JP2014214732A - Method and device for preventing oil leakage of two-stage supercharging system - Google Patents

Method and device for preventing oil leakage of two-stage supercharging system Download PDF

Info

Publication number
JP2014214732A
JP2014214732A JP2013095414A JP2013095414A JP2014214732A JP 2014214732 A JP2014214732 A JP 2014214732A JP 2013095414 A JP2013095414 A JP 2013095414A JP 2013095414 A JP2013095414 A JP 2013095414A JP 2014214732 A JP2014214732 A JP 2014214732A
Authority
JP
Japan
Prior art keywords
pressure
pressure stage
low
compressor
stage compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013095414A
Other languages
Japanese (ja)
Other versions
JP6169405B2 (en
Inventor
陽 目黒
Akira Meguro
陽 目黒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hino Motors Ltd
Original Assignee
Hino Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hino Motors Ltd filed Critical Hino Motors Ltd
Priority to JP2013095414A priority Critical patent/JP6169405B2/en
Publication of JP2014214732A publication Critical patent/JP2014214732A/en
Application granted granted Critical
Publication of JP6169405B2 publication Critical patent/JP6169405B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Supercharger (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent suction of a lubricant from a bearing of a turbocharger, which is caused by a negative pressure generated in an intake system path connecting between an outlet of a low-pressure stage compressor and an inlet of a high-pressure stage compressor at acceleration.SOLUTION: In a method for preventing an oil leakage of a two-stage supercharging system including a high-pressure stage turbocharger 6 and a low-pressure stage turbocharger 9, a recirculation line 13 for extracting part of intake air A from an outlet side of the high-pressure stage compressor 3 and returning the extracted air to an inlet side of the high-pressure stage compressor 3 is provided in the system, and the recirculation line 13 is always closed, but is opened only when an outlet pressure of the low-pressure stage compressor 8 is equal to or lower than an inlet pressure of that.

Description

本発明は、高圧段ターボチャージャと低圧段ターボチャージャとから成る二段過給システムの油漏れ防止方法及び装置に関するものである。   The present invention relates to an oil leakage prevention method and apparatus for a two-stage turbocharging system including a high-pressure stage turbocharger and a low-pressure stage turbocharger.

近年、低速軽負荷域での燃費向上、トルクアップや高EGR率の実現のために、ターボチャージャを二段で備えた過給システムが提案されており、この種の二段過給システムにおいては、図3に示す如く、エンジンEの排気マニホールド1から送出される排気Gにより高圧段タービン2を作動させ且つ高圧段コンプレッサ3で圧縮した吸気Aをインタークーラ4を介しエンジンEの吸気マニホールド5へ送給する高圧段ターボチャージャ6と、該高圧段ターボチャージャ6の高圧段タービン2から送出される排気Gにより低圧段タービン7を作動させ且つ低圧段コンプレッサ8で圧縮した吸気Aを前記高圧段コンプレッサ3へ送給する低圧段ターボチャージャ9とが備えられている。   In recent years, a turbocharging system with two stages of turbochargers has been proposed in order to improve fuel efficiency, increase torque and achieve a high EGR rate in the low speed and light load range. 3, the high-pressure turbine 2 is operated by the exhaust G sent from the exhaust manifold 1 of the engine E, and the intake air A compressed by the high-pressure compressor 3 is supplied to the intake manifold 5 of the engine E via the intercooler 4. The high-pressure stage turbocharger 6 to be fed, and the low-pressure stage turbine 7 operated by the exhaust G sent from the high-pressure stage turbine 2 of the high-pressure stage turbocharger 6 and the intake air A compressed by the low-pressure stage compressor 8 is compressed into the high-pressure stage compressor. 3 is provided with a low-pressure stage turbocharger 9 for feeding to the vehicle.

尚、図3中10は排気系路から抜き出した排気Gの一部を吸気系路に再循環するEGRパイプ、11は該EGRパイプ10を適宜に開閉するEGRバルブ、12は再循環される排気Gを冷却するためのEGRクーラを夫々示している。   In FIG. 3, 10 is an EGR pipe that recirculates part of the exhaust G extracted from the exhaust system path to the intake system path, 11 is an EGR valve that opens and closes the EGR pipe 10 appropriately, and 12 is the exhaust gas that is recirculated. EGR coolers for cooling G are shown respectively.

而して、斯かる二段過給システムにおいては、エンジンEが稼動状態である時に、排気マニホールド1から送出される排気Gが、高圧段タービン2へ流入して高圧段コンプレッサ3を駆動した後、低圧段タービン7へ流入して低圧段コンプレッサ8を駆動し、該低圧段コンプレッサ8に流入して圧縮された吸気Aは、高圧段コンプレッサ3に送給されて該高圧段コンプレッサ3で再び圧縮され、インタークーラ4を介してエンジンEの吸気マニホールド5へ送給されるので、エンジンEの各シリンダSへの吸気Aの送給量を増加して1サイクル当たりの燃料噴射量を多くすることが可能となり、これによりエンジンEの出力を高めることが可能となる。   Thus, in such a two-stage supercharging system, when the engine E is in an operating state, the exhaust G delivered from the exhaust manifold 1 flows into the high-pressure turbine 2 and drives the high-pressure compressor 3. The low pressure stage turbine 7 flows into the low pressure stage compressor 8 and drives the low pressure stage compressor 8. The intake air A that flows into the low pressure stage compressor 8 and is compressed is supplied to the high pressure stage compressor 3 and compressed again by the high pressure stage compressor 3. Since the fuel is supplied to the intake manifold 5 of the engine E via the intercooler 4, the amount of intake A supplied to each cylinder S of the engine E is increased to increase the fuel injection amount per cycle. This makes it possible to increase the output of the engine E.

尚、前述の如き二段過給システムと関連する一般的技術水準を示すものとしては下記の特許文献1等がある。   The following Patent Document 1 is an example of a general technical level related to the two-stage supercharging system as described above.

特開2007−71179号公報JP 2007-71179 A

しかしながら、斯かる従来の二段過給システムにおいては、信号待ちの停車状態から急発進する場合等の如き変化率の大きな加速を行う際に、エンジンEの排気マニホールド1からの排気Gが最初に導入される高圧段タービン2が低圧段タービン7より先に回転することになり、これにより低圧段コンプレッサ8が高圧段コンプレッサ3より遅れて回転する結果、低圧段コンプレッサ8の出口から高圧段コンプレッサ3の入口までの間が瞬間的に負圧となって、低圧段ターボチャージャ9の軸受から潤滑油が吸い出されてしまう問題があり、このような潤滑油の吸い出しが長期間に亘り繰り返されることでエンジンEの潤滑油の消費量が多くなったり、低圧段コンプレッサ8及び高圧段コンプレッサ3(吸気系路の上流側での潤滑油の漏出が下流側のコンプレッサにも影響するため)の翼車にコーキングが生じて性能や信頼性の低下を招いたりする虞れがあった。   However, in such a conventional two-stage supercharging system, the exhaust G from the exhaust manifold 1 of the engine E is first generated when acceleration with a large change rate is performed, such as when suddenly starting from a stop waiting for a signal. The introduced high-pressure turbine 2 rotates before the low-pressure turbine 7, and as a result, the low-pressure compressor 8 rotates behind the high-pressure compressor 3. As a result, the high-pressure compressor 3 is discharged from the outlet of the low-pressure compressor 8. There is a problem that the negative pressure is instantaneously reduced to the inlet of the engine and the lubricating oil is sucked out from the bearing of the low-pressure turbocharger 9, and such sucking out of the lubricating oil is repeated for a long period of time. As a result, the consumption amount of the lubricating oil of the engine E increases, and the low-pressure compressor 8 and the high-pressure compressor 3 (the lubricating oil leaks upstream of the intake passage). Coking the impeller for) also affect the flow side compressor there is a possibility to or cause a drop in performance and reliability caused.

更に補足して説明すれば、図4にグラフで示す通り、アクセルを踏み込んでアクセル開度を急激に上げると、これに追従してエンジンEの回転数が上昇する結果、エンジン駆動によるオイルポンプの回転数も上がり、潤滑油の給油圧も直ぐに追従して上昇してくるが、低圧段コンプレッサ8によるブースト圧の上昇はターボラグにより少し遅れて上昇してくるため、高圧段コンプレッサ3の先行回転により低圧段コンプレッサ8側のブースト圧が負圧となった時点で既に給油圧は十分に高くなっており、低圧段ターボチャージャ9の軸受から低圧段コンプレッサ8側へ吸い出され易い条件が整ってしまうことになる。   In addition, as shown in the graph of FIG. 4, when the accelerator is stepped on and the accelerator opening is rapidly increased as shown in the graph of FIG. The rotational speed also rises and the oil supply pressure of the lubricating oil immediately follows, but the boost pressure rise by the low-pressure compressor 8 rises with a slight delay due to the turbo lag. When the boost pressure on the low-pressure stage compressor 8 side becomes negative, the supply hydraulic pressure is already sufficiently high, and the conditions for easy suction from the bearing of the low-pressure stage turbocharger 9 to the low-pressure stage compressor 8 side are established. It will be.

尚、低圧段コンプレッサ8の軸受には、該軸受から低圧段コンプレッサ8側への潤滑油の漏出を防止するシールリング(図示せず)が備えられているが、この種のシールリングは、通常の過給運転時における低圧段コンプレッサ8側からの正圧の作用によりシール機能を発揮するようになっているため、低圧段コンプレッサ8側のハウジング内が負圧になると、シールリングの機能が低下してしまう虞れがあった。   Note that the bearing of the low-pressure compressor 8 is provided with a seal ring (not shown) that prevents leakage of lubricating oil from the bearing to the low-pressure compressor 8 side. Since the sealing function is exerted by the action of positive pressure from the low-pressure stage compressor 8 during the supercharging operation, the function of the seal ring is reduced when the pressure in the housing on the low-pressure stage compressor 8 side becomes negative. There was a fear of doing.

本発明は上述の実情に鑑みてなしたもので、低圧段コンプレッサの出口から高圧段コンプレッサの入口までの間が加速時に負圧となることによるターボチャージャの軸受からの潤滑油の吸い出しを防ぐことを目的とする。   The present invention has been made in view of the above circumstances, and prevents the suction of lubricating oil from the turbocharger bearing due to negative pressure during acceleration from the outlet of the low-pressure stage compressor to the inlet of the high-pressure stage compressor. With the goal.

本発明は、エンジンから送出される排気によって高圧段タービンを作動させ且つ高圧段コンプレッサで圧縮した吸気をエンジンへ送給する高圧段ターボチャージャと、該高圧段ターボチャージャの高圧段タービンから送出される排気によって低圧段タービンを作動させ且つ低圧段コンプレッサで圧縮した吸気を前記高圧段コンプレッサへ送給する低圧段ターボチャージャとを備えた二段過給システムの油漏れ防止方法であって、高圧段コンプレッサの出側から吸気の一部を抜き出して高圧段コンプレッサの入側へ戻すリサーキュレーションラインを装備し、該リサーキュレーションラインを常時閉として前記低圧段コンプレッサの出口圧力が入口圧力以下となった時にのみ開とすることを特徴とするものである。   The present invention relates to a high-pressure stage turbocharger that operates a high-pressure stage turbine by exhaust gas delivered from an engine and supplies intake air compressed by a high-pressure stage compressor to the engine, and the high-pressure stage turbine of the high-pressure stage turbocharger. An oil leakage prevention method for a two-stage supercharging system, comprising: a low-pressure turbocharger that operates a low-pressure turbine by exhaust gas and supplies intake air compressed by a low-pressure compressor to the high-pressure compressor; Equipped with a recirculation line that extracts a part of the intake air from the outlet side of the compressor and returns it to the inlet side of the high-pressure compressor, and the outlet pressure of the low-pressure compressor becomes lower than the inlet pressure with the recirculation line closed normally It is characterized by being opened only occasionally.

而して、このようにすれば、信号待ちの停車状態から急発進する場合等の如き変化率の大きな加速が行われた際に、エンジンの排気マニホールドからの排気が最初に導入される高圧段タービンが低圧段タービンより先に回転し、これにより低圧段コンプレッサが高圧段コンプレッサより遅れて回転することで、低圧段コンプレッサの出口から高圧段コンプレッサの入口までの間の圧力が低下しても、ほぼ大気圧相当と看做せる低圧段コンプレッサの入口圧力以下まで出口圧力が低下した時にリサーキュレーションラインが開となり、高圧段コンプレッサの出側から吸気の一部がリサーキュレーションラインを介し抜き出されて高圧段コンプレッサの入側へ戻されるので、低圧段コンプレッサの出口から高圧段コンプレッサの入口までの間が負圧となることが回避される。   Thus, in this way, when acceleration with a large rate of change is performed, such as when starting suddenly from a stop waiting for a signal, the high-pressure stage into which exhaust from the exhaust manifold of the engine is first introduced. Even if the pressure between the outlet of the low-pressure stage compressor and the inlet of the high-pressure stage compressor decreases because the turbine rotates before the low-pressure stage turbine, and the low-pressure stage compressor rotates later than the high-pressure stage compressor, The recirculation line is opened when the outlet pressure drops below the inlet pressure of the low-pressure compressor, which can be regarded as almost equivalent to atmospheric pressure, and a part of the intake air is extracted from the outlet side of the high-pressure compressor through the recirculation line. Since it is returned to the inlet side of the high-pressure stage compressor, the distance from the outlet of the low-pressure stage compressor to the inlet of the high-pressure stage compressor is negative. To become a is avoided.

この結果、低圧段ターボチャージャの軸受から潤滑油が吸い出されることが防止され、このような潤滑油の吸い出しが長期間に亘り繰り返されることでエンジンの潤滑油の消費量が多くなったり、低圧段コンプレッサ及び高圧段コンプレッサの翼車にコーキングが生じて性能や信頼性の低下を招いたりする虞れが解消される。   As a result, the lubricating oil is prevented from being sucked out from the bearing of the low-pressure stage turbocharger, and the consumption of the lubricating oil in the engine is increased by repeating such sucking out of the lubricating oil over a long period of time. The possibility of coking in the impellers of the stage compressor and the high-pressure stage compressor, resulting in a decrease in performance and reliability, is solved.

尚、通常の過給運転時にあっては、低圧段コンプレッサの出口から高圧段コンプレッサの入口までの間が正圧となるため、リサーキュレーションラインが閉じてブースト圧が確実に保持されることになり、圧力抜け等による過給効率の低下が起こる心配はない。   During normal supercharging operation, the pressure from the outlet of the low-pressure stage compressor to the inlet of the high-pressure stage compressor is positive, so that the recirculation line is closed and the boost pressure is reliably maintained. Therefore, there is no concern that the supercharging efficiency will decrease due to pressure loss.

また、本発明の方法を具体的に実施するにあたっては、エンジンから送出される排気によって高圧段タービンを作動させ且つ高圧段コンプレッサで圧縮した吸気をエンジンへ送給する高圧段ターボチャージャと、該高圧段ターボチャージャの高圧段タービンから送出される排気によって低圧段タービンを作動させ且つ低圧段コンプレッサで圧縮した吸気を前記高圧段コンプレッサへ送給する低圧段ターボチャージャとを備えた二段過給システムの油漏れ防止装置に関し、高圧段コンプレッサの出側から吸気の一部を抜き出して高圧段コンプレッサの入側へ戻すリサーキュレーションラインと、該リサーキュレーションラインの途中に装備されて前記低圧段コンプレッサの出口圧力が入口圧力以下に時にのみ開となる常時閉のリサーキュレーションバルブとを備えれば良い。   Further, when specifically implementing the method of the present invention, a high-pressure stage turbocharger that operates a high-pressure stage turbine by exhaust gas delivered from the engine and supplies intake air compressed by a high-pressure stage compressor to the engine, and the high-pressure stage turbocharger. A two-stage turbocharging system comprising: a low-pressure stage turbocharger that operates a low-pressure stage turbine by exhaust gas sent from a high-pressure stage turbine of the stage turbocharger and feeds the intake air compressed by the low-pressure stage compressor to the high-pressure stage compressor With regard to the oil leakage prevention device, a recirculation line that extracts a part of the intake air from the outlet side of the high-pressure stage compressor and returns it to the inlet side of the high-pressure stage compressor, and is installed in the middle of the recirculation line, Normally closed recirculation that opens only when the outlet pressure is below the inlet pressure It Sonaere and Nbarubu.

上記した本発明の二段過給システムの油漏れ防止方法及び装置によれば、低圧段コンプレッサの出口から高圧段コンプレッサの入口までの間の圧力が加速時に低下しても、リサーキュレーションラインが開となり、高圧段コンプレッサの出側から吸気の一部がリサーキュレーションラインを介し抜き出されて高圧段コンプレッサの入側へ戻され、低圧段コンプレッサの出口から高圧段コンプレッサの入口までの間が負圧となることを確実に回避できるので、低圧段ターボチャージャの軸受から潤滑油が吸い出されることを防止でき、このような潤滑油の吸い出しが長期間に亘り繰り返されることを要因として、エンジンの潤滑油の消費量が多くなったり、低圧段コンプレッサ及び高圧段コンプレッサの翼車にコーキングが生じて性能や信頼性の低下を招いたりする虞れを解消することができるという優れた効果を奏し得る。   According to the oil leakage prevention method and apparatus of the above-described two-stage supercharging system of the present invention, even if the pressure between the outlet of the low-pressure stage compressor and the inlet of the high-pressure stage compressor decreases during acceleration, the recirculation line is A part of the intake air is extracted from the outlet side of the high-pressure compressor through the recirculation line and returned to the inlet side of the high-pressure compressor, and the space between the outlet of the low-pressure compressor and the inlet of the high-pressure compressor is Since negative pressure can be reliably avoided, it is possible to prevent the lubricating oil from being sucked out from the bearings of the low-pressure turbocharger. Performance and reliability due to increased consumption of lubricating oil and coking in the impellers of low-pressure compressors and high-pressure compressors An excellent effect can be eliminated risk for or leading to degradation.

本発明を実施する形態の一例を示す概略図である。It is the schematic which shows an example of the form which implements this invention. 本形態例の低圧段側のブースト圧と給油圧との関係を示すグラフである。It is a graph which shows the relationship between the boost pressure by the side of the low voltage | pressure stage of this example, and supply hydraulic pressure. 従来例を示す概略図である。It is the schematic which shows a prior art example. 従来例の低圧段側のブースト圧と給油圧との関係を示すグラフである。It is a graph which shows the relationship between the boost pressure of the low pressure stage side of a prior art example, and a supply hydraulic pressure.

以下本発明の実施の形態を図面を参照しつつ説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1及び図2は本発明を実施する形態の一例を示すもので、図3と同一の符号を付した部分は同一物を表わしている。   1 and 2 show an example of an embodiment for carrying out the present invention, and portions denoted by the same reference numerals as those in FIG. 3 represent the same items.

本形態例においては、前述した図3の従来例の場合と同様に、エンジンの排気マニホールド1から送出される排気Gにより高圧段タービン2を作動させ且つ高圧段コンプレッサ3で圧縮した吸気Aをインタークーラ4を介し図示しないエンジンの吸気マニホールドへ送給する高圧段ターボチャージャ6と、該高圧段ターボチャージャ6の高圧段タービン2から送出される排気Gにより低圧段タービン7を作動させ且つ低圧段コンプレッサ8で圧縮した吸気Aを前記高圧段コンプレッサ3へ送給する低圧段ターボチャージャ9とにより二段過給システムが構成されているが、高圧段コンプレッサ3の出側から吸気Aの一部を抜き出して高圧段コンプレッサ3の入側へ戻すリサーキュレーションライン13を付設し、該リサーキュレーションライン13の途中に前記低圧段コンプレッサ8の出口圧力が入口圧力以下となった時にのみ開となる常時閉のリサーキュレーションバルブ14を備えた点を特徴としている。   In the present embodiment, as in the case of the conventional example of FIG. 3 described above, the high-pressure turbine 2 is operated by the exhaust G sent from the exhaust manifold 1 of the engine and the intake air A compressed by the high-pressure compressor 3 is A high-pressure stage turbocharger 6 that is fed to an intake manifold of an engine (not shown) via a cooler 4, and a low-pressure stage compressor 7 that operates a low-pressure stage turbine 7 by exhaust G sent from the high-pressure stage turbine 2 of the high-pressure stage turbocharger 6. A two-stage supercharging system is configured by the low-pressure stage turbocharger 9 that feeds the intake air A compressed at 8 to the high-pressure stage compressor 3, but a part of the intake air A is extracted from the outlet side of the high-pressure stage compressor 3. A recirculation line 13 for returning to the inlet side of the high-pressure stage compressor 3 is attached to the recirculation line. The outlet pressure of the low pressure stage compressor 8 is characterized that with a recirculation valve 14 normally closed to the open only when equal to or less than the inlet pressure in the middle of 13.

ここで、前記リサーキュレーションバルブ14の開閉操作は、制御装置15からの制御信号15aにより制御されるようになっており、一方、この制御装置15には、低圧段コンプレッサ8の入口圧力を検出する圧力センサ16と、低圧段コンプレッサ8の出口圧力を検出する圧力センサ17とからの検出信号16a,17aが夫々入力されるようになっていて、これらの検出信号16a,17aに基づき低圧段コンプレッサ8の出口圧力が入口圧力以下となった時に前記リサーキュレーションバルブ14が制御信号15aにより開操作され、これ以外の低圧段コンプレッサ8の出口圧力が入口圧力より高い条件下では、前記リサーキュレーションバルブ14が閉状態のまま保持されるようになっている。   Here, the opening / closing operation of the recirculation valve 14 is controlled by a control signal 15 a from the control device 15, while the control device 15 detects the inlet pressure of the low-pressure stage compressor 8. The detection signals 16a and 17a from the pressure sensor 16 for detecting the pressure and the pressure sensor 17 for detecting the outlet pressure of the low-pressure stage compressor 8 are inputted, respectively, and the low-pressure stage compressor is based on these detection signals 16a and 17a. When the outlet pressure of 8 becomes equal to or lower than the inlet pressure, the recirculation valve 14 is opened by the control signal 15a, and the recirculation is performed under the condition that the outlet pressure of the other low-pressure compressor 8 is higher than the inlet pressure. The valve 14 is held in a closed state.

而して、このようにすれば、信号待ちの停車状態から急発進する場合等の如き変化率の大きな加速が行われた際に、エンジンEの排気マニホールド1からの排気Gが最初に導入される高圧段タービン2が低圧段タービン7より先に回転し、これにより低圧段コンプレッサ8が高圧段コンプレッサ3より遅れて回転することで、低圧段コンプレッサ8の出口から高圧段コンプレッサ3の入口までの間の圧力が低下しても、ほぼ大気圧相当と看做せる低圧段コンプレッサ8の入口圧力以下まで出口圧力が低下した時に、リサーキュレーションバルブ14が制御装置15からの制御信号15aにより開操作されてリサーキュレーションライン13が開通し、高圧段コンプレッサ3の出側から吸気Aの一部がリサーキュレーションライン13を介し抜き出されて高圧段コンプレッサ3の入側へ戻されるので、低圧段コンプレッサ8の出口から高圧段コンプレッサ3の入口までの間が負圧となることが回避される。   Thus, in this way, the exhaust G from the exhaust manifold 1 of the engine E is first introduced when acceleration with a large change rate is performed, such as when suddenly starting from a stop waiting for a signal. The high-pressure turbine 2 rotates before the low-pressure turbine 7, and the low-pressure compressor 8 rotates behind the high-pressure compressor 3, so that the outlet from the low-pressure compressor 8 to the inlet of the high-pressure compressor 3 is rotated. The recirculation valve 14 is opened by the control signal 15a from the control device 15 when the outlet pressure drops below the inlet pressure of the low-pressure compressor 8 that can be considered to be substantially equivalent to the atmospheric pressure even if the pressure between them decreases. As a result, the recirculation line 13 is opened, and a part of the intake air A is removed from the outlet side of the high-pressure compressor 3 through the recirculation line 13. Since the issued and returned to the inlet side of the high pressure compressor 3, between the outlet of the low-pressure stage compressor 8 to the inlet of the high pressure compressor 3 is prevented from a negative pressure.

即ち、図2にグラフで示す如く、アクセルが踏み込まれてアクセル開度が急激に上げられても、これに追従するエンジンEの回転数や給油圧の上昇に遅れて上昇する低圧段コンプレッサ8によるブースト圧が加速直後に負圧に落ち込むことがなくなる。   That is, as shown in the graph of FIG. 2, even if the accelerator is depressed and the accelerator opening is suddenly increased, the low-pressure compressor 8 that rises behind the increase in the number of revolutions of the engine E and the increase in the hydraulic pressure to follow. The boost pressure no longer drops to negative pressure immediately after acceleration.

この結果、低圧段ターボチャージャ9の軸受から潤滑油が吸い出されることが防止され、このような潤滑油の吸い出しが長期間に亘り繰り返されることでエンジンEの潤滑油の消費量が多くなったり、低圧段コンプレッサ8及び高圧段コンプレッサ3の翼車にコーキングが生じて性能や信頼性の低下を招いたりする虞れが解消される。   As a result, the lubricating oil is prevented from being sucked out from the bearing of the low-pressure turbocharger 9, and the consumption of the lubricating oil in the engine E is increased by repeating such sucking out of the lubricating oil over a long period of time. The possibility that coking will occur in the impellers of the low-pressure compressor 8 and the high-pressure compressor 3 and the performance and reliability will be reduced is eliminated.

尚、通常の過給運転時にあっては、低圧段コンプレッサ8の出口から高圧段コンプレッサ3の入口までの間が正圧となるため、リサーキュレーションバルブ14が閉じてリサーキュレーションライン13が不通となり、これによりブースト圧が確実に保持されて圧力抜け等による過給効率の低下が起こらなくなる。   During normal supercharging operation, the pressure between the outlet of the low-pressure stage compressor 8 and the inlet of the high-pressure stage compressor 3 is positive, so the recirculation valve 14 is closed and the recirculation line 13 is disconnected. As a result, the boost pressure is reliably maintained, and the supercharging efficiency is not lowered due to the pressure loss or the like.

従って、上記形態例によれば、低圧段コンプレッサ8の出口から高圧段コンプレッサ3の入口までの間の圧力が加速時に低下しても、リサーキュレーションバルブ14が閉じてリサーキュレーションライン13が不通となり、高圧段コンプレッサ3の出側から吸気Aの一部がリサーキュレーションライン13を介し抜き出されて高圧段コンプレッサ3の入側へ戻され、低圧段コンプレッサ8の出口から高圧段コンプレッサ3の入口までの間が負圧となることを確実に回避できるので、低圧段ターボチャージャ9の軸受から潤滑油が吸い出されることを防止でき、このような潤滑油の吸い出しが長期間に亘り繰り返されることを要因として、エンジンEの潤滑油の消費量が多くなったり、低圧段コンプレッサ8及び高圧段コンプレッサ3の翼車にコーキングが生じて性能や信頼性の低下を招いたりする虞れを解消することができる。   Therefore, according to the above embodiment, even if the pressure between the outlet of the low-pressure stage compressor 8 and the inlet of the high-pressure stage compressor 3 decreases during acceleration, the recirculation valve 14 is closed and the recirculation line 13 is disconnected. Thus, a part of the intake air A is extracted from the outlet side of the high-pressure stage compressor 3 through the recirculation line 13 and returned to the inlet side of the high-pressure stage compressor 3. Since it is possible to reliably avoid a negative pressure between the inlet and the inlet, it is possible to prevent the lubricating oil from being sucked out from the bearing of the low-pressure stage turbocharger 9, and such sucking of the lubricating oil is repeated for a long period of time. As a result, the consumption of lubricating oil in the engine E increases, and the impellers of the low-pressure compressor 8 and the high-pressure compressor 3 Coking occurs can be eliminated risk for or cause a deterioration in performance and reliability.

尚、本発明の二段過給システムの油漏れ防止方法及び装置は、上述の形態例にのみ限定されるものではなく、この形態例に関する具体的な説明の中では、低圧段コンプレッサの入口圧力と出口圧力とを圧力センサにより夫々実測してリサーキュレーションバルブを制御装置で制御する場合を例示しているが、低圧段コンプレッサの入口圧力と出口圧力との圧力関係を利用して機械的に自ら開閉作動するようにしたリサーキュレーションバルブを採用しても良いこと、その他、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。   Note that the oil leakage prevention method and apparatus of the two-stage turbocharging system of the present invention is not limited to the above-described embodiment. In the specific description related to this embodiment, the inlet pressure of the low-pressure compressor is described. In this example, the recirculation valve is controlled by the control device by actually measuring the pressure and the outlet pressure with a pressure sensor, but mechanically using the pressure relationship between the inlet pressure and the outlet pressure of the low-pressure compressor. Of course, a recirculation valve that can be opened and closed by itself may be employed, and various changes may be made without departing from the scope of the present invention.

2 高圧段タービン
3 高圧段コンプレッサ
6 高圧段ターボチャージャ
7 低圧段タービン
8 低圧段コンプレッサ
9 低圧段ターボチャージャ
13 リサーキュレーションライン
14 リサーキュレーションバルブ
A 吸気
E エンジン
2 High-pressure stage turbine 3 High-pressure stage compressor 6 High-pressure stage turbocharger 7 Low-pressure stage turbine 8 Low-pressure stage compressor 9 Low-pressure stage turbocharger 13 Recirculation line 14 Recirculation valve A Intake E Engine

Claims (2)

エンジンから送出される排気によって高圧段タービンを作動させ且つ高圧段コンプレッサで圧縮した吸気をエンジンへ送給する高圧段ターボチャージャと、該高圧段ターボチャージャの高圧段タービンから送出される排気によって低圧段タービンを作動させ且つ低圧段コンプレッサで圧縮した吸気を前記高圧段コンプレッサへ送給する低圧段ターボチャージャとを備えた二段過給システムの油漏れ防止方法であって、高圧段コンプレッサの出側から吸気の一部を抜き出して高圧段コンプレッサの入側へ戻すリサーキュレーションラインを装備し、該リサーキュレーションラインを常時閉として前記低圧段コンプレッサの出口圧力が入口圧力以下となった時にのみ開とすることを特徴とする二段過給システムの油漏れ防止方法。   A high-pressure stage turbocharger that operates a high-pressure stage turbine by exhaust gas sent from the engine and supplies intake air compressed by a high-pressure stage compressor to the engine, and a low-pressure stage by exhaust gas sent from the high-pressure stage turbine of the high-pressure stage turbocharger An oil leakage prevention method for a two-stage turbocharging system comprising a low-pressure stage turbocharger that operates a turbine and that compresses intake air compressed by a low-pressure stage compressor to the high-pressure stage compressor, from the outlet side of the high-pressure stage compressor Equipped with a recirculation line that extracts a part of the intake air and returns it to the inlet side of the high-pressure stage compressor. The recirculation line is normally closed and is opened only when the outlet pressure of the low-pressure stage compressor is lower than the inlet pressure. An oil leakage prevention method for a two-stage turbocharging system. エンジンから送出される排気によって高圧段タービンを作動させ且つ高圧段コンプレッサで圧縮した吸気をエンジンへ送給する高圧段ターボチャージャと、該高圧段ターボチャージャの高圧段タービンから送出される排気によって低圧段タービンを作動させ且つ低圧段コンプレッサで圧縮した吸気を前記高圧段コンプレッサへ送給する低圧段ターボチャージャとを備えた二段過給システムの油漏れ防止装置であって、高圧段コンプレッサの出側から吸気の一部を抜き出して高圧段コンプレッサの入側へ戻すリサーキュレーションラインと、該リサーキュレーションラインの途中に装備されて前記低圧段コンプレッサの出口圧力が入口圧力以下となった時にのみ開となる常時閉のリサーキュレーションバルブとを備えたことを特徴とする二段過給システムの油漏れ防止装置。   A high-pressure stage turbocharger that operates a high-pressure stage turbine by exhaust gas sent from the engine and supplies intake air compressed by a high-pressure stage compressor to the engine, and a low-pressure stage by exhaust gas sent from the high-pressure stage turbine of the high-pressure stage turbocharger An oil leakage prevention device for a two-stage turbocharging system comprising a low-pressure turbocharger that operates a turbine and that compresses intake air compressed by a low-pressure compressor to the high-pressure compressor, from the outlet side of the high-pressure compressor A recirculation line that extracts a part of the intake air and returns it to the inlet side of the high-pressure stage compressor, and is opened only when the outlet pressure of the low-pressure stage compressor is equal to or lower than the inlet pressure. With a normally closed recirculation valve Oil leakage prevention device of the system.
JP2013095414A 2013-04-30 2013-04-30 Oil leakage prevention method and apparatus for two-stage supercharging system Active JP6169405B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013095414A JP6169405B2 (en) 2013-04-30 2013-04-30 Oil leakage prevention method and apparatus for two-stage supercharging system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013095414A JP6169405B2 (en) 2013-04-30 2013-04-30 Oil leakage prevention method and apparatus for two-stage supercharging system

Publications (2)

Publication Number Publication Date
JP2014214732A true JP2014214732A (en) 2014-11-17
JP6169405B2 JP6169405B2 (en) 2017-07-26

Family

ID=51940727

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013095414A Active JP6169405B2 (en) 2013-04-30 2013-04-30 Oil leakage prevention method and apparatus for two-stage supercharging system

Country Status (1)

Country Link
JP (1) JP6169405B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2558640A (en) * 2017-01-13 2018-07-18 Perkins Engines Co Ltd Turbocharger assembly with oil carry-over protection
GB2584085A (en) * 2019-05-17 2020-11-25 Perkins Engines Co Ltd Multi-stage turbocharger unit, internal combustion engine and method for operating a multi-stage turbocharger unit
DE102017200363B4 (en) 2016-02-04 2022-07-07 Ford Global Technologies, Llc Method for operating a parallel-charged internal combustion engine with switchable turbine and internal combustion engine for carrying out such a method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63186929A (en) * 1987-01-28 1988-08-02 Mitsubishi Motors Corp Deceleration control of internal combustion engine equipped with supercharger
JP2009270470A (en) * 2008-05-06 2009-11-19 Toyota Motor Corp Surge avoidance control system of multistage turbo-supercharging system
JP2010190052A (en) * 2009-02-16 2010-09-02 Toyota Motor Corp Supercharging system for internal combustion engine
JP2012067614A (en) * 2010-09-21 2012-04-05 Toyota Motor Corp Device for controlling compressor outlet pressure

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63186929A (en) * 1987-01-28 1988-08-02 Mitsubishi Motors Corp Deceleration control of internal combustion engine equipped with supercharger
JP2009270470A (en) * 2008-05-06 2009-11-19 Toyota Motor Corp Surge avoidance control system of multistage turbo-supercharging system
JP2010190052A (en) * 2009-02-16 2010-09-02 Toyota Motor Corp Supercharging system for internal combustion engine
JP2012067614A (en) * 2010-09-21 2012-04-05 Toyota Motor Corp Device for controlling compressor outlet pressure

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017200363B4 (en) 2016-02-04 2022-07-07 Ford Global Technologies, Llc Method for operating a parallel-charged internal combustion engine with switchable turbine and internal combustion engine for carrying out such a method
GB2558640A (en) * 2017-01-13 2018-07-18 Perkins Engines Co Ltd Turbocharger assembly with oil carry-over protection
CN108301914A (en) * 2017-01-13 2018-07-20 珀金斯发动机有限公司 With the turbocharger assembly for altering oil guard
GB2558640B (en) * 2017-01-13 2020-02-26 Perkins Engines Co Ltd Turbocharger assembly with oil carry-over protection
US10590857B2 (en) 2017-01-13 2020-03-17 Perkins Engines Company Limited Turbocharger assembly with oil carry-over protection
CN108301914B (en) * 2017-01-13 2021-12-10 珀金斯发动机有限公司 Turbocharger assembly with oil blow-by protection
GB2584085A (en) * 2019-05-17 2020-11-25 Perkins Engines Co Ltd Multi-stage turbocharger unit, internal combustion engine and method for operating a multi-stage turbocharger unit
GB2584085B (en) * 2019-05-17 2022-01-05 Perkins Engines Co Ltd Multi-stage turbocharger unit, internal combustion engine and method for operating a multi-stage turbocharger unit

Also Published As

Publication number Publication date
JP6169405B2 (en) 2017-07-26

Similar Documents

Publication Publication Date Title
US8640459B2 (en) Turbocharger control systems and methods for improved transient performance
EP3290667B1 (en) Blowby gas treatment device for internal combustion engine with supercharger
KR20080037563A (en) Resister supercharger
US10006414B2 (en) Condensate storage and removal in low pressure exhaust gas recirculation system
JP5822445B2 (en) Blowby gas recirculation system
US20130180508A1 (en) System and method of controlling an amount of condensation in an engine air intake system
JP2007263040A (en) Three stage supercharging system for engine
US20120152214A1 (en) Turbocharger system
US9765712B2 (en) System and method for turbocharger compressor surge control
JP6169405B2 (en) Oil leakage prevention method and apparatus for two-stage supercharging system
US20140130494A1 (en) Air compressing device of engine
KR20160078018A (en) Two Stage Turbo Charger System And Method Of Controlling Two Stage Turbo Charger System
JP6027318B2 (en) Multistage supercharging system
JP2012225179A (en) Supercharger system, internal combustion engine and control method of supercharger system
RU2449139C1 (en) Turbocharging system of diesel locomotive internal combustion engine
JP2010127126A (en) Two-stage supercharging system
US20140212278A1 (en) Turbine housing
JP2012237231A (en) Blowby gas reflux device
JP2010138759A (en) Supercharging system for internal combustion engine and control method therefor
JP6752708B2 (en) Two-stage supercharging system
US9581079B2 (en) Two-stage turbocharger apparatus
JP5256986B2 (en) Two-stage supercharging system for internal combustion engine, internal combustion engine and lubricating oil leakage prevention method thereof
KR102109422B1 (en) Three-stage turbo-charger system and control method of the same
JP2016125366A (en) Internal combustion engine
KR101962491B1 (en) Air intake system for improving engine performance on low temperature climate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160321

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170620

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170628

R150 Certificate of patent or registration of utility model

Ref document number: 6169405

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250