JP2014105805A - Solenoid control device and solenoid control method - Google Patents
Solenoid control device and solenoid control method Download PDFInfo
- Publication number
- JP2014105805A JP2014105805A JP2012260459A JP2012260459A JP2014105805A JP 2014105805 A JP2014105805 A JP 2014105805A JP 2012260459 A JP2012260459 A JP 2012260459A JP 2012260459 A JP2012260459 A JP 2012260459A JP 2014105805 A JP2014105805 A JP 2014105805A
- Authority
- JP
- Japan
- Prior art keywords
- amplitude
- frequency
- oil
- dither
- stored
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Control Of Transmission Device (AREA)
Abstract
Description
本発明は、ディザ信号を重畳させてソレノイドを制御する制御装置および方法に関する。 The present invention relates to a control apparatus and method for controlling a solenoid by superimposing a dither signal.
リニアソレノイドは、電流を入力としてバルブを開閉することによって油圧を調整するアクチュエータである。油圧を動力源として変速制御を行う自動車等、その利用分野は多岐に渡っている。その一方で、リニアソレノイドには、入力である電流、出力である油圧間のヒステリシス特性が知られている。これは入力である電流に対して出力である油圧が一意に定まらないことを意味しており、油圧に対して高い制御性が要求される自動変速機などの分野ではかねてより問題視されてきた。 The linear solenoid is an actuator that adjusts the hydraulic pressure by opening and closing a valve with an electric current as an input. There are various fields of use such as automobiles that perform shift control using hydraulic pressure as a power source. On the other hand, the linear solenoid is known to have hysteresis characteristics between an input current and an output hydraulic pressure. This means that the hydraulic pressure that is the output is not uniquely determined for the current that is the input, and has been regarded as a problem in the field of automatic transmissions that require high controllability for the hydraulic pressure. .
ヒステリシス特性への対策として、電流にディザと呼ばれる微少な振動を印加するディザ制御が広く知られている。電流にディザを印加することによってリニアソレノイドの可動鉄心を微少に振動させ、摩擦に起因するヒステリシスを低減することが可能となる。 As a countermeasure against the hysteresis characteristic, dither control in which a minute vibration called dither is applied to a current is widely known. By applying dither to the current, it is possible to slightly vibrate the movable core of the linear solenoid and reduce the hysteresis due to friction.
また、ヒステリシスは油温に依存して大きく変化する(油温が低いと油の粘性が増し、リニアソレノイドの摩擦が増える。その逆もまた同様。)ことから、ディザの振幅・周波数を油温に応じて柔軟に変更することによりさらに高いヒステリシス低減効果を得られることも広く知られている。ヒステリシスの大きい低油温時にはディザの振幅を大きく、周波数は低く設定することによって、摩擦が大きい状況下においても十分に可動鉄心を振動させることが可能となる。また、ヒステリシスの小さい高油温時にはディザの振幅を小さく、周波数は高く設定することによって、摩擦が小さい状況下においても必要以上に可動鉄心を振動させることなく、油圧を安定して出力することが可能となる。 Hysteresis varies greatly depending on the oil temperature (low oil temperature increases oil viscosity and linear solenoid friction increases, and vice versa), so the dither amplitude and frequency are set to the oil temperature. It is also widely known that a higher hysteresis reduction effect can be obtained by flexibly changing according to the above. By setting the dither amplitude large and the frequency low at a low oil temperature with a large hysteresis, it is possible to sufficiently vibrate the movable iron core even under a large frictional condition. Also, by setting the dither amplitude small and the frequency high at high oil temperatures with low hysteresis, the hydraulic pressure can be output stably without causing the movable iron core to vibrate more than necessary even under low friction conditions. It becomes possible.
しかし、これらの手法では油や磁性材料の経年劣化に起因したヒステリシスの拡大やリニアソレノイド個体によって異なるヒステリシスのバラツキを吸収するまでには至っていなかった。 However, these methods have not yet expanded the hysteresis due to the aging of oil and magnetic materials and absorbed the variation in hysteresis that varies depending on the individual linear solenoid.
一方で、ヒステリシス量をセンサにより測定し、動的にディザの振幅を更新する方法が提案されている(特許文献1)。この方法によれば、ヒステリシスの増減に応じてディザ振幅を変化させることにより、可及的にヒステリシスを取り除くことが可能になる。また、ディザの振幅をヒステリシスに応じて更新可能なため、経年劣化などの時間的な変動要素に対しても効果が期待できる。ただ、この方法についてはヒステリシスに応じてディザ振幅を毎回まったく新しい値に更新するため、測定誤差や外乱に起因してディザ振幅が急峻に変動し、油圧が不安定になる危険性を孕んでいる。さらには、通常動作時に記載の手法によって正確なヒステリシスを測定することは現実的でない。記載のヒステリシス測定方法を適用して正確なヒステリシスが測定可能なのは、初期化時などに測定用の制御電流をリニアソレノイドへ供給した場合に限定される。 On the other hand, a method of measuring the amount of hysteresis with a sensor and dynamically updating the dither amplitude has been proposed (Patent Document 1). According to this method, it is possible to remove the hysteresis as much as possible by changing the dither amplitude in accordance with the increase or decrease of the hysteresis. In addition, since the dither amplitude can be updated according to the hysteresis, an effect can be expected for temporal fluctuation factors such as aging. However, since this method updates the dither amplitude to a completely new value each time according to the hysteresis, there is a risk that the dither amplitude will fluctuate sharply due to measurement errors and disturbances, and the hydraulic pressure will become unstable. . Furthermore, it is not practical to measure accurate hysteresis by the method described during normal operation. The accurate hysteresis can be measured by applying the described hysteresis measuring method only when a control current for measurement is supplied to the linear solenoid at the time of initialization or the like.
その他リニアソレノイドのヒステリシスを長期間に渡って低減することを目的とした手法は多く提案されているものの、どれも実現性・実用性に乏しく、決定的な手法は提案されていないのが実情であった。 Although many other methods aimed at reducing the hysteresis of linear solenoids over a long period of time have been proposed, none of them are feasible and practical, and no definitive method has been proposed. there were.
従来の手法のように、ディザ信号の振幅・周波数を固定として制御を実施する場合、油や磁性材料の経年劣化に起因したヒステリシスの拡大に対して適切なディザ信号を加えられない。さらにはリニアソレノイド個体のバラツキも考慮しておらず、バラツキを吸収しようとすればリニアソレノイド個体毎に専用のディザ信号の振幅・周波数を選定・設定する必要があった。 When the control is performed with the amplitude and frequency of the dither signal fixed as in the conventional method, an appropriate dither signal cannot be applied to the expansion of hysteresis due to aging deterioration of oil or magnetic material. Furthermore, the variation of individual linear solenoids is not taken into consideration. To absorb the variation, it is necessary to select and set the amplitude and frequency of a dedicated dither signal for each individual linear solenoid.
本発明は経年劣化に起因したヒステリシスの拡大、およびソレノイド個体によって異なるヒステリシスのバラツキを課題とし、その改善を安定して図ることを目的とするものである。
An object of the present invention is to increase the hysteresis due to deterioration over time and to vary the hysteresis that varies depending on individual solenoids, and to improve the stability stably.
上記目的は、例えば、油路に設置されたソレノイドに制御信号を出力するソレノイド制御装置において、前記油路の目標油圧と前記油路の油温とに対する,重畳させるべきディザ信号の振幅と周波数とを記憶する記憶手段と、前記振幅と前記周波数のディザ信号を発生し,前記制御信号に重畳させるディザ信号発生手段と、前記油路の検出油圧と前記油路の指示油圧との差圧を演算する演算手段と、前記演算手段の結果にもとづいて、前記記憶手段の記憶を更新する更新手段と、前記油路の検出油圧の所定時間内変化量が一定量を超えた場合には、前記更新手段を停止することにより達成される。
For example, in the solenoid control apparatus that outputs a control signal to a solenoid installed in the oil passage, the amplitude and frequency of the dither signal to be superimposed on the target oil pressure of the oil passage and the oil temperature of the oil passage Storage means for storing a dither signal having the amplitude and the frequency, and a dither signal generating means for superimposing the dither signal on the control signal, and calculating a differential pressure between the detected oil pressure of the oil passage and the indicated hydraulic pressure of the oil passage Calculating means for updating, updating means for updating the storage of the storage means based on the result of the calculating means, and when the amount of change in the detected oil pressure of the oil passage within a predetermined time exceeds a certain amount, the updating This is achieved by stopping the means.
本発明によれば、経年劣化に起因したヒステリシスの拡大、およびソレノイド個体によって異なるヒステリシスのバラツキを改善し安定を図ることができる。
According to the present invention, it is possible to achieve stability by expanding hysteresis due to deterioration over time and improving variation in hysteresis that varies depending on individual solenoids.
図1に本発明を実施する際の典型的な構成を示す。制御装置101は各入力等に基づいて演算を行い、ドライバ回路102へリニアソレノイド103の駆動信号を出力する。ドライバ回路102は制御装置101からの駆動信号を増幅した上で半導体素子のスイッチングを行い、リニアソレノイド103へ必要な電流を供給する。リニアソレノイド103は油圧を調整することで何らかの制御対象104を制御することができる。制御対象での出力油圧は、油圧センサ105によって検出され、制御装置101へフィードバックされる。なお、各要素は図1に示したようにハーネス106で接続されている。
上記のような構成において、図2に示す制御フローで学習を実施する。まず、学習制御開始の前提条件となる、指示(目標)油圧と測定(検出)油圧が共に一定値で定常的に安定していることを確認する(S201)。安定していると判定されれば学習制御を開始し、油圧が遷移の過渡状態であると判断されれば学習制御は実施されない(停止する)。学習制御では最初に指示油圧と測定油圧の差分絶対値を算出する(S202)。次にその値が上限閾値以上であるかを判定する(S203)。
もし上限閾値以上であれば、ヒステリシスが拡大していると判断し、その時点の油温と指示油圧に対応したテーブルのディザ振幅に振幅増減幅分の値を加算し(S204)、ディザ周波数から周波数増減幅分の値を減算する(S205)。
一方、指示油圧と測定油圧の差分絶対値が下限閾値以下であれば(S206)、ディザ信号が大きすぎると判断し、その時点の油温と指示油圧に対応したテーブルのディザ振幅から振幅増減幅分の値を減算し(S207)、ディザ周波数に周波数増減幅分の値を加算する(S208)。指示油圧と測定油圧の差分絶対値が上下限閾値の間であれば学習実施しない。
その後、制御装置の電源電圧を監視することによって電源がOFFされたかを判定する(S209)。電源がOFFされたと判定した場合、制御装置への電源遮断前に不揮発記憶装置へ学習したディザ振幅・周波数テーブルをそれぞれ記録し(S210)、一連の制御を終える。電源がOFFされていなければ、一連の処理を再度先頭から実施する。
ここで、本発明の学習制御について、重要な点をより具体的に説明する。
まず学習制御開始の前提条件となる「指示油圧と測定油圧が一定値で安定」している状態について図3により説明する。時間0-T1の区間(a)においては、指示油圧・測定油圧ともに油圧P1 で安定しており、学習が実施できる。しかし、時間T1 -T2の区間(b)においては、指示油圧がP1 -P2と変化しており、指示油圧はすぐさまP2で安定するものの、測定油圧はなだらかにP1 →P2と変化する。よって、この区間(b)においては応答性に起因した油圧差が多く含まれてしまうため、学習は実施できない。最後に、時間T2 -T3の区間(c)においては、測定油圧も一定の油圧P2で安定し、指示油圧と測定油圧の差分にはヒステリシス成分のみが現れることになる。よって区間(c)において学習を実施することが可能である。
次にディザ信号の更新ついて、図4を用いて説明する。リニアソレノイドのヒステリシスに対して十分なディザ信号を印加できていない場合、測定油圧は図4(1)のように指示油圧との間に大きなヒステリシス分の油圧を含んだ値に収束する。ヒステリシスを抑制するためにはより強力なディザ信号を印加する必要がある。そのために振幅を大きく、周波数を低く更新する必要がある。更新幅を微少に設定することによって、外乱による急激な更新を避けるフィルタ効果を得ることができる。
ディザ信号が適切に印加できている場合、測定油圧は図4(2)のように指示油圧とほぼ一致した理想的出力となる。この場合、ディザ信号の学習・更新は実施しない。
ディザ信号が過剰に印加されている場合、測定油圧は図4(3)のように指示油圧を中心として振動的な出力となる。ディザ信号が強力にはたらき過ぎているため、ヒステリシス自体は非常に小さくなっているものの、ディザ自体が油圧波形にのってしまい油振を引き起こしてしまう。油振を防ぐため、ディザ信号の出力を抑える必要がある。そのために振幅を小さく、周波数を高く更新する。
最後に、ディザ振幅・周波数のテーブルについて図5を用いて説明する。上記の更新はその時点の指示油圧と油温に対応したディザ振幅・周波数に対して行われる。すなわち、制御装置101はディザ振幅、ディザ周波数それぞれに対して、指示油圧と油温をパラメータとする二次元のテーブルを有している。更新はこのテーブルに対して現在の指示油圧Pref、油温Tf から参照したディザ振幅Axy 、ディザ周波数Fxyに対して実施される。ディザ振幅の増減幅(振幅修正値)Aidおよびディザ周波数の増減幅(周波数修正値)Fidをそれぞれ加減算することによって更新を実施する。前記のように、このテーブルは制御装置の遮断前に不揮発記憶装置へ記憶され、電源再投入後も学習した値を参照・更新することが可能な構成とする。
FIG. 1 shows a typical configuration for carrying out the present invention. The control device 101 performs an operation based on each input and outputs a drive signal for the linear solenoid 103 to the driver circuit 102. The driver circuit 102 amplifies the drive signal from the control device 101, switches the semiconductor element, and supplies a necessary current to the linear solenoid 103. The linear solenoid 103 can control any control object 104 by adjusting the hydraulic pressure. The output oil pressure at the controlled object is detected by the oil pressure sensor 105 and fed back to the control device 101. Each element is connected by a harness 106 as shown in FIG.
In the configuration as described above, learning is performed according to the control flow shown in FIG. First, it is confirmed that both the instruction (target) hydraulic pressure and the measured (detected) hydraulic pressure, which are preconditions for starting learning control, are constantly stable at a constant value (S201). If it is determined that it is stable, the learning control is started, and if it is determined that the hydraulic pressure is in a transitional transition state, the learning control is not performed (stops). In the learning control, first, an absolute difference value between the indicated hydraulic pressure and the measured hydraulic pressure is calculated (S202). Next, it is determined whether the value is equal to or greater than the upper threshold (S203).
If it is equal to or greater than the upper threshold, it is determined that the hysteresis has increased, and the value corresponding to the amplitude increase / decrease width is added to the dither amplitude in the table corresponding to the oil temperature and the command oil pressure at that time (S204), The value corresponding to the frequency increase / decrease width is subtracted (S205).
On the other hand, if the difference absolute value between the command oil pressure and the measured oil pressure is less than or equal to the lower threshold (S206), it is determined that the dither signal is too large, and the amplitude increase / decrease width is determined from the dither amplitude of the table corresponding to the oil temperature and the command oil pressure at that time. The minute value is subtracted (S207), and the value corresponding to the frequency increase / decrease width is added to the dither frequency (S208). If the absolute value of the difference between the command oil pressure and the measured oil pressure is between the upper and lower threshold values, learning is not performed.
Thereafter, it is determined whether the power is turned off by monitoring the power supply voltage of the control device (S209). When it is determined that the power is turned off, the learned dither amplitude / frequency table is recorded in the nonvolatile storage device before the power supply to the control device is cut off (S210), and the series of control is finished. If the power is not turned off, a series of processing is performed again from the beginning.
Here, the important points of the learning control of the present invention will be described more specifically.
First, a state in which “the commanded hydraulic pressure and the measured hydraulic pressure are stable at a constant value”, which is a precondition for starting learning control, will be described with reference to FIG. In the section (a) from time 0 to T1, both the indicated hydraulic pressure and the measured hydraulic pressure are stable at the hydraulic pressure P1, and learning can be performed. However, in the section (b) at time T1 -T2, the command oil pressure changes to P1 -P2 and the command oil pressure immediately stabilizes at P2, but the measured oil pressure gradually changes from P1 to P2. Therefore, in this section (b), there are many hydraulic pressure differences due to responsiveness, so learning cannot be performed. Finally, in the section (c) between time T2 and T3, the measured oil pressure is also stabilized at a constant oil pressure P2, and only a hysteresis component appears in the difference between the command oil pressure and the measured oil pressure. Therefore, learning can be performed in the section (c).
Next, the update of the dither signal will be described with reference to FIG. When a sufficient dither signal cannot be applied to the hysteresis of the linear solenoid, the measured hydraulic pressure converges to a value including a large hydraulic pressure between the command hydraulic pressure and the indicated hydraulic pressure as shown in FIG. In order to suppress the hysteresis, it is necessary to apply a stronger dither signal. For this purpose, it is necessary to update the amplitude large and the frequency low. By setting the update width to be small, it is possible to obtain a filter effect that avoids abrupt update due to disturbance.
When the dither signal can be appropriately applied, the measured hydraulic pressure is an ideal output that substantially matches the indicated hydraulic pressure as shown in FIG. In this case, learning / updating of the dither signal is not performed.
When the dither signal is excessively applied, the measured hydraulic pressure is a vibration output centered on the indicated hydraulic pressure as shown in FIG. Since the dither signal is too powerful, the hysteresis itself is very small, but the dither itself is placed on the hydraulic waveform, causing oil vibration. In order to prevent oil vibration, it is necessary to suppress the output of the dither signal. Therefore, the amplitude is reduced and the frequency is updated higher.
Finally, the dither amplitude / frequency table will be described with reference to FIG. The above update is performed for the dither amplitude and frequency corresponding to the indicated hydraulic pressure and oil temperature at that time. That is, the control device 101 has a two-dimensional table using the command oil pressure and the oil temperature as parameters for each of the dither amplitude and the dither frequency. The update is performed on the dither amplitude Axy and the dither frequency Fxy referred to from the current command oil pressure Pref and the oil temperature Tf. Update is performed by adding / subtracting the dither amplitude increase / decrease width (amplitude correction value) Aid and the dither frequency increase / decrease width (frequency correction value) Fid. As described above, this table is stored in the nonvolatile storage device before the control device is shut off, and the learned value can be referred to and updated even after the power is turned on again.
本発明によれば、リニアソレノイドの経年劣化に起因した電流-油圧ヒステリシスの低減が図られ、長期間に渡って精度の良い油圧を安定して出力することが可能となる。また、リニアソレノイド毎に異なるヒステリシス特性バラツキも低減可能である。 According to the present invention, it is possible to reduce current-hydraulic hysteresis due to aging degradation of a linear solenoid, and it is possible to stably output highly accurate hydraulic pressure over a long period of time. In addition, it is possible to reduce the hysteresis characteristic variation which differs for each linear solenoid.
本発明の利用可能分野は多岐に渡るが、特に高精度の油圧制御を長期間に渡って要求される自動車分野においては好適な発明と言える。本発明を無段変速機などの自動変速機に応用すれば、より高精度に理想の変速線を追従可能となるため燃費の向上、また締結・解放要素がより高精度に制御されるため変速ショックの低減も期待できる。
Although the present invention can be used in various fields, it can be said to be a suitable invention particularly in the automobile field that requires high-precision hydraulic control over a long period of time. If the present invention is applied to an automatic transmission such as a continuously variable transmission, it is possible to follow an ideal shift line with higher accuracy, thereby improving fuel efficiency and shifting because a fastening / release element is controlled with higher accuracy. Reduction of shock can also be expected.
101 制御装置、
102 リニアソレノイドドライバ
103 リニアソレノイド
104 制御対象
105 油圧センサ
106 ハーネス
101 control device,
102 Linear Solenoid Driver 103 Linear Solenoid 104 Control Object 105 Hydraulic Sensor 106 Harness
Claims (8)
前記油路の目標油圧と前記油路の油温とに対する,重畳させるべきディザ信号の振幅と周波数とを記憶する記憶手段と、
前記振幅と前記周波数のディザ信号を発生し,前記制御信号に重畳させるディザ信号発生手段と、
前記油路の検出油圧と前記油路の指示油圧との差圧を演算する演算手段と、
前記演算手段の結果にもとづいて、前記記憶手段の記憶を更新する更新手段と、
前記油路の検出油圧の所定時間内変化量が一定量を超えた場合には、前記更新手段を停止することを特徴とするソレノイド制御装置。
In a solenoid control device that outputs a control signal to a solenoid installed in an oil passage,
Storage means for storing the dither signal amplitude and frequency to be superimposed on the target oil pressure of the oil passage and the oil temperature of the oil passage;
A dither signal generating means for generating a dither signal of the amplitude and the frequency and superimposing the dither signal on the control signal;
A calculating means for calculating a differential pressure between the detected oil pressure of the oil passage and the indicated oil pressure of the oil passage;
Updating means for updating the storage of the storage means based on the result of the computing means;
The solenoid control device characterized in that when the amount of change in the detected oil pressure of the oil passage within a predetermined time exceeds a certain amount, the updating means is stopped.
前記差圧が上限閾値を越えた場合には、
前記更新手段は、前記記憶手段に記憶された振幅に振幅修正値を加算し、前記記憶手段に記憶された周波数に周波数修正値を減算することを特徴とするとソレノイド制御装置。
In claim 1,
If the differential pressure exceeds the upper threshold,
The solenoid control device according to claim 1, wherein the update means adds an amplitude correction value to the amplitude stored in the storage means, and subtracts the frequency correction value from the frequency stored in the storage means.
前記差圧が下限閾値を越えた場合には、
前記更新手段は、前記記憶手段に記憶された振幅に振幅修正値を減算し、前記記憶手段に記憶された周波数に周波数修正値を減算することを特徴とするとソレノイド制御装置。
In claim 1,
If the differential pressure exceeds the lower threshold,
The solenoid control device, wherein the updating means subtracts the amplitude correction value from the amplitude stored in the storage means and subtracts the frequency correction value from the frequency stored in the storage means.
電源オフの際、前記記憶手段の更新結果を保存する保存手段を備えたことを特徴とするとソレノイド制御装置。
In claim 2 or 3,
A solenoid control device comprising a storage means for storing the update result of the storage means when the power is turned off.
記憶された前記振幅と前記周波数のディザ信号を発生し,
前記ソレノイドへの制御信号に前記ディザ信号を重畳させ、
前記油路の油圧を検出し、
検出した油圧と前記油路の指示油圧との差圧を演算し、
前記演算の結果にもとづいて、前記記憶の内容を更新し、
更に、検出した油圧の所定時間内変化量が一定量を超えた場合には、前記更新を停止するソレノイド制御方法。
Store the amplitude and frequency of the dither signal to be superimposed on the target oil pressure of the oil passage where the solenoid is installed and the oil temperature of the oil passage,
Generating a dither signal of the stored amplitude and frequency,
Superimposing the dither signal on the control signal to the solenoid;
Detecting the oil pressure in the oil passage;
Calculate the differential pressure between the detected oil pressure and the indicated oil pressure in the oil passage,
Based on the result of the operation, the contents of the memory are updated,
Further, the solenoid control method of stopping the update when the detected amount of change of the hydraulic pressure within a predetermined time exceeds a certain amount.
前記差圧が上限閾値を越えた場合には、
前記更新は、記憶された振幅に振幅修正値を加算し、記憶された周波数に周波数修正値を減算することを特徴とするソレノイド制御方法。
In claim 5,
If the differential pressure exceeds the upper threshold,
The update is performed by adding an amplitude correction value to the stored amplitude and subtracting the frequency correction value from the stored frequency.
前記差圧が下限閾値を越えた場合には、
前記更新は、記憶された振幅に振幅修正値を減算し、記憶された周波数に周波数修正値を加算することを特徴とするソレノイド制御方法。
In claim 5,
If the differential pressure exceeds the lower threshold,
The update is performed by subtracting the amplitude correction value from the stored amplitude and adding the frequency correction value to the stored frequency.
電源オフの際、前記更新の結果を不揮発メモリーに保存することを特徴とするソレノイド制御方法。 In claim 6 or 7,
A solenoid control method, wherein the update result is stored in a nonvolatile memory when the power is turned off.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012260459A JP2014105805A (en) | 2012-11-29 | 2012-11-29 | Solenoid control device and solenoid control method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012260459A JP2014105805A (en) | 2012-11-29 | 2012-11-29 | Solenoid control device and solenoid control method |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2014105805A true JP2014105805A (en) | 2014-06-09 |
Family
ID=51027482
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012260459A Pending JP2014105805A (en) | 2012-11-29 | 2012-11-29 | Solenoid control device and solenoid control method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2014105805A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016006346A1 (en) * | 2014-07-09 | 2016-01-14 | ジヤトコ株式会社 | Control device for continuously variable transmission |
CN109386602A (en) * | 2017-08-10 | 2019-02-26 | 本田技研工业株式会社 | Hydraulic control device |
JP2020172983A (en) * | 2019-04-11 | 2020-10-22 | ボッシュ株式会社 | Controller for linear solenoid valve and method for controlling linear solenoid valve |
-
2012
- 2012-11-29 JP JP2012260459A patent/JP2014105805A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016006346A1 (en) * | 2014-07-09 | 2016-01-14 | ジヤトコ株式会社 | Control device for continuously variable transmission |
JPWO2016006346A1 (en) * | 2014-07-09 | 2017-04-27 | ジヤトコ株式会社 | Control device for continuously variable transmission |
CN109386602A (en) * | 2017-08-10 | 2019-02-26 | 本田技研工业株式会社 | Hydraulic control device |
JP2020172983A (en) * | 2019-04-11 | 2020-10-22 | ボッシュ株式会社 | Controller for linear solenoid valve and method for controlling linear solenoid valve |
JP7212575B2 (en) | 2019-04-11 | 2023-01-25 | ボッシュ株式会社 | Control device for linear solenoid valve and control method for linear solenoid valve |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8915262B2 (en) | Mass flow controller algorithm with adaptive valve start position | |
JPWO2015030097A1 (en) | Flow control device and flow control program | |
JP2019159687A (en) | Flow controller, flow control method, and program for flow controllers | |
US20140121853A1 (en) | Feedback control method, feedback control apparatus, and feedback control program | |
JP2014105805A (en) | Solenoid control device and solenoid control method | |
WO2016042589A1 (en) | Control apparatus | |
JP5359476B2 (en) | Solenoid control device | |
US10234877B2 (en) | Positioner | |
JP3927435B2 (en) | Correction control system for hydraulic control device of automatic transmission | |
JP6770359B2 (en) | Control device | |
JP6769418B2 (en) | Current controller | |
JP6546754B2 (en) | Control device and control method | |
JP6520945B2 (en) | Method of controlling flow rate of fluid, mass flow control device for executing the method, and mass flow control system using the mass flow control device | |
US20210072773A1 (en) | Method for Actuating a Valve, and Corresponding Device | |
JP3927436B2 (en) | Correction control system for hydraulic control device of automatic transmission | |
JP6273933B2 (en) | Solenoid current control device and solenoid current control method | |
JP2015040569A (en) | Valve positioner | |
KR102367502B1 (en) | Apparatus and method for controlling of dither current amplitude and automatic transmission control apparatus including the same | |
KR20110115797A (en) | Proportional-intergrate-derivative controller and control method thereof | |
JP3927437B2 (en) | Correction control system for hydraulic control device of automatic transmission | |
JP2019105230A (en) | Drive control device of electromagnetic valve | |
JP2018112858A (en) | Controller, method for control, and control program | |
KR101766065B1 (en) | Apparatus and Method for controlling variable resistance typed solenoid | |
JP6248698B2 (en) | Boiler equipment | |
JP5868293B2 (en) | Solenoid valve control device |