JP2015018628A - Control valve type lead storage battery and method of manufacturing the same - Google Patents

Control valve type lead storage battery and method of manufacturing the same Download PDF

Info

Publication number
JP2015018628A
JP2015018628A JP2013143518A JP2013143518A JP2015018628A JP 2015018628 A JP2015018628 A JP 2015018628A JP 2013143518 A JP2013143518 A JP 2013143518A JP 2013143518 A JP2013143518 A JP 2013143518A JP 2015018628 A JP2015018628 A JP 2015018628A
Authority
JP
Japan
Prior art keywords
electrode plate
negative electrode
positive electrode
control valve
separator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013143518A
Other languages
Japanese (ja)
Other versions
JP2015018628A5 (en
Inventor
大崎 信
Makoto Osaki
信 大崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa Corp
Original Assignee
GS Yuasa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa Corp filed Critical GS Yuasa Corp
Priority to JP2013143518A priority Critical patent/JP2015018628A/en
Publication of JP2015018628A publication Critical patent/JP2015018628A/en
Publication of JP2015018628A5 publication Critical patent/JP2015018628A5/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Cell Separators (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a control valve type lead storage battery having an improved cycle life and a method of manufacturing the same.SOLUTION: A control valve type lead storage battery includes a negative electrode plate, a positive electrode plate, a separator disposed between the negative electrode plate and the positive electrode plate, and an electrolyte, where 100.0 to 106.5 vol.% of the electrolyte is poured relative to a whole hole volume of the negative electrode plate, the positive electrode plate, and the separator. A method of manufacturing a control valve type lead storage battery includes the steps of accommodating, in a battery jar, an electrode plate group obtained by alternately laminating a negative electrode plate and a positive electrode plate via a separator, pouring an electrolyte, and forming the battery jar, where the electrolyte is poured such that its content after the formation of the battery jar becomes 100.0 to 106.5 vol.% relative to the whole hole volume of the negative electrode plate, the positive electrode plate, and the separator.

Description

本発明は制御弁式鉛蓄電池およびその製造方法に関する。   The present invention relates to a control valve type lead storage battery and a method for manufacturing the same.

二次電池の分野において、活物質をそれぞれ含む負極板と正極板、該正極板と負極板との間に介在するマットセパレータ、および電解液を備えた制御弁式鉛蓄電池が知られている。制御弁式鉛蓄電池は最終的に密閉されて使用されるが、製造過程において密閉前の電解液の飛散を防止するために、従来より、電解液は、負極板、正極板およびセパレータの有する全空孔体積に対して90〜95%の量で制限して含有されており、マットセパレータが電解液を保持していた(特許文献1)。   In the field of secondary batteries, a negative valve plate and a positive electrode plate each containing an active material, a mat separator interposed between the positive electrode plate and the negative electrode plate, and a control valve type lead storage battery including an electrolytic solution are known. Although the control valve type lead-acid battery is finally sealed and used, in order to prevent scattering of the electrolyte before sealing in the manufacturing process, the electrolyte has conventionally been made up of all of the negative electrode plate, the positive electrode plate and the separator. It was contained in an amount of 90 to 95% with respect to the pore volume, and the mat separator retained the electrolytic solution (Patent Document 1).

このような制御弁式鉛蓄電池において、充放電を繰り返すと、放電容量が早期に低下して、サイクル寿命が低下することが問題となっていた。   In such a control valve type lead-acid battery, when charging / discharging is repeated, the discharge capacity is reduced early and the cycle life is reduced.

特公平4−57072号公報Japanese Patent Publication No. 4-57072

本発明は、サイクル寿命を向上させた制御弁式鉛蓄電池およびその製造方法を提供することを目的とする。   An object of this invention is to provide the control valve type lead acid battery which improved the cycle life, and its manufacturing method.

本発明は、活物質をそれぞれ含む負極板と正極板、該負極板と正極板との間に介在するマットセパレータ、および電解液を備えた制御弁式鉛蓄電池であって、
電解液が、負極板、正極板およびマットセパレータの有する全空孔体積に対して100.0〜106.5体積%の量で含有されていることを特徴とする制御弁式鉛蓄電池に関する。
The present invention is a control valve type lead-acid battery comprising a negative electrode plate and a positive electrode plate each containing an active material, a mat separator interposed between the negative electrode plate and the positive electrode plate, and an electrolyte solution,
The present invention relates to a control valve type lead-acid battery characterized in that the electrolytic solution is contained in an amount of 100.0 to 106.5% by volume with respect to the total pore volume of the negative electrode plate, the positive electrode plate and the mat separator.

本発明はまた、活物質をそれぞれ含む負極板と正極板とを、マットセパレータを介して交互に積層してなる極板群を電槽内に収納した後、電解液を注液し、電槽化成する制御弁式鉛蓄電池の製造方法であって、
電解液を、電槽化成後における含有量が、負極板、正極板およびセパレータの有する全空孔体積に対して100.0〜106.5体積%となるような量で注液することを特徴とする制御弁式鉛蓄電池の製造方法に関する。
The present invention also includes an electrode group in which a negative electrode plate and a positive electrode plate each containing an active material are alternately laminated via a mat separator in a battery case, and then an electrolyte is injected into the battery case. A control valve type lead-acid battery manufacturing method for chemical conversion comprising:
The electrolytic solution is injected in such an amount that the content after the formation of the battery case is 100.0 to 106.5% by volume with respect to the total pore volume of the negative electrode plate, the positive electrode plate and the separator. It relates to the manufacturing method of the control valve type lead acid battery.

本発明の制御弁式鉛蓄電池は、充放電の繰り返しによる放電容量の低下を十分に防止し、サイクル寿命を向上させることができる。   The control valve type lead storage battery of the present invention can sufficiently prevent a decrease in discharge capacity due to repeated charge and discharge, and improve cycle life.

本発明に係る制御弁式鉛蓄電池の一実施態様を示す概略断面構成図である。1 is a schematic cross-sectional configuration diagram showing one embodiment of a control valve type lead storage battery according to the present invention.

本発明に係る制御弁式鉛蓄電池(以下、単に「鉛蓄電池」ということがある)は、少なくとも負極板、正極板、該正極板と負極板との間に介在するマットセパレータ、および電解液を備えており、例えば、図1に示すような構成を有している。図1は本発明に係る制御弁式鉛蓄電池の一実施態様を示す概略断面構成図であり、極板に対して垂直な側面に平行な面で切ったときの断面図を示す。図1において1は負極板、2は正極板、3はマットセパレータ、4は複数の負極板1と複数の正極板2とをマットセパレータ3を介して交互に積層して作製した極板群を示し、電解液は負極板1、正極板2およびマットセパレータ3に各々の毛細管力により吸収されて保持されている。極板群4は6枚の負極板1と5枚の正極板2とマットセパレータ3を介して交互に積層されてなっているが、少なくとも1枚の負極板1と少なくとも1枚の正極板2とがマットセパレータ3を介して積層されてなる限り、それらの数は特に制限されるものではない。マットセパレータ3は、遊離した余剰な電解液を毛細管力によって上部へ吸い上げ保持する機能を持っている。   A control valve type lead storage battery (hereinafter sometimes simply referred to as “lead storage battery”) according to the present invention includes at least a negative electrode plate, a positive electrode plate, a mat separator interposed between the positive electrode plate and the negative electrode plate, and an electrolyte solution. For example, it has a structure as shown in FIG. FIG. 1 is a schematic sectional view showing an embodiment of a control valve type lead-acid battery according to the present invention, and shows a sectional view taken along a plane parallel to a side surface perpendicular to an electrode plate. In FIG. 1, 1 is a negative electrode plate, 2 is a positive electrode plate, 3 is a mat separator, and 4 is an electrode plate group produced by alternately laminating a plurality of negative electrode plates 1 and a plurality of positive electrode plates 2 with a mat separator 3 interposed therebetween. The electrolyte solution is absorbed and held in the negative electrode plate 1, the positive electrode plate 2, and the mat separator 3 by the respective capillary forces. The electrode plate group 4 is formed by alternately stacking six negative plates 1, five positive plates 2, and a mat separator 3, but at least one negative plate 1 and at least one positive plate 2. As long as they are laminated via the mat separator 3, the number thereof is not particularly limited. The mat separator 3 has a function of sucking up and holding the released excess electrolyte solution upward by capillary force.

本発明の鉛蓄電池において電解液は、負極板1、正極板2およびマットセパレータ3の有する全空孔体積に対して100.0〜106.5体積%の量で含有されている。これにより、負極板1および正極板2に設けられた活物質と電解液との十分な接触を確保しながらも、マットセパレータ3により吸い上げられた電解液によるストラップ9の腐食や電解液の比重が上下で異なるいわゆる成層化が防止される。このため、充放電の繰り返しによる放電容量の低下が十分に防止され、サイクル寿命が向上する。電解液が上記全空孔体積に対して少なすぎると、負極板1および正極板2に設けられた活物質と接触する電解液の量が少ないために、容量が低下して、サイクル寿命が短くなる。また、電解液が上記全空孔体積に対して多すぎると、セパレータ中の硫酸がはいあがって後述するストラップ9が腐食されやすくなったり、電解液比重が上下で異なるいわゆる成層化が促進されやすくなったりして、サイクル寿命が短くなる。   In the lead storage battery of the present invention, the electrolytic solution is contained in an amount of 100.0 to 106.5% by volume with respect to the total pore volume of the negative electrode plate 1, the positive electrode plate 2 and the mat separator 3. Thereby, while ensuring sufficient contact between the active material provided on the negative electrode plate 1 and the positive electrode plate 2 and the electrolytic solution, the corrosion of the strap 9 caused by the electrolytic solution sucked up by the mat separator 3 and the specific gravity of the electrolytic solution are reduced. So-called stratification, which differs between the upper and lower sides, is prevented. For this reason, a decrease in discharge capacity due to repeated charge and discharge is sufficiently prevented, and the cycle life is improved. If the electrolyte is too small relative to the total pore volume, the amount of the electrolyte in contact with the active material provided on the negative electrode plate 1 and the positive electrode plate 2 is small, so that the capacity is reduced and the cycle life is shortened. Become. On the other hand, if the electrolyte is too much relative to the total pore volume, sulfuric acid in the separator rises and the later-described strap 9 is likely to be corroded, or so-called stratification with different electrolyte specific gravity tends to be promoted. The cycle life is shortened.

電解液は、好ましい実施態様において、サイクル寿命を向上させる観点から、前記した全空孔体積に対して、好ましくは100.5〜106.5体積%、より好ましくは101.4〜106.5体積%、さらに好ましくは103.0〜105.9体積%、最も好ましくは104.0〜105.9体積%の量で含有されている。   In a preferred embodiment, the electrolytic solution is preferably 100.5 to 106.5% by volume, more preferably 101.4 to 106.5% by volume with respect to the total pore volume described above from the viewpoint of improving cycle life. %, More preferably from 103.0 to 105.9% by volume, most preferably from 104.0 to 105.9% by volume.

電解液の上記含有量は、鉛蓄電池の電槽化成後において達成されていればよく、すなわち完成品から求めることができる。特に電解液の含有量を表すための全空孔体積は、鉛蓄電池内における負極板1、正極板2およびマットセパレータ3の全空孔体積である。   The content of the electrolytic solution only needs to be achieved after the formation of the battery case of the lead storage battery, that is, it can be obtained from the finished product. In particular, the total pore volume for expressing the content of the electrolytic solution is the total pore volume of the negative electrode plate 1, the positive electrode plate 2, and the mat separator 3 in the lead storage battery.

電解液の含有量(体積%)は、詳しくは、鉛蓄電池(完成品)の分解により測定される電解液の体積(x)ならびに負極板1、正極板2およびセパレータ3の空孔体積(それぞれy1、y2およびy3)から以下の式に基づいて求めることができる。
電解液の量(体積%)={x/(y1+y2+y3)}×100
Specifically, the content (% by volume) of the electrolytic solution is determined based on the volume (x) of the electrolytic solution measured by decomposition of the lead acid battery (finished product) and the void volume of the negative electrode plate 1, the positive electrode plate 2, and the separator 3 (respectively y1, y2 and y3) can be determined based on the following equations.
Amount of electrolytic solution (volume%) = {x / (y1 + y2 + y3)} × 100

xは電解液の体積(ml)である。鉛蓄電池を分解して電解液を廃棄し、洗浄した後の全重量(乾燥重量)と分解前の全重量との差より電解液の重量を求め、該重量および電解液の比重より電解液の全体積xを求める。   x is the volume (ml) of the electrolyte. The lead acid battery is disassembled, the electrolyte solution is discarded, and the weight of the electrolyte solution is obtained from the difference between the total weight (dry weight) after washing and the total weight before decomposition, and the electrolyte solution weight is determined from the weight and the specific gravity of the electrolyte solution. Obtain the total volume x.

y1およびy2はそれぞれ負極板1および正極板2の空孔体積(ml)であって、各極板が有する細孔の総容積である。負極板1および正極板2の空孔体積は、一般的に水銀圧入法(JIS K1150)を用いて測定される。水銀圧入法とは、水銀を加圧して固体試料の細孔中に圧入し、固体試料の細孔径分布を測定する方法であり、水銀に加える圧力を徐々に増大していくと、大きな細孔から小さな細孔へと順に水銀が侵入するので、加えた圧力と水銀の容積との関係から細孔径分布を求めることができる。そして、正極板と負極板の細孔径分布から正極板及び負極板の各々の空孔体積y1及びy2を算出する。   y1 and y2 are pore volumes (ml) of the negative electrode plate 1 and the positive electrode plate 2, respectively, and are the total volume of the pores of each electrode plate. The pore volume of the negative electrode plate 1 and the positive electrode plate 2 is generally measured using a mercury intrusion method (JIS K1150). The mercury intrusion method is a method that pressurizes mercury into the pores of a solid sample and measures the pore size distribution of the solid sample. When the pressure applied to the mercury is gradually increased, Since mercury invades in order from small to small pores, the pore size distribution can be determined from the relationship between the applied pressure and the volume of mercury. Then, the pore volumes y1 and y2 of the positive electrode plate and the negative electrode plate are calculated from the pore size distribution of the positive electrode plate and the negative electrode plate.

y3は鉛蓄電池内でのマットセパレータ3の空孔体積(ml)である。マットセパレータ3は通常、後述するように、負極板1および正極板2のいずれよりも大きい寸法を有するので、鉛蓄電池内において、負極板1と正極板2との間で圧縮を受ける圧縮部と、当該圧縮を受けない非圧縮部とを有する。従って、y3はマットセパレータ3における圧縮部の空孔体積y3a(ml)と非圧縮部の空孔体積y3b(ml)との総和である。マットセパレータ3の空孔体積y3aおよびy3bもまた、上述した水銀圧入法により測定される。具体的には、電槽5から極板群4を取り出し、負極板1と正極板2との極間距離を測定する。そして、極板群4からセパレータ3を取り外し、圧縮部の圧縮が十分に解放された後、セパレータ3の厚みを測定し、空孔体積yを水銀圧入法により測定する。この測定された空孔体積y(セパレータ全体が非圧縮状態のときの空孔体積)およびセパレータ3全体に対する非圧縮部の面積比率から、非圧縮部の空孔体積y3bを算出する。その後、セパレータ3の厚みと極間距離から、鉛蓄電池内でのセパレータ3圧縮部の圧縮率を算出し、当該圧縮率、測定された空孔体積yおよびセパレータ3全体に対する圧縮部の面積比率から、圧縮部の空孔体積y3aを算出する。例えば、取り外されたセパレータ3の空孔体積yが1300mlで、圧縮率が50%、圧縮部の面積比率が70%の場合は、以下の計算式より、圧縮部の空孔体積y3aおよび非圧縮部の空孔体積y3bはそれぞれ455mlおよび390mlとなり、電槽5内に収納された状態のセパレータ3の空孔体積y3は845mlとなる。
y3a=1300×0.5×0.7=455ml
y3b=1300×0.3=390ml
y3=y3a+y3b=845ml
y3 is the pore volume (ml) of the mat separator 3 in the lead acid battery. As will be described later, the mat separator 3 usually has a larger dimension than both the negative electrode plate 1 and the positive electrode plate 2, and therefore, a compression part that receives compression between the negative electrode plate 1 and the positive electrode plate 2 in the lead storage battery, And an uncompressed portion that is not subjected to the compression. Therefore, y3 is the sum of the pore volume y3a (ml) of the compression part and the void volume y3b (ml) of the non-compression part in the mat separator 3. The pore volumes y3a and y3b of the mat separator 3 are also measured by the mercury intrusion method described above. Specifically, the electrode plate group 4 is taken out from the battery case 5, and the interelectrode distance between the negative electrode plate 1 and the positive electrode plate 2 is measured. Then, after the separator 3 is removed from the electrode plate group 4 and the compression of the compression part is sufficiently released, the thickness of the separator 3 is measured, and the void volume y is measured by a mercury intrusion method. The pore volume y3b of the non-compressed portion is calculated from the measured pore volume y (the pore volume when the entire separator is in an uncompressed state) and the area ratio of the non-compressed portion to the entire separator 3. Thereafter, the compression ratio of the separator 3 compression part in the lead storage battery is calculated from the thickness of the separator 3 and the distance between the electrodes, and from the compression ratio, the measured void volume y, and the area ratio of the compression part to the whole separator 3 The void volume y3a of the compression part is calculated. For example, when the pore volume y of the removed separator 3 is 1300 ml, the compression ratio is 50%, and the area ratio of the compression part is 70%, the pore volume y3a of the compression part and the non-compression The void volume y3b of the part is 455 ml and 390 ml, respectively, and the void volume y3 of the separator 3 stored in the battery case 5 is 845 ml.
y3a = 1300 × 0.5 × 0.7 = 455ml
y3b = 1300 × 0.3 = 390ml
y3 = y3a + y3b = 845ml

本発明で規定される電解液の含有量(体積%)の上記範囲は、電解液の大半または全部が鉛蓄電池内において負極板1、正極板2およびセパレータ3の空孔に吸収して保持され、フリーの電解液は存在したとしても、ほんの僅かしか存在しないことを意味している。すなわち、本発明の鉛蓄電池において、フリーの電解液は存在しないか(100体積%の時)、存在したとしても、その液面は観察することは困難である。これは、フリーの電解液は、マットセパレータ3の非圧縮部において膨潤により保持されているからである。なお、負極板および正極板の活物質及びセパレータの圧縮部に保持されている電解液は、各々の構成要素のもつ毛細管力でそれらの空孔に保持されている。また、充放電過程で極板活物質から吐き出される硫酸および水はセパレータ3の毛細管力によって保持され電槽下部へ落ちていかないように設計されている。電解液が一時的に電槽5の下部にたまることが起こったとしても毛細管力によって上部へ上昇する力が働く構造になっている。   The above range of the content (volume%) of the electrolytic solution defined in the present invention is held by absorbing most or all of the electrolytic solution in the holes of the negative electrode plate 1, the positive electrode plate 2, and the separator 3 in the lead storage battery. This means that there is very little free electrolyte, if any. That is, in the lead storage battery of the present invention, it is difficult to observe the liquid level even if there is no free electrolyte (when 100% by volume) or it is present. This is because the free electrolyte is held by swelling in the non-compressed portion of the mat separator 3. The active material of the negative electrode plate and the positive electrode plate and the electrolyte solution held in the compression part of the separator are held in the pores by the capillary force of each component. In addition, the sulfuric acid and water discharged from the electrode plate active material in the charge / discharge process are designed to be held by the capillary force of the separator 3 and not fall to the lower part of the battery case. Even if the electrolytic solution temporarily accumulates in the lower part of the battery case 5, a force that rises upward by the capillary force works.

本発明の鉛蓄電池における各部材について簡単に説明する。   Each member in the lead acid battery of this invention is demonstrated easily.

負極板1は、いわゆるペースト式極板であり、負極格子体と当該負極格子体に充填された負極活物質とからなる。負極活物質としては、海綿状の鉛を主成分とする。   The negative electrode plate 1 is a so-called paste-type electrode plate, and includes a negative electrode lattice body and a negative electrode active material filled in the negative electrode lattice body. As the negative electrode active material, spongy lead is the main component.

ペースト式負極板は、負極格子体に負極活物質用のペーストを充填し、熟成・乾燥させることにより得ることができ、鉛蓄電池の製造方法における電槽化成により、負極板において負極活物質が生成する。負極格子体は、例えば、鉛合金からなる鋳造格子であってもよいし、鉛合金製シートにスリットを入れて展開して、網目形状を付与してなるエキスパンド格子であってもよいし、または鉛合金製シートを打ち抜いて、網目形状を付与してなるパンチング格子であってもよい。また、負極格子体は、Pb合金、特にPb−Ca合金を用いることが好ましい。負極活物質用のペーストは、通常、鉛粉に添加剤、水および硫酸を添加し、練り合わせることにより得ることができる。   The paste type negative electrode plate can be obtained by filling the negative electrode grid with paste for the negative electrode active material, aging and drying, and the negative electrode active material is produced in the negative electrode plate by the formation of the battery case in the lead acid battery manufacturing method To do. The negative electrode lattice body may be, for example, a cast lattice made of a lead alloy, or an expanded lattice formed by slitting a lead alloy sheet to provide a mesh shape, or A punching lattice formed by punching a lead alloy sheet to give a mesh shape may be used. Moreover, it is preferable to use a Pb alloy, especially a Pb—Ca alloy for the negative electrode lattice. The paste for the negative electrode active material can be usually obtained by adding an additive, water and sulfuric acid to lead powder and kneading.

負極板1、特に負極活物質、の空孔体積は0.171〜0.217ml/cm3が好ましく、より好ましくは0.180〜0.209ml/cm3である。 The pore volume of the negative electrode plate 1, particularly the negative electrode active material, is preferably 0.171 to 0.217 ml / cm 3 , more preferably 0.180 to 0.209 ml / cm 3 .

正極板2は、いわゆるペースト式極板であり、正極格子体と当該正極格子体に充填された正極活物質とからなる。正極活物質としては、多孔性の二酸化鉛を主成分とする。   The positive electrode plate 2 is a so-called paste-type electrode plate, and includes a positive electrode lattice body and a positive electrode active material filled in the positive electrode lattice body. The positive electrode active material is mainly composed of porous lead dioxide.

ペースト式正極板は、正極格子体に正極活物質用のペーストを充填し、熟成・乾燥させることにより得ることができ、鉛蓄電池の製造方法における電槽化成により、正極板において正極活物質が生成する。正極格子体は上述した負極格子体と同様の格子のいずれかが使用され、Pb合金を用いることが好ましい。正極活物質用のペーストは、通常、鉛粉に添加剤、水および硫酸を添加し、練り合わせることにより得ることができる。   The paste type positive electrode plate can be obtained by filling the positive electrode grid with the paste for the positive electrode active material, aging and drying, and the positive electrode active material is generated in the positive electrode plate by the formation of the battery case in the lead acid battery manufacturing method. To do. As the positive electrode lattice body, any of the lattices similar to the negative electrode lattice body described above is used, and it is preferable to use a Pb alloy. The paste for the positive electrode active material can be usually obtained by adding an additive, water and sulfuric acid to lead powder and kneading.

正極板2、特に正極活物質、の空孔体積は0.140〜0.186ml/cm3が好ましく、より好ましくは0.149〜0.178ml/cm3である。 The pore volume of the positive electrode plate 2, particularly the positive electrode active material, is preferably 0.140 to 0.186 ml / cm 3 , more preferably 0.149 to 0.178 ml / cm 3 .

正極板2の数は通常、負極板1の数と同数か、または該負極板1の数よりも1枚だけ多いか、もしくは1枚だけ少ない数である。本実施態様においては、負極板1が、正極板2よりも枚数が1枚多くなっており、このため負極板および正極板の積層方向の両端部において、負極板1が電槽5の側面部と対向して配置されている。   The number of the positive electrode plates 2 is usually the same as the number of the negative electrode plates 1, or one more than the number of the negative electrode plates 1, or less than one. In the present embodiment, the number of the negative electrode plate 1 is one more than that of the positive electrode plate 2. Therefore, the negative electrode plate 1 is a side surface portion of the battery case 5 at both ends in the stacking direction of the negative electrode plate and the positive electrode plate. Are arranged opposite to each other.

マットセパレータ3は負極板1と正極板2との直接的な接触を防止しながらも、電解液を保持可能な不織布または織編物などの形態を有するマットが使用される。好ましくはガラス繊維、特に微細ガラス繊維、を含む不織布または織編物などの形態を有するマットが使用され、例えば、AGMが挙げられる。マットセパレータ3の空孔体積はSBA S 0406に基づいて19.6KPa/dm2荷重時の圧縮に相当する状態において、5.120〜7.610ml/cm3が好ましく、より好ましくは5.730〜7.240ml/cm3である。 As the mat separator 3, a mat having a form such as a nonwoven fabric or a woven or knitted fabric capable of holding an electrolytic solution while preventing direct contact between the negative electrode plate 1 and the positive electrode plate 2 is used. Preferably, a mat having a form such as a nonwoven fabric or a woven or knitted fabric containing glass fibers, particularly fine glass fibers, is used, and examples thereof include AGM. The pore volume of the mat separator 3 is preferably 5.120 to 7.610 ml / cm 3 , more preferably 5.730 to 7.240 ml / cm 3 in a state corresponding to compression at 19.6 KPa / dm 2 load based on SBA S 0406. is there.

マットセパレータ3は、負極板1と正極板2との直接的な接触を防止する観点から、負極板1および正極板2のいずれよりも大きい寸法を有する。このためマットセパレータ3は、鉛蓄電池内において、負極板1と正極板2との間で圧縮を受ける圧縮部と、当該圧縮を受けない非圧縮部とを有している。例えば、マットセパレータ3は負極板および正極板の両端から張り出している。詳しくは、極板に対して垂直な方向から電槽内を透視した場合、マットセパレータ3は、負極板および正極板の幅方向における両端部において、当該極板から張り出ており、非圧縮部を形成する。同様の場合、マットセパレータ3は、負極板および正極板の高さ方向における上部および下部において、当該極板から張り出ており、非圧縮部を形成する。   The mat separator 3 has a size larger than both the negative electrode plate 1 and the positive electrode plate 2 from the viewpoint of preventing direct contact between the negative electrode plate 1 and the positive electrode plate 2. For this reason, the mat separator 3 has a compression part which receives compression between the negative electrode plate 1 and the positive electrode plate 2, and a non-compression part which does not receive the said compression in a lead acid battery. For example, the mat separator 3 protrudes from both ends of the negative electrode plate and the positive electrode plate. Specifically, when the inside of the battery case is seen through from the direction perpendicular to the electrode plate, the mat separator 3 protrudes from the electrode plate at both ends in the width direction of the negative electrode plate and the positive electrode plate, Form. In the same case, the mat separator 3 protrudes from the electrode plate at the upper and lower portions in the height direction of the negative electrode plate and the positive electrode plate, and forms an uncompressed portion.

マットセパレータ3は図1中、正極板2をU字状に挟み込むように配置されているが、その配置は、当該マットセパレータが負極板と正極板との間に介在する限り特に制限されない。セパレータ3は、例えば、負極板をU字状に挟み込むように配置されてもよいし、または、セパレータ3は、負極板も正極板も挟み込むことなく、それぞれの負極板と正極板との間において独立して配置されてもよい。なお、電槽5と対向していない正極板2をセパレータ3で挟み込むことで、仮に、電槽5と対向した負極板1をセパレータ3で挟み込む場合に比べて、極板群4を電槽5に挿入時にセパレータ3が電槽5に接触して破損するのを抑制することができ、ショートによるサイクル寿命の低下を抑制することができる。また、セパレータ3で挟み込む極板を、少ない枚数である正極板2にすることで、セパレータ3の数を減らして、鉛蓄電池のコストを低減することができる。   The mat separator 3 is arranged so as to sandwich the positive electrode plate 2 in a U shape in FIG. 1, but the arrangement is not particularly limited as long as the mat separator is interposed between the negative electrode plate and the positive electrode plate. For example, the separator 3 may be disposed so as to sandwich the negative electrode plate in a U shape, or the separator 3 may be interposed between the negative electrode plate and the positive electrode plate without sandwiching the negative electrode plate or the positive electrode plate. It may be arranged independently. In addition, by sandwiching the positive electrode plate 2 not facing the battery case 5 with the separator 3, the electrode plate group 4 is placed in the battery case 5 as compared with the case where the negative electrode plate 1 facing the battery case 5 is sandwiched between the separators 3. It can suppress that the separator 3 contacts the battery case 5 at the time of insertion, and is damaged, and can suppress the fall of the cycle life by a short circuit. Moreover, the number of the separators 3 can be reduced by reducing the number of the separators 3 to the positive electrode plate 2 which is a small number of sheets, and the cost of the lead storage battery can be reduced.

電解液は希硫酸が使用される。電解液の比重は、制御弁式鉛蓄電池の分野において従来より設定されている比重であれば特に制限されない。   Diluted sulfuric acid is used as the electrolyte. The specific gravity of the electrolytic solution is not particularly limited as long as the specific gravity is conventionally set in the field of control valve type lead storage batteries.

本発明の鉛蓄電池は通常、さらに、前記極板群4を収納する電槽5、前記極板群4を収納した後、電槽5を密閉するための中蓋6、前記中蓋6によって電槽5を密閉した後、電解液を電槽5の内部7に注入するための注入口8、前記極板群4を構成する複数の負極板1および複数の正極板2を、それぞれ共通に接続するストラップ9、電槽5の内部7の圧力を制御するための制御弁10、および前記制御弁10を覆うための上蓋11を備えている。   The lead storage battery of the present invention usually further includes a battery case 5 for accommodating the electrode plate group 4, an inner lid 6 for sealing the battery case 5 after the electrode plate group 4 is accommodated, and the inner lid 6. After the tank 5 is sealed, the inlet 8 for injecting the electrolytic solution into the inside 7 of the battery case 5, and the plurality of negative plates 1 and the plurality of positive plates 2 constituting the electrode group 4 are connected in common. And a control valve 10 for controlling the pressure in the inside 7 of the battery case 5, and an upper lid 11 for covering the control valve 10.

本発明の鉛蓄電池は以下の方法により製造することができる。
まず、少なくとも1枚の負極板1と、少なくとも1枚の正極板2とを、マットセパレータ3を介して交互に積層し、極板群4を形成する。次いで、極板群4を例えば、約40kPaの圧力に加圧して、電槽5内に収納する。
The lead acid battery of this invention can be manufactured with the following method.
First, at least one negative electrode plate 1 and at least one positive electrode plate 2 are alternately stacked via a mat separator 3 to form an electrode plate group 4. Next, the electrode plate group 4 is pressurized to, for example, a pressure of about 40 kPa and accommodated in the battery case 5.

電槽5内に極板群4を収納した後、中蓋6によって電槽5を密閉し、中蓋6に設けた注入口8から電解液を注液し、電槽化成する。電解液の注液量(体積)は、本発明で規定される電解液の含有量(体積%)が電槽化成後において上記した範囲内になるような量である。電槽化成とは希硫酸電解液中で、正極板と負極板の間に直流電流を流して酸化・還元を行う処理であり、負極板において鉛が、正極板において二酸化鉛が生成する。電槽化成後は、注入口8に制御弁10を装着し、中蓋6の上端に上蓋11を取り付ければよい。なお、電解液の含有量(体積%)が電槽化成後において上記した範囲内であれば、化成方法は特に限定されず、電槽化成に限らず、タンク化成であってもよい。   After the electrode plate group 4 is housed in the battery case 5, the battery case 5 is sealed with the inner lid 6, and an electrolytic solution is injected from the inlet 8 provided in the inner lid 6 to form a battery case. The amount of injection (volume) of the electrolytic solution is an amount such that the content (volume%) of the electrolytic solution defined in the present invention falls within the above-described range after the formation of the battery case. Battery case formation is a treatment in which a direct current is passed between a positive electrode plate and a negative electrode plate in a dilute sulfuric acid electrolyte to oxidize and reduce, and lead is produced in the negative electrode plate and lead dioxide is produced in the positive electrode plate. After the formation of the battery case, the control valve 10 may be attached to the inlet 8 and the upper lid 11 may be attached to the upper end of the inner lid 6. In addition, if content (volume%) of electrolyte solution is in the above-mentioned range after battery case formation, a chemical conversion method will not be specifically limited, Tank formation may be sufficient not only in battery case formation.

[実施例1]
図1に示す制御弁式鉛蓄電池を製造した。当該制御弁式鉛蓄電池はDIN EN 50342−2の規格に沿った形状および寸法を有していた。具体的には以下の方法に従って製造した。
[Example 1]
The control valve type lead acid battery shown in FIG. 1 was manufactured. The valve-regulated lead-acid battery had a shape and dimensions in accordance with DIN EN 50342-2 standards. Specifically, it was produced according to the following method.

Pb−Ca系合金からなる鉛合を用いて鋳造により格子を得、負極格子体および正極格子体として用いた。
鉛粉に、添加剤を加え、これに希硫酸を添加して練り合わせることによって、正極活物質用ペーストを調製した。上記の正極格子体に正極活物質用ペーストを充填し、それを熟成・乾燥させることにより、未化成の正極板を得た。
鉛粉に、添加剤を加え、これに希硫酸を添加して練り合わせることによって、負極活物質用ペーストを調製した。上記の負極格子体に負極活物質用ペーストを充填し、それを熟成・乾燥させることにより、未化成の負極板を得た。
セパレータとして極細ガラスマット(AGM)を用いた。
電解液として、比重1.215(20℃)の希硫酸を用いた。
A grid was obtained by casting using a lead alloy composed of a Pb—Ca alloy, and used as a negative electrode grid and a positive grid.
Additives were added to the lead powder, and dilute sulfuric acid was added thereto and kneaded to prepare a positive electrode active material paste. The positive electrode active material paste was filled in the positive electrode lattice body and aged and dried, thereby obtaining an unformed positive electrode plate.
An additive was added to the lead powder, and dilute sulfuric acid was added thereto and kneaded to prepare a negative electrode active material paste. The negative electrode active material was filled with a negative electrode active material paste and aged and dried to obtain an unformed negative electrode plate.
An ultrafine glass mat (AGM) was used as a separator.
As the electrolytic solution, dilute sulfuric acid having a specific gravity of 1.215 (20 ° C.) was used.

6枚の負極板1とセパレータ3で挟み込んだ5枚の正極板2とを交互に積層して作製した極板群4を一様に面接触可能な圧力(本実施態様においては、約40kPa)で加圧して電槽5内に収納させた。この後、中蓋6によって電槽5を密閉し、中蓋6に設けた注入口8から所定量の電解液を注液した。次いで、電槽化成した後、注入口8に制御弁10を装着し、中蓋6の上端に上蓋11を取り付けた。
電解液の含有量(体積%)を、前記した方法により求めたところ、負極板、正極板およびセパレータの有する全空孔体積に対して101.4体積%であった。
負極板の空孔体積は0.182ml/cm3であった。
正極板の空孔体積は0.160ml/cm3であった。
セパレータの空孔体積は19.6KPa/dm2荷重時6.500ml/cm3であった。
Pressure capable of uniformly contacting the electrode plate group 4 produced by alternately stacking the six negative electrode plates 1 and the five positive electrode plates 2 sandwiched between the separators 3 (in this embodiment, about 40 kPa) And pressurized and stored in the battery case 5. Thereafter, the battery case 5 was sealed with the inner lid 6, and a predetermined amount of electrolyte was injected from the inlet 8 provided in the inner lid 6. Next, after forming the battery case, the control valve 10 was attached to the injection port 8, and the upper lid 11 was attached to the upper end of the inner lid 6.
When the content (% by volume) of the electrolytic solution was determined by the above-described method, it was 101.4% by volume with respect to the total pore volume of the negative electrode plate, the positive electrode plate, and the separator.
The pore volume of the negative electrode plate was 0.182 ml / cm 3 .
The hole volume of the positive electrode plate was 0.160 ml / cm 3 .
The pore volume of the separator was 6.500 ml / cm 3 when loaded with 19.6 KPa / dm 2 .

[実施例2〜6および比較例1〜3]
硫酸濃度を調整することにより所定の比重に調整した表1に記載の電解液を用いたこと、および電解液の注液量を表1に記載の値に調整したこと以外、実施例1と同様の方法により制御弁式鉛蓄電池を製造した。
なお、電解液比重の調整は、実際に使用された電解液中の硫酸根の量を一定にするために行った。
[Examples 2-6 and Comparative Examples 1-3]
Similar to Example 1 except that the electrolyte solution shown in Table 1 adjusted to a predetermined specific gravity by adjusting the sulfuric acid concentration was used, and that the injection amount of the electrolyte solution was adjusted to the values shown in Table 1. A control valve type lead acid battery was manufactured by the method described above.
The specific gravity of the electrolytic solution was adjusted in order to make the amount of sulfate radicals in the electrolytic solution actually used constant.

[評価]
各実施例/比較例で得られた6個の電池を直列接続し、以下に示す充放電サイクル試験を行った。
まず、SOC(State Of Charge)50%、すなわち定格容量(12V)に対して50%の充電状態に調整した。次に、40℃環境下で、以下に示した条件で「放電−充電」を1サイクルとして所定回数繰り返し行った。放電後の電圧(放電末電圧)が10.0V以下になったときのサイクル数を寿命サイクル数として記録した。
放電:17.5Aの定電流放電を2時間;
充電:14.4Vの定電圧充電を最大電流17.5Aにて2時間。
[Evaluation]
Six batteries obtained in each example / comparative example were connected in series, and the following charge / discharge cycle test was performed.
First, the state of charge (SOC) was adjusted to 50%, that is, the charged state of 50% with respect to the rated capacity (12V). Next, in a 40 ° C. environment, “discharge-charge” was repeated a predetermined number of times under the following conditions. The number of cycles when the voltage after discharge (discharge end voltage) became 10.0 V or less was recorded as the number of life cycles.
Discharge: 17.5A constant current discharge for 2 hours;
Charging: Constant voltage charging of 14.4V for 2 hours at a maximum current of 17.5A.

寿命サイクル数(N)は多いほど好ましい。以下に示すランクに従って評価した。
◎;375≦N;最も好ましい範囲;
○;350≦N<375;好ましい範囲;
△;300≦N<350;実用上問題がない範囲;
×;N<300;実用上問題がある範囲。
The greater the number of life cycles (N), the better. Evaluation was performed according to the following rank.
;; 375 ≦ N; most preferred range;
O; 350 ≦ N <375; preferred range;
Δ: 300 ≦ N <350; practically no problem range;
X: N <300; practically problematic range.

Figure 2015018628
Figure 2015018628

1:負極板、2:正極板、3:マットセパレータ、4:極板群、5:電槽、6:中蓋、7:内部、8:注入口、9:ストラップ、10:制御弁、11:上蓋。   1: negative electrode plate, 2: positive electrode plate, 3: mat separator, 4: electrode plate group, 5: battery case, 6: inner lid, 7: inside, 8: inlet, 9: strap, 10: control valve, 11 : Upper lid.

Claims (5)

活物質をそれぞれ含む負極板と正極板、該負極板と正極板との間に介在するマットセパレータ、および電解液を備えた制御弁式鉛蓄電池であって、
電解液が、負極板、正極板およびマットセパレータの有する全空孔体積に対して100.0〜106.5体積%の量で含有されていることを特徴とする制御弁式鉛蓄電池。
A negative electrode plate and a positive electrode plate each containing an active material, a mat separator interposed between the negative electrode plate and the positive electrode plate, and a control valve type lead storage battery comprising an electrolyte solution,
A control valve type lead acid battery, wherein the electrolytic solution is contained in an amount of 100.0 to 106.5% by volume with respect to the total pore volume of the negative electrode plate, the positive electrode plate and the mat separator.
電解液の含有量が負極板、正極板およびマットセパレータの有する全空孔体積に対して101.4〜106.5体積%である請求項1に記載の制御弁式鉛蓄電池。   The control valve type lead-acid battery according to claim 1, wherein the content of the electrolytic solution is 101.4 to 106.5% by volume with respect to the total pore volume of the negative electrode plate, the positive electrode plate, and the mat separator. 負極板が0.180〜0.209ml/cmの空孔体積を有し、
正極板が0.149〜0.178ml/cmの空孔体積を有し、
マットセパレータが19.6KPa/dm2荷重時5.730〜7.240ml/cmの空孔体積を有する請求項1または2に記載の制御弁式鉛蓄電池。
The negative electrode plate has a pore volume of 0.180 to 0.209 ml / cm 3 ;
The positive electrode plate has a pore volume of 0.149 to 0.178 ml / cm 3 ;
The control valve type lead-acid battery according to claim 1 or 2, wherein the mat separator has a pore volume of 5.730 to 7.240 ml / cm 3 at 19.6 KPa / dm 2 load.
負極板および正極板がそれぞれ複数で備わっており、
負極板と正極板とが前記マットセパレータを介して交互に積層されてなる極板群が電槽に収納されてなる請求項1〜3のいずれかに記載の制御弁式鉛蓄電池。
A plurality of negative plates and positive plates, respectively,
The control valve type lead acid battery according to any one of claims 1 to 3, wherein an electrode plate group in which a negative electrode plate and a positive electrode plate are alternately laminated via the mat separator is housed in a battery case.
活物質をそれぞれ含む負極板と正極板とを、マットセパレータを介して交互に積層してなる極板群を電槽内に収納した後、電解液を注液し、電槽化成する制御弁式鉛蓄電池の製造方法であって、
電解液を、電槽化成後における含有量が、負極板、正極板およびマットセパレータの有する全空孔体積に対して100.0〜106.5体積%となるような量で注液することを特徴とする制御弁式鉛蓄電池の製造方法。
A control valve type in which a negative electrode plate and a positive electrode plate each containing an active material are alternately stacked via a mat separator, and an electrode group is stored in a battery case, and then an electrolyte is injected to form a battery case. A method of manufacturing a lead-acid battery,
Injecting the electrolytic solution in an amount such that the content after the formation of the battery case is 100.0 to 106.5% by volume with respect to the total pore volume of the negative electrode plate, the positive electrode plate and the mat separator. A control valve type lead-acid battery manufacturing method.
JP2013143518A 2013-07-09 2013-07-09 Control valve type lead storage battery and method of manufacturing the same Pending JP2015018628A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013143518A JP2015018628A (en) 2013-07-09 2013-07-09 Control valve type lead storage battery and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013143518A JP2015018628A (en) 2013-07-09 2013-07-09 Control valve type lead storage battery and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JP2015018628A true JP2015018628A (en) 2015-01-29
JP2015018628A5 JP2015018628A5 (en) 2015-11-05

Family

ID=52439476

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013143518A Pending JP2015018628A (en) 2013-07-09 2013-07-09 Control valve type lead storage battery and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2015018628A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021096900A (en) * 2019-12-13 2021-06-24 昭和電工マテリアルズ株式会社 Lead acid battery

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60185370A (en) * 1984-03-01 1985-09-20 Furukawa Battery Co Ltd:The Enclosed type lead storage battery
JPH0443570A (en) * 1990-06-08 1992-02-13 Matsushita Electric Ind Co Ltd Manufacture of sealed lead storage battery
JP2001155762A (en) * 1999-11-26 2001-06-08 Shin Kobe Electric Mach Co Ltd Sealed lead cell for automobile
JP2001273878A (en) * 2000-03-27 2001-10-05 Nippon Muki Co Ltd Glass mat for a lead-acid battery
JP2004139778A (en) * 2002-10-16 2004-05-13 Matsushita Electric Ind Co Ltd Control valve type lead-acid battery
JP2005100794A (en) * 2003-09-25 2005-04-14 Yuasa Corp Sealed type lead-acid battery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60185370A (en) * 1984-03-01 1985-09-20 Furukawa Battery Co Ltd:The Enclosed type lead storage battery
JPH0443570A (en) * 1990-06-08 1992-02-13 Matsushita Electric Ind Co Ltd Manufacture of sealed lead storage battery
JP2001155762A (en) * 1999-11-26 2001-06-08 Shin Kobe Electric Mach Co Ltd Sealed lead cell for automobile
JP2001273878A (en) * 2000-03-27 2001-10-05 Nippon Muki Co Ltd Glass mat for a lead-acid battery
JP2004139778A (en) * 2002-10-16 2004-05-13 Matsushita Electric Ind Co Ltd Control valve type lead-acid battery
JP2005100794A (en) * 2003-09-25 2005-04-14 Yuasa Corp Sealed type lead-acid battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021096900A (en) * 2019-12-13 2021-06-24 昭和電工マテリアルズ株式会社 Lead acid battery
JP7493329B2 (en) 2019-12-13 2024-05-31 エナジーウィズ株式会社 Lead-acid battery

Similar Documents

Publication Publication Date Title
JPWO2019087686A1 (en) Lead-acid battery
JP7143927B2 (en) lead acid battery
JP5138391B2 (en) Control valve type lead acid battery
EP3352285A1 (en) Lead storage battery
JPWO2019087678A1 (en) Lead-acid battery
JP2013084362A (en) Lead battery
JP7355005B2 (en) lead acid battery
JP7111107B2 (en) Lead storage battery for idling stop
JP6525167B2 (en) Lead storage battery
WO2019087683A1 (en) Lead storage battery
JP7352870B2 (en) lead acid battery
JP7347439B2 (en) lead acid battery
JP6495862B2 (en) Lead acid battery
JP2015018628A (en) Control valve type lead storage battery and method of manufacturing the same
JP2021086731A (en) Positive electrode plate for lead acid battery, and lead acid battery
JP7005945B2 (en) Electrode grid for lead-acid batteries
CN111279541A (en) Lead-acid battery
JP2014075288A (en) Lead-acid battery
JP7318660B2 (en) lead acid battery
JPWO2011077640A1 (en) Control valve type lead acid battery
JP7147776B2 (en) lead acid battery
JP6958034B2 (en) Lead-acid battery
EP3879618A1 (en) Lead storage battery
WO2018199053A1 (en) Lead acid battery
JP7294057B2 (en) lead acid battery

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150914

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150914

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160906

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170404