JP2014157069A - Position detector - Google Patents

Position detector Download PDF

Info

Publication number
JP2014157069A
JP2014157069A JP2013027663A JP2013027663A JP2014157069A JP 2014157069 A JP2014157069 A JP 2014157069A JP 2013027663 A JP2013027663 A JP 2013027663A JP 2013027663 A JP2013027663 A JP 2013027663A JP 2014157069 A JP2014157069 A JP 2014157069A
Authority
JP
Japan
Prior art keywords
harmonic
signal
position data
phase
pass filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013027663A
Other languages
Japanese (ja)
Other versions
JP6100552B2 (en
Inventor
Shinji Shibata
伸二 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okuma Corp
Original Assignee
Okuma Corp
Okuma Machinery Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okuma Corp, Okuma Machinery Works Ltd filed Critical Okuma Corp
Priority to JP2013027663A priority Critical patent/JP6100552B2/en
Publication of JP2014157069A publication Critical patent/JP2014157069A/en
Application granted granted Critical
Publication of JP6100552B2 publication Critical patent/JP6100552B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a position detector capable of more accurate position detection.SOLUTION: The position detector includes: a multiplier 7 which calculates A(n) and B(n) as values to be integrated, on the basis of digital signals α(n) and β(n) obtained by A/D conversion of a two-phase analog signal obtained from a position detection sensor 2; an LPF 8 which calculates amplitudes a2 and b2 of secondary higher harmonics by performing second-order low pass filter processing on the output from the multiplier 7; a speed converter 10 which calculates a speed from position data; a storage 9 in which the amplitudes a2 and b2 of secondary higher harmonics are stored only for a period after the lapse of a time proportional to a time constant of the LPF after the calculated time becomes constant, till a time when the speed is changed; a higher harmonic reduction unit 5 which reduces secondary higher harmonic components of the digital signals α(n) and β(n) in accordance with the amplitudes a2 and b2 of the secondary higher harmonics stored in the storage 9; and a position data calculation unit 3 which calculates position data θ from the corrected digital signals.

Description

本発明は、モータ等の回転体の回転角度を検出するロータリエンコーダや、リニアステージ等の変位を検出するリニアエンコーダ等のエンコーダ信号の高調波成分の低減に関する。   The present invention relates to a reduction in harmonic components of an encoder signal such as a rotary encoder that detects a rotation angle of a rotating body such as a motor or a linear encoder that detects displacement of a linear stage or the like.

従来の位置検出センサーの2相信号の高調波成分を低減する位置検出装置には、この2相信号をもとに位置データ算出部によって算出される位置データを2点以上取得し、3次高調波振幅算出部にて各入力信号に重畳する3次高調波振幅を算出するものがある(例えば、特許文献1参照)。以下、従来の位置検出センサーの2相信号の高調波成分を低減する位置検出装置について図3を用いて説明する。図3において、1は、位置検出センサー2から得られる2相の周期的なアナログ信号Sa,Sbをデジタル信号α,βに変換するA/D変換器、3は位置データを算出する位置データ算出部、4は3次高調波振幅a3,b3を検出する高調波振幅算出部、5は3次高調波振幅情報に基づいて2相デジタル信号を補正する高調波低減部である。6は演算部で、位置データ算出部3、高調波振幅算出部4および高調波低減部5から構成されている。   A position detection device that reduces the harmonic component of the two-phase signal of the conventional position detection sensor acquires two or more position data calculated by the position data calculation unit based on the two-phase signal, and obtains the third harmonic. There is one that calculates a third harmonic amplitude to be superimposed on each input signal in a wave amplitude calculator (see, for example, Patent Document 1). Hereinafter, a position detection device that reduces the harmonic component of the two-phase signal of the conventional position detection sensor will be described with reference to FIG. In FIG. 3, 1 is an A / D converter that converts two-phase periodic analog signals Sa and Sb obtained from the position detection sensor 2 into digital signals α and β, and 3 is position data calculation that calculates position data. And 4, a harmonic amplitude calculating unit for detecting the third harmonic amplitudes a3 and b3, and a harmonic reducing unit for correcting the two-phase digital signal based on the third harmonic amplitude information. Reference numeral 6 denotes a calculation unit, which includes a position data calculation unit 3, a harmonic amplitude calculation unit 4, and a harmonic reduction unit 5.

次に、従来例における高調波振幅算出動作について説明する。図4は従来例における高調波振幅の算出原理を説明するための信号波形図で、センサー信号に含まれる基本波と3次高調波の関係を示す。(A)は、A相信号における基本波と3次高調波の関係を示し、(B)は、B相信号における基本波と3次高調波の関係を示す。   Next, the harmonic amplitude calculation operation in the conventional example will be described. FIG. 4 is a signal waveform diagram for explaining the calculation principle of the harmonic amplitude in the conventional example, and shows the relationship between the fundamental wave and the third harmonic included in the sensor signal. (A) shows the relationship between the fundamental wave and the third harmonic in the A phase signal, and (B) shows the relationship between the fundamental wave and the third harmonic in the B phase signal.

センサー信号Sa(cos信号)およびSb(sin信号)に3次高調波が重畳している場合、基本波と3次高調波は図に示すような位相関係を有し、A/D変換後のデジタル信号αおよびβは、基本波の振幅をa1,b1、3次高調波の振幅をa3,b3とすると次の式で表される。ただし、θは位置である。
α =a1・cosθ+a3・cos3θ
β =b1・sinθ−b3・sin3θ
When the third harmonic is superimposed on the sensor signals Sa (cos signal) and Sb (sin signal), the fundamental wave and the third harmonic have a phase relationship as shown in FIG. The digital signals α and β are expressed by the following equations when the amplitude of the fundamental wave is a1, b1, and the amplitude of the third harmonic is a3, b3. However, (theta) is a position.
α = a1 · cos θ + a3 · cos 3θ
β = b1 · sin θ−b3 · sin 3θ

位置データ算出部3では、2相のデジタル信号から逆正接演算(tan−1)を用いて位置データθ(n)を算出する。 The position data calculation unit 3 calculates position data θ (n) from a two-phase digital signal using an arc tangent calculation (tan −1 ).

高調波振幅算出部4では、A相、B相のデジタル信号において、それぞれ2点以上の位置について、位置データθ(n)を算出すると共に、この位置におけるデジタルデータα(n),β(n)を取得する。このデジタルデータα(n),β(n)は、位置データθ(n)を用いて次の式で表される。
a1・cos(θ(n))+a3・cos(3・θ(n) )= α(n)
b1・sin(θ(n)) −b3・sin(3・θ(n))= β(n)
The harmonic amplitude calculation unit 4 calculates position data θ (n) for two or more positions in the A-phase and B-phase digital signals, and digital data α (n) and β (n ) To get. The digital data α (n) and β (n) are expressed by the following equation using the position data θ (n).
a1 · cos (θ (n)) + a3 · cos (3 · θ (n)) = α (n)
b1 · sin (θ (n)) − b3 · sin (3 · θ (n)) = β (n)

A相の関係式の未知数はa1,a3、B相の関係式は未知数はb1,b3でA相の関係式もB相の関係式も未知数は2つであるため最低2点分のデータを取得すればa1,a3およびb1,b3は求めることができる。   The unknowns in the A phase relational expression are a1 and a3, the B phase relational expression is b1 and b3, and there are two unknowns in both the A phase relational expression and the B phase relational expression. If acquired, a1, a3 and b1, b3 can be obtained.

デジタルデータα(n),β(n)と位置データθ(n)における、任意位置のある時点の2点のデータα1,β1,θ1,α2,β2,θ2から3次高調波振幅a3,b3を算出する場合は、次の式を用いる。
a3= (α1・cos(θ2)− α2・cos(θ1))/(cos(3・θ1)・cos(θ2)− cos(3・θ2)・cos(θ1))
b3= (β1・sin(θ2)− β2・sin(θ1))/(sin(3・θ2)・sin(θ1)− sin(3・θ1)・sin(θ2))
Third-order harmonic amplitudes a3, b3 from digital data α (n), β (n) and position data θ (n) from two points of data α1, β1, θ1, α2, β2, θ2 at an arbitrary position. Is used, the following equation is used.
a3 = (α1 · cos (θ2) −α2 · cos (θ1)) / (cos (3 · θ1) · cos (θ2) −cos (3 · θ2) · cos (θ1))
b3 = (β1 · sin (θ2) −β2 · sin (θ1)) / (sin (3 · θ2) · sin (θ1) −sin (3 · θ1) · sin (θ2))

次に、高調波成分の低減動作について説明する。高調波低減部5では、高調波振幅算出部4によって算出されたA相の3次高調波振幅a3およびB相の3次高調波振幅b3を使用して2相のデジタル信号を以下の演算により補正する。
α’(n) = α(n)−a3・cos(3・θ’)
β’(n) = β(n)+b3・sin(3・θ’)
ただし、α(n),β(n)は補正前のセンサー信号Sa,Sbのデジタル信号、θ’は、位置データ算出部3によって算出される位置データθの前回値である。このように本実施例ではセンサー信号に重畳した3次高調波歪を検出し、これらの歪を除去することができるため高精度な位置データの算出が可能となる。
Next, the operation of reducing harmonic components will be described. The harmonic reduction unit 5 uses the A phase third harmonic amplitude a3 and the B phase third harmonic amplitude b3 calculated by the harmonic amplitude calculation unit 4 to convert a two-phase digital signal by the following calculation. to correct.
α ′ (n) = α (n) −a3 · cos (3 · θ ′)
β ′ (n) = β (n) + b3 · sin (3 · θ ′)
However, α (n) and β (n) are digital signals of the sensor signals Sa and Sb before correction, and θ ′ is the previous value of the position data θ calculated by the position data calculation unit 3. As described above, in this embodiment, the third harmonic distortion superimposed on the sensor signal can be detected and the distortion can be removed, so that the position data can be calculated with high accuracy.

また、従来の位置検出センサーの2相信号の2次高調波成分を低減する位置検出装置には、2相信号から半径Rを算出し、その半径Rを高速フーリエ変換することで、2相信号の2次高調波成分を算出するものがある(例えば、特許文献2参照)。   Further, in a position detection device that reduces the second harmonic component of the two-phase signal of the conventional position detection sensor, the radius R is calculated from the two-phase signal, and the radius R is fast Fourier transformed to obtain the two-phase signal. There is one that calculates the second harmonic component of (see, for example, Patent Document 2).

以下、この位置検出装置について図5、図6を用いて説明する。位置検出センサーが1回転すると、2相信号が1サイクル動き、この範囲を波長λとする。半径演算器18は、2相信号α(n),β(n)を、それぞれ2乗した値の和の平方根を示す数値R(R=(α(n)+β(n)1/2)を出力する。FFT処理部19は、前回の位置信号θ’の変化から1/32・λごとに信号Rをサンプリングし、位置検出センサーがλ分可動するたびに32ポイントの信号Rについて高速フーリエ変換を行なう。また、FFT処理部19では、3次成分の余弦成分を0次成分の自乗で除算した数値a2と、3次成分の正弦成分を0次成分の自乗で除算した数値b2を出力する。 Hereinafter, this position detection apparatus will be described with reference to FIGS. When the position detection sensor rotates once, the two-phase signal moves for one cycle, and this range is defined as the wavelength λ. The radius calculator 18 is a numerical value R (R = (α (n) 2 + β (n) 2 ) 1/2 indicating the square root of the sum of values obtained by squaring the two-phase signals α (n) and β (n). 2 ) is output. The FFT processing unit 19 samples the signal R every 1/32 · λ from the previous change in the position signal θ ′, and performs fast Fourier transform on the 32-point signal R every time the position detection sensor moves by λ. The FFT processing unit 19 outputs a numerical value a2 obtained by dividing the cosine component of the third order component by the square of the zeroth order component and a numerical value b2 obtained by dividing the sine component of the third order component by the square of the zeroth order component.

なお、3次成分の余弦成分の半分の値と3次成分の正弦成分の半分の値は、数値α(n)と数値β(n)に含まれる2次高調波量とほぼ等しいことが知られている。また、0次成分はλ分可動した時の数値α(n),β(n)の平均振幅で2相信号の振幅a1,b1とほぼ等しい。以上から、数値a2,b2は、数値α(n),β(n)に含まれる2次高調波量の2倍の数を振幅a1,b1の自乗で割った数値と同じ値となる。移動量検出器20は、位置信号θ’の変化から位置検出センサーがλ分可動するたびに記憶器31へ記憶指令SETを出力する。記憶器31は、それぞれ数値a2,b2を記憶指令SETが入力されるごとに記憶する。記憶器31が記憶した数値a2,b2は、高調波低減部5に入力される。   It is known that the half value of the cosine component of the third order component and the half value of the sine component of the third order component are substantially equal to the amount of the second harmonic contained in the numerical value α (n) and the numerical value β (n). It has been. The zeroth-order component is the average amplitude of the numerical values α (n) and β (n) when moved by λ and is approximately equal to the amplitudes a1 and b1 of the two-phase signal. From the above, the numerical values a2 and b2 are the same as the numerical values obtained by dividing the number of the second harmonics contained in the numerical values α (n) and β (n) by the square of the amplitudes a1 and b1. The movement amount detector 20 outputs a storage command SET to the storage device 31 every time the position detection sensor moves by λ from the change of the position signal θ ′. The storage device 31 stores numerical values a2 and b2 each time a storage command SET is input. Numerical values a <b> 2 and b <b> 2 stored in the storage device 31 are input to the harmonic reduction unit 5.

高調波低減部5では、数値α(n),β(n)の自乗演算により、信号α(n),β(n)に同期した2次高調波に相当する数値DCB2,DSB2をそれぞれ出力する。乗算器35,45では、記憶器31が記憶する数値a2,b2とそれぞれ乗算され、信号α(n),β(n)に含まれる2次高調波とほぼ等しい数値DC2,DS2に振幅調整される。減算器36,46では、数値α(n),β(n)からそれぞれ数値DC2,DS2が除去され、数値α’(n),β’(n)として出力される。数値α(n),β(n)は、位置データ算出部3により、位置検出センサーの高精密な位置データθに変換される。   The harmonic reduction unit 5 outputs numerical values DCB2 and DSB2 corresponding to the second harmonics synchronized with the signals α (n) and β (n) by square calculation of the numerical values α (n) and β (n), respectively. . Multipliers 35 and 45 multiply the numerical values a2 and b2 stored in the storage unit 31 respectively, and adjust the amplitudes to numerical values DC2 and DS2 that are substantially equal to the second harmonic contained in the signals α (n) and β (n). The In the subtractors 36 and 46, the numerical values DC2 and DS2 are removed from the numerical values α (n) and β (n), respectively, and are output as numerical values α ′ (n) and β ′ (n). The numerical values α (n) and β (n) are converted into highly precise position data θ of the position detection sensor by the position data calculation unit 3.

特開2008−304249号公報JP 2008-304249 A 特開2010−156554号公報JP 2010-156554 A

特許文献1の従来例では、位置検出センサーの信号には、2次高調波が含まれており、これにより発生する位置検出誤差や、これが温度により変化するために発生する位置検出誤差が、高精度な位置の検出の妨げになるという問題がある。従来技術では3次高調波は検出、低減できるが、この2次高調波を検出、低減することはできない。   In the conventional example of Patent Document 1, the signal of the position detection sensor includes the second harmonic, and the position detection error caused by this and the position detection error caused by the change due to temperature are high. There is a problem that the detection of an accurate position is hindered. In the prior art, the third harmonic can be detected and reduced, but this second harmonic cannot be detected and reduced.

特許文献2に記載されている半径Rより、2次高調波を検出する方法では、フーリエ解析を行うために波長λピッチ内で2のn乗分の1の位置変化ごとの半径Rに相当する値を、算出しなければならない。そのため、A/Dサンプル周期あたり、2のn乗分のλ以上位置が変化する速度では、フーリエ解析を行うことが出来ないため、オフセット成分を抽出することが出来ないという問題がある。   In the method of detecting the second harmonic from the radius R described in Patent Document 2, this corresponds to the radius R for every position change of 1 / n 2 within the wavelength λ pitch in order to perform Fourier analysis. The value must be calculated. Therefore, there is a problem that an offset component cannot be extracted because Fourier analysis cannot be performed at a speed at which the position changes by more than λ corresponding to 2 to the nth power per A / D sample period.

上記問題を解決するため、本発明の位置検出装置は、相対変位する2つの物体の位置に応じてセンサー信号検出部から得られる周期的なA相およびB相の2相の正弦波状のアナログ信号をそれぞれデジタル信号に変換し、前記デジタル信号から位置データを算出し、前記位置データから前記物体の位置を得る位置検出装置において、前記デジタル信号を入力し2次高調波を抽出するための演算を行う乗算器と、前記乗算器の出力を入力し2次のローパスフィルタ処理を行うことで前記デジタル信号の2次高調波の振幅を算出するローパスフィルタと、前記位置データから速度算出する速度変換器と、速度が一定になった後、前記ローパスフィルタの時定数に比例した時間待ってから、記憶有効信号をONにし、速度が変化した時は、記憶有効信号をOFFにする高調波設定手段と、前記記憶有効信号がONの時のみに、ローパスフィルタの出力である2次高調波の振幅を記憶する記憶器と、記憶器が記憶している2次高調波の振幅に従って前記デジタル信号の2次高調波成分を低減する高調波低減部と、前記2次高調波成分を低減した前記デジタル信号から位置データを算出することを特徴とする。   In order to solve the above problem, the position detection apparatus of the present invention is a periodic A-phase and B-phase two-phase sinusoidal analog signal obtained from the sensor signal detection unit in accordance with the positions of two relatively displaced objects. Are converted into digital signals, position data is calculated from the digital signals, and a position detection device that obtains the position of the object from the position data performs operations for inputting the digital signals and extracting second harmonics. A multiplier for performing, a low-pass filter for calculating the amplitude of the second harmonic of the digital signal by inputting the output of the multiplier and performing a second-order low-pass filter processing, and a speed converter for calculating the velocity from the position data After the speed becomes constant, after waiting for a time proportional to the time constant of the low-pass filter, the memory valid signal is turned ON. Harmonic setting means for turning off the signal, a memory for storing the amplitude of the second harmonic, which is the output of the low-pass filter, only when the memory valid signal is ON, and the secondary stored in the memory A harmonic reduction unit that reduces a second harmonic component of the digital signal in accordance with an amplitude of the harmonic, and position data is calculated from the digital signal in which the second harmonic component is reduced.

好適な態様では、前記センサー信号検出の順番をn、前記デジタル信号をα(n),β(n)とした場合、前記乗算器は、A(n)=α(n)/0.75、B(n)=β(n)/0.75を算出し、2次高調波の抽出値A(n)、B(n)を出力する。 In a preferred aspect, when the sensor signal detection order is n and the digital signal is α (n), β (n), the multiplier is A (n) = α (n) 3 /0.75. , B (n) = β (n) 3 /0.75 is calculated, and second harmonic extraction values A (n) and B (n) are output.

位置検出センサーの信号の2次高調波や、温度等でこの信号の2次高調波が変化しても、2次高調波の検出、低減を行うことで、高精度な位置検出が可能な位置検出装置が実現できる。またAD変換器のサンプル周期あたり、2のn乗分のλ以上位置が変化する回転速度の場合でも高精度に2次高調波を同定することが可能である。したがって、高速回転でも2次高調波の経時変化を、正確に同定し、かつ精度悪化成分を除去し、内挿精度を大幅に向上させることが可能である。これによって、位置検出装置の高精度化と高速化を両立させることができる。   A position where high-accuracy position detection is possible by detecting and reducing the second harmonic even if the second harmonic of the signal of the position detection sensor or the second harmonic of this signal changes due to temperature, etc. A detection device can be realized. In addition, it is possible to identify the second harmonic with high accuracy even in the case of a rotational speed at which the position changes by more than λ corresponding to 2 n power per sample period of the AD converter. Accordingly, it is possible to accurately identify the temporal change of the second harmonic even at high speed, remove the accuracy deterioration component, and greatly improve the interpolation accuracy. As a result, both high accuracy and high speed of the position detection device can be achieved.

本発明の実施形態である位置検出装置の構成を示すブロック図である。It is a block diagram which shows the structure of the position detection apparatus which is embodiment of this invention. 本発明の実施形態における高調波振幅の算出原理を説明するための信号波形図である。It is a signal waveform diagram for demonstrating the calculation principle of the harmonic amplitude in embodiment of this invention. 従来の位置検出装置の構成を示すブロック図である。It is a block diagram which shows the structure of the conventional position detection apparatus. 従来例における高調波振幅の算出原理を説明するための信号波形図である。It is a signal waveform diagram for demonstrating the calculation principle of the harmonic amplitude in a prior art example. 従来の他の位置検出装置の構成を示すブロック図である。It is a block diagram which shows the structure of the other conventional position detection apparatus. 図5の位置検出装置の高調波低減部の詳細ブロック図である。It is a detailed block diagram of the harmonic reduction part of the position detection apparatus of FIG.

以下、図面に基づいて本発明の実施形態を説明する。図1は本発明の位置検出装置の実施形態を示す。図1は、図3に対応させて示すブロック図であり、図3と同じ機能のものは、同じ符号とし、その説明を省略する。乗算器7およびローパスフィルタ(LPF)8は、2次高調波の振幅を算出する演算手段として機能する。乗算器7には、デジタル信号α(n),β(n)が入力される。乗算器7は、2次高調波を抽出するため、以下の演算を行い、A(n),B(n)をローパスフィルタに出力する。このA(n),B(n)が、ローパスフィルタにより積分される被積分値となる。ただし、nは、自然数で、センサー信号検出の順番を示す。また、被積分値とは、積分した場合に、2次高調波の振幅2aのみが残る値である。
A(n)=α(n)/0.75
B(n)=β(n)/0.75
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows an embodiment of the position detection apparatus of the present invention. FIG. 1 is a block diagram corresponding to FIG. 3, and components having the same functions as those in FIG. The multiplier 7 and the low-pass filter (LPF) 8 function as calculation means for calculating the amplitude of the second harmonic. Digital signals α (n) and β (n) are input to the multiplier 7. In order to extract the second harmonic, the multiplier 7 performs the following calculation and outputs A (n) and B (n) to the low-pass filter. A (n) and B (n) are integrated values integrated by the low-pass filter. However, n is a natural number and shows the order of sensor signal detection. Further, the integrand value is a value in which only the amplitude 2a of the second harmonic remains when integrated.
A (n) = α (n) 3 /0.75
B (n) = β (n) 3 /0.75

ここから、A(n),B(n)を求める式がどのように導き出されたか説明する。A相信号α(n)は、振幅が1となるようにゲイン調整されている。このときの、2次高調波成分をa2、位置をθ(n)とすると、A相信号α(n)の3乗は
α(n)=(cos(θ(n))+a2・cos(2・θ(n)))
=cos(θ(n))
+3・a2・cos(θ(n))・cos(2・θ(n))
+3・a2・cos(θ(n))・cos(2・θ(n))
+a2・cos(2・θ(n))
となる。
From here, how the equations for obtaining A (n) and B (n) were derived will be described. The gain of the A phase signal α (n) is adjusted so that the amplitude is 1. In this case, if the second harmonic component is a2 and the position is θ (n), the third power of the A-phase signal α (n) is α (n) 3 = (cos (θ (n)) + a2 · cos ( 2 · θ (n))) 3
= Cos (θ (n)) 3
+ 3 · a2 · cos (θ (n)) 2 · cos (2 · θ (n))
+ 3 · a2 2 · cos (θ (n)) · cos (2 · θ (n)) 2
+ A2 3 · cos (2 · θ (n)) 3
It becomes.

高速回転時、この各項は、ローパスフィルタを通過、つまり積分すると、第1項の[cos(θ(n))]と、第3項の[3・a2・cos(θ(n))・cos(2・θ(n))]は、ゼロとなる。また、a2は、一般に数%以下と小さいため、3乗されると、第4項の[a2・cos(2・θ(n))]も、ゼロに近似できる。残りの第2項の[3・a2・cos(θ(n))・cos(2・θ(n))]のうち、[3・cos(θ(n))・cos(2・θ(n))]の部分の積分値は、0.75となる。従って、α(n)3/0.75をローパスフィルタ通過させると、2次高調波の振幅成分a2が求まる。B相信号β(n)は、A相信号と90°位相がずれているだけなので、同様にして計算できる。この計算は前回位置θ’を用いないため、高速でも演算誤差が小さいという特徴がある。 When rotating at high speed, each term passes through a low-pass filter, that is, when integrated, [cos (θ (n)) 3 ] of the first term and [3 · a2 2 · cos (θ (n)) of the third term ) · Cos (2 · θ (n)) 2 ] is zero. Further, since a2 is generally as small as several percent or less, when it is raised to the third power, [a2 3 · cos (2 · θ (n)) 3 ] of the fourth term can be approximated to zero. Of the remaining second term [3 · a2 · cos (θ (n)) 2 · cos (2 · θ (n))], [3 · cos (θ (n)) 2 · cos (2 · θ The integrated value of the portion (n))] is 0.75. Therefore, when α (n) 3 / 0.75 is passed through the low-pass filter, the amplitude component a2 of the second harmonic is obtained. Since the B phase signal β (n) is only 90 ° out of phase with the A phase signal, it can be calculated in the same manner. Since this calculation does not use the previous position θ ′, the calculation error is small even at high speed.

なお、この計算は以下のようにしても求めることができる。この場合においても、A(n),B(n)を積分すると、2次高調波の振幅値a2が求まる。
A(n)=α(n)・COS(2・θ’)・2
B(n)=β(n)・COS(2・θ’+π)・2
This calculation can also be obtained as follows. Even in this case, if A (n) and B (n) are integrated, the amplitude value a2 of the second harmonic is obtained.
A (n) = α (n) · COS (2 · θ ′) · 2
B (n) = β (n) · COS (2 · θ ′ + π) · 2

LPF8は、乗算器の出力A(n),B(n)を以下の演算により、2次のローパスフィルタ処理を行う。
A1(n)=A1(n−1)+(A(n)−A1(n−1))/k
B1(n)=B1(n−1)+(B(n)−B1(n−1))/k
A2(n)=A2(n−1)+(A1(n)−A2(n−1))/k
B2(n)=B2(n−1)+(B1(n)−B2(n−1))/k
The LPF 8 performs secondary low-pass filter processing on the outputs A (n) and B (n) of the multiplier by the following calculation.
A1 (n) = A1 (n-1) + (A (n) -A1 (n-1)) / k
B1 (n) = B1 (n-1) + (B (n) -B1 (n-1)) / k
A2 (n) = A2 (n-1) + (A1 (n) -A2 (n-1)) / k
B2 (n) = B2 (n-1) + (B1 (n) -B2 (n-1)) / k

kはローパスフィルタの時定数を決める定数、A1(n),B1(n)は1回目のローパスフィルタの算出値、A2(n),B2(n)は2回目のローパスフィルタの算出値である。このような演算を行うことで、デジタル信号α(n),β(n)の2次高調波の振幅A2(n),B2(n)を求めることができる。速度変換器10は、前回の位置θ’と前々回の記憶した位置から速度Vを求める。高調波設定手段11は、速度Vが一定になった後、LPF8の時定数kに比例した時間待ってから、記憶有効信号SをONにする。この時、ローパスフィルタの算出値A2(n),B2(n)は、既に収束して、一定値a2,b2になっている。また、速度Vが変化した時は、記憶有効信号SをOFFにする。記憶器9は、記憶有効信号がONの時のみに、LPF8の出力である、収束し一定値となった2次高調波振幅A2(n),B2(n)をa2,b2として記憶を更新する。   k is a constant that determines the time constant of the low-pass filter, A1 (n) and B1 (n) are calculated values of the first low-pass filter, and A2 (n) and B2 (n) are calculated values of the second low-pass filter. . By performing such calculation, the amplitudes A2 (n) and B2 (n) of the second harmonics of the digital signals α (n) and β (n) can be obtained. The speed converter 10 calculates the speed V from the previous position θ ′ and the previously stored position. After the speed V becomes constant, the harmonic setting means 11 waits for a time proportional to the time constant k of the LPF 8 and then turns on the storage valid signal S. At this time, the calculated values A2 (n) and B2 (n) of the low-pass filter have already converged to become constant values a2 and b2. Further, when the speed V changes, the storage valid signal S is turned OFF. The storage unit 9 updates the stored second harmonic amplitudes A2 (n) and B2 (n), which are the outputs of the LPF 8 and converged to a constant value, as a2 and b2 only when the storage valid signal is ON. To do.

次に、高調波成分の低減動作について説明する。高調波低減部5では、記憶器9のA相の2次高調波振幅a2およびB相の2次高調波振幅b2を使用して2相のデジタル信号を以下の演算により補正する。
α’(n)=α(n)−a2・cos(2・θ)
=α(n)−a2・(cosθ・2−1)
ここで、α(n)=cosθ+a2・cos(2・θ)なので、cosθ=α(n)−a2・cos(2・θ)となり、α(n)に比べ[a2・cos(2・θ)]が十分小さいので、cosθ≒α(n)となり、これを代入すると
α’(n)=α(n)−a2・(α(n)・2−1)
となる。同様にして、
β’(n)=β(n)−b2・(β(n)・2−1)
となる。
Next, the operation of reducing harmonic components will be described. The harmonic reduction unit 5 corrects the two-phase digital signal by the following calculation using the A-phase second-order harmonic amplitude a2 and the B-phase second-order harmonic amplitude b2 of the storage unit 9.
α ′ (n) = α (n) −a2 · cos (2 · θ)
= Α (n) −a2 · (cos θ 2 · 2-1)
Here, since α (n) = cos θ + a2 · cos (2 · θ), cos θ = α (n) −a2 · cos (2 · θ), which is [a2 · cos (2 · θ) compared to α (n). ] Is sufficiently small, so that cos θ≈α (n), and if this is substituted, α ′ (n) = α (n) −a2 · (α (n) 2 · 2-1)
It becomes. Similarly,
β ′ (n) = β (n) −b2 · (β (n) 2 · 2-1)
It becomes.

なお、この計算は以下のようにしても求めることができる。
α’(n)=α(n)−a2・COS(2・θ’)
β’(n)=β(n)−b2・COS(2・θ’+π)
ただし、α(n),β(n)は低減前のセンサー信号Sa,Sbのデジタル信号、θ’は、位置データ算出部3によって算出される位置データθの前回値である。
This calculation can also be obtained as follows.
α ′ (n) = α (n) −a2 · COS (2 · θ ′)
β ′ (n) = β (n) −b2 · COS (2 · θ ′ + π)
However, α (n) and β (n) are digital signals of the sensor signals Sa and Sb before reduction, and θ ′ is the previous value of the position data θ calculated by the position data calculation unit 3.

図2は、本実施例における高調波振幅の算出原理を説明するための信号波形図で、センサー信号に含まれる基本波と2次高調波の関係を示す。(A)はA相信号における基本波と2次高調波の関係を示し、(B)はB相信号における基本波と2次高調波の関係を示す。2次高調波成分の検出、低減において、位相成分を必要としないのは、位置検出センサーの対称性により、基本波と2次高調波の位相関係が図2のように固定した関係になっているためである。   FIG. 2 is a signal waveform diagram for explaining the calculation principle of the harmonic amplitude in this embodiment, and shows the relationship between the fundamental wave and the second harmonic contained in the sensor signal. (A) shows the relationship between the fundamental wave and the second harmonic in the A phase signal, and (B) shows the relationship between the fundamental wave and the second harmonic in the B phase signal. The reason why the phase component is not required in the detection and reduction of the second harmonic component is that the phase relationship between the fundamental wave and the second harmonic component is fixed as shown in FIG. 2 due to the symmetry of the position detection sensor. Because it is.

このように構成することで、位置検出センサーの信号の2次高調波や、温度等でこの信号の2次高調波が変化しても、2次高調波成分の検出、低減ができるため、高精度な位置検出ができる。   With this configuration, even if the second harmonic of the signal of the position detection sensor or the second harmonic of the signal changes due to temperature or the like, the second harmonic component can be detected and reduced. Accurate position detection is possible.

1 A/D変換器、2 位置検出センサー、3 位置データ算出部、4 高調波振幅算出部、5 高調波低減部、6 演算部、7,35,45 乗算器、8 ローパスフィルタ、9,31,33,43 記憶器、10 速度変換器、11 高調波設定手段、18 半径演算器、19 FFT処理部、20 移動量検出部、32,42 自乗器、34,44,36,46 減算器。   1 A / D converter, 2 position detection sensor, 3 position data calculation unit, 4 harmonic amplitude calculation unit, 5 harmonic reduction unit, 6 calculation unit, 7, 35, 45 multiplier, 8 low-pass filter, 9, 31 , 33, 43 Memory, 10 Speed converter, 11 Harmonic setting means, 18 Radius calculator, 19 FFT processor, 20 Movement detector, 32, 42 Squarer, 34, 44, 36, 46 Subtractor.

Claims (2)

相対変位する2つの物体の位置に応じてセンサー信号検出部から得られる周期的なA相およびB相の2相の正弦波状のアナログ信号をそれぞれデジタル信号に変換し、前記デジタル信号から位置データを算出し、前記位置データから前記物体の位置を得る位置検出装置において、
前記デジタル信号を入力し2次高調波を抽出するための演算を行う乗算器と、
前記乗算器の出力を入力し2次のローパスフィルタ処理を行うことで前記デジタル信号の2次高調波の振幅を算出するローパスフィルタと、
前記位置データから速度算出する速度変換器と、
速度が一定になった後、前記ローパスフィルタの時定数に比例した時間待ってから、記 憶有効信号をONにし、速度が変化した時は、記憶有効信号をOFFにする高調波設定手段と、
前記記憶有効信号がONの時のみに、ローパスフィルタの出力である2次高調波の振幅を記憶する記憶器と、
記憶器が記憶している2次高調波の振幅に従って前記デジタル信号の2次高調波成分を低減する高調波低減部と、
前記2次高調波成分を低減した前記デジタル信号から位置データを算出することを特徴とした高調波を低減する位置検出装置。
The A-phase and B-phase two-phase sinusoidal analog signals obtained from the sensor signal detector according to the positions of the two objects that are relatively displaced are converted into digital signals, respectively, and position data is obtained from the digital signals. In the position detection device that calculates and obtains the position of the object from the position data,
A multiplier for inputting the digital signal and performing an operation for extracting a second harmonic;
A low-pass filter that inputs the output of the multiplier and performs second-order low-pass filter processing to calculate the amplitude of the second-order harmonic of the digital signal;
A speed converter for calculating a speed from the position data;
After the speed becomes constant, after waiting for a time proportional to the time constant of the low-pass filter, the storage valid signal is turned ON, and when the speed changes, the harmonic setting means for turning the storage valid signal OFF,
A memory that stores the amplitude of the second harmonic that is the output of the low-pass filter only when the memory valid signal is ON;
A harmonic reduction unit that reduces the second harmonic component of the digital signal in accordance with the amplitude of the second harmonic stored in the memory;
A position detection apparatus for reducing harmonics, wherein position data is calculated from the digital signal in which the second harmonic component is reduced.
前記センサー信号検出の順番をn、前記デジタル信号をα(n),β(n)とした場合、
前記乗算器は、
A(n)=α(n)/0.75
B(n)=β(n)/0.75
を算出し、2次高調波の抽出値A(n)、B(n)を出力する、
ことを特徴とする請求項1に記載の2次高調波成分を低減する位置検出装置。
When the sensor signal detection order is n and the digital signal is α (n), β (n),
The multiplier is
A (n) = α (n) 3 /0.75
B (n) = β (n) 3 /0.75
And the second harmonic extraction values A (n) and B (n) are output.
The position detection device for reducing the second harmonic component according to claim 1.
JP2013027663A 2013-02-15 2013-02-15 Position detection device Active JP6100552B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013027663A JP6100552B2 (en) 2013-02-15 2013-02-15 Position detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013027663A JP6100552B2 (en) 2013-02-15 2013-02-15 Position detection device

Publications (2)

Publication Number Publication Date
JP2014157069A true JP2014157069A (en) 2014-08-28
JP6100552B2 JP6100552B2 (en) 2017-03-22

Family

ID=51578020

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013027663A Active JP6100552B2 (en) 2013-02-15 2013-02-15 Position detection device

Country Status (1)

Country Link
JP (1) JP6100552B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016118439A (en) * 2014-12-19 2016-06-30 オークマ株式会社 Position detection device
WO2017068684A1 (en) * 2015-10-22 2017-04-27 三菱電機株式会社 Angle detection device
KR20170137195A (en) 2015-05-29 2017-12-12 아사히 가세이 가부시키가이샤 Gas separator
KR20180101590A (en) 2016-03-04 2018-09-12 아사히 가세이 가부시키가이샤 Gas separation module and gas separation method
JP2019012009A (en) * 2017-06-30 2019-01-24 オークマ株式会社 Position data filter
KR20190032544A (en) 2016-08-31 2019-03-27 아사히 가세이 가부시키가이샤 Gas separator
JP2022541116A (en) * 2019-07-22 2022-09-22 ボストン ダイナミクス,インコーポレイテッド Magnetic encoder calibration

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010156554A (en) * 2008-12-26 2010-07-15 Okuma Corp Position detecting apparatus

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010156554A (en) * 2008-12-26 2010-07-15 Okuma Corp Position detecting apparatus

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016118439A (en) * 2014-12-19 2016-06-30 オークマ株式会社 Position detection device
KR20170137195A (en) 2015-05-29 2017-12-12 아사히 가세이 가부시키가이샤 Gas separator
WO2017068684A1 (en) * 2015-10-22 2017-04-27 三菱電機株式会社 Angle detection device
CN108139232A (en) * 2015-10-22 2018-06-08 三菱电机株式会社 Angle detection device
KR20180101590A (en) 2016-03-04 2018-09-12 아사히 가세이 가부시키가이샤 Gas separation module and gas separation method
KR20190032544A (en) 2016-08-31 2019-03-27 아사히 가세이 가부시키가이샤 Gas separator
JP2019012009A (en) * 2017-06-30 2019-01-24 オークマ株式会社 Position data filter
JP2022541116A (en) * 2019-07-22 2022-09-22 ボストン ダイナミクス,インコーポレイテッド Magnetic encoder calibration

Also Published As

Publication number Publication date
JP6100552B2 (en) 2017-03-22

Similar Documents

Publication Publication Date Title
JP6100552B2 (en) Position detection device
JP5041419B2 (en) Resolver device, resolver angle detection device and method
EP3401644B1 (en) Encoder output signal correction apparatus and method
JP5178374B2 (en) Detection device
JP5281102B2 (en) Resolver device, resolver angle detection device and method
JP5173962B2 (en) Resolver / digital conversion apparatus and resolver / digital conversion method
JP2014025871A (en) Encoder output signal correction apparatus
WO2019105133A1 (en) Phase deviation compensation method and device
US9140581B2 (en) Position detector
CN108375391A (en) Cosine and sine signal processing method and system
JP3893033B2 (en) Position detection device
JP2009025068A (en) Resolver/digital conversion method, and resolver/digital conversion circuit
US10312837B2 (en) Information processing apparatus, and recording medium storing computer program
WO2018092416A1 (en) Rotary encoder signal processing device and rotary encoder signal processing method
KR100897476B1 (en) Apparatus and method for compensating output signal of magnetic encoder
JP6688166B2 (en) Position detector
JP2016118439A (en) Position detection device
JP2008185486A (en) Amplitude detector
JP3914818B2 (en) Rotation angle detector
JP2019020294A (en) Rotation angle sensor digital converter, and rotation angle sensor digital conversion method
KR102051820B1 (en) Apparatus for detecting rotation angle of a asynchronous resolver and Method thereof
JP5361658B2 (en) Resolver digital converter
CN111699365B (en) Method and apparatus for detecting amount of positional change based on motion of moving body
JP2010139487A (en) Error determination method, error determination device, position detecting method, and algorithm
CN111207723A (en) Demodulation method of differential circular induction synchronizer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151008

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160804

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160816

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160930

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170223

R150 Certificate of patent or registration of utility model

Ref document number: 6100552

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150