JP2014152375A - Piston material for internal combustion engine and method of manufacturing the same - Google Patents
Piston material for internal combustion engine and method of manufacturing the same Download PDFInfo
- Publication number
- JP2014152375A JP2014152375A JP2013025142A JP2013025142A JP2014152375A JP 2014152375 A JP2014152375 A JP 2014152375A JP 2013025142 A JP2013025142 A JP 2013025142A JP 2013025142 A JP2013025142 A JP 2013025142A JP 2014152375 A JP2014152375 A JP 2014152375A
- Authority
- JP
- Japan
- Prior art keywords
- mass
- internal combustion
- combustion engine
- alloy
- piston material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000002485 combustion reaction Methods 0.000 title claims abstract description 70
- 239000000463 material Substances 0.000 title claims abstract description 67
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 14
- 229910017818 Cu—Mg Inorganic materials 0.000 claims abstract description 48
- 150000001875 compounds Chemical class 0.000 claims abstract description 48
- 239000000956 alloy Substances 0.000 claims abstract description 47
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 43
- 229910018125 Al-Si Inorganic materials 0.000 claims abstract description 42
- 229910018520 Al—Si Inorganic materials 0.000 claims abstract description 42
- 229910002482 Cu–Ni Inorganic materials 0.000 claims abstract description 34
- 229910018487 Ni—Cr Inorganic materials 0.000 claims abstract description 34
- 230000032683 aging Effects 0.000 claims abstract description 21
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 19
- 238000005266 casting Methods 0.000 claims abstract description 17
- 229910021364 Al-Si alloy Inorganic materials 0.000 claims description 32
- 229910052802 copper Inorganic materials 0.000 claims description 18
- 229910052759 nickel Inorganic materials 0.000 claims description 10
- 229910052742 iron Inorganic materials 0.000 claims description 8
- 229910052749 magnesium Inorganic materials 0.000 claims description 8
- 229910052748 manganese Inorganic materials 0.000 claims description 8
- 238000005520 cutting process Methods 0.000 abstract description 2
- 239000010949 copper Substances 0.000 description 73
- 239000000047 product Substances 0.000 description 64
- 239000011159 matrix material Substances 0.000 description 27
- 239000000126 substance Substances 0.000 description 21
- 239000002244 precipitate Substances 0.000 description 20
- 238000005259 measurement Methods 0.000 description 18
- 239000013078 crystal Substances 0.000 description 15
- 238000001556 precipitation Methods 0.000 description 11
- 229910052751 metal Inorganic materials 0.000 description 10
- 238000000034 method Methods 0.000 description 9
- 229910000838 Al alloy Inorganic materials 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 8
- 239000002184 metal Substances 0.000 description 8
- 230000000694 effects Effects 0.000 description 7
- 238000001878 scanning electron micrograph Methods 0.000 description 7
- 238000003917 TEM image Methods 0.000 description 6
- 230000007246 mechanism Effects 0.000 description 6
- 229910052782 aluminium Inorganic materials 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 5
- 238000002149 energy-dispersive X-ray emission spectroscopy Methods 0.000 description 5
- 238000010191 image analysis Methods 0.000 description 5
- 230000006872 improvement Effects 0.000 description 5
- 229910052710 silicon Inorganic materials 0.000 description 5
- 238000007711 solidification Methods 0.000 description 5
- 230000008023 solidification Effects 0.000 description 5
- 230000009471 action Effects 0.000 description 4
- 239000010419 fine particle Substances 0.000 description 4
- 239000010703 silicon Substances 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 238000002425 crystallisation Methods 0.000 description 3
- 230000008025 crystallization Effects 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 239000006104 solid solution Substances 0.000 description 3
- 229910000881 Cu alloy Inorganic materials 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 230000001276 controlling effect Effects 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000004512 die casting Methods 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 230000005496 eutectics Effects 0.000 description 2
- 230000001747 exhibiting effect Effects 0.000 description 2
- 238000005242 forging Methods 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 239000007791 liquid phase Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910002551 Fe-Mn Inorganic materials 0.000 description 1
- 229910017120 Fe—Mn—Ni Inorganic materials 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910052762 osmium Inorganic materials 0.000 description 1
- SYQBFIAQOQZEGI-UHFFFAOYSA-N osmium atom Chemical compound [Os] SYQBFIAQOQZEGI-UHFFFAOYSA-N 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Landscapes
- Pistons, Piston Rings, And Cylinders (AREA)
Abstract
Description
本発明は、熱伝導性が高い内燃機関用ピストン材料及びその製造方法に関し、さらに詳しくは、熱伝導性が高く、温度の影響による強度の低下を防止した高強度で軽量な内燃機関用ピストン材料及びその製造方法に関する。 The present invention relates to a piston material for an internal combustion engine having a high thermal conductivity and a method for manufacturing the same, and more particularly, a high-strength and lightweight piston material for an internal combustion engine having a high thermal conductivity and preventing a decrease in strength due to the influence of temperature. And a manufacturing method thereof.
環境問題が大きく取り上げられる中、自動車エンジンを中心とした内燃機関は、高効率化や排出ガスの低減化が求められているとともに、エンジンの高出力化も求められている。このような中で、自動車エンジン等の内燃機関で用いられるピストンは、燃焼効率をより向上させた高効率化を実現するために、シリンダ内の高温高圧の過酷な環境下で使用される。そのため、そうした高温高圧の環境下でも使用可能な高強度の内燃機関用ピストン材料が求められている。 As environmental problems are greatly taken up, internal combustion engines such as automobile engines are required to have higher efficiency and lower exhaust gas, and higher engine output is also required. Under such circumstances, a piston used in an internal combustion engine such as an automobile engine is used in a severe environment of high temperature and high pressure in a cylinder in order to realize high efficiency with further improved combustion efficiency. Therefore, there is a demand for a high-strength piston material for an internal combustion engine that can be used even in such a high-temperature and high-pressure environment.
こうした要求に対し、材料成分等を調整することにより強度を高くしたピストンが種々提案されている。例えば、特許文献1に記載の内燃機関ピストン用アルミニウム合金は、含有量が特定された成分及び組成をもつAl−Si−Cu−Mg系合金に含まれるP含有量、Ca含有量及びP/Ca重量比を調整することにより、共晶Siを大きく成長させると共に、初晶Siを微細化している。これにより、高温強度、耐摩耗性等が改善され、内燃機関のピストン材料として好適なアルミニウム合金を得ている。 In response to these requirements, various pistons have been proposed that have increased strength by adjusting material components and the like. For example, an aluminum alloy for an internal combustion engine piston described in Patent Document 1 includes a P content, a Ca content, and a P / Ca content contained in an Al—Si—Cu—Mg based alloy having components and compositions whose contents are specified. By adjusting the weight ratio, eutectic Si is grown greatly and primary crystal Si is refined. Thereby, high temperature strength, wear resistance, and the like are improved, and an aluminum alloy suitable as a piston material for an internal combustion engine is obtained.
また、特許文献2に記載のダイカスト用アルミニウム合金も同様、含有量が特定された成分及び組成をもつAl−Si−Cu−Mg−Fe−Mn(−Ni)系合金に含まれるP含有量、Ca含有量及びP/Ca重量比を調整することにより、共晶Si及び初晶Siを微細化し、更に凝固時の冷却速度を規制することによりFe−Mn−Ni系晶出物も微細化している。これにより、高温強度、耐摩耗性、防振性等が改善され、ダイカスト用内燃機関部品として好適なアルミニウム合金を得ている。 Similarly, the aluminum content for die casting described in Patent Document 2 includes a P content contained in an Al—Si—Cu—Mg—Fe—Mn (—Ni) alloy having a component and a composition whose content is specified, By adjusting the Ca content and P / Ca weight ratio, the eutectic Si and the primary Si are refined, and the Fe-Mn-Ni based crystallized product is also refined by regulating the cooling rate during solidification. Yes. As a result, the high temperature strength, wear resistance, vibration resistance and the like are improved, and an aluminum alloy suitable as an internal combustion engine part for die casting is obtained.
また、特許文献3に記載の鋳物用アルミニウム合金は、合金成分の含有量を調整して凝固時の固液共存領域の温度範囲を狭くし、晶出物をほとんど同時に晶出させるようにすることにより、冷却速度(凝固速度)を速くしなくても晶出物を均一微細に分布させ、マトリックスであるα−Al相が細かく分断された金属組織としている。こうすることで、鋳造方法に影響されることなく高温強度に優れた鋳造用Al−Si系アルミニウム合金を得ている。 In addition, the aluminum alloy for castings described in Patent Document 3 adjusts the content of the alloy components to narrow the temperature range of the solid-liquid coexistence region during solidification, so that the crystallized product is crystallized almost simultaneously. Thus, the crystallized product is uniformly and finely distributed without increasing the cooling rate (solidification rate), and the α-Al phase that is the matrix is finely divided into a metal structure. By doing so, an Al—Si aluminum alloy for casting excellent in high-temperature strength is obtained without being affected by the casting method.
上記した各特許文献に記載の技術は、材料成分を調整することにより内燃機関用ピストンを構成するアルミニウム合金を高強度化している。しかしながら、最近のエンジンの高効率化の要求に伴い、ピストンの温度は上昇傾向にある。内燃機関用ピストンを構成するアルミニウム合金は、そのアルミニウム材料の特性により、その温度上昇によって結果的に強度が低下してしまい、アルミニウム合金の強度向上を図ることができていないという難点があった。 The technology described in each of the above patent documents increases the strength of the aluminum alloy constituting the piston for the internal combustion engine by adjusting the material components. However, with the recent demand for higher engine efficiency, the temperature of the piston tends to increase. Due to the characteristics of the aluminum material, the aluminum alloy constituting the piston for an internal combustion engine has its strength lowered as a result of its temperature rise, and it has been difficult to improve the strength of the aluminum alloy.
本発明は、上記課題を解決するためになされたものであって、その目的は、熱伝導性が高く、温度の影響による強度の低下を防止した高強度で軽量な内燃機関用ピストン材料及びその製造方法を提供することにある。 The present invention has been made to solve the above-mentioned problems, and its object is to provide a high-strength, lightweight piston material for an internal combustion engine that has high thermal conductivity and prevents a decrease in strength due to the effect of temperature, and its It is to provide a manufacturing method.
(1)上記課題を解決するための本発明に係る内燃機関用ピストン材料は、内燃機関用ピストンに用いられるAl−Si系合金材料であって、導電率(%IACS)が18以上であることを特徴とする。 (1) A piston material for an internal combustion engine according to the present invention for solving the above problems is an Al—Si based alloy material used for a piston for an internal combustion engine, and has a conductivity (% IACS) of 18 or more. It is characterized by.
この発明によれば、Al−Si系合金の導電率(%IACS)が18以上であるので、そうした導電率を持つAl−Si系合金は高い熱伝導性を示す。その結果、温度の影響による強度の低下を抑制できるので、高強度で軽量な内燃機関用ピストンを提供できる。 According to this invention, since the electrical conductivity (% IACS) of the Al—Si based alloy is 18 or more, the Al—Si based alloy having such electrical conductivity exhibits high thermal conductivity. As a result, a decrease in strength due to the influence of temperature can be suppressed, and a high-strength and lightweight piston for an internal combustion engine can be provided.
なお、本発明に係る内燃機関用ピストン材料は、Cu、Mg、Ni、Cr、Fe及びMnを含有するように構成されている。これらの元素は高強度で軽量な内燃機関用ピストン材料としてのAl−Si系合金に含まれている。 In addition, the piston material for internal combustion engines which concerns on this invention is comprised so that Cu, Mg, Ni, Cr, Fe, and Mn may be contained. These elements are contained in an Al—Si alloy as a high-strength and lightweight piston material for an internal combustion engine.
本発明に係る内燃機関用ピストン材料において、サイズが1μm以下のAl−Cu−Mg系化合物が均一に析出していることが好ましい。 In the piston material for an internal combustion engine according to the present invention, it is preferable that an Al—Cu—Mg compound having a size of 1 μm or less is uniformly deposited.
この発明によれば、サイズが1μm以下のAl−Cu−Mg系化合物が均一に析出しているので、18%(IACS)以上の高い導電率と高い熱伝導性を示す。その結果、ピストンの温度上昇を抑制でき、強度の低下を抑制できる。 According to this invention, since the Al—Cu—Mg-based compound having a size of 1 μm or less is uniformly deposited, a high conductivity of 18% (IACS) or more and a high thermal conductivity are exhibited. As a result, an increase in the temperature of the piston can be suppressed, and a decrease in strength can be suppressed.
本発明に係る内燃機関用ピストン材料において、切断断面におけるAl−Fe−Mn−Ni−Cr系晶出物とAl−Cu−Ni系晶出物の合計面積率が10%以下であることが好ましい。 In the piston material for an internal combustion engine according to the present invention, the total area ratio of the Al—Fe—Mn—Ni—Cr-based crystallized product and the Al—Cu—Ni-based crystallized product in the cut section is preferably 10% or less. .
この発明によれば、それら両晶出物の合計面積率が10%以下であるので、Al−Cu−Ni系晶出物の生成が抑えられていることを意味している。その結果、その晶出物に捕られないより多くのCuが、Al−Si系合金のマトリックス中に過飽和に固溶するものとなり、その後の時効処理によってCuの微細な析出物(Al−Cu−Mg系化合物)が均一に析出するので、高い導電性を示すと共に高い熱伝導性を示すものとなる。 According to this invention, since the total area ratio of these both crystallized substances is 10% or less, it means that the production | generation of an Al-Cu-Ni type crystallized substance is suppressed. As a result, more Cu that is not trapped by the crystallized matter becomes a solid solution in a supersaturated state in the matrix of the Al—Si based alloy, and fine precipitates of Al (Al—Cu—) are obtained by subsequent aging treatment. Since the Mg-based compound) is uniformly deposited, it exhibits high conductivity and high thermal conductivity.
本発明に係る内燃機関用ピストン材料において、Cuが1.2質量%以上5質量%以下の範囲内で含有し、Crが0.05質量%以上含有することが好ましい。 In the piston material for an internal combustion engine according to the present invention, it is preferable that Cu is contained within a range of 1.2% by mass or more and 5% by mass or less, and Cr is contained by 0.05% by mass or more.
この発明によれば、Cuが1.2質量%以上5質量%以下の範囲内含有し且つCrが0.05質量%以上含有するので、そのCrの作用によってAl−Fe−Mn−Ni−Cr系晶出物が生成されたものとなる。そして、その晶出物の生成により、Niがその晶出物に捕られるので、Al−Cu−Ni系晶出物の生成が抑えられるものとなる。その結果、より多くのCuが、Al−Si系合金のマトリックス中に過飽和に固溶し、その後の時効処理によってCuの微細な析出物(Al−Cu−Mg系化合物)が均一に析出するので、高い導電性を示すと共に高い熱伝導性を示すことができる。 According to the present invention, Cu is contained in the range of 1.2% by mass or more and 5% by mass or less and Cr is contained in an amount of 0.05% by mass or more. A system crystallized product is produced. And since Ni is trapped by the crystallized product due to the generation of the crystallized product, the generation of the Al-Cu-Ni-based crystallized product is suppressed. As a result, more Cu is supersaturated in the matrix of the Al—Si alloy, and fine precipitates (Al—Cu—Mg compounds) of Cu are uniformly deposited by subsequent aging treatment. , High conductivity and high thermal conductivity can be exhibited.
(2)上記課題を解決するための本発明に係る内燃機関用ピストン材料の製造方法は、Cuを1.2質量%以上5質量%以下の範囲内で含有し、Crを0.05質量%以上含有する内燃機関用ピストン材料であるAl−Si系合金を鋳造する工程と、鋳造した前記Al−Si系合金を時効処理する工程とを有することを特徴とする。 (2) A method for manufacturing a piston material for an internal combustion engine according to the present invention for solving the above-mentioned problems contains Cu in a range of 1.2 mass% or more and 5 mass% or less, and Cr is 0.05 mass%. It has the process of casting the Al-Si type alloy which is the piston material for internal combustion engines contained above, and the process of aging-treating the cast Al-Si type alloy.
この発明によれば、Cuを1.2質量%以上5質量%以下の範囲内で含有し、Crを0.05質量%以上含有する内燃機関用ピストン材料であるAl−Si系合金を鋳造するので、Al−Fe−Mn−Ni−Cr系晶出物が生成される。そして、その晶出物の生成により、Al−Si系合金に含まれるNiがその晶出物に捕られるので、Al−Cu−Ni系晶出物の生成が抑えられ、その結果、より多くのCuが、Al−Si系合金のマトリックス中に過飽和に固溶する。こうした鋳造合金をその後の時効処理することにより、過飽和に固溶したCuは、サイズが1μm以下の微細なAl−Cu−Mg系化合物として均一に析出する。こうして得られた内燃機関用ピストン材料は、18%(IACS)以上の高い導電率と高い熱伝導性を示すので、ピストンの温度上昇を抑制でき、強度の低下を抑制できる。 According to the present invention, an Al—Si alloy, which is a piston material for an internal combustion engine, containing Cu in a range of 1.2 mass% to 5 mass% and Cr containing 0.05 mass% or more is cast. Therefore, an Al-Fe-Mn-Ni-Cr-based crystallized product is generated. And since the Ni contained in the Al-Si based alloy is captured by the crystallized product due to the generation of the crystallized product, the generation of the Al-Cu-Ni based crystallized product is suppressed, and as a result, more Cu dissolves in a supersaturated state in the matrix of the Al—Si alloy. By subjecting such a cast alloy to subsequent aging treatment, the supersaturated Cu is uniformly deposited as a fine Al—Cu—Mg compound having a size of 1 μm or less. The piston material for an internal combustion engine thus obtained exhibits a high conductivity of 18% (IACS) or higher and a high thermal conductivity, so that an increase in piston temperature can be suppressed and a decrease in strength can be suppressed.
本発明に係る内燃機関用ピストン材料によれば、Al−Si系合金の導電率(%IACS)が18以上のAl−Si系合金は熱伝導性が高いので、従来のAl−Si系合金と比較して、内燃機関から発生する熱によるピストンの温度上昇を抑制することができる。その結果、ピストンの温度上昇による強度の低下を抑制できる高強度で軽量な内燃機関用ピストン材料とすることができる。 According to the piston material for an internal combustion engine according to the present invention, an Al—Si alloy having an Al—Si alloy conductivity (% IACS) of 18 or more has high thermal conductivity. In comparison, the temperature rise of the piston due to heat generated from the internal combustion engine can be suppressed. As a result, a high-strength and lightweight piston material for an internal combustion engine that can suppress a decrease in strength due to a temperature rise of the piston can be obtained.
本発明に係る内燃機関用ピストン材料及びその製造方法について詳しく説明する。なお、以下の実施形態は一例であり、本発明の技術的範囲の属する他の形態も本発明に包含される。 The piston material for an internal combustion engine and the manufacturing method thereof according to the present invention will be described in detail. In addition, the following embodiment is an example and the other form to which the technical scope of this invention belongs is also included by this invention.
[内燃機関用ピストン材料]
本発明に係る内燃機関用ピストン材料は、高強度で軽量な内燃機関用ピストンに用いられるAl−Si系合金材料であり、その導電率(%IACS)が18以上であることに特徴がある。導電率(%IACS)が18以上のAl−Si系合金は、高い熱伝導性を示すので、温度の影響による強度の低下を抑制できる高強度で軽量な内燃機関用ピストンを提供できる。
[Piston material for internal combustion engines]
The piston material for internal combustion engines according to the present invention is an Al—Si based alloy material used for high-strength and lightweight pistons for internal combustion engines, and is characterized in that its electrical conductivity (% IACS) is 18 or more. An Al—Si-based alloy having a conductivity (% IACS) of 18 or higher exhibits high thermal conductivity, and therefore, it is possible to provide a high-strength and lightweight piston for an internal combustion engine that can suppress a decrease in strength due to the influence of temperature.
ここで、IACSは、国際焼きなましCu線標準(International Annealed Copper Standard)の略であり、標準焼きなましCu線を100%とした場合、それに比べて何%の導電性をもつかという比較値で表したものである。なお、標準焼きなましCu線の体積抵抗率は、1.7241×10−2μΩm(導電率100%IACS)と規定されている。 Here, IACS is an abbreviation for International Annealed Copper Standard, and is expressed as a comparative value of what percentage of electrical conductivity when standard annealed Cu wire is 100%. Is. The volume resistivity of the standard annealed Cu wire is defined as 1.7241 × 10 −2 μΩm (conductivity 100% IACS).
本発明者は、内燃機関用ピストン材料として、熱伝導性に優れた高強度で軽量なAl−Si系合金鋳物を開発する過程で、電気抵抗が低いほど熱伝導性が優れることを見出し、更に詳しくは、導電率(%IACS)が18以上であるときに熱伝導率が120(w/m・k)以上であることを見出した。さらに、透過型電子顕微鏡を用いて金属組織を観察する中で、Al−Si系合金のAlマトリックス中に、Al−Cu−Mg系化合物が析出する場合には熱伝導性が優れ(導電率が高い)、Al−Cu−Mg系化合物が析出しない場合には熱伝導性が悪い(導電性が低い)ことを見出した。 The present inventor has found that, as a piston material for an internal combustion engine, a high strength and light weight Al-Si alloy casting having excellent thermal conductivity, the lower the electrical resistance, the better the thermal conductivity. Specifically, it has been found that the thermal conductivity is 120 (w / m · k) or more when the conductivity (% IACS) is 18 or more. Furthermore, in observing the metal structure using a transmission electron microscope, when an Al—Cu—Mg compound is precipitated in the Al matrix of the Al—Si alloy, the thermal conductivity is excellent (the conductivity is excellent). It was found that the thermal conductivity is poor (conductivity is low) when no Al—Cu—Mg compound is precipitated.
また、Al−Si系合金の晶出物に着目すると、Si,Cu,Mg,Ni,Cr,Fe及びMnを含有する高強度で軽量なAl−Si系合金鋳物において、Al−Fe−Mn−Ni−Cr系晶出物の量とAl−Cu−Ni系晶出物の量が少ないとき、すなわち、任意の切断断面におけるそれらの晶出物の面積率が小さいときに、熱伝導性が良くなることを見出した。更に詳しくは、Al−Fe−Mn−Ni−Cr系晶出物とAl−Cu−Ni系晶出物の合計面積率が10%以下のときに、熱伝導率が120(w/m・k)以上であることを見出した。こうした結果は、高強度で軽量なAl−Si系合金に含まれるCuとCrの含有量を制御することで実現でき、詳しくは、Cuが1.2質量%以上5質量%以下の範囲内で含有し、かつCrが0.05質量%以上含有するときに熱伝導率が120(w/m・k)以上になることを見出した。 Further, when attention is paid to the crystallized product of the Al—Si based alloy, in a high strength and light weight Al—Si based alloy casting containing Si, Cu, Mg, Ni, Cr, Fe and Mn, Al—Fe—Mn— Thermal conductivity is good when the amount of Ni-Cr-based crystallized material and the amount of Al-Cu-Ni-based crystallized material are small, that is, when the area ratio of these crystallized materials is small at any section. I found out that More specifically, when the total area ratio of the Al—Fe—Mn—Ni—Cr crystallized product and the Al—Cu—Ni based crystallized product is 10% or less, the thermal conductivity is 120 (w / m · k). ) I found out that. Such a result can be realized by controlling the contents of Cu and Cr contained in a high-strength and lightweight Al-Si alloy. Specifically, Cu is within a range of 1.2 mass% to 5 mass%. It was found that the thermal conductivity becomes 120 (w / m · k) or more when Cr is contained and 0.05% by mass or more.
本発明に係る内燃機関用ピストン材料は、こうした知見に基づいたものであり、以下に詳しく説明する。 The piston material for an internal combustion engine according to the present invention is based on such knowledge and will be described in detail below.
(Al−Si系合金)
Al−Si系合金は、内燃機関用ピストン材料として用いられる高強度で軽量なAl−Si系合金である。こうしたAl−Si系合金であれば特に限定されず、各種のものを用いることができ、例えば、アルミニウムにケイ素が5質量%程度含有するAl−Si系合金であってもよいし、アルミニウムにケイ素が25質量%程度含有するAl−Si系合金であってもよいし、後述する実施例に示すように、アルミニウムにケイ素が11〜13質量%程度含有するAl−Si系合金であってもよい。
(Al-Si alloy)
The Al—Si based alloy is a high-strength and lightweight Al—Si based alloy used as a piston material for internal combustion engines. Such an Al—Si alloy is not particularly limited, and various materials can be used. For example, an Al—Si alloy containing about 5 mass% of silicon in aluminum may be used. May be an Al—Si based alloy containing about 25% by mass, or may be an Al—Si based alloy containing about 11 to 13% by mass of silicon as shown in the examples described later. .
Al−Si系合金の主要元素であるケイ素は、鋳造時の湯流れ性を向上させることができ、また、耐摩耗性を向上させるように作用する。ケイ素の含有量は、湯流れ性や耐摩耗性を含めた全体の特性を考慮して、上記のように任意に設定されている。 Silicon, which is the main element of the Al—Si based alloy, can improve the flowability of the molten metal during casting and also acts to improve the wear resistance. The content of silicon is arbitrarily set as described above in consideration of the entire characteristics including hot water flowability and wear resistance.
Al−Si系合金を高強度で軽量な内燃機関用ピストン材料として用いる場合には、そのAl−Si系合金は、通常、Cu、Mg、Ni、Cr、Fe及びMnを含有するように構成されている。これらの元素を含むことにより、高強度で軽量な内燃機関用ピストン材料となる。 When an Al—Si alloy is used as a high-strength and lightweight piston material for an internal combustion engine, the Al—Si alloy is usually configured to contain Cu, Mg, Ni, Cr, Fe, and Mn. ing. By including these elements, a piston material for an internal combustion engine having high strength and light weight is obtained.
Cuは、Al−Cu−Mg系析出物を形成して、強度を向上させるように作用する。Mgは、Al−Cu−Mg系析出物を形成して、強度を向上させたり、固溶強化により強度を向上させたりするように作用する。Niは、Al−Cu−Ni系晶出物を形成して、耐熱性を向上させるように作用する。Crは、Al−Fe−Mn−Ni−Cr系晶出物を形成するように作用する。Feは、結晶粒を微細化するように作用する。Mnも、結晶粒を微細化するように作用する。 Cu acts to improve the strength by forming Al-Cu-Mg-based precipitates. Mg acts to form an Al—Cu—Mg-based precipitate and improve the strength or improve the strength by solid solution strengthening. Ni acts to improve the heat resistance by forming an Al-Cu-Ni-based crystallized product. Cr acts to form an Al-Fe-Mn-Ni-Cr-based crystallized product. Fe acts to refine crystal grains. Mn also acts to refine crystal grains.
これらの金属元素のうち、本発明では、Al−Si系合金に含まれるCuとCrが特に重要な作用を示す。詳細は、「Al−Cu−Mg化合物の析出機構」の説明欄で詳しく説明するが、本発明に係る内燃機関用ピストン材料は、従来は強度の向上を主作用として含むCuを、Alマトリクス中に析出物(Al−Cu−Mg系化合物)として均一に析出させて導電率と熱伝導率を高めるように作用させている点に特徴がある。さらに、従来はAl−Fe−Mn−Ni−Cr系晶出物の生成を主作用とするCrを、Cuを過飽和に固溶させて時効処理後に析出物(Al−Cu−Mg系化合物)として均一析出させるための成分として作用させている点に特徴がある。こうした作用を奏するCuとCrによって、内燃機関用ピストン材料の導電率と熱伝導率を向上させている。 Among these metal elements, in the present invention, Cu and Cr contained in the Al—Si based alloy exhibit a particularly important action. Details will be described in the explanation section of "Al-Cu-Mg compound precipitation mechanism". However, the piston material for an internal combustion engine according to the present invention has conventionally included Cu containing, as a main function, strength improvement in an Al matrix. This is characterized in that the precipitate is uniformly deposited as a precipitate (Al—Cu—Mg compound) to increase the electrical conductivity and thermal conductivity. Furthermore, conventionally, Cr, which mainly produces Al-Fe-Mn-Ni-Cr-based crystallized substances, is dissolved as Cu in a supersaturated state, and after being subjected to aging treatment, as precipitates (Al-Cu-Mg-based compounds) It is characterized by acting as a component for uniform precipitation. Cu and Cr exhibiting such actions improve the electrical conductivity and thermal conductivity of the piston material for internal combustion engines.
Al−Si系合金は、上記したCu、Mg、Ni、Cr、Fe、Mn等を、本発明のメカニズムを少なくとも実現できる範囲で含んでいる。さらにこれら以外の元素が必要に応じて含まれていてもよい。例えば、P:0.003〜0.1質量%、Ti:0.005〜0.3質量%、Zr:0.02〜0.3質量%、V:0.02〜0.3質量%、B:0.001〜0.1質量%の少なくとも1種以上が含まれていてもよい。また、これらの元素は、不可避不純物として含まれていてもよい。なお、不可避不純物としては、さらに、S、O等がいずれも0.05質量%以下程度の含有量で含まれていてもよい。 The Al—Si-based alloy contains the above-described Cu, Mg, Ni, Cr, Fe, Mn and the like within a range in which at least the mechanism of the present invention can be realized. Furthermore, elements other than these may be included as necessary. For example, P: 0.003-0.1 mass%, Ti: 0.005-0.3 mass%, Zr: 0.02-0.3 mass%, V: 0.02-0.3 mass%, B: 0.001-0.1 mass% of at least 1 sort (s) or more may be contained. Moreover, these elements may be contained as inevitable impurities. In addition, as an unavoidable impurity, all of S, O, etc. may be contained by about 0.05 mass% or less content.
(Al−Cu−Mg系化合物)
Al−Si系合金には、Al−Cu−Mg系化合物が析出している。析出形態としては、Al−Si系合金のマトリックスに均一に析出しており、そのAl−Cu−Mg系化合物の大きさ(サイズ)は、1μm以下であることが好ましい。1μm以下の微細なAl−Cu−Mg系化合物がマトリックス中に均一に析出していることにより、Al−Si系合金の導電率を18%(IACS)以上の高い導電率とすることができる。このAl−Cu−Mg系化合物は、導電性の高いCu合金であり、図1(B)に示すように、そのCu合金の微粒子がAlマトリックス中に均一に分散していることにより、良好な導電性を示している。導電性の向上は、高い熱伝導性を示すので、温度の影響による強度の低下を抑制できる高強度で軽量な本発明に係る内燃機関用ピストン材料を提供することができる。
(Al-Cu-Mg compound)
An Al—Cu—Mg compound is precipitated in the Al—Si alloy. As a precipitation form, it is uniformly deposited in the matrix of the Al—Si based alloy, and the size (size) of the Al—Cu—Mg based compound is preferably 1 μm or less. Since the fine Al—Cu—Mg based compound of 1 μm or less is uniformly deposited in the matrix, the conductivity of the Al—Si based alloy can be as high as 18% (IACS) or more. This Al—Cu—Mg-based compound is a highly conductive Cu alloy, and as shown in FIG. 1B, fine particles of the Cu alloy are uniformly dispersed in the Al matrix. It shows conductivity. Since the improvement in conductivity exhibits high thermal conductivity, it is possible to provide a high-strength and lightweight piston material for an internal combustion engine according to the present invention that can suppress a decrease in strength due to the influence of temperature.
Al−Cu−Mg系化合物が不均一に析出している場合は、図2(B)の従来例に示すように、導電率を18%(IACS)以上に顕著に向上させることができず、熱伝導性も高めることができない。その結果、温度の影響による強度が低下しやすい。なお、「均一」とは、電子顕微鏡で1μm×1μm程度の視野を任意に選択した際に、析出物が目視で均一に観察できて特定される場合であり、「不均一」とは、そのように特定できず、電子顕微鏡で1μm×1μm程度の視野を任意に選択した際に、析出物が観察される視野と観察されない視野とが存在する場合である。 When the Al—Cu—Mg compound is precipitated nonuniformly, the electrical conductivity cannot be remarkably improved to 18% (IACS) or more as shown in the conventional example of FIG. Thermal conductivity cannot be increased. As a result, the strength due to the influence of temperature tends to decrease. “Uniform” means that when a field of view of about 1 μm × 1 μm is arbitrarily selected with an electron microscope, precipitates can be visually observed and specified, and “nonuniform” In this case, when a field of view of about 1 μm × 1 μm is arbitrarily selected with an electron microscope, there are a field where a precipitate is observed and a field where a precipitate is not observed.
Al−Cu−Mg系化合物のサイズが1μmを超える場合は、Al−Cu−Mg系化合物がAlマトリックス中に偏析した態様になりやすい。その結果、そのAl−Cu−Mg系化合物の微粒子がAlマトリックス中に均一に分散しているとは言いにくく、導電性を高めることができないことがある。 When the size of the Al—Cu—Mg compound exceeds 1 μm, the Al—Cu—Mg compound tends to segregate in the Al matrix. As a result, it is difficult to say that the fine particles of the Al—Cu—Mg compound are uniformly dispersed in the Al matrix, and the conductivity may not be improved.
なお、「大きさ(サイズ)」は、内燃機関用ピストン材料の任意の断面で測定されるAl−Cu−Mg系化合物の大きさであり、そのAl−Cu−Mg系化合物が球状である場合にはその直径であり、楕円形、長方形又は針状である場合には、その長径の大きさ(サイズ)のことである。また、大きさ(サイズ)の下限は特に限定されず、例えば、0.01μm程度であってもよい。 The “size” is the size of the Al—Cu—Mg compound measured in an arbitrary cross section of the piston material for an internal combustion engine, and the Al—Cu—Mg compound is spherical. Is the diameter, and when it is oval, rectangular or needle-shaped, it is the size of its major axis. Moreover, the minimum of a magnitude | size (size) is not specifically limited, For example, about 0.01 micrometer may be sufficient.
(晶出物の面積率)
Al−Si系合金には、Al−Fe−Mn−Ni−Cr系晶出物とAl−Cu−Ni系晶出物が現れているが、それらの合計の面積率は、10%以下であることが好ましい。こうした面積率を持つAl−Si系合金は、Al−Fe−Mn−Ni−Cr系晶出物とAl−Cu−Ni系晶出物の生成が抑えられていることを意味している。そのため、晶出物に捕られるCu量が少なくなっているので、より多くのCuがAl−Si系合金のマトリックス中に過飽和に固溶するものとなり、その後の時効処理によって、過飽和に固溶したマトリックス中のCuが微細な析出物(Al−Cu−Mg系化合物)として均一に析出する。その結果、その析出物(Al−Cu−Mg系化合物)の均一な分散析出に基づいた高い導電性を示すと共に、高い熱伝導性を示すものとなる。
(Area ratio of crystallized product)
Al-Si-based alloys show Al-Fe-Mn-Ni-Cr-based crystallized products and Al-Cu-Ni-based crystallized products, but their total area ratio is 10% or less. It is preferable. The Al—Si based alloy having such an area ratio means that the generation of Al—Fe—Mn—Ni—Cr based crystallized product and Al—Cu—Ni based crystallized product is suppressed. Therefore, since the amount of Cu trapped by the crystallized product is reduced, more Cu is dissolved in the supersaturated state in the matrix of the Al-Si alloy, and is subsequently dissolved in the supersaturated state by the aging treatment. Cu in the matrix is uniformly deposited as fine precipitates (Al—Cu—Mg compound). As a result, high conductivity based on the uniform dispersion precipitation of the precipitate (Al—Cu—Mg compound) and high thermal conductivity are exhibited.
Al−Fe−Mn−Ni−Cr系晶出物は、凝固中の液相が熱力学的に安定な状態になるように(エネルギ−が最も低い状態になるように)、Al、Fe、Mn、Ni及びCrが結合することにより生成(晶出)する。このAl−Fe−Mn−Ni−Cr系晶出物の生成量は、Cr含有量の増減により制御することができる。こうした制御によって、Al−Fe−Mn−Ni−Cr系晶出物の面積率を4%以上、7%以下の範囲内にすることができる。 Al-Fe-Mn-Ni-Cr-based crystallized substances are formed so that the liquid phase during solidification is in a thermodynamically stable state (so that the energy is in the lowest state), Al, Fe, Mn. , Ni and Cr combine to form (crystallize). The production amount of the Al—Fe—Mn—Ni—Cr-based crystallized product can be controlled by increasing or decreasing the Cr content. By such control, the area ratio of the Al-Fe-Mn-Ni-Cr-based crystallized product can be set within a range of 4% or more and 7% or less.
一方、Al−Cu−Ni系晶出物は、凝固中の液相が熱力学的に安定な状態になるように(エネルギ−が最も低い状態になるように)、Al、Cu及びNiが結合することにより生成(晶出)する。このAl−Cu−Ni系晶出物の生成量も、上記同様、Cr含有量の増減によって制御することができる。すなわち、Crは、上記したAl−Fe−Mn−Ni−Cr系晶出物を増減させるように作用するので、Crを増すとAl−Fe−Mn−Ni−Cr系晶出物の生成量が増してNiが多く捕られてしまい、Al−Cu−Ni系晶出物の生成が抑えられる。こうした制御によって、Al−Cu−Ni系晶出物の面積率を2%以上、4%以下の範囲内にすることができる。 On the other hand, the Al-Cu-Ni-based crystallized substance combines Al, Cu and Ni so that the liquid phase during solidification becomes thermodynamically stable (so that the energy is at its lowest). To produce (crystallize). The production amount of the Al—Cu—Ni-based crystallized product can be controlled by increasing or decreasing the Cr content, as described above. In other words, Cr acts to increase or decrease the above-described Al—Fe—Mn—Ni—Cr-based crystallized matter. Therefore, when Cr is increased, the amount of Al—Fe—Mn—Ni—Cr-based crystallized product generated is increased. In addition, more Ni is trapped, and generation of Al—Cu—Ni-based crystallized products is suppressed. By such control, the area ratio of the Al—Cu—Ni-based crystallized product can be set in the range of 2% or more and 4% or less.
なお、「面積率」とは、Al−Si系合金を切断して任意の断面を観察し、特定寸法で囲まれた面積を100%としたとき、その面積内に現れるAl−Fe−Mn−Ni−Cr系晶出物の面積とAl−Cu−Ni系晶出物の面積との合計値(%)である。なお、その面積は、SEM観察とEDX分析によって測定して評価できる。特にEDX分析は、Al−Fe−Mn−Ni−Cr系晶出物とAl−Cu−Ni系晶出物との組成の違いに基づいたコントラストが顕著に相違するので、そのコントラストの相違によってそれぞれの晶出物の面積を特定できる。 The “area ratio” means that an Al—Si-based alloy is cut and an arbitrary cross section is observed, and when the area surrounded by a specific dimension is 100%, Al—Fe—Mn— appearing in the area It is a total value (%) of the area of the Ni-Cr-based crystallized product and the area of the Al-Cu-Ni-based crystallized product. The area can be measured and evaluated by SEM observation and EDX analysis. In particular, in the EDX analysis, the contrast based on the difference in composition between the Al-Fe-Mn-Ni-Cr-based crystallized product and the Al-Cu-Ni-based crystallized product is remarkably different. The area of the crystallized product can be specified.
(Al−Cu−Mg系化合物の析出)
上記したAl−Cu−Mg化合物の析出は、Al−Si系合金に含まれるCuとCrによって制御することができる。本発明では、Al−Si系合金に含まれる金属元素のうち、CuとCrがAl−Cu−Mg化合物の析出に影響する。Cuの含有量は、1.2質量%以上、5質量%以下の範囲内であることが好ましく、Crの含有量は、0.05質量%以上であることが好ましい。これらの範囲内になるように、CuとCrを制御することにより、導電率(%IACS)が18以上のAl−Si系合金を得ることができる。
(Precipitation of Al-Cu-Mg compound)
The precipitation of the Al—Cu—Mg compound described above can be controlled by Cu and Cr contained in the Al—Si alloy. In the present invention, among the metal elements contained in the Al—Si based alloy, Cu and Cr affect the precipitation of the Al—Cu—Mg compound. The Cu content is preferably in the range of 1.2 mass% or more and 5 mass% or less, and the Cr content is preferably 0.05 mass% or more. By controlling Cu and Cr so as to be within these ranges, an Al—Si alloy having a conductivity (% IACS) of 18 or more can be obtained.
Cuの含有量が上記範囲内であることにより、Al−Si系合金はAl−Cu−Mg系析出物を形成して強度を向上させるように作用するが、本発明では、Al−Cu−Mg系化合物の析出形態に特徴があり、Al−Cu−Mg系化合物がAlマトリクス中に均一析出している(実施例2の図1(B)を参照)。一方、同じCu含有量であっても、Al−Cu−Mg系化合物がAlマトリクス中に均一に析出していない場合(比較例1の図2(B)を参照)は、強度向上の点では均一析出した前記の場合と同様であるが、本発明の効果(導電率と熱伝導率の顕著な向上)は奏しない。こうした結晶状態(結晶構造)の違いは、既述したCrの作用による。 When the content of Cu is within the above range, the Al—Si based alloy acts to improve the strength by forming Al—Cu—Mg based precipitates. There is a feature in the precipitation form of the system compound, and the Al—Cu—Mg system compound is uniformly deposited in the Al matrix (see FIG. 1B of Example 2). On the other hand, even when the Cu content is the same, when the Al—Cu—Mg compound is not uniformly deposited in the Al matrix (see FIG. 2B of Comparative Example 1), in terms of strength improvement. Although it is the same as the case where it uniformly precipitated, the effect of the present invention (notable improvement in conductivity and thermal conductivity) is not achieved. Such a difference in crystal state (crystal structure) is due to the action of Cr described above.
なお、Cu含有量が1.2質量%未満では、Al−Si系合金の強度向上に十分に寄与せず、Cu含有量が5質量%を超えると、比重が大きくなって重くなるとともに、鋳造性が悪くなることから、上記した1.2質量%以上5質量%以下の範囲内であることが好ましい。 In addition, if Cu content is less than 1.2 mass%, it will not fully contribute to the strength improvement of an Al-Si type alloy, and if Cu content exceeds 5 mass%, specific gravity will become large and will become heavy, and casting In view of deterioration of the properties, it is preferably within the range of 1.2% by mass or more and 5% by mass or less.
本発明では、上記したCu含有量の範囲内でCr含有量を0.05質量%以上にしている。こうすることにより、既述したCrの作用によってAl−Fe−Mn−Ni−Cr系晶出物が生成する。そして、その晶出物の生成により、Niがその晶出物に捕られるので、Al−Cu−Ni系晶出物の生成が抑えられる。そのため、Al−Cu−Ni系晶出物に含まれるはずであったCuの多くが、Al−Si系合金のマトリックス中に過飽和に固溶する。その結果、その後の時効処理によってCuの微細な析出物(Al−Cu−Mg系化合物)が均一に析出し、高い導電性を示すと共に高い熱伝導性を示すものとなる。 In the present invention, the Cr content is set to 0.05% by mass or more within the range of the Cu content described above. By doing so, an Al-Fe-Mn-Ni-Cr-based crystallized product is generated by the action of Cr described above. And since Ni is trapped by the crystallized product due to the generation of the crystallized product, the generation of the Al-Cu-Ni-based crystallized product is suppressed. Therefore, most of Cu that should have been contained in the Al-Cu-Ni-based crystallized substance is dissolved in a supersaturated state in the matrix of the Al-Si-based alloy. As a result, fine precipitates (Al—Cu—Mg-based compounds) of Cu are uniformly deposited by the subsequent aging treatment, exhibiting high conductivity and high thermal conductivity.
なお、Cuの含有量が変わらない場合であっても、結晶状態(結晶構造)を変化させることにより熱伝導率を変化させることができる。すなわち、Alマトリックス中にCuが固溶しただけでは熱伝導率は変化しないが、同じCu含有量であっても、Alマトリックス中に固溶したCuが時効処理によって容易に析出できるようにした場合は、熱伝導性が向上する。これは、析出したCu化合物が微細粒子として分散することによって熱伝導性が向上したためである。0.05質量%以上含有させたCrはAlマトリックス中に固溶したCuが時効処理によって微細粒子状のAl−Cu−Mg系化合物として容易に析出できるように作用する。その結果、そのAl−Cu−Mg系化合物の均一分散によって、熱伝導性を高めることができる。 Even when the Cu content does not change, the thermal conductivity can be changed by changing the crystal state (crystal structure). In other words, the thermal conductivity does not change just by dissolving Cu in the Al matrix, but even if the Cu content is the same, Cu dissolved in the Al matrix can be easily precipitated by aging treatment. Improves the thermal conductivity. This is because the thermal conductivity was improved by the precipitated Cu compound being dispersed as fine particles. Cr contained in an amount of 0.05% by mass or more acts so that Cu dissolved in an Al matrix can be easily precipitated as a fine-particle Al—Cu—Mg compound by aging treatment. As a result, the thermal conductivity can be enhanced by the uniform dispersion of the Al—Cu—Mg compound.
Cuの固溶の程度は、Crの含有量によって制御することができる。Crの含有量を0.05質量%以上にすることにより、Al−Fe−Mn−Ni−Cr系晶出物が生成し、生成したAl−Fe−Mn−Ni−Cr系晶出物にNiが捕られてしまう。そのため、Al−Cu−Ni系晶出物の生成が抑えられ、そのAl−Cu−Ni系晶出物に捕られるはずであったCuが溢れてしまい、CuをAlマトリクス中に過飽和に固溶させることができる。 The degree of solid solution of Cu can be controlled by the content of Cr. By making the Cr content 0.05% by mass or more, an Al-Fe-Mn-Ni-Cr-based crystallized product is formed, and the generated Al-Fe-Mn-Ni-Cr-based crystallized product is Ni. Will be caught. Therefore, the formation of Al-Cu-Ni-based crystallized substances is suppressed, Cu that should have been captured by the Al-Cu-Ni-based crystallized substances overflows, and Cu is supersaturated in the Al matrix. Can be made.
Crの含有量が0.05質量%未満では、Al−Fe−Mn−Ni−Cr系晶出物を十分に生成できず、生成したAl−Fe−Mn−Ni−Cr系晶出物にNiが捕られない。そのため、Al−Cu−Ni系晶出物の生成を抑えることができず、そのAl−Cu−Ni系晶出物にCuが捕らえられてしまい、CuをAlマトリクス中に過飽和に固溶させることができない。その結果、その後の時効処理によってAl−Cu−Mg系化合物を十分に析出させることができない。 When the content of Cr is less than 0.05% by mass, the Al—Fe—Mn—Ni—Cr-based crystallized product cannot be sufficiently generated, and the generated Al—Fe—Mn—Ni—Cr-based crystallized product has Ni. Is not caught. Therefore, generation of Al—Cu—Ni-based crystallized substances cannot be suppressed, Cu is trapped in the Al—Cu—Ni-based crystallized substances, and Cu is supersaturated in the Al matrix. I can't. As a result, the Al—Cu—Mg compound cannot be sufficiently precipitated by the subsequent aging treatment.
Cu含有量は1.2質量%以上5質量%以下の範囲内であるが、その範囲内でCu含有量が少ない場合(例えば1.2質量%〜2.5質量%程度の場合)は、上記範囲内のCr含有量が少ない傾向であることが好ましい。例えば、Cr含有量が0.05質量%〜0.15質量%程度である場合は、Al−Fe−Mn−Ni−Cr系晶出物の生成もあまり多くなく、その晶出物に捕られてしまうNiもあまり多くない。そのため、Al−Cu−Ni系晶出物の生成の抑制効果も小さい。そのため、Al−Cu−Ni系晶出物に捕られるはずであったCuも少なくなるが、そもそもCu含有量自体が上記のように少ないので、ある程度のCuは溢れる。その結果、溢れたCuはAlマトリクス中に過飽和に固溶し、時効処理後のAlマトリクス中にAl−Cu−Mg系化合物を均一析出させることができる。 The Cu content is in the range of 1.2 mass% or more and 5 mass% or less, but when the Cu content is small within the range (for example, about 1.2 mass% to 2.5 mass%), It is preferable that the Cr content within the above range tends to be small. For example, when the Cr content is about 0.05% by mass to 0.15% by mass, the generation of Al-Fe-Mn-Ni-Cr-based crystallized products is not so much, and is captured by the crystallized products. There is not much Ni that ends up. For this reason, the effect of suppressing the formation of Al-Cu-Ni-based crystals is also small. Therefore, the amount of Cu that should have been trapped by the Al—Cu—Ni-based crystallized material is reduced, but since the Cu content itself is small as described above, a certain amount of Cu overflows. As a result, the overflowing Cu dissolves into the Al matrix in a supersaturated state, and the Al—Cu—Mg compound can be uniformly precipitated in the Al matrix after the aging treatment.
一方、上記範囲内でCu含有量が多い場合(例えば2.5質量%〜5質量%程度の場合)は、上記範囲内のCr含有量が多くなっても効果を維持できる。例えば、Cr含有量が0.15質量%〜0.25質量%等又はそれ以上である場合は、Al−Fe−Mn−Ni−Cr系晶出物の生成が多く、その晶出物に捕られてしまうNiも多い。そのため、Al−Cu−Ni系晶出物の生成の抑制効果が大きくなる。そのため、Al−Cu−Ni系晶出物に捕られるはずであったCuも多くなるが、そもそもCu含有量自体が上記のように多いので、ある程度のCuは溢れる。その結果、溢れたCuはAlマトリクス中に過飽和に固溶し、時効処理後のAlマトリクス中にAl−Cu−Mg系化合物を均一析出させることができる。 On the other hand, when the Cu content is large within the above range (for example, about 2.5% by mass to 5% by mass), the effect can be maintained even if the Cr content within the above range increases. For example, when the Cr content is 0.15% by mass to 0.25% by mass or more, Al-Fe-Mn-Ni-Cr-based crystallized products are often produced and trapped in the crystallized products. There is also a lot of Ni that gets lost. For this reason, the effect of suppressing the formation of Al-Cu-Ni-based crystals is increased. Therefore, the amount of Cu that should have been captured by the Al—Cu—Ni-based crystallized substance increases, but since the Cu content itself is large as described above, a certain amount of Cu overflows. As a result, the overflowing Cu dissolves into the Al matrix in a supersaturated state, and the Al—Cu—Mg compound can be uniformly precipitated in the Al matrix after the aging treatment.
なお、Cr含有量の上限は特に限定されないが、Cr自体は熱伝導性を悪くするので、その上限は通常、1質量%以下、好ましくは0.5質量%以下とすることができる。 In addition, although the upper limit of Cr content is not specifically limited, Since Cr itself worsens thermal conductivity, the upper limit can be 1 mass% or less normally, Preferably it can be 0.5 mass% or less.
こうして説明したメカニズムによって、本発明に係る内燃機関用ピストン材料は、熱伝導性が高く、温度の影響による強度の低下を防止した高強度で軽量な内燃機関用ピストン材料になる。したがって、Al−Fe−Mn−Ni−Cr系晶出物やAl−Cu−Ni系晶出物の生成に関わる元素及びAl−Cu−Mg系化合物の析出に関わる元素であるCu、Mg、Ni、Cr、Fe及びMnを含有するAl−Si系合金であれば、上記同様のメカニズムによって本発明に係る内燃機関用ピストン材料の効果を奏することができる。よって、例えばSi含有量が5質量%〜25質量%の範囲内のAl−Si系合金のいずれであっても、本発明に係る内燃機関用ピストン材料に包含されるということができる。 By the mechanism described above, the piston material for an internal combustion engine according to the present invention is a high-strength and lightweight piston material for an internal combustion engine that has high thermal conductivity and prevents a decrease in strength due to the influence of temperature. Therefore, Cu, Mg, Ni, which are elements involved in the formation of Al-Fe-Mn-Ni-Cr-based crystals and Al-Cu-Ni-based crystals, and elements involved in precipitation of Al-Cu-Mg compounds. If it is an Al-Si alloy containing Cr, Fe and Mn, the effect of the piston material for an internal combustion engine according to the present invention can be obtained by the same mechanism as described above. Therefore, for example, any Al—Si alloy having a Si content in the range of 5 mass% to 25 mass% can be said to be included in the piston material for an internal combustion engine according to the present invention.
以上説明したように、本発明に係る内燃機関用ピストン材料によれば、導電率(%IACS)が18以上のAl−Si系合金は熱伝導率が高いので、従来のAl−Si系合金と比較して、内燃機関から発生する熱によるピストンの温度上昇を抑制することができる。その結果、ピストンの温度上昇による強度の低下を抑制できる。 As described above, according to the piston material for an internal combustion engine according to the present invention, an Al—Si alloy having a conductivity (% IACS) of 18 or more has a high thermal conductivity. In comparison, the temperature rise of the piston due to heat generated from the internal combustion engine can be suppressed. As a result, a decrease in strength due to a temperature rise of the piston can be suppressed.
本発明では、Cuの含有量とCr含有量とを特定することにより、Al−Si系合金の材料強度を大きく変化させないで、その導電率と熱伝導率を調整できる点に特徴がある。そして、導電率や熱伝導率の調整は、CuとCrの含有量を調整し、Al−Si系合金の組織を特定したことにより、高い熱が加わる内燃機関の環境下で使用されるピストンの強度を実質的に上げている。 The present invention is characterized in that by specifying the Cu content and the Cr content, the electrical conductivity and thermal conductivity can be adjusted without greatly changing the material strength of the Al—Si based alloy. And the adjustment of the conductivity and thermal conductivity is performed by adjusting the contents of Cu and Cr, and by specifying the structure of the Al-Si alloy, the piston used in the environment of the internal combustion engine where high heat is applied. The strength is substantially increased.
[内燃機関用ピストン材料の製造方法]
本発明に係る内燃機関用ピストン材料の製造方法は、Cuを1.2質量%以上5質量%以下の範囲内で含有し、Crを0.05質量%以上含有する内燃機関用ピストン材料であるAl−Si系合金を鋳造する工程と、鋳造した前記Al−Si系合金を時効処理する工程とを有することに特徴がある。
[Method of manufacturing piston material for internal combustion engine]
The method for producing a piston material for an internal combustion engine according to the present invention is a piston material for an internal combustion engine containing Cu in a range of 1.2 mass% to 5 mass% and containing Cr in an amount of 0.05 mass% or more. It is characterized by having a step of casting an Al—Si based alloy and a step of aging treatment of the cast Al—Si based alloy.
鋳造工程は、Cuを1.2質量%以上5質量%以下の範囲内で含有し、Crを0.05質量%以上含有する内燃機関用ピストン材料であるAl−Si系合金を鋳造する工程である。鍛造は、従来公知の各種の鍛造手段を適用することができる。例えば、700℃〜800℃の範囲内の溶融状態にしたAl−Si系合金を所定の鋳型に鋳込んで鋳造する。 The casting step is a step of casting an Al—Si alloy which is a piston material for an internal combustion engine containing Cu in a range of 1.2 mass% to 5 mass% and Cr containing 0.05 mass% or more. is there. Various forging means known in the art can be applied to the forging. For example, an Al—Si based alloy in a molten state within a range of 700 ° C. to 800 ° C. is cast into a predetermined mold.
時効処理工程は、鋳造したAl−Si系合金を時効処理する工程である。時効処理は、例えば170℃〜250℃で、240分間〜600分間の熱処理を大気環境中で施して行うことができる。この時効処理によって、上記したAl−Cu−Mg系化合物を均一に析出することができる。 The aging treatment step is a step of aging treatment of the cast Al—Si alloy. The aging treatment can be performed, for example, by performing heat treatment at 170 ° C. to 250 ° C. for 240 minutes to 600 minutes in an atmospheric environment. By this aging treatment, the Al—Cu—Mg compound described above can be uniformly deposited.
以上、本発明に係る内燃機関用ピストン材料の製造方法によれば、Cuを1.2質量%以上5質量%以下の範囲内で含有し、Crを0.05質量%以上含有する内燃機関用ピストン材料であるAl−Si系合金を鋳造するので、Al−Fe−Mn−Ni−Cr系晶出物が生成される。そして、その晶出物の生成により、Al−Si系合金に含まれるNiがその晶出物に捕られるので、Al−Cu−Ni系晶出物の生成が抑えられ、その結果、より多くのCuが、Al−Si系合金のマトリックス中に過飽和に固溶する。こうした鋳造合金をその後に時効処理することにより、過飽和に固溶したCuは、サイズが1μm以下の微細なAl−Cu−Mg系化合物として均一に析出する。こうして得られた内燃機関用ピストン材料は、18%(IACS)以上の高い導電率と高い熱伝導率を示すので、ピストンの温度上昇を抑制でき、強度の低下を抑制できる。 As mentioned above, according to the manufacturing method of the piston material for internal combustion engines which concerns on this invention, it contains Cu in the range of 1.2 mass% or more and 5 mass% or less, and for internal combustion engines containing Cr 0.05 mass% or more. Since an Al—Si based alloy that is a piston material is cast, an Al—Fe—Mn—Ni—Cr based crystallization product is generated. And since the Ni contained in the Al-Si based alloy is captured by the crystallized product due to the generation of the crystallized product, the generation of the Al-Cu-Ni based crystallized product is suppressed, and as a result, more Cu dissolves in a supersaturated state in the matrix of the Al—Si alloy. By subsequent aging treatment of such a cast alloy, Cu dissolved in supersaturation is uniformly deposited as a fine Al—Cu—Mg compound having a size of 1 μm or less. The piston material for an internal combustion engine obtained in this way exhibits a high conductivity of 18% (IACS) or higher and a high thermal conductivity, so that an increase in piston temperature can be suppressed and a decrease in strength can be suppressed.
以下、実施例と比較例により、本発明をさらに詳しく説明する。 Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples.
[実験1]
先ず、表1に示す成分のAl−Si系合金を準備し、そのAl−Si系合金を750℃±10℃に溶融し、250℃に加温した縦22mm×横190mm×高さ45mmの舟形状の鋳型に通常の重力鋳造で鋳込み、Al−Si系合金鋳物サンプルを作製した。なお、冷却速度は0.5〜5℃/秒の範囲内で行った。作製した鋳物サンプルに、220℃、4時間の時効処理を施して、供試材である実施例1〜5及び比較例1,2の測定サンプルを作製した。
[Experiment 1]
First, an Al—Si based alloy having the components shown in Table 1 was prepared, and the Al—Si based alloy was melted at 750 ° C. ± 10 ° C. and heated to 250 ° C. 22 mm long × 190 mm wide × 45 mm high boat An Al-Si alloy casting sample was produced by casting into a shaped mold by ordinary gravity casting. In addition, the cooling rate was performed within the range of 0.5-5 degree-C / sec. The produced casting samples were subjected to an aging treatment at 220 ° C. for 4 hours to produce measurement samples of Examples 1 to 5 and Comparative Examples 1 and 2 as test materials.
[測定]
測定サンプルについて、引張強さ、導電率(%IACS)、熱伝導率を測定した。また、金属組織の観察は、測定サンプルを切断、樹脂埋込、研磨した後、オスミウムコーティングを施した測定サンプルを準備して析出物と晶出物を観察した。
[Measurement]
About the measurement sample, tensile strength, electrical conductivity (% IACS), and thermal conductivity were measured. The metal structure was observed by cutting, embedding and polishing the measurement sample, and then preparing a measurement sample with an osmium coating and observing precipitates and crystallized substances.
引張強さは、全長80mm×平行部長さ25mm×平行部径φ6mmの測定サンプルを準備し、引張試験機(株式会社島津製作所製のオートグラフ)で測定して評価した。 Tensile strength was measured by preparing a measurement sample having a total length of 80 mm, a parallel part length of 25 mm, and a parallel part diameter of 6 mm, and measuring and evaluating with a tensile tester (manufactured by Shimadzu Corporation).
導電率は、電気抵抗測定装置(アルバック理工株式会社製、型名:TER2000RH/L型)を用い、真空中(1×10−5torr)にて直流四端子法で測定した。5つの測定点の結果のうち、最大値と最小値を除いた3点の結果を平均した。 The electrical conductivity was measured by a direct current four-terminal method in vacuum (1 × 10 −5 torr) using an electrical resistance measuring device (manufactured by ULVAC-RIKO, Inc., model name: TER2000RH / L type). Of the results of the five measurement points, the results of three points excluding the maximum value and the minimum value were averaged.
熱伝導率は、熱伝導率計(NETZSCH社製、型名:DSC404C)で測定して評価した。 The thermal conductivity was measured and evaluated with a thermal conductivity meter (manufactured by NETZSCH, model name: DSC404C).
Al−Cu−Mg系化合物のサイズは、TEM(電界放出形透過電子顕微鏡、日立製作所製、型名:HF−2000)を用い、電解薄膜法(ツインジェット法)で測定試料を準備し、得られたTEM像から測定した。このTEM像の例を、図1(B)及び図2(B)に示した。 The size of the Al—Cu—Mg compound was obtained by preparing a measurement sample by the electrolytic thin film method (twin jet method) using TEM (field emission transmission electron microscope, manufactured by Hitachi, Ltd., model name: HF-2000). It was measured from the obtained TEM image. Examples of this TEM image are shown in FIG. 1 (B) and FIG. 2 (B).
晶出物の面積率は、SEM(日本電子株式会社製、電界放出形走査電子顕微鏡、型名:JSM−7001F、加速電圧:10kV、撮影方法:反射電子像)でSEM像を撮影し、そのSEM像を、EDX分析装置(Kevex社製、型名:Sigma(HF−2000付属)、加速電圧:200kV、観察方向:<100>方向)で撮像した。得られたSEM像を画像解析して晶出物の面積率を測定した。画像解析は、画像解析装置(ナノシステム株式会社製、型名:NanoHunter NS2K−Pro)を用い、低倍SEM写真中の白色晶出物及び灰色晶出物の面積率を算出した。算出は、先ず、白色晶出物及び灰色晶出物の面積率を計測し、次いで、白色晶出物の面積率を計測し、次いで、灰色晶出物の面積率を、白色晶出物及び灰色晶出物の面積率から白色晶物の面積率を引いて、Al−Fe−Mn−Ni−Cr系晶出物とAl−Cu−Ni系晶出物の合計面積率を求めた。 The area ratio of the crystallized product was obtained by taking a SEM image with an SEM (manufactured by JEOL Ltd., field emission scanning electron microscope, model name: JSM-7001F, acceleration voltage: 10 kV, photographing method: reflected electron image), SEM images were taken with an EDX analyzer (Kevex, model name: Sigma (attached to HF-2000), acceleration voltage: 200 kV, observation direction: <100> direction). The obtained SEM image was subjected to image analysis to measure the area ratio of the crystallized product. For image analysis, an area ratio of white crystallized substances and gray crystallized substances in the low-magnification SEM photograph was calculated using an image analysis apparatus (Nanosystem Corporation, model name: NanoHunter NS2K-Pro). For the calculation, first, the area ratio of the white crystallized product and the white crystallized product were measured, then the area ratio of the white crystallized product was measured, and then the area ratio of the gray crystallized product was determined as the white crystallized product and The area ratio of white crystals was subtracted from the area ratio of gray crystals, and the total area ratio of Al-Fe-Mn-Ni-Cr crystals and Al-Cu-Ni crystals was determined.
[結果]
表1に示す実施例1〜5の測定サンプルと、比較例1,2の測定サンプルから得られた結果を表2に示した。また、図1には、実施例2の測定サンプルの金属組織を示すSEM像(A)とTEM像(B)を示し、図2には、比較例1の測定サンプルの金属組織を示すSEM像(A)とTEM像(B)を示した。
[result]
The results obtained from the measurement samples of Examples 1 to 5 shown in Table 1 and the measurement samples of Comparative Examples 1 and 2 are shown in Table 2. 1 shows an SEM image (A) and a TEM image (B) showing the metal structure of the measurement sample of Example 2, and FIG. 2 shows an SEM image showing the metal structure of the measurement sample of Comparative Example 1. (A) and a TEM image (B) are shown.
図1(B)に示すTEM観察結果より、Crを0.1質量%含む実施例2の測定サンプルには、微細な析出物が均一に分布していた。この微細な析出物は、EDX分析により解析した結果、Al−Cu−Mg系化合物であった。なお、この測定サンプルは、導電率が19%IACSであった。また、図1(A)に示すSEM写真の画像解析より、晶出物の合計面積率は8.5%であり、白色のAl−Cu−Ni系晶出物の面積率は3.5%であり、灰色のAl−Fe−Mn−Ni−Cr系晶出物の面積率は5%であった。 From the TEM observation result shown in FIG. 1B, fine precipitates were uniformly distributed in the measurement sample of Example 2 containing 0.1% by mass of Cr. As a result of analysis by EDX analysis, this fine precipitate was an Al—Cu—Mg compound. The measurement sample had a conductivity of 19% IACS. From the image analysis of the SEM photograph shown in FIG. 1A, the total area ratio of the crystallized substances is 8.5%, and the area ratio of the white Al—Cu—Ni-based crystallized substances is 3.5%. The area ratio of the gray Al—Fe—Mn—Ni—Cr crystallized product was 5%.
図2(B)に示すTEM観察結果より、Crを0.01質量%含む比較例1の測定サンプルには、微細な析出物が均一に分布していなかった。なお、不均一な微細析出物は、EDX分析により解析した結果、Al−Cu−Mg系化合物であった。なお、この測定サンプルは、導電率が16%IACSであった。また、図2(A)に示すSEM写真の画像解析より、晶出物の合計面積率は14%であり、白色のAl−Cu−Ni系晶出物の面積率は5.3%であり、灰色のAl−Fe−Mn−Ni−Cr系晶出物の面積率は8.7%であった。 From the TEM observation result shown in FIG. 2B, fine precipitates were not uniformly distributed in the measurement sample of Comparative Example 1 containing 0.01% by mass of Cr. In addition, as a result of analyzing by EDX analysis, the heterogeneous fine deposit was an Al-Cu-Mg type compound. The measurement sample had a conductivity of 16% IACS. Further, from the image analysis of the SEM photograph shown in FIG. 2A, the total area ratio of the crystallized substances is 14%, and the area ratio of the white Al—Cu—Ni-based crystallized substances is 5.3%. The area ratio of the gray Al-Fe-Mn-Ni-Cr crystallized product was 8.7%.
以上、表2及び図1,2の結果より、実施例1〜5では導電率が高く、熱伝導率も高くなった。また、導電率は、1μm以下のAl−Cu−Mg系化合物の存在と、Al−Fe−Mn−Ni−Cr系晶出物とAl−Cu−Ni系晶出物の合計面積率が10%以下であることによって、18%IACS以上の高い導電率と、相対値が113以上の高い熱伝導性を示した。 As described above, from the results shown in Table 2 and FIGS. 1 and 2, in Examples 1 to 5, the conductivity was high and the thermal conductivity was also high. Further, the electrical conductivity is 10% when the total area ratio of Al-Cu-Mn-Ni-Cr-based crystallized substance and Al-Fe-Mn-Ni-Cr-based crystallized substance is 1% or less. By being below, high electrical conductivity of 18% IACS or higher and high thermal conductivity of relative value 113 or higher were exhibited.
この実験結果から、Crを所定量含むことによって、Al−Fe−Mn−Ni−Cr系の晶出物が安定化し、その結果、NiがAl−Fe−Mn−Ni−Cr系の晶出物にとられるため、Al−Cu−Ni系の晶出物が減少する。そうすると、より多くのCuがAlマトリックスに過飽和に固溶し、その結果、時効処理時にCu化合物(Al−Cu−Mg系化合物)が微細析出物となって析出し、熱伝導性と導電性が高くなったといえる。 From this experimental result, by including a predetermined amount of Cr, the Al-Fe-Mn-Ni-Cr-based crystallized product is stabilized, and as a result, Ni is an Al-Fe-Mn-Ni-Cr-based crystallized product. Therefore, Al-Cu-Ni-based crystallized substances are reduced. As a result, more Cu is supersaturated in the Al matrix, and as a result, the Cu compound (Al—Cu—Mg-based compound) precipitates as a fine precipitate during the aging treatment, and the thermal conductivity and conductivity are improved. It can be said that it became high.
こうした現象は、Al−Si系合金系の内燃機関用ピストン用材料について同様に言えることである。この実施例で例示したような、少なくとも、Si:11〜13質量%、Cu:1.2〜5質量%、Mg:0.5〜1.3質量%、Ni:0.8〜3質量%、Cr:0.05質量%以上、Fe:1.0質量%以下、Mn:1.0質量%以下を含み、残部がAlであるAl−Si系合金も同様であり、同じ結果を確認した。また、Al−Cu−Mg化合物の析出を、Al−Si系合金に含まれるCuとCrによって制御することができる内燃機関用ピストン用材料であれば、同様のメカニズムによって本発明の技術思想を適用でき、上記の例では、特定のAl−Si系合金で評価しているが、Al−Fe−Mn−Ni−Cr系晶出物やAl−Cu−Ni系晶出物の生成に関わる元素及びAl−Cu−Mg系化合物の析出に関わる元素であるCu、Mg、Ni、Cr、Fe及びMnを含有するAl−Si系合金であれば、上記同様のメカニズムによって本発明に係る内燃機関用ピストン材料の効果を奏することができる。よって、例えばSi含有量が5質量%〜25質量%の範囲内のAl−Si系合金のいずれであっても、本発明に係る内燃機関用ピストン材料に包含されるということができる。
Such a phenomenon can be similarly applied to an Al—Si alloy-based piston material for an internal combustion engine. As exemplified in this example, at least Si: 11-13 mass%, Cu: 1.2-5 mass%, Mg: 0.5-1.3 mass%, Ni: 0.8-3 mass% , Cr: 0.05% by mass or more, Fe: 1.0% by mass or less, Mn: 1.0% by mass or less, the same is true for the Al—Si based alloy in which the balance is Al, and the same result was confirmed. . Further, if the material for the piston for an internal combustion engine can control the precipitation of the Al—Cu—Mg compound by Cu and Cr contained in the Al—Si based alloy, the technical idea of the present invention is applied by the same mechanism. In the above example, evaluation is made with a specific Al-Si alloy, but the elements involved in the formation of Al-Fe-Mn-Ni-Cr-based crystallization products and Al-Cu-Ni-based crystallization products and If it is an Al-Si alloy containing Cu, Mg, Ni, Cr, Fe and Mn, which are elements involved in the precipitation of the Al-Cu-Mg compound, the piston for the internal combustion engine according to the present invention will be used by the same mechanism as described above. The effect of the material can be exhibited. Therefore, for example, any Al—Si alloy having a Si content in the range of 5 mass% to 25 mass% can be said to be included in the piston material for an internal combustion engine according to the present invention.
Claims (6)
鋳造した前記Al−Si系合金を時効処理する工程と、を有することを特徴とする内燃機関用ピストン材料の製造方法。
A step of casting an Al—Si based alloy which is a piston material for an internal combustion engine containing Cu in a range of 1.2 mass% or more and 5 mass% or less and Cr containing 0.05 mass% or more;
And a step of aging the cast Al-Si alloy. A method for producing a piston material for an internal combustion engine.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013025142A JP2014152375A (en) | 2013-02-13 | 2013-02-13 | Piston material for internal combustion engine and method of manufacturing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013025142A JP2014152375A (en) | 2013-02-13 | 2013-02-13 | Piston material for internal combustion engine and method of manufacturing the same |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2014152375A true JP2014152375A (en) | 2014-08-25 |
Family
ID=51574539
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013025142A Pending JP2014152375A (en) | 2013-02-13 | 2013-02-13 | Piston material for internal combustion engine and method of manufacturing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2014152375A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101756014B1 (en) | 2016-04-21 | 2017-07-10 | 현대자동차주식회사 | Aluminum alloy for cylinder head method for manufacturing cylinder head using the same |
KR101786344B1 (en) | 2016-05-16 | 2017-10-18 | 현대자동차주식회사 | Aluminum alloy for cylinder head method for manufacturing cylinder head using the same |
WO2018042494A1 (en) | 2016-08-29 | 2018-03-08 | 日本軽金属株式会社 | High-strength aluminum alloy, internal combustion engine piston comprising said alloy, and method for producing internal combustion engine piston |
KR101856381B1 (en) * | 2016-11-16 | 2018-05-10 | 현대자동차주식회사 | Aluminum alloy for cylinder head |
JP2020200514A (en) * | 2019-06-12 | 2020-12-17 | 昭和電工株式会社 | Aluminum alloy material |
JP2020200512A (en) * | 2019-06-12 | 2020-12-17 | 昭和電工株式会社 | Aluminum alloy material |
JP2021528563A (en) * | 2018-06-20 | 2021-10-21 | フェデラル−モグル ニュルンベルク ゲーエムベーハー | Aluminum alloys, methods for manufacturing engine components, engine components, and the use of aluminum alloys for manufacturing engine components |
JP7547263B2 (en) | 2021-03-23 | 2024-09-09 | 日本軽金属株式会社 | Heat-resistant aluminum alloys and heat-resistant aluminum alloy components |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH055146A (en) * | 1991-06-26 | 1993-01-14 | Showa Alum Corp | Aluminum alloy excellent in wear resistance and thermal conductivity |
JP2001200327A (en) * | 2000-01-20 | 2001-07-24 | Kyushu Mitsui Alum Kogyo Kk | High capacity aluminum alloy for piston and method for producing piston |
JP2002003972A (en) * | 2000-06-22 | 2002-01-09 | Ryoka Macs Corp | Aluminum alloy for heat sink excellent in thermal conductivity |
JP2003089838A (en) * | 2001-09-18 | 2003-03-28 | Toyota Industries Corp | Heat radiation/absorption parts made of die-cast aluminum |
JP2006241531A (en) * | 2005-03-04 | 2006-09-14 | Ryoka Macs Corp | Continuous casting aluminum alloy ingot and its production method |
WO2012008470A1 (en) * | 2010-07-16 | 2012-01-19 | 日本軽金属株式会社 | Aluminum alloy with excellent high-temperature strength and thermal conductivity, and process for production thereof |
-
2013
- 2013-02-13 JP JP2013025142A patent/JP2014152375A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH055146A (en) * | 1991-06-26 | 1993-01-14 | Showa Alum Corp | Aluminum alloy excellent in wear resistance and thermal conductivity |
JP2001200327A (en) * | 2000-01-20 | 2001-07-24 | Kyushu Mitsui Alum Kogyo Kk | High capacity aluminum alloy for piston and method for producing piston |
JP2002003972A (en) * | 2000-06-22 | 2002-01-09 | Ryoka Macs Corp | Aluminum alloy for heat sink excellent in thermal conductivity |
JP2003089838A (en) * | 2001-09-18 | 2003-03-28 | Toyota Industries Corp | Heat radiation/absorption parts made of die-cast aluminum |
JP2006241531A (en) * | 2005-03-04 | 2006-09-14 | Ryoka Macs Corp | Continuous casting aluminum alloy ingot and its production method |
WO2012008470A1 (en) * | 2010-07-16 | 2012-01-19 | 日本軽金属株式会社 | Aluminum alloy with excellent high-temperature strength and thermal conductivity, and process for production thereof |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101756014B1 (en) | 2016-04-21 | 2017-07-10 | 현대자동차주식회사 | Aluminum alloy for cylinder head method for manufacturing cylinder head using the same |
KR101786344B1 (en) | 2016-05-16 | 2017-10-18 | 현대자동차주식회사 | Aluminum alloy for cylinder head method for manufacturing cylinder head using the same |
EP3505648A4 (en) * | 2016-08-29 | 2020-03-04 | Nippon Light Metal Company, Ltd. | High-strength aluminum alloy, internal combustion engine piston comprising said alloy, and method for producing internal combustion engine piston |
US11549461B2 (en) | 2016-08-29 | 2023-01-10 | Nippon Light Metal Company, Ltd. | High strength aluminum alloy, internal combustion engine piston comprising said alloy, and method for manufacturing internal combustion engine piston |
JPWO2018042494A1 (en) * | 2016-08-29 | 2019-03-14 | 日本軽金属株式会社 | High strength aluminum alloy, piston for internal combustion engine made of the alloy, and method for manufacturing piston for internal combustion engine |
CN109642275A (en) * | 2016-08-29 | 2019-04-16 | 日本轻金属株式会社 | The manufacturing method of high-strength aluminum alloy, the piston for IC engine containing the alloy and piston for IC engine |
US20190186410A1 (en) * | 2016-08-29 | 2019-06-20 | Nippon Light Metal Company, Ltd. | High strength aluminum alloy, internal combustion engine piston comprising said alloy, and method for manufacturing internal combustion engine piston |
CN109642275B (en) * | 2016-08-29 | 2023-10-20 | 日本轻金属株式会社 | High-strength aluminum alloy, piston for internal combustion engine containing same, and method for producing piston for internal combustion engine |
WO2018042494A1 (en) | 2016-08-29 | 2018-03-08 | 日本軽金属株式会社 | High-strength aluminum alloy, internal combustion engine piston comprising said alloy, and method for producing internal combustion engine piston |
KR101856381B1 (en) * | 2016-11-16 | 2018-05-10 | 현대자동차주식회사 | Aluminum alloy for cylinder head |
US10407756B2 (en) | 2016-11-16 | 2019-09-10 | Hyundai Motor Company | Aluminum alloy for cylinder head |
JP2021528563A (en) * | 2018-06-20 | 2021-10-21 | フェデラル−モグル ニュルンベルク ゲーエムベーハー | Aluminum alloys, methods for manufacturing engine components, engine components, and the use of aluminum alloys for manufacturing engine components |
JP7350021B2 (en) | 2018-06-20 | 2023-09-25 | フェデラル-モグル ニュルンベルク ゲーエムベーハー | Aluminum alloy, method of manufacturing engine components, engine components, and use of aluminum alloys to manufacture engine components |
JP2020200514A (en) * | 2019-06-12 | 2020-12-17 | 昭和電工株式会社 | Aluminum alloy material |
JP2020200512A (en) * | 2019-06-12 | 2020-12-17 | 昭和電工株式会社 | Aluminum alloy material |
JP7547263B2 (en) | 2021-03-23 | 2024-09-09 | 日本軽金属株式会社 | Heat-resistant aluminum alloys and heat-resistant aluminum alloy components |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2014152375A (en) | Piston material for internal combustion engine and method of manufacturing the same | |
JP7500726B2 (en) | Heat-resistant aluminum powder material | |
WO2015060459A1 (en) | Magnesium alloy and method for producing same | |
JP5703881B2 (en) | High strength magnesium alloy and method for producing the same | |
TWI613296B (en) | Aluminum alloy powder and manufacturing method of aluminum alloy object | |
KR101815032B1 (en) | Magnesium alloy and method for producing same | |
JPWO2008072435A1 (en) | Magnesium alloy for casting and method for producing magnesium alloy casting | |
US20100119405A1 (en) | Magnesium alloy for casting and magnesium-alloy cast product | |
JP6594663B2 (en) | Heat-resistant magnesium casting alloy and its manufacturing method | |
JP6113371B2 (en) | Aluminum alloy casting excellent in high-temperature strength and thermal conductivity, manufacturing method thereof, and aluminum alloy piston for internal combustion engine | |
CN110016593A (en) | Aluminium alloy and preparation method thereof | |
JP3448990B2 (en) | Die-cast products with excellent high-temperature strength and toughness | |
JP3878069B2 (en) | Aluminum alloy excellent in high temperature strength and manufacturing method thereof | |
WO2008133218A1 (en) | Magnesium alloy for casting and magnesium alloy cast | |
JP5590413B2 (en) | High thermal conductivity magnesium alloy | |
CN110573637B (en) | Al-Si-Fe aluminum alloy casting material and method for producing same | |
JP2011219820A (en) | Heat resisting magnesium alloy | |
US9617623B2 (en) | Aluminum alloy including iron-manganese complete solid solution and method of manufacturing the same | |
JP5449754B2 (en) | Forging piston for engine or compressor | |
RU2573463C1 (en) | Aluminium-based heat-resistant electroconductive alloy | |
CN106663490B (en) | Aluminium alloy conductor core and its manufacturing method | |
JP2015086445A (en) | Aluminum alloy | |
JP7126915B2 (en) | Aluminum alloy extruded material and its manufacturing method | |
JP2022147009A (en) | Heat-resistant aluminum alloy and heat-resistant aluminum alloy member | |
US20220228241A1 (en) | Component, in particular for a vehicle, and method for producing such a component |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20160113 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20161110 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20161129 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170130 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20170704 |