範囲と呼ぶことにする。   Here, the planes 401 to 403 shown in FIG. 4 are considered to be planes arranged at the exit pupil position of the photographing optical system. Then, the light beam emitted from the plane 401 in FIG. 4A enters the general pixel 201 shown in FIG. 2 and is applied to the photoelectric conversion unit 221. The photoelectric conversion unit 221 performs a photoelectric conversion action. Hereinafter, the relationship between the light incident angle and the photoelectric conversion intensity at that time is referred to as a pupil intensity distribution, and a plane range in which a light beam is irradiated as in the plane 401. Is called the pupil intensity distribution range.

また図4(b)の405は第2の形状の画素202中に設けられる遮光部材を示した図であり、遮光部材405は、瞳強度分布範囲401の一部の範囲からの光電変換部222への入射を規制して402に示すような瞳強度分布範囲に変換する。   4B is a diagram illustrating a light shielding member provided in the pixel 202 having the second shape. The light shielding member 405 includes a photoelectric conversion unit 222 from a partial range of the pupil intensity distribution range 401. Is converted into a pupil intensity distribution range as indicated by 402.

406は、図4(a)と図4(b)から得られる仮想的な遮光部形状を示したものである。そして仮想的な遮光部406の作用によって、瞳強度分布範囲401から402を差し引いた差分として新たな瞳強度分布範囲403が生成されるものとしている。   Reference numeral 406 denotes a virtual light shielding portion shape obtained from FIGS. 4A and 4B. A new pupil intensity distribution range 403 is generated as a difference obtained by subtracting 402 from the pupil intensity distribution range 401 by the action of the virtual light shielding unit 406.

図5のグラフは、瞳強度分布特性を示した図である。図4で示されている平面401〜403は均一照度である面光源としたときに、撮影光学系の入射瞳位置に相当するものとする。そして平面401〜403より撮像用画素201、202への光線入射角度を横軸に設定している。そして、図5は、各光線入射角度に対して光電変換部が光線を受光して電気信号として出力する電気強度変化特性を示し、これが瞳強度分布特性である。なお、図5のグラフの縦軸は光電変換強度の最大値が1になるように正規化を行っている。   The graph of FIG. 5 shows the pupil intensity distribution characteristics. The planes 401 to 403 shown in FIG. 4 correspond to the entrance pupil position of the photographing optical system when a plane light source having uniform illuminance is used. Then, the horizontal axis represents the light incident angle to the imaging pixels 201 and 202 from the planes 401 to 403. FIG. 5 shows an electric intensity change characteristic in which the photoelectric conversion unit receives a light beam and outputs it as an electric signal with respect to each light beam incident angle, which is a pupil intensity distribution characteristic. Note that the vertical axis of the graph of FIG. 5 is normalized so that the maximum value of the photoelectric conversion intensity is 1.

ここで、図5中にS0で示される曲線は撮像用画素201の瞳強度分布特性を示し、S1aで示す曲線は画素202の瞳強度分布特性を示している。そしてS2aで示す曲線は、S0で示す曲線の光電変換強度からS1aで示した曲線の光電変換強度を差し引いた差分を示している。そして差分S2aで示される曲線が図4(c)で示した仮想焦点検出用画素211における瞳強度分布特性を表す。   Here, the curve indicated by S0 in FIG. 5 indicates the pupil intensity distribution characteristic of the imaging pixel 201, and the curve indicated by S1a indicates the pupil intensity distribution characteristic of the pixel 202. A curve indicated by S2a indicates a difference obtained by subtracting the photoelectric conversion intensity of the curve indicated by S1a from the photoelectric conversion intensity of the curve indicated by S0. The curve indicated by the difference S2a represents the pupil intensity distribution characteristic in the virtual focus detection pixel 211 shown in FIG.

図6は、図3の焦点検出用画素202または仮想焦点検出用画素211と一対となって位相差方式の焦点検出を行う画素形状である。図6(a)は図3(a)と同様な一般画素である。また、図6(b)の画素203は、図3(b)の画素202の開口形状222が走査を行う方向(図では水平方向)に対象となるような開口形状224を有している。そして図6(c)の画素212は、図3(c)の画素211と同様に図6(a)の一般画素201から図6(b)の画素203を差し引いた差分で生成される仮想的な開口形状225を有した仮想焦点検出用画素である。   FIG. 6 shows a pixel shape for performing phase difference type focus detection paired with the focus detection pixel 202 or the virtual focus detection pixel 211 of FIG. FIG. 6A shows a general pixel similar to that shown in FIG. Further, the pixel 203 in FIG. 6B has an opening shape 224 in which the opening shape 222 of the pixel 202 in FIG. 3B is targeted in the scanning direction (horizontal direction in the drawing). The pixel 212 in FIG. 6C is a virtual image generated by the difference obtained by subtracting the pixel 203 in FIG. 6B from the general pixel 201 in FIG. 6A similarly to the pixel 211 in FIG. This is a virtual focus detection pixel having a clear aperture shape 225.

図7は図4と同様に図6(a)、(b)、(c)の各画素に対応する断面構造である。図中の401と702は撮影光学系の射出瞳に対する光電変換作用を行う瞳面上の入射瞳範囲であり、703は入射瞳範囲401から入射瞳範囲702を差し引いた差分で生成される仮想的な入射瞳範囲を示している。   FIG. 7 shows a cross-sectional structure corresponding to each pixel in FIGS. 6A, 6B, and 6C as in FIG. Reference numerals 401 and 702 in the figure denote an entrance pupil range on the pupil plane that performs a photoelectric conversion action on the exit pupil of the imaging optical system. The entrance pupil range is shown.

そして図4(b)の入射瞳範囲402と図7(b)の入射瞳範囲702から焦点検出用画素へ光線が入射され、受光した光線から光電変換された一対の電気信号を用いて位相差方式の焦点検出を行う。もしくは図4(c)の仮想的入射瞳範囲403と図7(c)の仮想的な入射瞳範囲703から仮想焦点検出用画素へ光線が入射され、受光した光線から光電変換された一対の電気信号を用いて位相差方式の焦点検出を行う。   Then, a light beam is incident on the focus detection pixel from the entrance pupil range 402 in FIG. 4B and the entrance pupil range 702 in FIG. 7B, and a phase difference is obtained using a pair of electrical signals photoelectrically converted from the received light beam. The focus detection is performed. Alternatively, light is incident on the virtual focus detection pixel from the virtual entrance pupil range 403 in FIG. 4C and the virtual entrance pupil range 703 in FIG. 7C, and a pair of electricity photoelectrically converted from the received light. A phase difference type focus detection is performed using the signal.

図8は、図5で説明したものと同様に、図7中の一般画素201における瞳強度分布特性を示すS0と、焦点検出用画素203における瞳強度分布特性を示すS1bを示している。また、S0で示した光電変換強度からS1bで示した光電変換強度を差し引いた差分で表わした仮想焦点検出用画素の瞳強度分布特性である曲線S2bを表している。   FIG. 8 shows S0 indicating the pupil intensity distribution characteristics of the general pixel 201 in FIG. 7 and S1b indicating the pupil intensity distribution characteristics of the focus detection pixel 203 in the same manner as described with reference to FIG. Further, a curve S2b that is a pupil intensity distribution characteristic of the virtual focus detection pixel expressed by a difference obtained by subtracting the photoelectric conversion intensity indicated by S1b from the photoelectric conversion intensity indicated by S0 is shown.

これらの特性は、焦点検出を行う走査方向の入射角度をグラフの横軸とすると、図5と図7における位相差方式の焦点検出を行う一対の焦点検出用画素の瞳強度分布特性は入射角0°時の縦軸に対して対称な特性になっている。よって位相差検出時の相関演算処理が行い易く正確な焦点検出が行える。   With respect to these characteristics, when the incident angle in the scanning direction for performing focus detection is the horizontal axis of the graph, the pupil intensity distribution characteristics of the pair of focus detection pixels performing focus detection by the phase difference method in FIGS. The characteristic is symmetrical with respect to the vertical axis at 0 °. Therefore, the correlation calculation process at the time of phase difference detection is easy to perform, and accurate focus detection can be performed.

次に前述した画素構造による位相差方式の焦点検出に関して図9を用いて説明を行う。図9中のAI0、BI0は焦点検出を行う走査方向に焦点検出用画素群の出力信号を補間合成した一対の波形信号(A像波形とB像波形と呼称する)であり、L0は各波形の信号強度重心位置の隔たりを相関量の代りとして示したものである。   Next, the phase difference type focus detection based on the pixel structure will be described with reference to FIG. In FIG. 9, AI0 and BI0 are a pair of waveform signals (referred to as an A image waveform and a B image waveform) obtained by interpolating and synthesizing the output signals of the focus detection pixel group in the scanning direction for performing focus detection. The difference in the signal intensity barycentric position is shown in place of the correlation amount.

ここで図9のAI0とBI0は、図4(b)と図7(b)の組み合わせで示した一対の焦点検出用画素群の出力波形、もしくは図4(c)と図7(c)の組み合わせで示した一対の仮想焦点検出用画素群から生成される仮想的な出力波形を示したものである。   Here, AI0 and BI0 in FIG. 9 are the output waveforms of the pair of focus detection pixel groups shown in the combination of FIGS. 4B and 7B, or in FIGS. 4C and 7C. 2 shows a virtual output waveform generated from a pair of virtual focus detection pixel groups shown in combination.

位相差焦点検出方式はA像波形とB像波形の相対位置をずらして互いの波形を重ね合わせ差異部分の面積量がもっとも小さくなる状態を相関が最も取れている状態とする。そしてA像波形に対するB像波形の相対的なずらし量(像ズレ量)を検出して像ズレ量から基線長を除算することでデフォーカス量の算出を行う。   In the phase difference focus detection method, the relative positions of the A image waveform and the B image waveform are shifted to superimpose each other waveform, and the state where the area amount of the difference portion is the smallest is the most correlated state. Then, the relative shift amount (image shift amount) of the B image waveform with respect to the A image waveform is detected, and the defocus amount is calculated by dividing the base line length from the image shift amount.

以上説明した焦点検出用画素群において、焦点検出用光電変換部の開口形状の大きさを決定する要因は次のとおりである。   In the focus detection pixel group described above, the factors that determine the size of the aperture shape of the focus detection photoelectric conversion unit are as follows.

繰り返しになるが、位相差検出式の焦点検出方法においては、撮影光学系の射出瞳上で焦点検出用光束の瞳分割を行なう。そして、例えば図4と図7における402と702、403と703の様に一対の瞳分割された画素群の一方向(図2におけるX又はY方向)の走査を行ってその電気信号波形から位相差検出を行う。   Again, in the phase difference detection type focus detection method, the pupil of the focus detection beam is divided on the exit pupil of the photographing optical system. Then, for example, scanning is performed in one direction (X or Y direction in FIG. 2) of a pair of pupil-divided pixel groups as in 402 and 702 and 403 and 703 in FIGS. Perform phase difference detection.

仮に瞳分割方向における瞳寸法が大きい場合には焦点検出精度は向上するが、焦点検出像のボケ量が大きくなりすぎると相関を取るための像信号が弱まってくるため、焦点検出可能範囲(検出出来るデフォーカス範囲)が狭くなる問題が出てくる。そのためデフォーカス量が小さくボケ量も小さい合焦位置近傍では焦点検出精度を向上させるために瞳寸法を大きくしてボケ量が大きくなるように設定した方が好ましい。また同一デフォーカス時のボケ量の大きさは撮影光学系のFno値によって異なるものである。   If the pupil size in the pupil division direction is large, the focus detection accuracy is improved. However, if the blur amount of the focus detection image becomes too large, the image signal for correlation is weakened. There is a problem that the defocus range that can be made becomes narrower. Therefore, in order to improve the focus detection accuracy in the vicinity of the in-focus position where the defocus amount is small and the blur amount is small, it is preferable to set the pupil size to be large so as to increase the blur amount. In addition, the amount of blur at the same defocus varies depending on the Fno value of the photographing optical system.

このように撮影光学系の仕様や焦点検出時の設定状態変化により、焦点検出用画素の信号の選択を変更する。例えば、デフォーカス量が小さくボケ量も小さい合焦位置近傍では、焦点検出用画素202と203による一対の像信号、すなわち瞳寸法の大きい402と702の一対の瞳範囲から得られる像信号の組み合わせを焦点検出に用いる。また、例えば、デフォーカス量が大きくボケ量も大きい場合には、仮想焦点検出用画素211と212の一対の組み合わせで示したように、瞳寸法の小さい403と703の一対の仮想瞳範囲から得られる仮想的像信号の組み合わせを焦点検出に用いる。   As described above, the selection of the signal for the focus detection pixel is changed according to the specification of the photographing optical system and the change in the setting state at the time of focus detection. For example, in the vicinity of the in-focus position where the defocus amount is small and the blur amount is small, a combination of image signals obtained by the focus detection pixels 202 and 203, that is, a combination of image signals obtained from a pair of pupil ranges 402 and 702 having a large pupil size. Are used for focus detection. Further, for example, when the defocus amount is large and the blur amount is large, as shown by a pair of virtual focus detection pixels 211 and 212, it is obtained from a pair of virtual pupil ranges of 403 and 703 having small pupil dimensions. A combination of virtual image signals to be used is used for focus detection.

以上、本実施形態における焦点検出の性能向上に関する説明を行ったが、前述した遮光部材を設けた焦点検出用画素の信号は本来の一般画素の信号に対して強度が低下している問題がある。   As described above, the focus detection performance improvement in the present embodiment has been described. However, there is a problem that the intensity of the signal of the focus detection pixel provided with the above-described light shielding member is lower than the signal of the normal general pixel. .

そのため記録画像用に撮像信号として用いると黒点やシミのような像が混ざり鑑賞画像としての品位が低下してしまう問題がある。このような焦点検出用画素は、撮像素子の製造工程不良で画素出力信号が規定値にならないような欠損画素と同類なものであると考えることができる。   Therefore, when used as an image pickup signal for a recorded image, there is a problem that images such as black spots and spots are mixed and the quality as an appreciation image is deteriorated. Such a focus detection pixel can be considered to be similar to a defective pixel whose pixel output signal does not become a specified value due to a defective manufacturing process of the image sensor.

図10は、この欠損画素の画像出力信号の改善を行うための補正方法を示したものである。ここでは、図2の遮光部材を施した画素203を例に挙げて説明する。   FIG. 10 shows a correction method for improving the image output signal of the defective pixel. Here, the pixel 203 provided with the light shielding member in FIG. 2 will be described as an example.

図10中で隣接した同色(ここではGreen)のフィルタの通常画素を矢印で示したように画素203の参照画素とする。例えば、図10中の4つの参照画素の出力信号の平均値を用いてその平均値を画素203の出力信号として用いるといった方法で、画素203の出力を補正する。   In FIG. 10, the normal pixel of the adjacent filter of the same color (here, Green) is set as a reference pixel of the pixel 203 as indicated by an arrow. For example, the output of the pixel 203 is corrected by using the average value of the output signals of the four reference pixels in FIG. 10 and using the average value as the output signal of the pixel 203.

しかしこの方法は画像信号の扱いが複雑になると同時に位置が離れていて被写体の異なる位置の(視差が生じている)像信号を用いる問題を含んでいる。そのため、例えばエッジを有するようなコントラストの輪郭が明瞭な被写体では、在るべきでない画像信号を出力してしまうような現象が起こり、正確な画像補正処理を行うことが難しくなってくる。   However, this method has a problem in that the handling of the image signal becomes complicated, and at the same time, the position is far away and the image signal at a different position of the subject (parallax is generated) is used. For this reason, for example, in a subject having a clear contrast outline such as an edge, a phenomenon that an image signal that should not be present occurs, and it becomes difficult to perform accurate image correction processing.

他の方法としては、画素203自身の出力値のゲインを持ち上げることで、隣接した同色カラーフィルタを有した画素との出力信号の不連続の低減を行う方法がある。この方法では自身の画像信号を用いるため、上記のような画像補正の正確性が被写体に依存するような欠点が緩和される利点がある。   As another method, there is a method of reducing the discontinuity of the output signal with an adjacent pixel having the same color filter by raising the gain of the output value of the pixel 203 itself. Since this method uses its own image signal, there is an advantage that the above-described disadvantage that the accuracy of image correction depends on the subject is alleviated.

これを実現するための補正方法として、図5又は図8の瞳強度分布曲線において、通常画素の出力特性のS0の曲線と補正を行う画素203の出力特性曲線のS1aまたはS1bの積分値を求めその面積比率からゲイン値を求める方法が考えられる。この方法は予め撮影時のFno値等の撮影光学系の射出瞳径に対してのゲイン値を設定しておけば簡略な補正方法と言える。   As a correction method for realizing this, in the pupil intensity distribution curve of FIG. 5 or FIG. 8, the integral value of S1a or S1b of the output characteristic curve of the normal pixel output characteristic S0 and the output characteristic curve of the pixel 203 to be corrected is obtained. A method for obtaining the gain value from the area ratio is conceivable. This method can be said to be a simple correction method if a gain value for the exit pupil diameter of the photographing optical system such as the Fno value at the time of photographing is set in advance.

但し、一定の入射角度範囲からの光線情報が欠損しているため本来捉えるべき被写体の一部が欠けた状態となっている。よって補正の正確性を出すためには欠損画素の遮光範囲は小さく設定して光量損失率はなるべく小さくすることが望ましい。よって本実施形態では、遮光部を受光面積の半分よりも小さくした焦点検出用画素(例えば202と203)から遮光部を受光面積の半分よりも大きくした焦点検出用画素(例えば211と212)の信号を仮想的に生成できるため、実際の焦点検出用画素は遮光部を小さくした画素のみでよい。そのため、上述したように簡易な方法で正確に欠損画素補正処理を行うことができる。   However, since the ray information from a certain incident angle range is missing, a part of the subject that should be captured is missing. Therefore, in order to obtain correction accuracy, it is desirable to set the light-shielding range of the defective pixel small and to reduce the light loss rate as much as possible. Therefore, in this embodiment, the focus detection pixels (for example, 211 and 212) having the light shielding portion larger than half of the light receiving area are changed from the focus detection pixels (for example, 202 and 203) having the light shielding portion smaller than the half of the light receiving area. Since the signal can be virtually generated, the actual focus detection pixel may be only a pixel having a small light shielding portion. Therefore, the defective pixel correction process can be accurately performed by a simple method as described above.

次に図11は、本実施形態の焦点検出の処理の流れを示したフローチャートである。ここでは、実焦点検出用画素の信号とそこから生成される仮想焦点検出用画素の信号の一方を選択した後に、その選択した画素から取得した信号で相関演算を行って焦点検出を行う方法を示している。   Next, FIG. 11 is a flowchart showing a flow of focus detection processing of the present embodiment. Here, after selecting one of the real focus detection pixel signal and the virtual focus detection pixel signal generated therefrom, a method of performing focus detection by performing correlation calculation on the signal acquired from the selected pixel is described. Show.

撮影機器が撮影被写体を捉え,先ずステップS100で撮影画素信号の取り込み処理を行う。そして焦点検出動作が開始されるとステップS101にて、焦点検出用画素の信号の取得処理を行い、ステップS102で焦点検出時のFno値の取得処理を行う。   The photographing device catches the photographing subject, and first, in step S100, the photographing pixel signal is captured. When the focus detection operation is started, in step S101, a signal for focus detection pixel signal acquisition processing is performed, and in step S102, Fno value acquisition processing at the time of focus detection is performed.

ステップS103にて、実焦点検出用画素またはそれから生成される仮想的な焦点検出用画素のどちらを焦点検出処理に採用するのかを判断するため、設定されている焦点検出時のFno値と閾値を比較する。   In step S103, in order to determine which of the actual focus detection pixel or the virtual focus detection pixel generated therefrom is to be used for the focus detection process, the set Fno value and threshold value at the time of focus detection are set. Compare.

ステップS103でFno値(絞り値)が閾値よりも明るい状態であると判断された場合には、ステップS104に移行して、S101にて取得された焦点検出用画素の信号と隣接した一般画素の信号とから仮想的な焦点検出用画素を生成する処理を行う。   When it is determined in step S103 that the Fno value (aperture value) is brighter than the threshold value, the process proceeds to step S104, and the signal of the focus detection pixel acquired in S101 and the general pixel adjacent to it. A process of generating a virtual focus detection pixel from the signal is performed.

ステップS105では、相関演算処理を、実焦点検出用画素の信号と仮想焦点検出用画素の信号の内でステップS103の条件分岐処理で選択された焦点検出信号を用いて行う。ステップS106では、ステップS105の相関演算で得られた像ズレ量からデフォーカス量の算出処理を行う。   In step S105, the correlation calculation process is performed using the focus detection signal selected in the conditional branching process in step S103 among the real focus detection pixel signal and the virtual focus detection pixel signal. In step S106, a defocus amount calculation process is performed from the image shift amount obtained by the correlation calculation in step S105.

次に、S107では、ステップS106で得られたデフォーカス量から、規定された合焦判定範囲内か否かを判断する。ここで合焦したと判断された場合は一連の焦点検出処理を終えて撮影動作等に移行する。一方合焦していないと判断された際にはステップS108にて算出されたデフォーカス量から合焦を行うのに必要なフォーカス駆動量の算出処理を行う。そしてステップS109にてステップS108で求められたフォーカス駆動量に基づいたフォーカス駆動を行った後にステップS101に戻り、再び焦点検出処理動作を繰り返す。   Next, in S107, it is determined from the defocus amount obtained in Step S106 whether or not it is within a specified focus determination range. If it is determined that the subject is in focus, a series of focus detection processes are finished and the process proceeds to a photographing operation or the like. On the other hand, when it is determined that the subject is not in focus, a focus drive amount calculation process necessary for focusing is performed from the defocus amount calculated in step S108. In step S109, after focus drive based on the focus drive amount obtained in step S108 is performed, the process returns to step S101, and the focus detection processing operation is repeated again.

なお、ステップS100の撮像用画素の信号の取り込み処理は撮像装置の撮像フレームレートに則り処理されるものであり、焦点検出処理とは異なるタイミングで処理が折り返されても良い。   Note that the capturing process of the signal for the imaging pixel in step S100 is performed in accordance with the imaging frame rate of the imaging apparatus, and the process may be turned back at a timing different from the focus detection process.

以上説明したように上記の実施形態においては、焦点検出用画素(欠損画素)の補正処理が行い易くなり、且つ焦点検出精度の向上を図ることができる。   As described above, in the above-described embodiment, it is easy to perform correction processing for focus detection pixels (defect pixels), and it is possible to improve focus detection accuracy.

本発明は、撮像素子を備えた電子カメラの焦点調節に関するものであり、特にムービーカメラ、デジタルスチルカメラに有用なものである。   The present invention relates to focus adjustment of an electronic camera provided with an image sensor, and is particularly useful for movie cameras and digital still cameras.

Claims (5)

画素の開口が遮光されていない撮像用画素と、画素の開口の一部が遮光された焦点検出用画素とを有する撮像素子と、
前記焦点検出用画素の信号である第1の信号と、前記撮像用画素の信号から前記焦点検出用画素の信号を差し引いた信号である第2の信号とを生成する信号生成手段と、
前記信号生成手段により生成された前記第1の信号と前記第2の信号のどちらを焦点検出に用いるかを選択する選択手段と、
前記選択手段により選択された、前記第1の信号と前記第2の信号のうちの一方の信号を用いて位相差検出方式の焦点検出を行う焦点検出手段と、
を備えることを特徴とする撮像装置。
An imaging device having an imaging pixel in which the aperture of the pixel is not shielded; and a focus detection pixel in which a part of the aperture of the pixel is shielded;
Signal generating means for generating a first signal that is a signal of the focus detection pixel and a second signal that is a signal obtained by subtracting the signal of the focus detection pixel from the signal of the imaging pixel;
Selecting means for selecting which of the first signal and the second signal generated by the signal generating means is used for focus detection;
Focus detection means for performing focus detection by a phase difference detection method using one of the first signal and the second signal selected by the selection means;
An imaging apparatus comprising:
前記画素の開口を遮光する遮光部材は、前記焦点検出用画素の受光部の面積の半分よりも小さい面積を遮光することを特徴とする請求項1に記載の撮像装置。   The imaging apparatus according to claim 1, wherein the light shielding member that shields the aperture of the pixel shields an area smaller than a half of an area of the light receiving portion of the focus detection pixel. 前記選択手段は、撮影に用いる撮影光学系の絞り値に基づいて、前記第1の信号と前記第2の信号のどちらを焦点検出に用いるかを選択することを特徴とする請求項1又は2に記載の撮像装置。   3. The selection unit according to claim 1, wherein the selection unit selects which of the first signal and the second signal is used for focus detection based on an aperture value of a photographing optical system used for photographing. The imaging device described in 1. 前記焦点検出用画素の信号を画像信号として用いるために、前記焦点検出用画素の信号を補正する補正手段をさらに備えることを特徴とする請求項1乃至3のいずれか1項に記載の撮像装置。   The imaging apparatus according to claim 1, further comprising a correcting unit that corrects the signal of the focus detection pixel in order to use the signal of the focus detection pixel as an image signal. . 画素の開口が遮光されていない撮像用画素と、画素の開口の一部が遮光された焦点検出用画素とを有する撮像素子を備える撮像装置を制御する方法であって、
前記焦点検出用画素の信号である第1の信号と、前記撮像用画素の信号から前記焦点検出用画素の信号を差し引いた信号である第2の信号とを生成する信号生成工程と、
前記信号生成工程により生成された前記第1の信号と前記第2の信号のどちらを焦点検出に用いるかを選択する選択工程と、
前記選択工程により選択された、前記第1の信号と前記第2の信号のうちの一方の信号を用いて位相差検出方式の焦点検出を行う焦点検出工程と、
を有することを特徴とする撮像装置の制御方法。
A method for controlling an imaging apparatus including an imaging element having an imaging pixel in which a pixel aperture is not shielded and a focus detection pixel in which a part of the pixel aperture is shielded.
A signal generation step of generating a first signal that is a signal of the focus detection pixel and a second signal that is a signal obtained by subtracting the signal of the focus detection pixel from the signal of the imaging pixel;
A selection step of selecting which of the first signal and the second signal generated by the signal generation step is used for focus detection;
A focus detection step of performing focus detection by a phase difference detection method using one of the first signal and the second signal selected by the selection step;
A method for controlling an imaging apparatus, comprising:
JP2013147923A 2013-07-16 2013-07-16 Imaging device Withdrawn JP2015022028A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013147923A JP2015022028A (en) 2013-07-16 2013-07-16 Imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013147923A JP2015022028A (en) 2013-07-16 2013-07-16 Imaging device

Publications (1)

Publication Number Publication Date
JP2015022028A true JP2015022028A (en) 2015-02-02

Family

ID=52486560

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013147923A Withdrawn JP2015022028A (en) 2013-07-16 2013-07-16 Imaging device

Country Status (1)

Country Link
JP (1) JP2015022028A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020017641A1 (en) * 2018-07-20 2020-01-23 株式会社ニコン Focus detection device, image capture device and interchangeable lens
JP2023065517A (en) * 2018-12-26 2023-05-12 株式会社ニコン interchangeable lens

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020017641A1 (en) * 2018-07-20 2020-01-23 株式会社ニコン Focus detection device, image capture device and interchangeable lens
JPWO2020017641A1 (en) * 2018-07-20 2021-08-12 株式会社ニコン Focus detector, image pickup device, and interchangeable lens
JP7238896B2 (en) 2018-07-20 2023-03-14 株式会社ニコン Focus detection device, imaging device, and interchangeable lens
JP2023065517A (en) * 2018-12-26 2023-05-12 株式会社ニコン interchangeable lens
JP7533651B2 (en) 2018-12-26 2024-08-14 株式会社ニコン Interchangeable lens, focus detection device, and camera body

Similar Documents

Publication Publication Date Title
US9742984B2 (en) Image capturing apparatus and method of controlling the same
JP5901246B2 (en) Imaging device
JP5361535B2 (en) Imaging device
JP5898481B2 (en) Imaging apparatus and focus detection method
JP5762002B2 (en) Imaging device
US9160918B2 (en) Focus control apparatus and method for performing focus control by phase difference detection, and image capturing apparatus
JP6239857B2 (en) Imaging apparatus and control method thereof
JP6019556B2 (en) Focus detection device, imaging device, and camera.
JP2014153509A (en) Imaging device and imaging method
JP2013218137A (en) Focus detection device, control method of the same and imaging device
US9485409B2 (en) Image capturing apparatus and control method therefor
JP2013057761A (en) Distance measuring device, imaging device, and distance measuring method
JP5831070B2 (en) Imaging device
JP6238578B2 (en) Imaging apparatus and control method thereof
JP6482247B2 (en) FOCUS ADJUSTMENT DEVICE, IMAGING DEVICE, FOCUS ADJUSTMENT DEVICE CONTROL METHOD, AND PROGRAM
JP2015022028A (en) Imaging device
JP2013015806A (en) Focus detector and imaging apparatus
JP2014142497A (en) Imaging apparatus and method for controlling the same
JP5454521B2 (en) Imaging device
JP2013025132A (en) Focus adjustment device and imaging apparatus
JP2016057402A (en) Imaging device and method for controlling the same
US20170155882A1 (en) Image processing apparatus, image processing method, imaging apparatus, and recording medium
JP5968026B2 (en) Imaging apparatus and control method thereof
JP7019442B2 (en) Image pickup device and its control method
JP6477630B2 (en) Imaging device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160701

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20161114